
Blender: Self-randomizing Address Space Layout
for Android Apps

Mingshen Sun1, John C.S. Lui1, and Yajin Zhou2

1 The Chinese University of Hong Kong
2 Qihoo 360 Technology Co. Ltd.

Abstract. In this paper, we first demonstrate that the newly introduced Android
RunTime (ART) in latest Android versions (Android 5.0 or above) exposes a
new attack surface, namely, the “return-to-art” (ret2art) attack. Unlike traditional
return-to-library attacks, the ret2art attack abuses Android framework APIs (e.g.,
the API to send SMS) as payloads to conveniently perform malicious operations.
This new attack surface, along with the weakened ASLR implementation in the
Android system, makes the successful exploiting of vulnerable apps much easier.
To mitigate this threat and provide self-protection for Android apps, we propose
a user-level solution called BLENDER, which is able to self-randomize address
space layout for apps. Specifically, for an app using our system, BLENDER ran-
domly rearranges loaded libraries and Android runtime executable code in the
app’s process, achieving much higher memory entropy compared with the vanilla
app. BLENDER requires no changes to the Android framework nor the underlying
Linux kernel, thus is a non-invasive and easy-to-deploy solution. Our evaluation
shows that BLENDER only incurs around 6 MB memory footprint increase for
the app with our system, and does not affect other apps without our system. It in-
creases 0.3 seconds of app starting delay, and imposes negligible CPU and battery
overheads.

Keywords: Android, ROP, ASLR, Blender

1 Introduction

Due to the increasing functionalities of applications (apps for short) on mobile devices,
the security and privacy of apps become one major concern. For apps running on the
Android system, they are mainly written in Java. However, to enhance compatibility
and performance, developers often choose to use the native development kit (NDK) to
develop native libraries written in C/C++ and integrate them in their apps. A recent
study [14] showed that around 37% of Android apps contain at least one native library.
These native libraries are not memory safe and may suffer from memory corruption is-
sues [4,5,8]. What is even worse that the potential vulnerabilities [9] in Android system
libraries are loaded into every app’s process and further expose more attack surfaces,
even if the app itself does not contain any native library. Attackers could exploit vul-
nerabilities in native libraries and execute arbitrary shellcode on stack or launch ROP
attack [40] if the stack is not executable.

To mitigate such threat, Address Space Layout Randomization (ASLR) [48] is a
widely adopted solution in modern operating systems. If properly implemented, a sys-
tem with the ASLR protection will randomize the loaded code and data into different

locations. Therefore, attackers cannot infer the memory layout from previous execu-
tions or other side channels, raising the bar for successfully exploiting the system.

Android introduced the ASLR protection since version 4.0 and improved the imple-
mentation in later versions. However, as indicated by previous research [32], the ASLR
support in Android is not complete. First of all, the ASLR protection in earlier Android
versions is only effective for system-related processes started at device booting stage,
e.g., service management and communication-related processes. Second, the zygote
process creation model of Android indirectly weakens the effectiveness of memory lay-
out randomization. System libraries in different apps inherit shared (and same) memory
regions from the parent zygote process. Thus, attackers can infer the memory layout
from other running apps. This memory layout information helps attackers to initiate at-
tacks and execute any arbitrary code on an Android system. For instance, Lee et al. [32]
demonstrated the possibilities of remotely exploiting vulnerable apps and easily by-
passing the ASLR protection in the Android system to launch an ROP attack (e.g.,
return-to-library [23, 36] and return-to-linker attacks). They further proposed a coun-
termeasure called Morula that changes the Android system to randomize the memory
layout for apps. Framework enhancement appears to be a natural solution. However, the
need to change the Android framework could strongly impair the practical deployment
due to the deep fragmentation of the Android platform.

In this paper, we first demonstrate that the newly introduced Android app RunTime
(ART) exposes a new attack surface, namely return-to-art (ret2art for short). This attack
surface increases the predictability of the memory layout of executable code regions
which are the pool of useful ROP gadgets. Then, it further facilitates the construction
of malicious payloads since attackers could return to the pre-compiled framework li-
braries and leverage the well-defined Android framework APIs to perform malicious
operations. For instance, attackers could easily construct the payload to send SMS, get
GPS locations on behalf of the vulnerable app if the app has corresponding permis-
sions, without the need to understand the tedious details of the binder IPC mechanism
and bridge the semantic gaps between the high level framework APIs and low level sys-
tem calls. This new attack surface is not just in theory, but it is actually a practical threat.
A recent study [37] leveraged a similar attack surface to exploit the Android system.

To mitigate this threat, we then propose a user-level solution called BLENDER. Our
system provides the capability of memory layout self-randomization to (sensitive) An-
droid apps with high security requirement, without waiting for the changes of the An-
droid framework nor the underlying Linux kernel. Specifically, BLENDER first random-
izes memory layout of loaded system libraries which are inherited from the zygote pro-
cess. Then, to prevent the ret2art attack, BLENDER also randomizes the ART executable
runtime dynamically at startup time. It ensures that the base addresses of libraries and
the ART runtime are unpredictable.

We implement a prototype of BLENDER and evaluate its effectiveness and overhead.
Our evaluation shows that apps using our system have a much higher memory entropy
than vanilla apps. This means attackers have to try many times to successfully bypass
the Android ASLR protection, instead of a single attempt. BLENDER incurs an increase
of 6 MB memory footprint for an app. Note that, this only affects apps using our system,
and does not affect other ones running on the device, an extra advantage compared with

the system-wide solution [32]. Our system increases 0.3 seconds to the app starting
time, and incurs no obvious CPU and battery overhead.

To summarize, this paper makes following contributions:

– We first discover a new attack surface called ret2art attack in recent Android ver-
sions. This attack surface provides a large pool for useful ROP gadgets, and facili-
tates the construction of malicious payloads using high-level framework APIs.

– To mitigate the threat of ret2art attack and weakened ASLR implementation in
the Android system, we propose a user-level solution which could self-randomize
address space layout for both native libraries and the ART runtime of a running
app, without the need of framework modification.

– We implement a prototype of the BLENDER system and evaluate the effectiveness
and performance overheads. Our experiments show that BLENDER can gain high
randomization entropy with only 300 milliseconds delay of the app’s startup time,
without obvious overhead to the CPU and battery resources.

The paper is organized as follows. In §2, we discuss the background of Android
and related attack/defense methods. §3 explains the weakened ASLR mechanism in
the current Android system, and we also illustrate conventional ROP attacks and pro-
pose a novel ret2art attacks on the latest version of Android. §4 presents the design and
implementation of BLENDER. We present the experimental results which show the ef-
fectiveness, performance and battery overheads of BLENDER in §5. Finally, we discuss
possible limitations in §6, study related work in §7, and §8 concludes the paper.

2 Background

In this section, we briefly introduce the new Android runtime (ART runtime) and the
ASLR protection on Android.

2.1 Dalvik VM and ART Runtime

An Android app is a zip file packaged with Dalvik executable code (i.e., dex file) and
other resources. In previous Android versions (before Android 5.0), Android utilizes
the Dalivk virtual machine (DVM) to interpret the Dalvik bytecode at runtime. When
an app is started, each Dalvik instance is created and system libraries and app bytecode
will be loaded into an individual process. However, creating a new process and fully
loading dependent libraries is a time-consuming process, especially on resource-limited
mobile platforms. Android optimizes this process by creating the zygote process and
pre-loading all the system libraries into this zygote process when the system is boot-
ing. Then all other apps are forked from this zygote process and inherit the pre-loaded
system libraries (and the Dalvik instance) in the zygote process. This optimization im-
proves an app’s launch-time, however, defeats the ASLR protection in Android since
the system libraries in different apps are shared the same memory layout. Figure 1
shows that the system libraries like libc.so and libart.so are shared between dif-
ferent apps and their addresses could be predicted by attackers. We will illustrate the
way of launching corresponding attacks using the knowledge of predicted address space
layout in Section 3.1.

