
Unifying O�line Causal Inference and Online Bandit Learning
for Data Driven Decision

Li Ye
The Chinese University of Hong Kong

Hong Kong, China

Hong Xie
College of Computer Science, Chongqing University

China

Yishi Lin
Tencent Inc.

China

John C.S. Lui
The Chinese University of Hong Kong

Hong Kong, China

ABSTRACT
A fundamental question for companies with large amount of logged
data is: How to use such logged data together with incoming stream-
ing data to make good decisions?Many companies currently make
decisions via online A/B tests, but wrong decisions during testing
hurt users’ experiences and cause irreversible damage. A typical
alternative is o�ine causal inference, which analyzes logged data
alone to make decisions. However, these decisions are not adaptive
to the new incoming data, and so a wrong decision will continu-
ously hurt users’ experiences. To overcome the aforementioned
limitations, we propose a framework to unify o�ine causal infer-
ence algorithms (e.g., weighting, matching) and online learning
algorithms (e.g., UCB, LinUCB). We propose novel algorithms and
derive bounds on the decision accuracy via the notion of “regret”.
We derive the �rst upper regret bound for forest-based online ban-
dit algorithms. Experiments on two real datasets show that our
algorithms outperform other algorithms that use only logged data
or online feedbacks, or algorithms that do not use the data properly.

ACM Reference Format:
Li Ye, Hong Xie, Yishi Lin, and John C.S. Lui. 2021. Unifying O�ine Causal In-
ference and Online Bandit Learning for Data Driven Decision. In Proceedings
of the Web Conference 2021 (WWW ’21), April 19–23, 2021, Ljubljana, Slovenia.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3442381.3449982

1 INTRODUCTION
How to make good decisions is a key challenge in many web ap-
plications, i.e., an Internet company such as Facebook that sells
in-feeds advertisements (or “ads” for short) needs to decide whether
to place an ad below videos or below images, as illustrated in Fig. 1.

It is common that Internet companies have archived lots of
logged data which may assist decision making. For example, In-
ternet companies which sell in-feeds advertisements have logs of
advertisements’ placement, as well as users’ feedbacks to these ads
as illustrated in Table 1. The question is: how to use these logs to make
a better decision? To motivate this problem, consider Example 1.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’21, April 19–23, 2021, Ljubljana, Slovenia
© 2021 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-8312-7/21/04.
https://doi.org/10.1145/3442381.3449982

Figure 1: In-feeds ad placement of Instagram
Table 1: Logged data of a company that sells in-feeds ads

We derive the �rst upper regret bound for forest-based online ban-
dit algorithms. Experiments on two real datasets show that our
algorithms outperform other algorithms that use only logged data
or online feedbacks, or algorithms that do not use the data properly.

Li Ye, Hong Xie, Yishi Lin, and John C.S. Lui. 2021. Unifying O�ine Causal In-
Proceedings

of the Web Conference 2021 (WWW ’21), April 19–23, 2021, Ljubljana, Slovenia.

actionz }| { contextsz }| { outcomez }| {
ID Ad below video? User likes videos? Age ... Click?
1 no no 30 ... no (0)
2 yes yes 20 ... yes (1)
...

...
...

...
...

...

(ad) below a video or below an image. The company’s goal is to increase
Example 1. 10,000 new users will arrive to see the advertisement.
The Internet company needs to decide whether to place the advertise-
ment (ad) below a video or below an image. The company’s goal is to
increase click-through rate from these 10,000 new users. Users are of
two types — users who “like” or users who “dislike” videos. Assume 50%
of these new user like (or dislike) videos. The “true click rates” for each
types of user, which are unknown to the company, are summarized in
Table 2. Furthermore, the company has a logged statistics of the past
400 users, half of whom like (or dislike) videos, as shown in Table 3.

Table 2: True click rates of each type of user. Action 2 (ad
below image, with “*”) is better for both types of users.

ternet companies which sell in-feeds advertisements have logs of
advertisements’ placement, as well as users’ feedbacks to these ads

how to use these logs to make
To motivate this problem, consider Example 1.

10,000 new users will arrive to see the advertisement. The
Internet company needs to decide whether to place the advertisement

Action #
User type Like videos Dislike videos

1. Ad below video 11% 1%
2. Ad below image⇤ 14% 4%

One may consider the following three strategies to make decisions.
Empirical Average. The company chooses the action with the high-
est average click rate in the logged data to serve 10,000 incoming users.

2291

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Li Ye, Hong Xie, Yishi Lin, and John C.S. Lui

Table 3: Average click rate in logs of 400 users. In the logged
data, users who like videosweremore likely to see ads below
videos, as they subscribed to more videos.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Li Ye, Hong Xie, Yishi Lin, and John C.S. Lui

Table 3: Average click rate in logs of 400 users. In the logged
data, users who like videos were more likely to see ads below
videos, as they subscribed to more videos.

Action #
User type Like videos

(200 users)
Dislike videos
(200 users)

1. Ad below video 10% of 150 ads 2% of 50 ads
2. Ad below image⇤ 12% of 50 ads 4% of 150 ads

action implied by the true click rates in Table 2. This method fails be-
cause it ignores users’ preferences to videos. This example is similar
to the Simpson’s Paradox [33] in the discussion of causality.
O�line causal inference. First, the company computes the average
click rates w.r.t. each user type (as in Table 3). Second, for each action,
it computes the weighted average of such type-speci�c click rates
where the weight is the fraction of users in each type. For logs in
Table 3, the weighted average click rate for action 1 (ad below video)
is 10%⇥(200/400) � 2%⇥(200/400)=6%. Similarly, the weighted av-
erage click rate for action 2 is (12%�4%)/2=8%. Thus, the company
chooses action 2 for logs in Table 3. However, the causal inference
strategy has a risk of not �nding the right action as the logs are only
�nite samples from the population. For example, in another sample
statistics where the number of clicks for users who dislike videos
and see ad below video (the upper right cell in Table 3) increases
from 1 (i.e. 2%⇥50) to 4, the “o�ine causal inference” strategy will
then choose the inferior action of “placing ad below video”.
Online A/B testing. Each of the �rst 4,000 incoming users is ran-
domly assigned to group A or B with equal probability. Users in group
A see ads below videos (action 1), while users in group B see ads below
images (action 2). Then, the company selects the action with a higher
average testing click rate for the remaining 6,000 users. In this A/B
test, 2,000 testing users in group A su�er from the inferior action.

The above three strategies have their own limitations. Taking
the “empirical average” leads to a wrong decision by ignoring the
important factor of users’ preferences. “O�ine causal inference”
only uses the logged data and has a risk to make the wrong decision
due to the incompleteness of the logged samples. “A/B testing” only
uses the online data and pays a high cost of testing the inferior
actions. In this paper, we propose a novel strategy which can use
both the logged data and the online feedbacks.
Causal inference + online learning (our method). The company
applies o�ine causal inference to “judiciously” use the logged data to
improve the e�ciency of an online learning algorithm. For example,
UCB is used [4] as the online learning algorithm in Table 4.

Table 4: The expected revenue($) of the four strategies over
10,000 users. Suppose each click yields a revenue of $1. The
optimal expected revenue is $900 (where the optimal action
is to “place videos below an image”). A strategy’s “regret” is
the di�erence between the optimal revenue and its revenue.

Strategy Empirical
average

Causal
inference

A/B
testing

Our
method

Expected Revenue 674.4 847.7 839.9 894.4
Expected Regret 225.6 52.3 60.1 5.6

Table 4 shows that our algorithm achieves the highest revenue
for Example 1. The key is to choose the appropriate data from the
logged data to improve our decision making.

Our contributions are:
• A uni�ed framework with novel algorithms.We formulate
a general online decision making problem, which utilizes logged
data to improve both (1) context-independent decisions, and (2) con-
textual decisions. Our framework uni�es o�ine causal inference
and online bandit algorithms. Our framework is generic enough
to combine di�erent causal inference methods like matching and
weighting [6], and bandit algorithms like UCB [4] and LinUCB [30].
This uni�cation inspires us to extend the o�ine regression-forest
to an “n-decreasing multi-action forest” online learning algorithm.
• Theoretical regret bounds. We derive regret upper bounds
for algorithms in our framework. We show how the logged data
can reduce the regret of online decisions. Moreover, we derive an
asymptotic regret bound for the “n-decreasing multi-action forest”
algorithm. To the best of our knowledge, this is the �rst regret
analysis for a forest-based online bandit algorithm.
• Extensive empirical evaluations. Experiments on synthetic
data and real web datasets from Weixin and Yahoo show that our
algorithms that use both logged data and online feedbacks can
make the right decision with the highest accuracy. On the Weixin’s
dataset, we reduce the regret of the decision maker by 37.1% (or
45.5%) compared to the online bandit learning algorithm (or o�ine
causal inference algorithm). On the Yahoo’s dataset, we reduce the
regret by 21.1% compared to LinUCB of [30]. Moreover, we show
our algorithms outperforms the heuristics that uses supervised
learning algorithm to learn from o�ine data for decision making.

2 MODEL & PROBLEM FORMULATION
Our approach for the new online decision problem uses the logged
data to improve online decision accuracy (more details in Section
3). Note that the observed logged data may have “selection bias” on
the actions, while in the online environment actions are chosen by
the decision maker. This is why we need to �nd a formal approach
to “connect” the logged data and the online data for correct usage.

In this section, we �rst present the logged data model. Then
we model the online environment. Finally, we present the online
decision problem which aims to utilize both the logged data and
online feedbacks to minimize the regret.