Fig. 1: Android booting and app creation
process.

Fig. 2: Android ART runtime and memory
structure.

Since Android 5.0, Google optimizes the Android system by introducing a new
Android runtime, i.e., the ART runtime. ART introduces an ahead-of-time (AOT) com-
pilation strategy to compile the Dalvik bytecode into native machine code. Due to this
optimization, the framework-level APIs in the format of Dalvik bytecode are now con-
verted into native code, and are shared between different apps. The new executable
machine code is internally stored in the oat file format, which is nearly same with the
traditional ELF format.

Figure 2 illustrates the flow of code execution of an app by the ART runtime. This
runtime introduces three different memory regions into the app’s process space. The
first one is the classes.dex file, which contains an app’s logic. The file name has a
legacy extension which was inherited from the Dalvik runtime, but it is actual in the
oat format. The second region is the system@framework@boot.oat file (i.e., “ART
boot code” short for boot.oat). This region contains the compiled executable code
of all Android framework bytecode. The third region is a data area and it does not
contain any executable code. It is mapped with the system@framework@boot.art file
(i.e., “ART boot image” internally and is called boot.art for short) which contains all
necessary objects for bootstrapping the ART runtime. Basically, it provides a mapping
table between a framework function and its real address of the executable code. To
invoke a framework function in the app, the code will first (1) query the boot.art
mapping table, then (2) call the actual code in the text section in boot.oat. For the
ART runtime, there are class tables and method tables which maintain information of
all loaded classes and methods. The runtime can call Invoke() of the ArtMethod in the
method table to execute the compiled code through an invocation assembly code stub.

We found that the introduction of the ART runtime exposes a new attack surface due
to two reasons. First, the large chunk of pre-compiled framework native code are shared
between different apps, and its memory layout is more predictable than other system
libraries. Thus, this increases the pool of libraries that could be used as ROP gadgets.
Second, the ART runtime exposes all pre-compiled code of the framework functions at
predictable locations. Attackers can utilize this code as payloads and invoke high-level
framework APIs more easily than the previous Dalvik runtime. We will elaborate this
form of attack surface in Section 3.2.

2.2 DEP/ASLR Protection on Android

Control flow hijacking is a way to exploit vulnerable program and control the program’s
execution flow. In old days, attackers usually hijacked the control flow to the data area
and executed the prepared shellcode on stack. DEP is a security feature which intends
to defeat this type of attack, by disallowing the memory page as writable and executable
at the same time. This feature is supported in modern hardware and enabled by default
in many operating systems, including the Android system.

Then researchers proposed the return-oriented programming (ROP) attack to de-
feat the effectiveness of the DEP protection. It does not need to inject shellcode into
the data area and then mark the data area as executable. Instead, it reuses the already
loaded code in the process to launch attack. Specifically, the ROP attack hijacks the pro-
gram’s control flow and jumps to existing executable instruction sequences which end
with return instructions. These instruction sequences are called “gadgets”. By chaining
gadgets together, attackers can perform arbitrary operations regardless of the DEP pro-
tection. There are many kinds of ROP techniques, e.g., return into binary executable,
return into shared libraries and return into non-randomized memory. The most widely
used technique is the return-into-library technique, due to the fact that libraries such as
libc contain functions (or gadgets) for invoking system calls and other functionalities
which are useful to attackers.

To defend against ROP attacks, in conjunction with DEP, Address Space Layout
Randomization (ASLR) was proposed in a probability manner. The basic idea of ASLR
is that addresses of loaded executable, stack, heap and loaded libraries for each new
process are randomized. Therefore, attackers cannot easily predict the memory address
and jump to a fixed executable address of a gadget for an ROP attack. Although there
are several techniques [34] to bypass DEP/ASLR, ASLR indeed makes attacks more
difficult and limited.

Android gradually adopted memory layout randomization on stack, library, heap,
and dynamic linker in Android 2.3.4, Android 4.0, Android 4.0.3, and Android 5.0
respectively. However, ASLR protection on Android is not as effective as expected due
to several reasons. First, only the latest version Android 5.x supports the full ASLR
protection, but it only accounts for 12.4 % among all Android devices [6]. Second, even
in the case of the full ASLR protection, the zygote app creation model still tampers this
protection (Section 2.1). Third, the pre-compiled system framework oat files increase
the pool for ROP gadgets and facilitate the construction of malicious payloads, and
introduce a new attack surface.

3 A New Attack: Ret2art

In this section, we discuss how to circumvent the ASLR protection on Android and
present a new attack surface introduced by the ART runtime.

3.1 ASLR Circumvention

What went wrong? As discussed in the previous section, all apps are forked from the
zygote process. This implies that the memory structures of child apps are identical and

0 20 40 60 80 100
102

103

104

105

106

107

1 KB

128 KB

512 KB

1 MB

16 MBboot.oat (22.9 MB)

libLLVM.so (7.4 MB)

libart.so (3.2 MB)

libc.so (301.1 KB)

Shared Libraries Loaded in Zygote (Sorted By Size)

S
iz
e
o
f
.
t
e
x
t
S
e
c
ti
o
n

(B
y
te
)

Android 2.2
Android 2.3.3
Android 4.0.3
Android 4.2.2
Android 4.3.1
Android 5.1.1
M Preview

Shared Library * # of ROP Gadgets

libpdfium.so 56154
libft2.so 7318
.
libandroid_runtime.so 1951
libEGL.so 1804
libz.so 1626
libvorbisidec.so 1219
libc.so 1049
.

Total 102311

* Sorted by the number of ROP gadgets.

Fig. 3: Increasing .text section sizes of loaded
shared libraries in zygote for different Android
major versions.

Table 1: Number of unique ROP gadgets
of loaded libraries in the zygote process.

duplicated by the parent zygote process. In other words, the base addresses of stacks,
common libraries such as libc.so, and the dynamic linker are same in every app.
Attackers can now easily predict memory layout information of all apps from one single
exploited app. Moreover, even if some system libraries are not used by the app, they are
still mapped into the app’s process because the zygote process has loaded them. This
further increases the possibility of the success of the ROP attack. In summary, the way
that Android app is created defeats the purpose of ASLR mechanism.

We discover that the loaded libraries of the zygote process provide rich sources
of ROP gadgets which every other app will inherit. To quantify the attack surface, we
measure the size of text section (or executable section) of system libraries loaded in
the zygote process for different Android major versions. Figure 3 shows that the num-
ber of loaded libraries increases from 50 to about 100, and the largest size of exe-
cutable section is about 22 MB. This exposes a large number of vulnerable executable
instructions for attackers. We then utilize an automatic ROP gadget search tool [7]
to find out possible gadgets (i.e., instruction sequences ended with bx reg, blx reg
and pop {,pc}) in shared libraries of the zygote process. Table 1 shows the num-
ber of unique ROP gadgets found by the tool in Android 5.1.1. Two common sys-
tem libraries libandroid_runtime.so and libc.so (highlighted in the table) contain
around a thousand usable gadgets. Because these two libraries provide basic function-
alities for other part of the system, they are stable across different Android versions.
Attackers could leverage the found ROP gadgets in them to launch the ROP attack.