2.1 Model of Logged Data
We consider a tabular logged dataset (e.g., Table 1), which was
collected before the running of online decision algorithms. The
logged dataset has � 2 N� items, denoted by L , {(08 , x8 ,~8) |8 2
[��]}, where (08 , x8 ,~8) denotes the 8C⌘ recorded data item and
[��] , {�� ,���1, . . . ,�1}. Here, we use negative indices to indicate
that the logged data were collected in the past. The action for data
item 8 is denoted as 08 2 [] , {1, . . . , }, where 2 N� . The
actions in the logged data can be generated according to the users’
natural behaviors or by the company’s interventions. For example,
option 1 and 2 in Figure 1 are actions. The ~8 2 Y ✓ R denotes
the outcome (or reward). The x8 , (G8,1, . . . , G8,3) 2 X denotes the
contexts (or features) of data item 8 , where 3 2 N� and X ✓ R3 .
The contexts are also known as “observed confounders” [6]. We use
u8 , (D8,1, . . . ,D8,✓) 2 U, where ✓ 2 N� andU ✓ R✓ , to model the
unobserved confounders. The u8 captures latent or hidden contexts,
e.g., a user’s monthly income.

For logs in Table 3, the average click rate for “ad below video” is
(10%⇥150+2%⇥50)/(150+50)=8%. Similarly, the average click rate
is 6% for “ad below image”. Thus, the company chooses to place
“ad below video” for the 10,000 incoming users. But it is the wrong
action implied by the true click rates in Table 2. This method fails be-
cause it ignores users’ preferences to videos. This example is similar
to the Simpson’s Paradox [33] in the discussion of causality.
O�line causal inference. First, the company computes the average
click rates w.r.t. each user type (as in Table 3). Second, for each action,
it computes the weighted average of such type-speci�c click rates
where the weight is the fraction of users in each type. For logs in
Table 3, the weighted average click rate for action 1 (ad below video)
is 10%⇥(200/400) + 2%⇥(200/400)=6%. Similarly, the weighted av-
erage click rate for action 2 is (12%+4%)/2=8%. Thus, the company
chooses action 2 for logs in Table 3. However, the causal inference
strategy has a risk of not �nding the right action as the logs are only
�nite samples from the population. For example, in another sample
statistics where the number of clicks for users who dislike videos
and see ad below video (the upper right cell in Table 3) increases
from 1 (i.e. 2%⇥50) to 4, the “o�ine causal inference” strategy will
then choose the inferior action of “placing ad below video”.
Online A/B testing. Each of the �rst 4,000 incoming users is ran-
domly assigned to group A or B with equal probability. Users in group
A see ads below videos (action 1), while users in group B see ads below
images (action 2). Then, the company selects the action with a higher
average testing click rate for the remaining 6,000 users. In this A/B
test, 2,000 testing users in group A su�er from the inferior action.

The above three strategies have their own limitations. Taking
the “empirical average” leads to a wrong decision by ignoring the
important factor of users’ preferences. “O�ine causal inference”
only uses the logged data and has a risk to make the wrong decision
due to the incompleteness of the logged samples. “A/B testing” only
uses the online data and pays a high cost of testing the inferior
actions. In this paper, we propose a novel strategy which can use
both the logged data and the online feedbacks.
Causal inference + online learning (our method). The com-
pany applies o�ine causal inference to “judiciously” use the logged
data to improve the e�ciency of an online learning algorithm. For
example, UCB is used [4] as the online learning algorithm in Table 4.

Table 4 shows that our algorithm achieves the highest revenue
for Example 1. The key is to choose the appropriate data from the
logged data to improve our decision making.

Our contributions are:
• A uni�ed framework with novel algorithms. We formulate
a general online decision making problem, which utilizes logged
data to improve both (1) context-independent decisions, and (2) con-
textual decisions. Our framework uni�es o�ine causal inference

Table 4: The expected revenue($) of the four strategies over
10,000 users. Suppose each click yields a revenue of $1. The
optimal expected revenue is $900 (where the optimal action
is to “place videos below an image”). A strategy’s “regret” is
the di�erence between the optimal revenue and its revenue.

Empirical Causal A/B Our
Strategy average inference testing method

Expected Revenue 674.4 847.7 839.9 894.4
Expected Regret 225.6 52.3 60.1 5.6

and online bandit algorithms. Our framework is generic enough
to combine di�erent causal inference methods like matching and
weighting [6], and bandit algorithms like UCB [4] and LinUCB [30].
This uni�cation inspires us to extend the o�ine regression-forest
to an “�-decreasing multi-action forest” online learning algorithm.
• Theoretical regret bounds. We derive regret upper bounds
for algorithms in our framework. We show how the logged data
can reduce the regret of online decisions. Moreover, we derive an
asymptotic regret bound for the “�-decreasing multi-action forest”
algorithm. To the best of our knowledge, this is the �rst regret
analysis for a forest-based online bandit algorithm.
• Extensive empirical evaluations. Experiments on synthetic
data and real web datasets from Weixin and Yahoo show that our
algorithms that use both logged data and online feedbacks can
make the right decision with the highest accuracy. On the Weixin’s
dataset, we reduce the regret of the decision maker by 37.1% (or
45.5%) compared to the online bandit learning algorithm (or o�ine
causal inference algorithm). On the Yahoo’s dataset, we reduce the
regret by 21.1% compared to LinUCB of [30]. Moreover, we show
our algorithms outperforms the heuristics that uses supervised
learning algorithm to learn from o�ine data for decision making.

2 MODEL & PROBLEM FORMULATION
Our approach for the new online decision problem uses the logged
data to improve online decision accuracy (more details in Section
3). Note that the observed logged data may have “selection bias” on
the actions, while in the online environment actions are chosen by
the decision maker. This is why we need to �nd a formal approach
to “connect” the logged data and the online data for correct usage.

In this section, we �rst present the logged data model. Then
we model the online environment. Finally, we present the online
decision problem which aims to utilize both the logged data and
online feedbacks to minimize the regret.

2.1 Model of Logged Data
We consider a tabular logged dataset (e.g., Table 1), which was col-
lected before the running of online decision algorithms. The logged
dataset has I 2 N+ items, denoted by L , {(ai ,xi ,�i)|i 2 [�I]},
where (ai ,xi ,�i) denotes the ith recorded data item and [�I] ,
{�I ,�I+1, . . . ,�1}. Here, we use negative indices to indicate that
the logged data were collected in the past. The action for data
item i is denoted as ai 2 [K] , {1, . . . ,K}, where K 2 N+. The
actions in the logged data can be generated according to the users’
natural behaviors or by the company’s interventions. For example,
option 1 and 2 in Figure 1 are actions. The �i 2 Y ✓ R denotes
the outcome (or reward). The xi , (xi,1, . . . ,xi,d) 2 X denotes the

2292

Unifying O�line Causal Inference and Online Bandit Learning for Data Driven Decision WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

contexts (or features) of data item i , where d 2 N+ and X ✓ Rd .
The contexts are also known as “observed confounders” [6]. We use
ui , (ui,1, . . . ,ui,`) 2 U, where ` 2 N+ andU ✓ R` , to model the
unobserved confounders. Theui captures latent or hidden contexts,
e.g., a user’s monthly income.

Now we introduce the generating process of the logged data. For
the ith user with context xi , let Ai be the random variable for the
action of the ith user. To capture the randomness of the outcome,
let the random variable Yi (k) denote the outcome for the ith user
if we had changed the action of the ith user to k . When k , ai ,
Yi (k) is also called a “potential outcome” in the causal model [35]
and it is not recorded in the logged data. We have the following
two assumptions, which are common for causal inference [35].

Assumption 1 (Stable unit for logged data). The potential out-
come of a data item is independent of the actions of other data items,
i.e. P[Yi (k)=� |Ai=ai ,Aj=aj] = P[Yi (k)=� |Ai=ai], 8i2[�I], j,i .

Assumption 2 (Ignorability). The potential outcomes of a data
item i are independent of the action ai given the context xi (so that
we can ignoreui ’s impacts), i.e. [Yi (1), . . . ,Yi (K)]??Ai |xi ,8i 2 [�I].

Assumption 2 holds in Example 1 since the decision maker observes
users’ preferences to videos which determine the users’ types. In
Table 2, each type of users have a �xed click rates for the actions,
which are independent of action.

2.2 Model of Online Decision Environment
Consider a discrete time system t 2 [T], where T 2 N+ and [T] ,
{1, . . . ,T }. In time slot t , one new user arrives, and she is associated
with the context xt 2 X and unobserved confounders ut 2 U.
Then, the decision maker chooses an action at 2 [K], and observes
the outcome (or reward) �t corresponding to this chosen action.

Consider that the confounders (xt ,ut) are independent and
identically generated by a cumulative distribution function
FX ,U (x ,u) , P[X  x ,U  u], where X 2 X andU 2 U denote
two random variables. The distribution FX ,U (x ,u) characterizes
the joint distribution of the confounders over the whole user popu-
lation. If we marginalize over u, then the observed confounders xt
are independently identically generated from the marginal distri-
bution FX (x) , P[X  x]. Let the random variable Yt (k) denote
the outcome of taking action k in time slot t .

Assumption 3 (Stable unit for online model). The outcome
Yt (k) in time t is independent of the actions in other time slots, i.e.
P[Yt (k)=� |At=at ,As=as] = P[Yt (k)=� |At=at],8t2[T], s,t . (1)

In the online setting, before the decision maker chooses
the action, the distributions of the “potential outcomes”
[Yt (1), · · · ,Yt (K)] are determined given the confounders
(xt ,ut). Moreover, as the unobserved confounders ut are i.i.d. in
di�erent time slots, the potential outcomes are independent of how
we select the action, given the user’s context xt . Formally, we have
the following property.

Property 1. The potential outcomes in time slot t satis�es
[Yt (1), . . . ,Yt (K)]??At |xt ,8t 2 [T]. (2)

One can see that Assumption 1 and 2 for the logged data cor-
respond to Assumption 3 and Property 1 for the online decision
model. This way, we can “connect” the logged data with the online
decision environment. Figure 2 summarizes our models of logged
data and the online feedbacks.

Figure 2: Summary of logged data and online feedbacks

2.3 Online Decision Problems
The decision maker selects an action in each time slot. We consider
two kinds of online decision problems depending on whether users
with di�erent contexts can be treated di�erently or not.
• Context-independent decision problem. Consider the set-
ting where a company makes a context-independent decision for
all users. In causal inference, this setting corresponds to the esti-
mation of “average treatment e�ect” [35]. In online learning, this
setting corresponds to the “stochastic multi-armed bandit” prob-
lem [25]. In time slot t , the decisionmaker can use the logged dataL
and the feedback history Ft,{(a1,x1,�1), · · · , (at�1,xt�1,�t�1)}.
Let E denote an “o�ine evaluator” (e.g., an o�ine causal inference
algorithm), which synthesizes feedbacks from the logged data L.
Let O denote an online context-independent bandit learning algo-
rithm. We defer the details of E and O to Section 4. Let AO+E(·, ·)
denote an algorithm that combines O and E to make online context-
independent decisions, i.e., at=AO+E(L,Ft). The decision accu-
racy is quanti�ed the following pseudo-regret:

R(T ,AO+E) ,
T’
t=1

�
E[�t |a

⇤
] � E[�t |at=AO+E(L,Ft)]

�
, (3)

where a⇤ , argmaxa2[K] E[�t |at=a] denotes the optimal action.
• Context-dependent decision problem. Consider that a com-
pany can make di�erent decisions for users coming with di�erent
contexts. Let Oc denote an online contextual bandit learning algo-
rithm. LetAOc+E(·, ·, ·) denote an algorithm, that combines Oc and
E to make online contextual decisions, i.e., at=AOc+E(L,Ft ,xt).
Given xt , the unknown optimal action is a⇤t ,maxa2[K] E[�t |a,xt].
The decision accuracy is quanti�ed the following pseudo-regret:

R(T ,AOc+E),
T’
t=1

�
E[�t |a

⇤
t ,xt]�E[�t |at=AOc+E(L,Ft ,xt),xt]

�
.

This paper aims to develop a generic framework to combine di�er-
ent bandit learning algorithms O, Oc , and o�ine evaluator E to
make decisions with provable theoretical guarantee on the regret.

In the following sections, we explore the following questions:
(1) How to combine o�ine evaluator E with online bandit learning O
or Oc ? (2) How to prove bounds on the decision maker’s regrets? (3)
What are the advantages of our methods on real decision problems?

2293

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Li Ye, Hong Xie, Yishi Lin, and John C.S. Lui

3 GENERAL ALGORITHMIC FRAMEWORK
We �rst develop a general algorithmic framework to combine o�ine
evaluators (E) with online bandit learning algorithms (O and Oc).
Then, we present regret bounds for the proposed framework.

3.1 Algorithmic Framework

Figure 3: Illustration of algorithmic framework.Online bandit
oracle has two functions: function play(x) returns an action a

given a context x ; function update(x ,a,�) updates the oracle
with the feedback�w.r.t. action a, under the contextx .O�ine
evaluator has one function get_outcome(x ,a) that searches the
logged data and returns a “synthetic outcome” � given the
pair (x ,a), where the return value � = NULL if the o�line
evaluator is not able to synthesize a feedback.

The key idea of our framework is to select “appropriate” data
from the log to improve online learning. This is achieved via the
idea of “virtual play”. Figure 3 illustrates the work�ow of our frame-
work. The “BanditOracle” O denotes an online learning algorithm.
The “O�ineEvaluator” E denotes an algorithm that synthesizes
feedbacks from the log. Algorithm 1 shows how to coordinate these
two components to make sequential decisions in T rounds. Each
round has an o�ine phase and an online phase. In the o�ine phase
(Line 4-11), we �rst generate a context according to the CDF FX (·)

1.
Then, we get an action from the BanditOracle. The O�ineEvaluator
returns a synthetic feedback to update the BanditOracle. We repeat
such procedure until the O�ineEvaluator cannot synthesize a feed-
back. When this happens, we turn to the online phase (Line 12-14),
where the same BanditOracle chooses the action, and updates itself
with online feedbacks.
Unifying causal inference and online bandit learning. Both
online bandit algorithms and causal inference algorithms are special
cases of our framework. First, if there are no logged data, then the
o�ine evaluator cannot synthesize feedbacks and always returns
“NULL”. We use E; to denote such o�ine evaluator that always
returns “NULL”. Then, our framework always calls the online bandit
oracle, and it reduces to an online bandit algorithm. Second, we
consider a speci�c A/B test online learning oracle described in
BanditOracle 0, and we let T=1. Then, after the o�ine phase, the

1In practice, the CDF is usually unknown but can be estimated asymptotically ([23]).
We discuss the impact of using empirical context distribution in our supplement [44].

Algorithm 1: General Algorithmic Framework
1 Initialize the O�ineEvaluator with logged data L
2 Initialize the BanditOracle
3 for t = 1 to T do
4 while True do
5 x context_generator() //from CDF FX (·)

6 a BanditOracle.play(x) //virtual play

7 � O�ineEvaluator.get_outcome(x ,a)
8 if � , NULL then
9 BanditOracle.update(x ,a,�)

10 else //offline evaluator cannot synthesize a feedback

11 break

12 at BanditOracle.play(xt) //online play

13 �t the outcome from the online environment
14 BanditOracle.update(xt ,at ,�t)

estimated outcome �̄a can be used to estimate the causal e�ect. In
this case, our framework reduces to a causal inference algorithm.

Online bandit
returns an action
updates the oracle

. O�ine
that searches the

given the
if the o�line

BanditOracle 0: A/B Testing
1 Member variables: the average outcome ~̄0 of each action
02[], and the number of times =0 that action 0 was played.

2 Function play(x):
3 return 0 with probability 1/ for each 0 2 []

4 Function update(x,0,~):
5 ~̄0 (=0~̄0 � ~)/(=0 � 1), =0 =0 � 1

3.2 Regret Analysis Framework
We decompose the regret of Algorithm 1 as “online regret = total
regret - regret of virtual plays”. The intuition is that among all
the decisions of the online bandit oracle, there are “virtual plays”
whose feedbacks are simulated from the logged data, and “online
plays” whose feedbacks are from the real online environment. The
online bandit oracle cannot distinguish the “virtual plays” from
“online plays”. Thus we can apply the theories of the online bandit
oracles (e.g. [4][30][2]) to bound the total regret. By subtracting the
regret of virtual plays, we get the bound for online regret.

Theorem 1 (General upper bound). Suppose there exist�(T) and
�c (T), such that R(T ,AO+E;)�(T), and R(T ,AOc+E;)�c (T),8T .
Denote the returns of the o�ine evaluator till time T as {�̃j }Nj=1 w.r.t.
input {(x̃ j ,ãj)}Nj=1. If E satis�es E[E.get_outcome(x ,a)]=E[� |a],
then

R(T ,AO+E)�(T+N)�

’N
j=1

✓
max
a0 2[K]

E[� |a0]�E[� |a = ãj]

◆
. (4)

If E satis�es E[E.get_outcome(x ,a)]=E[� |a,x] contextually, then

R(T ,AOc+E)�c (T+N)�

’N
j=1

✓
max
a0 2[K]

E[� |a0, x̃ j]�E[� |a=ãj,x̃ j]

◆
.

Due to page limit, all proofs are presented in the supplementary
materials [44]. In Inequality (4), �(T+N) is the upper bound of

2294

Unifying O�line Causal Inference and Online Bandit Learning for Data Driven Decision WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

total regret, and
ÕN
j=1

⇣
maxa0 2[K] E[� |a

0
]�E[� |a = ãj]

⌘
is the regret

of virtual plays. The condition E[E.get_outcome(x ,a)]=E[� |a] (or
E[E.get_outcome(x ,a)]=E[� |a,x]) implies that the o�ine evaluator
E returns unbiased context-independent (or contextual) outcomes.
Using similar regret decomposition, we also derive a regret lower
bound with logged data in our supplementary material [44].

4 CASE STUDY I: CONTEXT-INDEPENDENT
DECISION

To demonstrate the versatility of our algorithmic framework for
context-independent decisions, we start with a case of using UCB
and exact matching in our framework. Then we extend the o�ine
evaluator from exact matching to propensity score matching, and
weighting method like inverse propensity score weighting. Finally,
we study the case when Assumptions 1 and 2 do not hold.

4.1 Warm-up: UCB + Exact Matching
To illustrate Algorithm 1, let us start with an instance that uses
UCB [4] (BanditOracle 1) as the online bandit oracle and the “ex-
act matching” causal inference algorithm [38] (O�ineEvaluator 1)
as the o�ine evaluator. We denote this instance of Algorithm 1
as AUCB+EM. In each round, BanditOracle 1selects an action with
the maximum upper con�dence bound de�ned as �̄a+�

p
2 ln(n)/na ,

where �̄a is the average outcome, � is a constant, and na is the num-
ber of times that an action a was played. O�ineEvaluator 1searches
for a data item in log L with the exact same context x and action
a, and returns the outcome � of that data item. If it cannot �nd a
matched data item for an action a, it stops the matching process for

the action a. The stop of matching is to ensure that the synthetic
feedbacks simulate the online feedbacks correctly.