How to exploit? To further understand the way to launch the ROP attack on Android,
we use an example to illustrate the whole process. Figure 4 shows the flow of this attack.
The attack scenario involves two apps. The objective of the first app (App A) is to obtain
the current memory layout. This app can be a simple trojan app installed beforehand.
Note that one app can access its own memory layout without any privileged permission.
By reading the /proc/self/maps file, attackers can easily obtain the memory mapping

Fig. 4: ROP attack on Android (return-to-library attack and return-to-art attack).

information including library names, base addresses, and protect permissions, etc. The
second app (App B) is the target app for an ROP attack, which has a buffer overflow
vulnerability (e.g., popular apps like VLC [13] and Adobe Flash [1] have such vulner-
ability). Attackers first induce users to install the first app (App A) (step 1) to obtain
the current memory layout (step 2). Secondly, attackers can craft a chain of gadgets
using common libraries such as libc.so and libart.so, then determine the absolute
addresses according to the current memory layout obtained previously. At last, attack-
ers exploit the buffer overflow vulnerability of the legitimate app (App B) to initiate an
ROP attack (step 3). By jumping and chaining executable gadgets, attackers can execute
arbitrary privileged code for further attacks.

Even though the proposed attack in Figure 4 leverages the first app (App A) to obtain
the memory layout information, this information could be obtained through exploiting
vulnerabilities in legitimate apps. For example, several known vulnerabilities of the
Chrome Browser [4, 5] and Samsung KNOX browser [8] can leak part of the memory
information. That means the proposed attack could be launched remotely without the
need to install the first app (App A). This conclusion has been demonstrated in the
previous research [32] and we will not discuss its details in this paper.

3.2 The New Return-to-ART Attack (ret2art)

When launching the ROP attack, the most complicated part is to design a valuable
gadget chain and execute malicious payloads. Traditionally, attackers could leverage
particular system calls (e.g., execve()) or existing functions in common libraries (e.g.,
system() and strcpy() in libc library) for this purpose. However, in the context of the
Android system, it is hard for attackers to construct meaningful payloads. For instance,
if attackers want to send a text message to subscribe to a premium service to make
money, or to steal private information from a local database, they have to bridge the
semantic gap between the malicious operations and low level APIs. Though the Android
framework provides many useful APIs, it is hard for attackers to invoke them since
these APIs are in the format of the Dalvik bytecode and cannot be executed directly.
Therefore, it is a non-trivial task to construct malicious payloads on Android.

The ART runtime was introduced since the latest Android version 5.0. We found
that the design and implementation of the ART runtime exposes a new attack surface,
which is called return-to-ART (ret2art) attack. It eases the construction of malicious
payloads and attackers could initiate more powerful and damaging attacks.

What went wrong? Due to the introduction of the ART runtime, the addresses of the
pre-compiled native code of the system framework APIs are predictable. First, boot.
oat and boot.art files contain the compiled native code and related metadata of An-
droid framework APIs. These two files are generated by phone vendors before shipping
the devices to users, and will not change unless there is a new OTA update image. There-
fore, these files are same across all devices using the same firmware image. Second, the
base address of boot.art is fixed (0x70000000 for the 32-bit ARM architecture) in
the AOSP source code (in the /build/core/dex_preopt_libart.mk file [11]). The
exact mapping address of the boot.oat file is patched when the device is first booted,
and will not change unless a system update is performed. The patch offset of the boot
.oat file is fixed between -0x01000000 and 0x01000000 as indicated in /art/build
/Android.common_build.mk. For instance, if the patch offset of boot.oat is 0x8000,
then boot.oat will be mapped to the fixed address 0x70008000 every time for every
app running on the device, until the device updates its firmware image.

The predictable nature of the addresses of loaded oat and art files exposes a new
attack surface (the ret2art attack). First, boot.oat is loaded by the zygote process and
inherited by all other apps. Therefore, the base address of the boot.oat file is fixed
for every app in each execution. Second, the boot.oat file is mapped as an executable
region in memory. It contains abundant number of compiled native code of all methods
in the Android framework, and provides a fertile ground for ROP gadgets. According to
Figure 3, the size of the executable code in this file is around 22.9 MB. Third, the code
offsets for each method are fixed and can be easily located from the structured meta-
data from either the boot.art file or the boot.oat file. Therefore, attackers can craft
gadgets and jump to the native code offset of a method in the boot.oat file. Figure 4
illustrates the basic flow of the re2art attack. Similar with the conventional ROP attack,
attackers can hijack the control flow to the ART executable code. This way, attackers
can invoke framework APIs in the ART runtime, which facilitates the construction of
malicious payloads. For instance, attackers can use the getLastKnowLocation() API
to obtain any recent geographical location information.

How to exploit? Suppose attackers want to send a text message to achieve an unau-
thorized premium services subscription. First, attackers need to get the offset of the
sendTextMessage method in the boot.oat file. This can be achieved by reading the
boot.oat of the firmware using the oatdump tool. Note that, since this offset is only
related to particular firmware, attackers could get this knowledge in advance by down-
loading firmwares from Internet and obtain a mapping table of offsets of interested APIs
to the firmware fingerprint. The base address of the boot.oat file is fixed after the sys-
tem is first powered, and could be obtained through another trojan app or information
leak vulnerabilities in other apps, and even guessed since the base address is around a
fixed location 0x70000000. Code snippet 1.1 shows an example of the dumped boot.
oat file. We can find that the code offset of the sendTextMessage method is fixed in
the boot.oat file at 0x02ca944d (line 11). Second, similar to the previous ROP attack,

1 $ adb shell oatdump �oat-file=/system/framework/arm/boot.oat
2 ...
3 IMAGE PATCH DELTA: -724992 (0xfff4f000)
4 ...
5 40: Landroid/telephony/SmsManager; (offset=0x015d849c) (type_idx=198) (StatusVerified) (

↪→ OatClassSomeCompiled)
6 ...
7 37: void android.telephony.SmsManager.sendTextMessage(java.lang.String, java.lang.String,

↪→ java.lang.String, android.app.PendingIntent, android.app.PendingIntent)} (
↪→ dex_method_idx=844)

8 OatMethodOffsets (offset=0x015d853c)
9 code_offset: 0x02ca944d
10 ...
11 CODE: (code_offset=0x02ca944d size_offset=0x02ca9448 size=324)...
12 0x02ca944c: f5bd5c00 subs r12, sp, #8192
13 ...

Code Snippet 1.1: Example of oatdump for boot.oat file.

attackers can obtain the base address of boot.oat file locally or remotely. Combing
the obtained offset and the base address, attackers now have the absolute address of
the method. Third, attackers exploit existing or zero-day buffer overflow vulnerabil-
ities of the target app to hijack the control flow for initiating a ret2art attack. Note
that attackers cannot directly jump to this address and execute the code, because the
framework code should be executed with the support of the ART runtime. Specifically,
the ART runtime executes native methods through an invocation stub code, i.e., the
art_quick_invoke_stub function defined in the quick_entrypoints_arm.S assem-
bly file [12] for the ARM platform. Before invoking this code, attackers have to pre-
pare several registers for related parameters as shown in Table 2. After passing these
registers to the art_quick_invoke_stub function, the function will finally load the
compiled code to a register as a branch address. As shown in Code Snippet 1.2, the ad-
dress is calculated by summing up r0 with an offset METHOD_QUICK_CODE_OFFSET_32
in line 8, that is, the address of entry_point_from_quick_compiled_code_ field
in the ArtMethod class. Moreover, r1-r3 are copied from the stack controlled by
attackers, which makes the ret2art attack even easier. Therefore, to initiate a ret2art
attack, the attacker can branch (e.g., blx reg) to this stub function and invoke the
sendTextMessage framework API. If the target app has declared the “SEND_SMS” per-
mission, attackers can use this technique to subscribe to some premium services, or to
spread the trojan app via messages.