Unifying O�line Causal Inference and Online Bandit Learning for Data Driven Decision WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

evaluator from exact matching to propensity score matching, and
weighting method like inverse propensity score weighting. Finally,
we study the case when Assumptions 1 and 2 do not hold.

4.1 Warm-up: UCB + Exact Matching
To illustrate Algorithm 1, let us start with an instance that uses
UCB [4] (BanditOracle 1) as the online bandit oracle and the “exact
matching” causal inference algorithm [38] (O�ineEvaluator 1) as
the o�ine evaluator. We denote this instance of Algorithm 1 as
AUCB+EM. In each round, BanditOracle 1 selects an action with the
maximum upper con�dence bound de�ned as ~̄0�V

p
2 ln(=)/=0 ,

where ~̄0 is the average outcome, V is a constant, and =0 is the
number of times that an action 0 was played. O�ineEvaluator 1
searches for a data item in log L with the exact same context x and
action 0, and returns the outcome ~ of that data item. If it cannot
�nd a matched data item for an action 0, it stops the matching
process for the action 0. The stop of matching is to ensure that the
synthetic feedbacks simulate the online feedbacks correctly.

BanditOracle 1: UCB [4]
1 Variables: the average outcome ~̄0 of each action 02[],
number of times =0 action 0 was played.

2 Function play(x):

3 return arg max
02 []

~̄0�V

r
2 ln(

Õ
02 [] =0)
=0

4 Function update(x,0,~):
5 ~̄0 (=0~̄0�~)/(=0�1), =0 =0�1

O�lineEvaluator 1: Exact Matching (EM) [38]
1 Member variables: (02{�0;B4,)AD4} indicates whether we
stop matching for action 0, initially (0 �0;B4,802[].

2 Function get_outcome(x , 0):
3 if (0 = �0;B4 then
4 I(x,0) {8 | x8 = x,08 = 0}
5 if I(x,0) < ; then
6 8 a random sample from I(x,0)
7 L L\{(08 , x8 ,~8)}
8 return ~8

9 (0)AD4 //If we can’t find a sample for the action 0,

i.e. I(x,0)=;, stop matching for 0

10 return NULL

Applying Theorem 1, we present the regret upper bound of
AUCB+EM in the following theorem.

Theorem 2 (UCB+Exact matching). Suppose there are ⇠ 2 N�
possible categories of users’ features denoted by x

1, . . . , x⇠ . Denote
P[x2] as the probability for an online user to have context x2 . Re-
call 0⇤= argmax0̃2 [] E[~ |0̃] and denote �0 , E[~ |0⇤] � E[~ |0].
Let # (x

2 ,0),
Õ
82 [��] {x8=x2 ,08=0} be the number of samples with

context x2 and action 0. Suppose the reward ~ 2 [0, 1]. Then,

'() ,AUCB+EM) 
’

0<0⇤
�0

✓
1�
c2

3

�

’
22 [⇠]

max
⇢
0,8

ln()��)
�2
0
P[x2]�min

2̃2 [⇠]

(x
2̃,0)P[x2]

P[x2̃]

�◆
,

where � is derived as:

� = #�
’
0<0⇤

’
22 [⇠]

max
⇢
0,# (x

2 ,0)�(8
ln()�#)

�2
0

�1�
c2

3
)P[x2]

�
.

Theorem 2 states how logged data reduces the regret. When there
is no logged data, i.e., # (x2 ,0) = 0 for 8x2 ,0, the regret bound
$ (log())) is the same as that of UCB. If the number of logged data
(x

2 ,0) is greater than a threshold P[x2]8ln() � �)/�2
0 for each

context x2 and action 0, then the regret is smaller than a constant⇣
1 � c2

3

⌘ Õ
0<0⇤ �0 . Note that when we give all the data items the

same dummy context x0, our AUCB+EM reduces to the “Historical
UCB” (HUCB) algorithm in [36], as HUCB ignores the context and
only matches the actions.

One limitation of the exact matching evaluator is that when x

is continuous or has a high dimension, it will be di�cult to �nd a
sample in log-data with exactly the same context x . To address this
limitation, we consider the propensity score matching method [38].

4.2 UCB + Propensity Score Matching
We replace the o�ine evaluator, i.e., exact matching, of AUCB+EM
with the propensity score matching stated in O�ineEvaluator 2. This
replacement results inAPSM+UCB. The propensity score?8 (0)2[0, 1]
for action 0 is the probability of observing the action 0 given the
context x8 , i.e. ?8 (0)=P[�8=0 |x i]. For the context-independent case,
Assumption 2 implies that one can ignore other contexts given the
propensity scores ([34]), i.e. [.8 (1), · · · ,.8 ()]??�8 | (?8 (1), · · · , ?8 ()).
Since

Õ
0=1 ? (0) = 1, we use a vector p , (? (1), · · · , ? (� 1)) to

represent the propensity scores on all actions. For any incoming
context-action pair (x,0), O�ineEvaluator 2 �rst �nds a logged
sample 8 with a similar propensity score vector p8 and the same
action 08 = 0, and returns the outcome ~8 of that logged sample
(Line 5-9). We use the strati�cation strategy [6] to �nd samples with
similar propensity scores. Note that every time we �nd a matched
sample, we delete it in Line 8. Thus the matching process will termi-
nate as we have �nite samples. Since we can get a random element
and delete it in$ (1) time via a HashMap, the total time complexity
of calling EPSM is $ (�) where � is the number of logged samples.

Applying Theorem 1, we present the regret upper bound of
AUCB+PSM in the following theorem.

Theorem 3 (UCB+Propensity score matching). Suppose the
propensity scores are in a �nite set p82Q,{q1, . . . , q& }✓[0, 1] �1,
for 882[��]. Let # (q,0) be the number of data items whose p8=q
and action 08=0, and #,

Õ
22 [&],02 [] # (q,0). Denote P[q2] as the

probability for an online user to have propensity score q2 . Suppose

Unifying O�line Causal Inference and Online Bandit Learning for Data Driven Decision WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

evaluator from exact matching to propensity score matching, and
weighting method like inverse propensity score weighting. Finally,
we study the case when Assumptions 1 and 2 do not hold.

4.1 Warm-up: UCB + Exact Matching
To illustrate Algorithm 1, let us start with an instance that uses
UCB [4] (BanditOracle 1) as the online bandit oracle and the “exact
matching” causal inference algorithm [38] (O�ineEvaluator 1) as
the o�ine evaluator. We denote this instance of Algorithm 1 as
AUCB+EM. In each round, BanditOracle 1 selects an action with the
maximum upper con�dence bound de�ned as ~̄0�V

p
2 ln(=)/=0 ,

where ~̄0 is the average outcome, V is a constant, and =0 is the
number of times that an action 0 was played. O�ineEvaluator 1
searches for a data item in log L with the exact same context x and
action 0, and returns the outcome ~ of that data item. If it cannot
�nd a matched data item for an action 0, it stops the matching
process for the action 0. The stop of matching is to ensure that the
synthetic feedbacks simulate the online feedbacks correctly.

BanditOracle 1: UCB [4]
1 Variables: the average outcome ~̄0 of each action 02[],
number of times =0 action 0 was played.

2 Function play(x):

3 return arg max
02 []

~̄0�V

r
2 ln(

Õ
02 [] =0)
=0

4 Function update(x,0,~):
5 ~̄0 (=0~̄0�~)/(=0�1), =0 =0�1

O�lineEvaluator 1: Exact Matching (EM) [38]
1 Member variables: (02{�0;B4,)AD4} indicates whether we
stop matching for action 0, initially (0 �0;B4,802[].

2 Function get_outcome(x , 0):
3 if (0 = �0;B4 then
4 I(x,0) {8 | x8 = x,08 = 0}
5 if I(x,0) < ; then
6 8 a random sample from I(x,0)
7 L L\{(08 , x8 ,~8)}
8 return ~8

9 (0)AD4 //If we can’t find a sample for the action 0,

i.e. I(x,0)=;, stop matching for 0

10 return NULL

Applying Theorem 1, we present the regret upper bound of
AUCB+EM in the following theorem.

Theorem 2 (UCB+Exact matching). Suppose there are ⇠ 2 N�
possible categories of users’ features denoted by x

1, . . . , x⇠ . Denote
P[x2] as the probability for an online user to have context x2 . Re-
call 0⇤= argmax0̃2 [] E[~ |0̃] and denote �0 , E[~ |0⇤] � E[~ |0].
Let # (x

2 ,0),
Õ
82 [��] {x8=x2 ,08=0} be the number of samples with

context x2 and action 0. Suppose the reward ~ 2 [0, 1]. Then,

'() ,AUCB+EM) 
’

0<0⇤
�0

✓
1�
c2

3

�

’
22 [⇠]

max
⇢
0,8

ln()��)
�2
0
P[x2]�min

2̃2 [⇠]

(x
2̃,0)P[x2]

P[x2̃]

�◆
,

where � is derived as:

� = #�
’
0<0⇤

’
22 [⇠]

max
⇢
0,# (x

2 ,0)�(8
ln()�#)

�2
0

�1�
c2

3
)P[x2]

�
.

Theorem 2 states how logged data reduces the regret. When there
is no logged data, i.e., # (x2 ,0) = 0 for 8x2 ,0, the regret bound
$ (log())) is the same as that of UCB. If the number of logged data
(x

2 ,0) is greater than a threshold P[x2]8ln() � �)/�2
0 for each

context x2 and action 0, then the regret is smaller than a constant⇣
1 � c2

3

⌘ Õ
0<0⇤ �0 . Note that when we give all the data items the

same dummy context x0, our AUCB+EM reduces to the “Historical
UCB” (HUCB) algorithm in [36], as HUCB ignores the context and
only matches the actions.

One limitation of the exact matching evaluator is that when x

is continuous or has a high dimension, it will be di�cult to �nd a
sample in log-data with exactly the same context x . To address this
limitation, we consider the propensity score matching method [38].

4.2 UCB + Propensity Score Matching
We replace the o�ine evaluator, i.e., exact matching, of AUCB+EM
with the propensity score matching stated in O�ineEvaluator 2. This
replacement results inAPSM+UCB. The propensity score?8 (0)2[0, 1]
for action 0 is the probability of observing the action 0 given the
context x8 , i.e. ?8 (0)=P[�8=0 |x i]. For the context-independent case,
Assumption 2 implies that one can ignore other contexts given the
propensity scores ([34]), i.e. [.8 (1), · · · ,.8 ()]??�8 | (?8 (1), · · · , ?8 ()).
Since

Õ
0=1 ? (0) = 1, we use a vector p , (? (1), · · · , ? (� 1)) to

represent the propensity scores on all actions. For any incoming
context-action pair (x,0), O�ineEvaluator 2 �rst �nds a logged
sample 8 with a similar propensity score vector p8 and the same
action 08 = 0, and returns the outcome ~8 of that logged sample
(Line 5-9). We use the strati�cation strategy [6] to �nd samples with
similar propensity scores. Note that every time we �nd a matched
sample, we delete it in Line 8. Thus the matching process will termi-
nate as we have �nite samples. Since we can get a random element
and delete it in$ (1) time via a HashMap, the total time complexity
of calling EPSM is $ (�) where � is the number of logged samples.

Applying Theorem 1, we present the regret upper bound of
AUCB+PSM in the following theorem.

Theorem 3 (UCB+Propensity score matching). Suppose the
propensity scores are in a �nite set p82Q,{q1, . . . , q& }✓[0, 1] �1,
for 882[��]. Let # (q,0) be the number of data items whose p8=q
and action 08=0, and #,

Õ
22 [&],02 [] # (q,0). Denote P[q2] as the

probability for an online user to have propensity score q2 . Suppose

Applying Theorem 1, we present the regret upper bound of
AUCB+EM in the following theorem.

Theorem 2 (UCB+Exact matching). Suppose there are C 2 N+
possible categories of users’ features denoted by x1, . . . ,xC . Denote
P[xc] as the probability for an online user to have context xc . Re-
call a⇤= argmaxã2[K] E[� |ã] and denote �a , E[� |a⇤] � E[� |a].
Let N (xc ,a),

Õ
i 2[�I] {xi=x c ,ai=a } be the number of samples with

context xc and action a. Suppose the reward � 2 [0, 1]. Then,

R(T ,AUCB+EM) 
’

a,a⇤
�a

✓
1+

�
2

3

+
’

c 2[C]
max

⇢
0,8

ln(T+A)
�2
a
P[xc]�min

c̃ 2[C]

N (x c̃,a)P[xc]

P[x c̃]

�◆
,

where A is derived as:

A = N�

’
a,a⇤

’
c 2[C]

max
⇢
0,N (xc ,a)�(8

ln(T+N)

�2
a
+1+

�
2

3
)P[xc]

�
.

Theorem 2 states how logged data reduces the regret. When there
is no logged data, i.e., N (xc ,a) = 0 for 8xc ,a, the regret bound
O(log(T)) is the same as that of UCB. If the number of logged data
N (xc ,a) is greater than a threshold P[xc]8ln(T +A)/�2

a for each
context xc and action a, then the regret is smaller than a constant⇣
1 + � 2

3

⌘ Õ
a,a⇤ �a . Note that when we give all the data items the

2295

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Li Ye, Hong Xie, Yishi Lin, and John C.S. LuiWWW ’21, April 19–23, 2021, Ljubljana, Slovenia Li Ye, Hong Xie, Yishi Lin, and John C.S. Lui

O�lineEvaluator 2: Propensity Score Matching (PSM)[38]

1 Variables: initially (0 �0;B4 , 802[]. The pivot set
Q⇢[0, 1] with a �nite number of elements.

2 Function get_outcome(x,0):
3 if (0 = �0;B4 then
4 p (P[� = 1|x], · · · , P[� = � 1|x]) //here,

p 2 [0, 1] �1 = (? (1), · · · ,? (� 1)) is a vector

5 I(p,0) {8 | stratify(p8)=stratify(p),08=0}
6 if I(p,0) < ; then
7 8 a random sample from I(p,0)
8 L L\{(x8 ,08 ,~8)} //delete item

9 return ~8
10 (0)AD4 //stop matching for 0

11 return NULL
12 Function stratify(p): //this is used by EPSM

13 return argminq2Q||p�q | |2 //round to the nearest pivot

the reward ~2[0, 1]. Then,

'() ,AUCB+PSM) 
’

0<0⇤
�0

✓
1�
c2

3
�

’
22 [&]

max
⇢
0, 8

ln()��)
�2
0
P[q2] �min

2̃2 [&]

(q2̃ ,0)P[q2]

P[q2̃]

�◆
,

(5)
where � is derived as:

�=#�
’
0<0⇤

’
22 [&]

max
⇢
0, min
2̃2 [&]

(q2̃ ,0)P[q2]

P[q2̃]
�(

8 ln()�#)

�2
0

�1�
c2

3
)P[q2]

�
.

Theorem 3 is similar to Theorem 2 where we replace the con-
text vector x2 with the propensity score vector q2 . If the num-
ber of logged data # (q2 ,0) is greater than P[q2]8ln()��)/�2

0
for 822[&] and 02[], then the regret is smaller than a constant
(1�c2/3)

Õ
0<0⇤ �0 . When we only have two actions, the propen-

sity score vector p only has one dimension, and the propensity
score matching do not have the problem of exact matching from
the high-dimensional context x . But when the number of actions
 > 2, it is still di�cult to �nd matched propensity score vector
{? (1), · · · , ? (�1)}. The following weighting algorithm can deal
with more than two actions.

4.3 UCB + Inverse Propensity Score Weighting
To further demonstrate the versatility of our framework, we show
how to use weighting methods [39][24] in causal inference. As
shown in Line 4 in O�ineEvaluator 3, we use the inverse of the
propensity score 1/?8 (08) as the weight. Here, we only need the
propensity score for the chosen action08 . We replace the o�ine eval-
uator with the IPS weighting O�ineEvaluator 3 to get AUCB+IPSW.

O�ineEvaluator 3 �rst estimates the outcome ~̄0 as the weighted
average of logged outcomes. The intuition of IPS weighting is as
follows: if an action is applied to users in group A more often than
users in other groups, then each sample for group A should have
smaller weight so the total weights of each group is proportional to
its population. In fact, the IPS weighting estimator is unbiased via
importance sampling[35]. Then, we calculate the e�ective sample
size (a.k.a. ESS) #0 of logged plays on the action 0 according to [22].

After such initialization, the o�ine evaluator returns ~̄0 w.r.t. action
0 for b#0c times, and return NULL afterwards.

O�lineEvaluator 3: IPS Weighting (IPSW) [39]
1 Member variables: ~̄0,#0 (02[]) initialized in __init__(L)
2 Function __init__(L):
3 for 0 2 [] do

4 ~̄0
Õ
82 [��],08=0 ~8/?8 (08)Õ
82 [��],08=0 1/?8 (08)

, #0
(
Õ
82 [��],08=0 1/?8 (08))

2Õ
82 [��],08=0 (1/?8 (08))

2

5 Function get_outcome(x,0):
6 if #0 � 1 then
7 #0 #0 � 1
8 return ~̄0
9 return NULL

Theorem 4 (UCB + IPSweighting). Suppose the reward~ 2 [0, 1],
and the propensity score is bounded ?8�B̄>0 88 2 [�], then

'() ,AUCB+IPSW)

’
0<0⇤

�0
⇣
1 � c2/3 �

max
n
0, 8��20 ln() �

’

0=1
d#0e) � b#0c

o⌘
,

where#0=
⇣Õ

82 [��] ?8 (08)
�1

{08=0}

⌘2
/
Õ
82 [��]

⇣
?8 (08)�1 {08=0}

⌘2
.

Theorem 4 quanti�es the impact of the logged data on the regret
of the algorithm AUCB+IPSW. Recall that #0 is the e�ective sample
size of feedbacks for action 0. When there is no logged data, i.e.
#0 = 0, the regret bound reduces to the $ (log)) bound of UCB. A
larger #0 indicates a lower regret bound. Notice that the number
#0 depends on the distribution of logged data items’ propensity
scores. In particular, when all the propensity scores are a constant
?̃ , i.e. ?8 (08)=?̃ for 88 , the e�ective sample size is the actual num-
ber of samples with action 0, i.e. #0=

Õ
82 [��] {08=0} . When the

propensity scores {?8 (08)}82 [��] have a more skewed distribution,
the number #0 will be smaller, leading to a larger regret bound.

Note that our framework is not limited to the above instances.
One can replace the online bandit oraclewith n-greedy [25], EXP3 [5]
or Thompson sampling [2]. One can also replace the o�ine evalu-
ator with balanced weighting [24] or supervised learning [45]. In
Section 6, we will discuss more algorithms in the experiments.