4 Blender

In this section, we present the design and implementation of BLENDER, a user-level
solution to mitigate threats caused by the weakened ASLR implementation on Android
and the new ret2art attack.

Parameter Description

r0 register method pointer to the invoke
ArtMethod class object

r1 register argument array or NULL for no argu-
ment methods

r2 register size of argument array in bytes
r3 register thread pointer
[sp] address for return value
[sp + 4] address for shorty character representa-

tion of return value

Table 2: Parameter description of
“Invocation Stub”.

1 ENTRY art_quick_invoke_stub
2 ...
3 ldr r0, [r11] @ restore method*
4 ldr r1, [sp, #4] @ copy arg value for r1
5 ldr r2, [sp, #8] @ copy arg value for r2
6 ldr r3, [sp, #12] @ copy arg value for r3
7 mov ip, #0 @ set ip to 0
8 ldr ip, [r0, #METHOD_QUICK_CODE_OFFSET_32]
9 @ get pointer to the

code
10 blx ip @ call the method
11 ...
12 END art_quick_invoke_stub

Code Snippet 1.2: Invocation stub function.

4.1 High Level System Design

Design Requirements Our goal is to provide a user-level solution. Accordingly, we
follow several design requirements to balance protection strength, performance, and
practical system deployment.

Complete Protection: Our system needs to mitigate the threats introduced by both
the zygote application creation process and the new ART runtime. This means that
our system has to eliminate the predictability of the memory layout for loaded system
libraries, and the pre-compiled native code of the framework APIs (the boot.oat file).

Lightweight Protection: It naturally requires that our system should be memory- and
energy-efficient. The performance overhead should not affect user experience. More-
over, the overhead introduced should not affect the apps without our protection.

Easy Deployment: Our system should maintain the compatibility of existing apps,
and not require any change to the Android framework nor the Linux kernel. Also, the
changes made to apps for deploying our system should be minimum.

Threat and Trust Model As our purpose is to provide a user-level solution to miti-
gate the threat of weakened ASLR protection on Android, we assume app developers
are trusted. However, their apps or libraries that apps are depending on may have se-
curity vulnerabilities and could be exploited by attackers both locally and remotely
to arbitrarily read, write, and execute code in app’s memory. Their apps have higher
security requirements, and they want to provide the self-protection capability to their
apps. By deploying our solution, the empowered self-protection capability makes the
exploitation of the vulnerabilities in their apps much harder.

Design Overview BLENDER provides protection in two different aspects. First, BLENDER
randomizes the addresses of loaded system libraries for apps using our system. This
eliminates the possibility that the memory layout of these libraries are predictable. From
this perspective, our system provides similar security guarantees as previous work [32],
by solely in user space, without making changes to the Android framework. Second,
BLENDER deals with the new ret2art attack by randomizing the executable code of the
pre-compiled framework APIs (i.e., boot.art and boot.oat files) in the ART runtime.
This is a new security guarantee which is not covered by previous research.

Fig. 5: Overview of BLENDER Library Randomization Module.

Accordingly, BLENDER contains three components: (1) the bootstrap module, (2)
BLENDER library randomization module (short for BLENDERLRM), and (3) BLENDER
ART randomization module (short for BLENDERART). The bootstrap module takes
over the startup stage of an app, and prepares the running environment of our system.
Like other user-level solutions [54, 60], this bootstrap module is integrated into the
app by simply including a proxy class which extends the Application class. Then
the bootstrap module will invoke BLENDERLRM to self-randomize the current loaded
libraries. After that, it will invoke BLENDERART to rearrange the ART runtime in
the memory. Finally, the original app will be loaded and started. Since the bootstrap
module has been extensively discussed in previous research [54, 60], in this paper, we
will explain BLENDERLRM and BLENDERART, respectively.

4.2 BlenderLRM

Figure 5 illustrates the overview of BLENDERLRM. The main purpose of BLENDER-
LRM is to randomize the addresses of already loaded system libraries inherited from
the zygote process, and all other app-provided third-party libraries. For this purpose,
BLENDERLRM leverages a customized dynamic linker (named as blinker), which
first rearranges the already loaded system libraries and then takes over the process of
loading app-provided third-party libraries and randomizes their addresses. Note that all
the described operations in this section later are only applied to its own process of the
app with our system, and does not affect other processes running on the same device.

Rearrange System Libraries Rearranging the system libraries looks straightforward,
since all system libraries on the Android with ASLR support should be compiled as po-
sition independent code (PIC). This means that these libraries could be loaded into any
addresses 3. We can simply copy the loaded libraries from one location to another one to
randomize the loaded addresses of them. However, most, if not all, system libraries are
dynamically linked. These dynamically linked libraries depend on other libraries, and
their dependencies have been resolved when creating the zygote process. Simply mov-

3 In early versions of Android without ASLR support, system libraries are pre-loaded into fixed
locations.

Algorithm 1 Memory Randomization Algorithm
1: function RANDOMIZELIBRARIES(libraryDependencyGraph)
2: sortedNodes← TOPOSORT(libraryDependencyGraph)
3: for each n ∈ sortedNodes do
4: DUPMAP(n) . Duplicate memory mapping to a random free space.
5: for each node m with an edge from n to m do
6: FIXGOT(m,n) . Fix symbol resolution in GOT of m.
7: end for
8: SAVELIBRARYINFORMATION(n)
9: UNMAP(n) . Unmap library n from memory mappings.

10: end for
11: end function

ing the system libraries from one location to another location will break the resolved
dependencies, and crash the app.

Before presenting our method to solve this challenge, we will describe the back-
ground of dynamic linking first to help readers better understand our proposed method.
For each dynamically linked library, there is a Procedure Linkage Table (PLT) section
(.plt), which contains several stubs to call external functions. For example, suppose li-
brary A uses the strcpy function in libc, then there is a stub for the strcpy function
in the PLT section of library A. The functionality of this PLT stub is to load the real ad-
dress of the strcpy (of libc in the memory) from the entry of the Global Offset Table
(GOT) section, and then jump to it. Each external function used by the library has an
entry in GOT, and its real address is resolved by the dynamic linker (i.e., /system/bin
/linker in Android) when the library is first loaded into the memory and written in the
corresponding GOT entry. Note that the dynamic linker in Android does not adopted
the “lazy binding” mechanism [20], which is common in the desktop systems, to speed
up the app startup stage.

To solve the challenge of dependencies between system libraries, blinker gener-
ates a dependency graph on the loaded libraries and fixes the wrong addresses in GOT
due to library rearrangement. We say that library A depends on library B if there exists
a function call from library B to library A. For instance, liblog.so uses the strcpy()
function in libc.so, and we say libc.so depends on liblog.so. In the dependency
graph, there will be an edge from A (e.g., libc.so) to B (e.g., liblog.so). Correspond-
ingly, the GOT section of liblog.so should contain an entry of the strcpy function
pointing to libc.so. Figure 6 illustrates the dependency graph of ten common libraries
loaded by zygote. From the figure, we can see that there are eight libraries which de-
pend on libc.so. Therefore, if BLENDERLRM rearranges libc.so library to other
address, addresses pointing to libc.so in GOTs of its dependent libraries needs to
be updated. Note that blinker itself is statically linked, otherwise it will depend on
other system libraries which will be rearranged and a dead lock will be created between
blinker and its dependent libraries.