4.4 Relaxation of Assumptions on Logged Data
The above theorems require the logged data to satisfy the stable-
unit Assumption 1 and ignorability Assumption 2. To see the impact
of removing the Assumption 2, consider Example 1. Let’s say the
logs do not record users’ preferences to video. In this case, our causal
inference strategy will calculate the empirical average. Then, it will
select the wrong action of placing ad below videos. The following
theorem gives the regret upper bound when the assumptions on
the logged data do not hold.

Theorem 5 (Removing assumptions on logged data). Suppose
Assumptions 1 and 2 were removed. Suppose the o�ine evaluator E
returns {~ 9 }#9=1 w.r.t. {(x 9 ,0 9)}

#
9=1. The bias of the average outcome

same dummy context x0, our AUCB+EM reduces to the “Historical
UCB” (HUCB) algorithm in [36], as HUCB ignores the context and
only matches the actions.

One limitation of the exact matching evaluator is that when x
is continuous or has a high dimension, it will be di�cult to �nd a
sample in log-data with exactly the same context x . To address this
limitation, we consider the propensity score matching method [38].

4.2 UCB + Propensity Score Matching
We replace the o�ine evaluator, i.e., exact matching, of AUCB+EM
with the propensity score matching stated in O�ineEvaluator 2.
This replacement results in APSM+UCB. The propensity score
pi (a)2[0, 1] for action a is the probability of observing the
action a given the context xi , i.e. pi (a)=P[Ai=a |xi]. For the
context-independent case, Assumption 2 implies that one can
ignore other contexts given the propensity scores ([34]), i.e.
[Yi (1), · · · ,Yi (K)]??Ai | (pi (1), · · · ,pi (K)). Since

ÕK
a=1 p(a) = 1, we

use a vector p , (p(1), · · · ,p(K � 1)) to represent the propensity
scores on all actions. For any incoming context-action pair (x ,a),
O�ineEvaluator 2�rst �nds a logged sample i with a similar propen-
sity score vector pi and the same action ai = a, and returns the
outcome �i of that logged sample (Line 5-9). We use the strati�-
cation strategy [6] to �nd samples with similar propensity scores.
Note that every time we �nd a matched sample, we delete it in
Line 8. Thus the matching process will terminate as we have �nite
samples. Since we can get a random element and delete it in O(1)
time via a HashMap, the total time complexity of calling EPSM is
O(I) where I is the number of logged samples.

Applying Theorem 1, we present the regret upper bound of
AUCB+PSM in the following theorem.

Theorem 3 (UCB+Propensity score matching). Suppose the
propensity scores are in a �nite set pi2Q,{q1, . . . ,qQ }✓[0, 1]K�1,
for 8i2[�I]. Let N (q,a) be the number of data items whose pi=q
and action ai=a, and N,

Õ
c 2[Q],a2[K] N (q,a). Denote P[qc] as the

probability for an online user to have propensity score qc . Suppose

the reward �2[0, 1]. Then,

R(T ,AUCB+PSM) 
’

a,a⇤
�a

✓
1+

�
2

3
+

’
c 2[Q]

max
⇢
0, 8

ln(T+A)
�2
a
P[qc] �min

c̃ 2[Q]

N (qc̃ ,a)P[qc]

P[qc̃]

�◆
, (5)

where A is derived as:

A=N�
’
a,a⇤

’
c 2[Q]

max
⇢
0, min
c̃ 2[Q]

N (qc̃ ,a)P[qc]

P[qc̃]
�(
8 ln(T+N)

�2
a

+1+
�
2

3
)P[qc]

�
.

Theorem 3 is similar to Theorem 2 where we replace the con-
text vector xc with the propensity score vector qc . If the num-
ber of logged data N (qc ,a) is greater than P[qc]8ln(T+A)/�2

a
for 8c2[Q] and a2[K], then the regret is smaller than a constant
(1+� 2

/3)
Õ
a,a⇤ �a . When we only have two actions, the propen-

sity score vector p only has one dimension, and the propensity
score matching do not have the problem of exact matching from
the high-dimensional context x . But when the number of actions
K > 2, it is still di�cult to �nd matched propensity score vector
{p(1), · · · ,p(K�1)}. The following weighting algorithm can deal
with more than two actions.

4.3 UCB + Inverse Propensity Score Weighting
To further demonstrate the versatility of our framework, we show
how to use weighting methods [39][24] in causal inference. As
shown in Line 4 in O�ineEvaluator 3, we use the inverse of the
propensity score 1/pi (ai) as the weight. Here, we only need the
propensity score for the chosen actionai .We replace the o�ine eval-
uator with the IPS weighting O�ineEvaluator 3to get AUCB+IPSW.

O�ineEvaluator 3�rst estimates the outcome �̄a as the weighted
average of logged outcomes. The intuition of IPS weighting is as
follows: if an action is applied to users in group A more often than
users in other groups, then each sample for group A should have
smaller weight so the total weights of each group is proportional to
its population. In fact, the IPS weighting estimator is unbiased via
importance sampling[35]. Then, we calculate the e�ective sample
size (a.k.a. ESS) Na of logged plays on the action a according to [22].
After such initialization, the o�ine evaluator returns �̄a w.r.t. action
a for bNac times, and return NULL afterwards.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Li Ye, Hong Xie, Yishi Lin, and John C.S. Lui

O�lineEvaluator 2: Propensity Score Matching (PSM)[38]

1 Variables: initially (0 �0;B4 , 802[]. The pivot set
Q⇢[0, 1] with a �nite number of elements.

2 Function get_outcome(x,0):
3 if (0 = �0;B4 then
4 p (P[� = 1|x], · · · , P[� = � 1|x]) //here,

p 2 [0, 1] �1 = (? (1), · · · ,? (� 1)) is a vector

5 I(p,0) {8 | stratify(p8)=stratify(p),08=0}
6 if I(p,0) < ; then
7 8 a random sample from I(p,0)
8 L L\{(x8 ,08 ,~8)} //delete item

9 return ~8
10 (0)AD4 //stop matching for 0

11 return NULL
12 Function stratify(p): //this is used by EPSM

13 return argminq2Q||p�q | |2 //round to the nearest pivot

the reward ~2[0, 1]. Then,

'() ,AUCB+PSM) 
’

0<0⇤
�0

✓
1�
c2

3
�

’
22 [&]

max
⇢
0, 8

ln()��)
�2
0
P[q2] �min

2̃2 [&]

(q2̃ ,0)P[q2]

P[q2̃]

�◆
,

(5)
where � is derived as:

�=#�
’
0<0⇤

’
22 [&]

max
⇢
0, min
2̃2 [&]

(q2̃ ,0)P[q2]

P[q2̃]
�(

8 ln()�#)

�2
0

�1�
c2

3
)P[q2]

�
.

Theorem 3 is similar to Theorem 2 where we replace the con-
text vector x2 with the propensity score vector q2 . If the num-
ber of logged data # (q2 ,0) is greater than P[q2]8ln()��)/�2

0
for 822[&] and 02[], then the regret is smaller than a constant
(1�c2/3)

Õ
0<0⇤ �0 . When we only have two actions, the propen-

sity score vector p only has one dimension, and the propensity
score matching do not have the problem of exact matching from
the high-dimensional context x . But when the number of actions
 > 2, it is still di�cult to �nd matched propensity score vector
{? (1), · · · , ? (�1)}. The following weighting algorithm can deal
with more than two actions.

4.3 UCB + Inverse Propensity Score Weighting
To further demonstrate the versatility of our framework, we show
how to use weighting methods [39][24] in causal inference. As
shown in Line 4 in O�ineEvaluator 3, we use the inverse of the
propensity score 1/?8 (08) as the weight. Here, we only need the
propensity score for the chosen action08 . We replace the o�ine eval-
uator with the IPS weighting O�ineEvaluator 3 to get AUCB+IPSW.

O�ineEvaluator 3 �rst estimates the outcome ~̄0 as the weighted
average of logged outcomes. The intuition of IPS weighting is as
follows: if an action is applied to users in group A more often than
users in other groups, then each sample for group A should have
smaller weight so the total weights of each group is proportional to
its population. In fact, the IPS weighting estimator is unbiased via
importance sampling[35]. Then, we calculate the e�ective sample
size (a.k.a. ESS) #0 of logged plays on the action 0 according to [22].

After such initialization, the o�ine evaluator returns ~̄0 w.r.t. action
0 for b#0c times, and return NULL afterwards.

O�lineEvaluator 3: IPS Weighting (IPSW) [39]
1 Member variables: ~̄0,#0 (02[]) initialized in __init__(L)
2 Function __init__(L):
3 for 0 2 [] do

4 ~̄0
Õ
82 [��],08=0 ~8/?8 (08)Õ
82 [��],08=0 1/?8 (08)

, #0
(
Õ
82 [��],08=0 1/?8 (08))

2Õ
82 [��],08=0 (1/?8 (08))

2

5 Function get_outcome(x,0):
6 if #0 � 1 then
7 #0 #0 � 1
8 return ~̄0
9 return NULL

Theorem 4 (UCB + IPSweighting). Suppose the reward~ 2 [0, 1],
and the propensity score is bounded ?8�B̄>0 88 2 [�], then

'() ,AUCB+IPSW)

’
0<0⇤

�0
⇣
1 � c2/3 �

max
n
0, 8��20 ln() �

’

0=1
d#0e) � b#0c

o⌘
,

where#0=
⇣Õ

82 [��] ?8 (08)
�1

{08=0}

⌘2
/
Õ
82 [��]

⇣
?8 (08)�1 {08=0}

⌘2
.

Theorem 4 quanti�es the impact of the logged data on the regret
of the algorithm AUCB+IPSW. Recall that #0 is the e�ective sample
size of feedbacks for action 0. When there is no logged data, i.e.
#0 = 0, the regret bound reduces to the $ (log)) bound of UCB. A
larger #0 indicates a lower regret bound. Notice that the number
#0 depends on the distribution of logged data items’ propensity
scores. In particular, when all the propensity scores are a constant
?̃ , i.e. ?8 (08)=?̃ for 88 , the e�ective sample size is the actual num-
ber of samples with action 0, i.e. #0=

Õ
82 [��] {08=0} . When the

propensity scores {?8 (08)}82 [��] have a more skewed distribution,
the number #0 will be smaller, leading to a larger regret bound.

Note that our framework is not limited to the above instances.
One can replace the online bandit oraclewith n-greedy [25], EXP3 [5]
or Thompson sampling [2]. One can also replace the o�ine evalu-
ator with balanced weighting [24] or supervised learning [45]. In
Section 6, we will discuss more algorithms in the experiments.

4.4 Relaxation of Assumptions on Logged Data
The above theorems require the logged data to satisfy the stable-
unit Assumption 1 and ignorability Assumption 2. To see the impact
of removing the Assumption 2, consider Example 1. Let’s say the
logs do not record users’ preferences to video. In this case, our causal
inference strategy will calculate the empirical average. Then, it will
select the wrong action of placing ad below videos. The following
theorem gives the regret upper bound when the assumptions on
the logged data do not hold.

Theorem 5 (Removing assumptions on logged data). Suppose
Assumptions 1 and 2 were removed. Suppose the o�ine evaluator E
returns {~ 9 }#9=1 w.r.t. {(x 9 ,0 9)}

#
9=1. The bias of the average outcome

2296

Unifying O�line Causal Inference and Online Bandit Learning for Data Driven Decision WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Theorem 4 (UCB + IPS weighting). Suppose the reward � 2

[0, 1], and the propensity score is bounded pi�s̄>0 8i 2 [I], then

R(T ,AUCB+IPSW)

’
a,a⇤

�a
⇣
1 + � 2

/3 +

max
n
0, 8��2a ln(T +

’K
a=1
dNae) � bNac

o⌘
,

whereNa=
⇣Õ

i 2[�I] pi (ai)
�1

{ai=a }

⌘2
/
Õ
i 2[�I]

⇣
pi (ai)�1 {ai=a }

⌘2
.

Theorem 4 quanti�es the impact of the logged data on the regret
of the algorithm AUCB+IPSW. Recall that Na is the e�ective sample
size of feedbacks for action a. When there is no logged data, i.e.
Na = 0, the regret bound reduces to the O(logT) bound of UCB. A
larger Na indicates a lower regret bound. Notice that the number
Na depends on the distribution of logged data items’ propensity
scores. In particular, when all the propensity scores are a constant
p̃, i.e. pi (ai)=p̃ for 8i , the e�ective sample size is the actual num-
ber of samples with action a, i.e. Na=

Õ
i 2[�I] {ai=a } . When the

propensity scores {pi (ai)}i 2[�I] have a more skewed distribution,
the number Na will be smaller, leading to a larger regret bound.

Note that our framework is not limited to the above instances.
One can replace the online bandit oracle with �-greedy [25],
EXP3 [5] or Thompson sampling [2]. One can also replace the o�ine
evaluator with balanced weighting [24] or supervised learning [45].
In Section 6, we will discuss more algorithms in the experiments.

4.4 Relaxation of Assumptions on Logged Data
The above theorems require the logged data to satisfy the stable-
unit Assumption 1 and ignorability Assumption 2. To see the impact
of removing the Assumption 2, consider Example 1. Let’s say the
logs do not record users’ preferences to video. In this case, our causal
inference strategy will calculate the empirical average. Then, it will
select the wrong action of placing ad below videos. The following
theorem gives the regret upper bound when the assumptions on
the logged data do not hold.

Theorem 5 (Removing assumptions on logged data). Suppose
Assumptions 1 and 2 were removed. Suppose the o�ine evaluator E
returns {�j }Nj=1 w.r.t. {(x j ,aj)}

N
j=1. The bias of the average outcome

for action a is denoted as

�a,(
’N

j=1 {aj=a }�j)/(
’N

j=1 {aj=a })�E[� |a].

Suppose the reward � is bounded in [0, 1]. Denote the number of
samples for action a as Na,

ÕN
j=1 {aj=a } . Then,

R(T ,AO+E) 

’
a,a⇤

�a
⇣
16��2a ln(Na+T)

�2Na (1 � ��1a max{0,�a��a⇤ })+(1 + � 2
/3)

⌘

Theorem 5 states the relationship between the bias of the o�ine
evaluator (i.e. �a) and the algorithm’s regret. When Assumptions 1
and 2 hold, the bias �a=0. In this case, the bound in Theorem 5 is
similar to the previous bounds in Theorem 3 except that we raise the
constant from 8 to 16. When �a��a⇤ > 0, i.e., the o�ine evaluator
has a greater bias for an inferior action than the bias of the optimal
action, the regret upper bound becomes larger compared to the case
when the o�ine evaluator is unbiased. In Theorem 5, we also have a
su�cient condition for “the logged data to reduce the regret upper

Unifying O�line Causal Inference and Online Bandit Learning for Data Driven Decision WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

for action 0 is denoted as

X0,(
’#

9=1 {0 9=0}~ 9)/(
’#

9=1 {0 9=0})�E[~ |0] .

Suppose the reward ~ is bounded in [0, 1]. Denote the number of
samples for action 0 as #0,

Õ#
9=1 {0 9=0} . Then,

'() ,AO�E) 

’
0<0⇤

�0
⇣
16��20 ln(#0�))

�2#0 (1 � ��10 max{0, X0�X0⇤ })�(1 � c2/3)
⌘

Theorem 5 states the relationship between the bias of the o�ine
evaluator (i.e. X0) and the algorithm’s regret. When Assumptions 1
and 2 hold, the bias X0=0. In this case, the bound in Theorem 5
is similar to the previous bounds in Theorem 3 except that we
raise the constant from 8 to 16. When X0�X0⇤ > 0, i.e., the o�ine
evaluator has a greater bias for an inferior action than the bias of the
optimal action, the regret upper bound becomes larger compared to
the case when the o�ine evaluator is unbiased. In Theorem 5, we
also have a su�cient condition for “the logged data to reduce the
regret upper bound”, i.e. 1�max{0, X0�X0⇤ }/�0>0, or, X0�X0⇤<�0
for 80<0⇤. The physical meaning is that when the estimated reward
of the optimal action is greater than that of other actions, the logged
data help to identify the optimal action and reduce the regret.

5 CASE STUDY II: CONTEXTUAL DECISION
We �rst consider the case that themean of the outcome is parametrized
by a linear function. Then, we generalize it to non-parametric func-
tions, where we design a forest-based online bandit algorithm and
prove its regret upper bound. To the best of our knowledge, it is the
�rst regret upper bound for forest-based online bandit algorithms.

5.1 Linear Regression + LinUCB
We consider that the mean of outcome follows a linear function:

~C =)
)q (xC ,0C) � nC 8C 2 [)], (6)

where q (x,0) 2 R3 is an 3-dimensional known feature vector. The
) is an 3-dimensional unknown parameter to be learned, and nC is
a stochastic noise with E[nC]=0. We consider the case that Algo-
rithm 1 uses “LinUCB” (outlined in BanditOracle 2) as the online
bandit oracle and “linear regression” (outlined in O�ineEvalua-
tor 4) as the o�ine evaluator. We denote this instance of Algo-
rithm 1 as ALinUCB+LR. BanditOracle 2 uses the LinUCB (Linear
Upper Con�dence Bound [30]) to make contextual online decisions.
It estimates the unknown parameter)̂ based on the feedbacks.
The ~̂0,)̂)q (x,0)�VC

p
q (x,0)) \�1q (x,0) is the upper con�dence

bound of reward, where {VC })C=1 are parameters. The oracle always
plays the action with the largest upper con�dence bound.
O�ineEvaluator 4 uses linear regression to synthesize feedbacks
from the logged data. From the logged data, it estimates the parame-
ter \̂ (Line 3), and the parameter)̂ (Line 4). It returns the estimated
outcome q (x,0)))̂ according to a linear model. It stops returning
outcomes when the logged data cannot provide a tighter con�dence
bound than that of the online bandit oracle (Line 6 - 9).

Suppose for any context xC , the di�erence of expected rewards
between the best and the “second best” actions is at least �min.
This is the settings of section 5.2 in the paper [1]. In the following
theorem, we derive a regret upper bound for ALinUCB+LR.

BanditOracle 2: LinUCB [30]
1 Member variables: a matrix \ (initially \ is a 3 ⇥ 3
matrix), a 3-dimensional vector b (initially b=0 is zero),
initial time C=1

2 Function play(x):
3)̂ \

�1
b

4 for 0 2 [] do
5 ~̂0)̂

)q (x, a) � VC
p
q (x,0)) \�1q (x,0)

6 return argmax02 [] ~̂0

7 Function update(x,0,~):
8 \ \ � q (x,0)q (x,0)) , b b � ~x , C C � 1

O�lineEvaluator 4: Linear Regression (LR)

1 Member variables: \ , \̂ are 3 ⇥ 3 matrices, where \ (\̂) is
for the online (o�ine) con�dence bounds.)̂ is the estimated
parameters. The \ is shared with LinUCB oracle.