After generating the dependency graph, blinker rearranges system libraries ac-
cording to the method described in Algorithm 1. The algorithm takes a library depen-
dency graph as an input. blinker first topologically sorts the dependency graph. For
each node in the sorted node list, blinker first duplicates it into a random free space

libc.so

libm.so liblog.solibcutils.solibssl.so

libbinder.so

libandroid_runtime.so

libc++.so

libart.so

linker

Fig. 6: Dependency graph. Fig. 7: Overview of BLENDERART.

aligned with the memory page size. Then, blinker fixes GOTs of its dependent nodes.
Furthermore, blinker will store the library information including new base locations,
names, dependency information, etc. This information will help blinker to link li-
braries which will be added at later stages. Finally, blinker will unmap the original
libraries from memory.
Rearrange App-provided Third-party Libraries Besides system libraries, an app
may have its own third-party libraries. For instance, the app using the Cocos2d game
engine will include the corresponding native libraries in the app. Our system needs to
randomize these libraries as well to ensure they have different addresses in different
runs. For this purpose, blinker takes over the role of the original linker. Specifically,
native libraries are loaded into memory by the dlopen() function in libdl.so. We
modify the dynamic linker related function pointers in the GOT section of libdl.so to
our customized blinker. Then, if a new native library is loaded into memory by using
the dlopen() function, blinkerwill map it into a random address and resolve external
function calls.

4.3 BlenderART

As discussed in Section 3.2, the newly introduced ART runtime exposes a new attack
surface, due to the fact that the pre-compiled boot.oat file is in a fixed memory lo-
cation after the system is first booted and will not change unless an OTA update is
performed 4. Our system needs to rearrange this boot.oat to other locations. How-
ever, the differences between the boot.oat and other system libraries we discussed in
Section 4.2 pose new challenges, and we cannot directly apply the method proposed in
Section 4.2 to the boot.oat file.

Figure 7 illustrates the workflow of BLENDERART. There are three steps to carry
out the ART runtime randomization: (1) patch the boot.oat file with an offset, (2) load
this patched boot.oat file into the memory, (3) fix code addresses of the class linker
instance in the ART runtime.
Patch & Load Boot.oat To randomize the loaded address of the boot.oat file, two
main components in the boot.oat file should be patched. First, some branch instruc-

4 Actually, the app’s bytecode in the file classes.dex is also compiled into the native code. How-
ever, this compiled native code is loaded into different places each time the app is started.

Algorithm 2 ART Runtime (boot.oat) Patching Algorithm
1: function PATCHOAT(oatFile, offset)
2: for each patch ∈ oatFile.oatPatches do
3: patchLocation← GETLOCATION(patch)
4: ∗patchLocation← patchLocation+offset
5: end for
6: FIXUPOATHEADER(oatFile, offset)
7: FIXUPELF(oatFile, offset)
8: end function

tions in the boot.oat use absolute addresses to jump to the target instruction. For in-
stance, suppose method A invokes method B in the framework as shown in Figure 7,
the branch instruction jumping from method A to method B uses an absolute address in
memory. These absolute addresses should be patched if we want to move the boot.oat
to another location. Second, the metadata information in the oat file header contains
absolute addresses, and need to be patched too.

One natural choice to patch the address is to leverage the binary rewriting tool to
disassemble the compiled native code, locate and modify absolute addresses in branch
instructions. However, writing a binary rewriting tool from scratch is a tedious and
error-prone process. In this work, we take advantage of a convenient interface provided
by Google for binary rewriting, which is called the oat_patches. When converting the
dex bytecode to native code, the ART compiler first translates the dex bytecode into an
intermediate representations (MIR), and then compiles it into the low-level intermedi-
ate representation (LIR). During the converting stage from MIR to LIR, the compiler
records all literals (including code, method, class, and string literals) which contain ab-
solute addresses and can be modified later (implemented in InstallLiteralPools()
methods in the codegen_util.cc file [10] from AOSP). And the literal information
will be written into one special ELF section of the final oat file, which is called the
oat_patches section. We leverage the oat_patches tool to help us relocate boot.oat
and patch the original fixed absolute addresses. In fact, this oat_patches information
is also used by Android to patch the boot.oat when the system is first powered on.

BLENDERART first randomly picks a free memory region and calculates the offset
(∆) between the new base address and the original one (B). Algorithm 2 illustrates
the procedure to patch the boot.oat file. The patching algorithm takes the oat file
and offset number as input, and will go through all patches and add an offset. The
FixupOatHeader function is to relocate the metadata of the embedded oat header. The
FixupELF function is to rewrite the section header information, dynamic symbol section
(dynsym) and the symbol table section (symtab) information. At last, the patched boot
.oat will be loaded into the memory. Because we already fixup all relocation based on
an offset, the load address should be B+∆ .

Fix Class Linker Data Instance Besides the absolute address in the code area in
the boot.oat file, some information in the data area of the ART runtime should be
patched too. Class linker (i.e., the ClassLinker class) is a single global instance main-
tained by the ART runtime. Since the executable code in the boot.oat file has been
relocated by our system, several important information maintained by it should be fixed

too. For instance, it maintains a class table (the class_table_ field), which contains
loaded classes information (i.e., the mirror::Class class). For each class structure,
it contains corresponding methods in the method tables. There are two types of meth-
ods: direct methods and virtual methods, which are stored in the direct_methods_
table and virtual_methods_ table respectively. The methods in the method table are
in the mirror::ArtMethod class. There is a pointer sized field contains four entry point
addresses. For example, the entry_point_from_quick_compiled_code_ field of a
framework method points to the actual compiled code address of boot.oat in the mem-
ory. Since boot.oat has been relocated, this pointer should be fixed to point to the new
address. Finally, BLENDERART changes the old memory region of boot.oat to non-
executable to ensure data in this file cannot be executed, but can still be accessed by
the ART runtime. In theory, we could fully unmap this memory region. However, we
then need to fix all the references to this memory region in the ART runtime, which is
a time-consuming work. As long as the code area is no-longer executable, it is safe to
leave it there since attackers cannot leverage it to construct ROP gadgets.
Optimization Apps with BLENDERART should perform all the previous steps to
achieve the ART runtime randomization. However, patching the boot.oat file intro-
duces an overhead of around 1.6 seconds which will be shown in Section 5. To reduce
this overhead, we cache the randomized boot.oat so as to reduce the app’s startup time.
We design a patched boot.oat pool which contains a set of offline patched boot.oat
files with different random patched offsets. For each execution, our system picks up a
patched boot.oat file from the pool and loads it into the memory, without patching it
online.

4.4 Implementation Details

We prototype our BLENDER system based on Android 5.1 Lollipop (the AOSP tag
android-5.1.0_r1) for 32-bit ARM architecture. Since the code base of the ART run-
time is stable after Android 5.0, our implementation is generic for Android 5.0 and 6.0
versions. The system contains about two thousand lines of code including C/C++ and
Java. For the implementation, we reuse the peer-reviewed code from AOSP as much
as possible. This will ensure the stability and security of BLENDER. We use the /dev/
random file as the seed for randomization.

There is no official ART support for Android versions less than 5.0 5. Therefore,
the Dalvik virtual machine runtime cannot be exploited by using the ret2art attack
technique. Although a researcher discovered interpreter exploitation [16] on the con-
ventional JIT based virtual machine, it is still difficult to initiate attacks on the Dalvik
runtime. However, the security issue caused by the zygote app creation model still
exists. To harden the ASLR for old Android versions (before Android 5.0), we port
BLENDERLRM to them so as to self-randomize addresses of system libraries inher-
ited from the zygote process. Because BLENDER is a user-level solution and provides
self-randomization capability to the apps using our system, rather than modifying the
source code of the Android framework, app developers could safely deploy our system
and their apps immediately get protected.

5 There is an experimental implementation of the ART runtime in Android 4.4 but is disabled
by default.

5 Evaluation

In this section we evaluate the effectiveness of BLENDER by measuring the app mem-
ory entropy, and the performance overhead at apps’ startup time, execution, memory,
and battery usage. The device used in the evaluation is a Nexus 5 device with Quad-
core 2.3 GHz CPU, 2 GB memory and 16 GB internal storage. The test device runs the
Google official Android firmware which is Lollipop 5.1 with the build number LMY47D
and the kernel version 3.4.0.

5.1 Effectiveness

The goal of the BLENDER system is to prevent attackers from predicting address space
layout of apps. To evaluate the effectiveness of BLENDER, we first discuss from an
app’s perspective.

To measure the address space layout randomness of shared system libraries, we
use the notion of entropy. Entropy is a metric to represent the uncertainty of random
variables. We apply entropy to measure memory layout randomness, and the library
loading addresses are treated as a random variable. We utilize the space layout entropy
metric from [32] to evaluate the application randomness. Specifically, for a shared li-
brary or runtime image code m, let Xm be a discrete random variable with base addresses
{x1,x2, . . . ,xn} and p(xi) is a probability of xm = xi. The normalized address space lay-
out entropy can be defined as H(Xm) =−∑

n
i=1 p(xi)

ln p(xi)
lnn , and 0≤H(Xm)≤ 1 because

of normalization.

App Randomness Because BLENDER only randomizes memory of certain apps with
the BLENDER protection, we evaluate the entropy on one app for multiple executions.
We define {x1,x2, . . . ,xn} as base addresses of the library m, and n is the number of ex-
ecutions for one app. For instance, suppose n = 10, we execute the app with BLENDER
ten times, and the base addresses of library libart.so are totally different. Because
each base address is uniformly distributed, the output will have a probability of 0.1.
At last, the entropy for the libart.so library is H(Xlibart.so) = 1. This means, for the
ten times execution of this app, libart.so is mapped into different addresses. We
calculate the average entropy for all loaded libraries in application A. It is defined as
R(A) = ∑m∈M H(Xm)

|M| . We measure R(A) on a simple app (A) (generated by the blank app
template of Android Gradle 1.2.3 [2]). App A contains 109 native libraries at runtime,
and 108 of them are shared libraries which are inherited from zygote. We execute
the app without and with BLENDER protection ten times respectively, and record the
memory layout after the startup stage. Table 3 shows the results of the average entropy.
The average entropy of original app, app with BLENDERLRM only, and app with full
BLENDER support are 0.005, 0.981, and 0.991 respectively. The average entropy of
the original system is quite low, which shows that there is nearly no randomness in
the original app. After using BLENDER with library randomization module, the entropy
increases significantly. When adding with the ART runtime randomization module, the
entropy increases about 0.1. Although the increased entropy of BLENDERART is small,
but the security gain is considerably high because of the large range of executable re-
gions.

Table 3: Entropy Analysis Results.

Mode App Entropy R(A)

Original App 0.005
BLENDERLRM Only 0.981
BLENDERLRM and BLENDERART 0.991

2 4 6 8 10
0

500

1,000

1,500

2,000

38
7.3

50
4.9

62
4.3

1,5
97
.3

74
1.1

Execution Index

A
p
p
’s

S
ta

rt
u
p

T
im

e
(M

il
li
se
co

n
d
s)

Orginal App App Redelegation

BlenderLRM BlenderLRM+BlenderART
(without cache)

BlenderLRM+BlenderART
(with cache)

Fig. 8: App’s startup time.

0 500 1,000 1,500 2,000

3.5

4

4.5

5

5.5
·104

Elapsed Time (Milliseconds)

V
m
R
S
S

in
th

e
/
p
r
o
c
/
[
p
i
d
]
/
s
t
a
t
u
s
F
il
e
(k

B
)

Original App App Redelegation

BlenderLRM BlenderLRM+BlenderART

Fig. 9: Memory usages at the startup
of apps for different setups.

5.2 Performance

Startup Time Because BLENDER conducts the library and ART randomization when
app is first started, we want to evaluate its overhead in terms of the startup time delay,
which is crucial for user experience. To quantify the startup time, we conduct exper-
iments on a simple app. We create the app targeting Android 5.1 with one activity
(generated by the app template of Android Gradle 1.2.3 [2]). In the app, we override
attachBaseContextmethods in the activity and log the current time (t1). To accurately
calculate the startup elapsed time, we use a UI/application exerciser (monkey tool)
to launch this application and record the time (t0) by reading the $EPOCHREALTIME
value. t1 − t0 represents the elapsed time from launch time into application context.
We measure the startup time of the original app, app only with the bootstrap module
(app re-delegation), app with BLENDERLRM, app with the whole BLENDER without
BLENDERART cache, and finally, app with the optimized BLENDER with cache. We
execute the app for ten times and record the results. Figure 8 illustrates the startup
time (in millisecond) for each launch and the average numbers of different setups.
First, because app re-delegation needs to load the app at runtime, it introduces about
120 ms overhead. Second, without using the cache, BLENDERART needs to execute
code patching for each time. The startup time is about 1.5 seconds, which is noticeable
by normal users. For the system with cache, the startup time is about 740 ms and incurs
about 360 ms overhead, which is comparable with Morula [32]. It is worth noting that,
this overhead only affects at the app’s first startup time (cold start), and will not affect
the following launching of the app (warm start) if the app is not killed due to low mem-

0 100 200 300 400 500

85

90

95

100

Number of ExecutionsB
a
tt
er
y
C
a
p
a
ci
ty

in
th

e
p
o
w
e
r
s
u
p
p
l
y
/
c
a
p
a
c
i
t
y
F
il
e
(%

) Original App App with Blender

Baseline BLENDERLRM Full BLENDER

CPU 35915 36480 35969

Memory 13900 13846 14653

I/O 5874 5893 5900

2D 330 330 298

3D 1967 2019 1981

Total 57986 58568 58801

Fig. 10: Battery capacity after multiple
executions.

Table 4: Benchmark scores.

ory. Moreover, unlike Morula [32], this delay only applies to apps with our protection,
and does not affect other apps.

Runtime Overheads BLENDER provides self-randomization capability to apps and
the randomization process happens at the app’s startup time, it will not affect the run-
time performance. We use the Quadrant Standard Edition v2.1.1 to measure the general
purpose benchmark for CPU, memory, I/O, 2D, and 3D graphics. Because we cannot
get the source code of the benchmark tool, we use apktools [53] to repackage the app
and add the BLENDER protection for our evaluation. Table 4 illustrates the benchmark
results. Because of startup time randomization, the benchmark results are nearly same.

Memory Overheads We also evaluate the memory usage at runtime for the original
app, app with re-delegation, app with BLENDERLRM only, and app with BLENDER-
LRM and BLENDERART. We create a script to monitor the /proc/[pid]/status file
which contains all memory information at runtime. Figure 9 shows the VmRSS sizes
during the start time to 2000 milliseconds. VmRSS (virtual memory resident set size)
represents the portion of memory occupied by a process in memory. At the first 250 ms,
the VmRSS value increases from a low level and then becomes stable. The VmRSS
values of BLENDERLRM only and BLENDERLRM/ART together are nearly same at
runtime, and introduces about 5513 kB (11.5 %) overhead. BLENDER incurs less mem-
ory overhead compared to previous mitigation solution Morula [32] by patching the
Android which introduces 13 MB for each app.

Battery Overheads Battery consumption is important for mobile devices. Because
BLENDER conducts randomization at the startup time of an app, BLENDER will con-
sume more battery than original settings. We conduct the following experiments to mea-
sure the battery overhead of the BLENDER system. Firstly, we use a fully charged device
(Nexus 5) and set screen as “always on”. Then, we launch and close the experiment app
(the same app in the performance evaluation experiments) for 500 times with 10 sec-
onds interval. For each execution, we record the current time and the current battery
capacity. For the BLENDER evaluation, we use a fully charged device to execute the
experiment app with BLENDER installed and record the battery capacity. For both ex-

periments, we obtain the battery capacity by reading the /sys/class/power_supply
/battery/capacity file. Figure 10 illustrates the remaining battery capacities after
multiple number of executions for two apps, and we plot their linear fit as two dashed
lines. There is only 1 % more power consumption after 500 executions for about 6400
seconds which is comparable with the Morula system. Therefore, the battery overhead
is negligible for normal users.

6 Discussion

Limitations of Caching Patched ART Code To balance security gain and perfor-
mance overheads, our design caches patched ART code (i.e., boot.oat) in a pool. Al-
though attackers can try multiple times to guess the offsets of the boot.oat file in
the pool, they still cannot obtain the current offset by previous executions or by other
side channels. However, this technique decreases the entropy of the randomization. To
achieve high entropy randomization, developers can disable utilizing cached code and
conduct randomization at runtime. Although this may introduce more startup overhead
(less than two seconds), this is still acceptable for apps with high security requirements.
Also we may randomize the boot.oat file at runtime, such as when the app is idle in
the background, to reduce the startup time delay. However, this may need deep under-
standing of the app’s logic and more involvement from the app developer’s side.
BLENDER on Other Architectures Because most mobile devices are based on the
ARM architecture (99 % according to report [3]), our ret2art attack and BLENDER sys-
tem are implemented on an ARM-based device. In fact, the latest Android version sup-
port other architectures including x86 and MIPS. The only differences are architecture
specific source code. Therefore, the weakness of ASLR introduced by zygote process
creation model still exists. And one can easily write code to initiate ret2art attack on
those platforms. For the BLENDER system, one can port to other architectures by trans-
lating architecture specific ARM assembly code to the corresponding architecture.
Randomization within Shared Library Another limitation of current system is that
BLENDER does not randomize the functions inside a library. This means that if there is
a memory leak vulnerability, attackers could know the base address and compute offsets
of ROP gadgets to launch an ROP attack. To overcome this potential security problem,
we can use method proposed as binary stirring [52] to randomly rewrite the binary code
blocks of loaded libraries. However, this method requires disassembling, rewriting and
assembling all loaded libraries at launch time of an app. This will introduces consider-
able overheads. Therefore, we leave it as our future work.

7 Related Work

Security problem in memory is one of the oldest issues in computer security. Previous
studies [28,47,50] summarize the attack and defense solutions on memory security. Our
work focuses on attacking and protecting weakened ASLR mechanism on Android.
Attacks and Defenses of ASLR Mechanism Because modern operating systems have
implemented/deployed ASLR and DEP defense mechanisms by default [24,30,48], at-
tackers try many bypassing techniques from different perspectives. Several works [34,

43] focus on bypassing by brute-forcing method. Moreover, leaked pointers, type con-
fusion and use-after-free bugs can be also exploited [41, 42]. Furthermore, by repeat-
edly abuse a memory disclosure, attackers can map an application’s memory layout on-
the-fly with dynamically discovered gadgets [44]. There are many return oriented pro-
gramming techniques described in several papers [34, 36]. Moreover, some researchers
[22, 52] proposed to protect memory by introducing high randomization entropy.

Attacks and Defenses on Android Compared to traditional desktop operating sys-
tem, mobile OS have their domain-specific architecture design which introduces new
attack surfaces. For Android, many researches discuss about security issues on per-
mission mechanism [19, 29, 31] of Android. In addition, some work exploit underly-
ing system components on Android [15, 21, 27, 35, 38, 39, 49, 51, 57]. Because there
are a number of malware on Android, Zhou et al. [59] provide the characterization
and evolution of Android malware. In addition, some systems propose to prevent [46]
or detect malware [45]. Moreover, researchers also propose both static analysis sys-
tems [26,33,56,58] and dynamic analysis systems [25,55] to assist malware researchers
to understand the malicious logic.

Mitigating ASLR on Android Because of the limitations of mobile system, the design
and implementation of ASLR mechanism is rather weak. Retouching [17], Morula [32]
and LR2 [18] are three systems which discuss attacking techniques and provide miti-
gation solutions. Retouching can randomize pre-linked code when deploying Android
applications. However, Retouching does not resolve the issue of uniform memory lay-
out introduced by the zygote process creation model. Morula proposes a patch for
Android source code to randomize all layout of apps after forking from zygote and
also introduces low overheads. LR2 proposes a leakage-resilient layout randomization
method by introducing transformations as passes on compiler. However, they all have
a major deployment issue. Current systems needs to modify Android source code to
achieve randomization functionality. Users should replace original firmware with the
customized system. Moreover, the system should keep up with the latest Android ver-
sion with new features and bug fixes. Hence, because of the deployment issues, both
users and developers cannot easily adopt this mitigation solution. Our work provides a
non-invasive methodology for both developers and users.

8 Conclusion

In this paper, we show that the ASLR protection on Android is weakened due to the
zygote app creation model. Moreover, we demonstrate a newly discovered attack sur-
face introduced by the ART runtime, and present a novel way to exploit the weak-
ness of the ASLR protection and this new attack surface. Then we propose a non-
invasive user-level solution called BLENDER which does not need framework modi-
fication. BLENDER self-randomizes address space layout for apps, hence raising the bar
for successfully bypassing the weakened ASLR protection on Android. We discuss the
design, implementation, and present the effectiveness and performance overhead of our
system.

References

1. Adobe Flash Use-after-free Vulnerability. http://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2015-3108.

2. Android plugin for gradle. https://developer.android.com/intl/ru/tools/
building/plugin-for-gradle.html.

3. Arm designs one of the world’s most-used products. http://www.bloomberg.com/
bw/articles/2014-02-04/arm-chips-are-the-most-used-consumer-product-
dot-where-s-the-money.

4. CVE-2013-0912. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-
0912.

5. CVE-2015-1233. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-
1233.

6. Distribution of android platform versions. https://developer.android.com/about/
dashboards/index.html.

7. Ropgadget - gadgets finder and auto-roper. http://shell-storm.org/project/
ROPgadget/.

8. Samsung galaxy knox android browser rce. https://www.exploit-db.com/exploits/
35282/.

9. Stagefright (bug). https://en.wikipedia.org/wiki/Stagefright_(bug).
10. codegen_util.cc file in AOSP. https://android.googlesource.com/platform/
art/+/android-6.0.0_r26/compiler/dex/quick/codegen_util.cc.

11. dex_preopt_libart.mk file in AOSP. https://android.googlesource.com/
platform/build/+/android-6.0.0_r26/core/dex_preopt_libart.mk#36.

12. quick_entrypoints_arm.S file in AOSP. https://android.googlesource.com/
platform/art/+/android-6.0.0_r26/runtime/arch/arm/quick_entrypoints_
arm.S.

13. VLC media player 2.0.4 suffers from buffer overflow. https://trac.videolan.org/
vlc/ticket/7860.

14. V. Afonso, A. Bianchi, Y. Fratantonio, A. Doupé, M. Polino, P. de Geus, C. Kruegel, and
G. Vigna. Going native: Using a large-scale analysis of android apps to create a practical
native-code sandboxing policy. In NDSS, 2016.

15. A. Bianchi, J. Corbetta, L. Invernizzi, Y. Fratantonio, C. Kruegel, and G. Vigna. What the
app is that? deception and countermeasures in the android user interface. In SP, 2015.

16. D. Blazakis. Interpreter exploitation. In WOOT, 2010.
17. H. Bojinov, D. Boneh, R. Cannings, and I. Malchev. Address space randomization for mobile

devices. In WiSec, 2011.
18. K. Braden, S. Crane, L. Davi, M. Franz, P. Larsen, C. Liebchen, and A.-R. Sadeghi. Leakage-

resilient layout randomization for mobile devices. In NDSS, 2016.
19. S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi, and B. Shastry. Towards taming

privilege-escalation attacks on android. In NDSS, 2012.
20. S. Chamberlain and I. L. Taylor. The gnu linker, 1991.
21. Q. A. Chen, Z. Qian, and Z. M. Mao. Peeking into your app without actually seeing it: Ui

state inference and novel android attacks. In USENIX Security, 2014.
22. Y. Chen, Z. Wang, D. Whalley, and L. Lu. Remix: On-demand live randomization. In

CODASPY, 2016.
23. S. Designer. return-to-libc attack. Bugtraq, Aug, 1997.
24. T. Durden. Bypassing pax aslr protection. Phrack Magazine, 59, 2002.
25. W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and

A. N. Sheth. Taintdroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. ACM TOCS, 2014.

26. W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A study of android application security.
In USENIX Security, 2011.

27. W. Enck, M. Ongtang, and P. McDaniel. Understanding android security. SP, 2009.
28. Ú. Erlingsson. Low-level software security: Attacks and defenses. In FOSAD. 2007.
29. A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin. Permission re-delegation:

Attacks and defenses. In USENIX Security, 2011.

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3108
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3108
https://developer.android.com/intl/ru/tools/building/plugin-for-gradle.html
https://developer.android.com/intl/ru/tools/building/plugin-for-gradle.html
http://www.bloomberg.com/bw/articles/2014-02-04/arm-chips-are-the-most-used-consumer-product-dot-where-s-the-money
http://www.bloomberg.com/bw/articles/2014-02-04/arm-chips-are-the-most-used-consumer-product-dot-where-s-the-money
http://www.bloomberg.com/bw/articles/2014-02-04/arm-chips-are-the-most-used-consumer-product-dot-where-s-the-money
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0912
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0912
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1233
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1233
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/about/dashboards/index.html
http://shell-storm.org/project/ROPgadget/
http://shell-storm.org/project/ROPgadget/
https://www.exploit-db.com/exploits/35282/
https://www.exploit-db.com/exploits/35282/
https://en.wikipedia.org/wiki/Stagefright_(bug)
https://android.googlesource.com/platform/art/+/android-6.0.0_r26/compiler/dex/quick/codegen_util.cc
https://android.googlesource.com/platform/art/+/android-6.0.0_r26/compiler/dex/quick/codegen_util.cc
https://android.googlesource.com/platform/build/+/android-6.0.0_r26/core/dex_preopt_libart.mk#36
https://android.googlesource.com/platform/build/+/android-6.0.0_r26/core/dex_preopt_libart.mk#36
https://android.googlesource.com/platform/art/+/android-6.0.0_r26/runtime/arch/arm/quick_entrypoints_arm.S
https://android.googlesource.com/platform/art/+/android-6.0.0_r26/runtime/arch/arm/quick_entrypoints_arm.S
https://android.googlesource.com/platform/art/+/android-6.0.0_r26/runtime/arch/arm/quick_entrypoints_arm.S
https://trac.videolan.org/vlc/ticket/7860
https://trac.videolan.org/vlc/ticket/7860

30. C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum. Enhanced operating system security through
efficient and fine-grained address space randomization. In USENIX Security, 2012.

31. M. C. Grace, Y. Zhou, Z. Wang, and X. Jiang. Systematic detection of capability leaks in
stock android smartphones. In NDSS, 2012.

32. B. Lee, L. Lu, T. Wang, T. Kim, and W. Lee. From zygote to morula: Fortifying weakened
aslr on android. In SP, 2014.

33. L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. Chex: statically vetting android apps for compo-
nent hijacking vulnerabilities. In CCS, 2012.

34. T. Müller. Aslr smack & laugh reference. In Advanced Exploitation Techniques, 2008.
35. C. Mulliner, J. Oberheide, W. Robertson, and E. Kirda. Patchdroid: scalable third-party

security patches for android devices. In ACSAC, 2013.
36. Nergal. The advanced return-into-lib (c) exploits: Pax case study. Phrack Magazine, Volume

0x0b, Issue 0x3a.
37. O. Peles and R. Hay. One class to rule them all: 0-day deserialization vulnerabilities in

android. In WOOT, 2015.
38. A. Razeen, B. Wu, and S. Cheemalapati. Spandex: Secure password tracking for android. In

USENIX Security, 2014.
39. C. Ren, Y. Zhang, H. Xue, T. Wei, and P. Liu. Towards discovering and understanding task

hijacking in android. In USENIX Security, 2015.
40. R. Roemer, E. Buchanan, H. Shacham, and S. Savage. Return-oriented programming: Sys-

tems, languages, and applications. ACM TISSEC, 2012.
41. G. F. Roglia, L. Martignoni, R. Paleari, and D. Bruschi. Surgically returning to randomized

lib (c). In ACSAC, 2009.
42. F. J. Serna. The info leak era on software exploitation. Black Hat USA, 2012.
43. H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh. On the effectiveness

of address-space randomization. In CCS, 2014.
44. K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A.-R. Sadeghi. Just-in-

time code reuse: On the effectiveness of fine-grained address space layout randomization. In
SP, 2013.

45. M. Sun, M. Li, and J. C. S. Lui. Droideagle: seamless detection of visually similar android
apps. In WiSec, 2015.

46. M. Sun, M. Zheng, J. C. S. Lui, and X. Jiang. Design and implementation of an android
host-based intrusion prevention system. In ACSAC, 2014.

47. L. Szekeres, M. Payer, T. Wei, and D. Song. Sok: Eternal war in memory. In SP, 2013.
48. P. Team. Pax address space layout randomization (aslr), 2003.
49. D. R. Thomas, A. R. Beresford, and A. Rice. Security metrics for the android ecosystem. In

SPSM, 2015.
50. V. Van der Veen, L. Cavallaro, H. Bos, et al. Memory errors: the past, the present, and the

future. In RAID, 2012.
51. T. Vidas, D. Votipka, and N. Christin. All your droid are belong to us: A survey of current

android attacks. In WOOT, 2011.
52. R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary stirring: Self-randomizing instruc-

tion addresses of legacy x86 binary code. In ASIACCS, 2012.
53. R. Winsniewski. Android–apktool: A tool for reverse engineering android apk files, 2012.
54. R. Xu, H. Saidi, and R. Anderson. Aurasium: Practical policy enforcement for android

applications. In USENIX Security, 2012.
55. L.-K. Yan and H. Yin. Droidscope: Seamlessly reconstructing the os and dalvik semantic

views for dynamic android malware analysis. In USENIX Security, 2012.
56. M. Zhang, Y. Duan, H. Yin, and Z. Zhao. Semantics-aware android malware classification

using weighted contextual api dependency graphs. In CCS, 2014.
57. M. Zheng, M. Sun, and J. Lui. Droidray: a security evaluation system for customized android

firmwares. In ASIACCS, 2014.
58. M. Zheng, M. Sun, and J. C. Lui. Droidanalytics: a signature based analytic system to collect,

extract, analyze and associate android malware. In TrustCom, 2013.
59. Y. Zhou and X. Jiang. Dissecting android malware: Characterization and evolution. In SP,

2012.
60. Y. Zhou, K. Patel, L. Wu, Z. Wang, and X. Jiang. Hybrid user-level sandboxing of third-party

android apps. In ASIACCS, 2015.

	Blender: Self-randomizing Address Space Layout for Android Apps