2 Function __init__(L):
3 \̂ O3 �

Õ
82 [��] q (x8 ,08) · q (x8 ,08)

) // O3 is the 3⇥3

identity matrix

4 b
Õ
82 [��] ~8 · q (x8 ,08),)̂ \̂

�1
b

5 Function get_outcome(x,0):
6 if | |q (x,0) | |

\�q (x8 ,08) ·q (x8 ,08)) > | |q (x,0) | |
\̂
then

7 \ \ � q (x8 ,08) · q (x8 ,08))

8 return q (x,0) ·)̂
9 return NULL

Theorem 6 (LinUCB+Linear regression). Suppose the rewards
satisfy the linear model in Equation (6). Suppose o�ine evaluator
returns a sequence {~8 }#8=1 w.r.t. {(x8 ,08)}

#
8=1. Let \# ,

Õ
82 [#] x8x

)
8 ,

!,maxC ) {| |xC | |2}. Moreover, the random noise is 1-sub-Gaussian,
i.e. E[4UnC]  exp(U2/2), 8U 2 R. Then

'() ,ALinUCB+LR) 
832 (1 � 2 ln()))

�min
log

✓
1 �

)!2

_min (\#)

◆
� 1.

When the smallest eigenvalue _min (\#) is greater than a threshold
(1/2� ln())))!2, the regret is bounded by a constant 1632/�min�1.

Denote ^=)!2/_min (\#) as the condition number. Theorem 6 im-
plies that for a �xed ^ , the regret in) time slots is$ (log())). More-
over, when the logged data contain enough samples, i.e., _min (\#) is
greater than (1/2� ln())))!2, regret is upper bounded by a constant.
Using our analytic framework, we observe a similar thresholding
phenomena in [11] which focuses on the linear model.

5.2 Non-parametric Forest-based Online
Decision Making

We generalize the linear outcome model (in Equation (6)) to the case
that the mean of the outcome ~C is a nonparametric function of xC .
We use the non-parametric forest estimator to generalize algorithm
ALR+LinUCB in two aspects: (1) replace the LinUCB with our forest-
based online learning algorithm n-Decreasing Multi-action Forest
(abbr. Fst) outlined in BanditOracle 3; (2) replace linear regression
with Matching on Forest (abbr. MoF) outlined in O�ineEvaluator 5.
We denote the new contextual decision algorithm as AFst+MoF.

bound”, i.e. 1�max{0,�a��a⇤ }/�a>0, or, �a��a⇤<�a for 8a,a⇤.
The physical meaning is that when the estimated reward of the
optimal action is greater than that of other actions, the logged data
help to identify the optimal action and reduce the regret.

5 CASE STUDY II: CONTEXTUAL DECISION
We �rst consider the case that the mean of the outcome is
parametrized by a linear function. Then, we generalize it to non-
parametric functions, where we design a forest-based online bandit
algorithm and prove its regret upper bound. To the best of our
knowledge, it is the �rst regret upper bound for forest-based online
bandit algorithms.

5.1 Linear Regression + LinUCB
We consider that the mean of outcome follows a linear function:

�t = �
T
�(xt ,at) + �t 8t 2 [T], (6)

where �(x ,a) 2 Rd is an d-dimensional known feature vector. The
� is an d-dimensional unknown parameter to be learned, and �t is
a stochastic noise with E[�t]=0. We consider the case that Algo-
rithm 1 uses “LinUCB” (outlined in BanditOracle 2) as the online
bandit oracle and “linear regression” (outlined in O�ineEvalua-
tor 4) as the o�ine evaluator. We denote this instance of Algo-
rithm 1 as ALinUCB+LR. BanditOracle 2uses the LinUCB (Linear
Upper Con�dence Bound [30]) to make contextual online decisions.
It estimates the unknown parameter �̂ based on the feedbacks.
The �̂a,�̂T�(x ,a)+�t

p
�(x ,a)TV �1�(x ,a) is the upper con�dence

bound of reward, where {�t }Tt=1 are parameters. The oracle always
plays the action with the largest upper con�dence bound.
O�ineEvaluator 4uses linear regression to synthesize feedbacks
from the logged data. From the logged data, it estimates the parame-
ter V̂ (Line 3), and the parameter �̂ (Line 4). It returns the estimated
outcome �(x ,a)T �̂ according to a linear model. It stops returning
outcomes when the logged data cannot provide a tighter con�dence
bound than that of the online bandit oracle (Line 6 - 9).

Suppose for any context xt , the di�erence of expected rewards
between the best and the “second best” actions is at least �min.
This is the settings of section 5.2 in the paper [1]. In the following
theorem, we derive a regret upper bound for ALinUCB+LR.

Theorem 6 (LinUCB+Linear regression). Suppose the rewards
satisfy the linear model in Equation (6). Suppose o�ine evaluator
returns a sequence {�i }Ni=1 w.r.t. {(xi ,ai)}

N
i=1. LetVN ,

Õ
i 2[N] xix

T
i ,

2297

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Li Ye, Hong Xie, Yishi Lin, and John C.S. Lui

Unifying O�line Causal Inference and Online Bandit Learning for Data Driven Decision WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

for action 0 is denoted as

X0,(
’#

9=1 {0 9=0}~ 9)/(
’#

9=1 {0 9=0})�E[~ |0] .

Suppose the reward ~ is bounded in [0, 1]. Denote the number of
samples for action 0 as #0,

Õ#
9=1 {0 9=0} . Then,

'() ,AO�E) 

’
0<0⇤

�0
⇣
16��20 ln(#0�))

�2#0 (1 � ��10 max{0, X0�X0⇤ })�(1 � c2/3)
⌘

Theorem 5 states the relationship between the bias of the o�ine
evaluator (i.e. X0) and the algorithm’s regret. When Assumptions 1
and 2 hold, the bias X0=0. In this case, the bound in Theorem 5
is similar to the previous bounds in Theorem 3 except that we
raise the constant from 8 to 16. When X0�X0⇤ > 0, i.e., the o�ine
evaluator has a greater bias for an inferior action than the bias of the
optimal action, the regret upper bound becomes larger compared to
the case when the o�ine evaluator is unbiased. In Theorem 5, we
also have a su�cient condition for “the logged data to reduce the
regret upper bound”, i.e. 1�max{0, X0�X0⇤ }/�0>0, or, X0�X0⇤<�0
for 80<0⇤. The physical meaning is that when the estimated reward
of the optimal action is greater than that of other actions, the logged
data help to identify the optimal action and reduce the regret.

5 CASE STUDY II: CONTEXTUAL DECISION
We �rst consider the case that themean of the outcome is parametrized
by a linear function. Then, we generalize it to non-parametric func-
tions, where we design a forest-based online bandit algorithm and
prove its regret upper bound. To the best of our knowledge, it is the
�rst regret upper bound for forest-based online bandit algorithms.

5.1 Linear Regression + LinUCB
We consider that the mean of outcome follows a linear function:

~C =)
)q (xC ,0C) � nC 8C 2 [)], (6)

where q (x,0) 2 R3 is an 3-dimensional known feature vector. The
) is an 3-dimensional unknown parameter to be learned, and nC is
a stochastic noise with E[nC]=0. We consider the case that Algo-
rithm 1 uses “LinUCB” (outlined in BanditOracle 2) as the online
bandit oracle and “linear regression” (outlined in O�ineEvalua-
tor 4) as the o�ine evaluator. We denote this instance of Algo-
rithm 1 as ALinUCB+LR. BanditOracle 2 uses the LinUCB (Linear
Upper Con�dence Bound [30]) to make contextual online decisions.
It estimates the unknown parameter)̂ based on the feedbacks.
The ~̂0,)̂)q (x,0)�VC

p
q (x,0)) \�1q (x,0) is the upper con�dence

bound of reward, where {VC })C=1 are parameters. The oracle always
plays the action with the largest upper con�dence bound.
O�ineEvaluator 4 uses linear regression to synthesize feedbacks
from the logged data. From the logged data, it estimates the parame-
ter \̂ (Line 3), and the parameter)̂ (Line 4). It returns the estimated
outcome q (x,0)))̂ according to a linear model. It stops returning
outcomes when the logged data cannot provide a tighter con�dence
bound than that of the online bandit oracle (Line 6 - 9).

Suppose for any context xC , the di�erence of expected rewards
between the best and the “second best” actions is at least �min.
This is the settings of section 5.2 in the paper [1]. In the following
theorem, we derive a regret upper bound for ALinUCB+LR.

BanditOracle 2: LinUCB [30]
1 Member variables: a matrix \ (initially \ is a 3 ⇥ 3
matrix), a 3-dimensional vector b (initially b=0 is zero),
initial time C=1

2 Function play(x):
3)̂ \

�1
b

4 for 0 2 [] do
5 ~̂0)̂

)q (x, a) � VC
p
q (x,0)) \�1q (x,0)

6 return argmax02 [] ~̂0

7 Function update(x,0,~):
8 \ \ � q (x,0)q (x,0)) , b b � ~x , C C � 1

O�lineEvaluator 4: Linear Regression (LR)

1 Member variables: \ , \̂ are 3 ⇥ 3 matrices, where \ (\̂) is
for the online (o�ine) con�dence bounds.)̂ is the estimated
parameters. The \ is shared with LinUCB oracle.

2 Function __init__(L):
3 \̂ O3 �

Õ
82 [��] q (x8 ,08) · q (x8 ,08)

) // O3 is the 3⇥3

identity matrix

4 b
Õ
82 [��] ~8 · q (x8 ,08),)̂ \̂

�1
b

5 Function get_outcome(x,0):
6 if | |q (x,0) | |

\�q (x8 ,08) ·q (x8 ,08)) > | |q (x,0) | |
\̂
then

7 \ \ � q (x8 ,08) · q (x8 ,08))

8 return q (x,0) ·)̂
9 return NULL

Theorem 6 (LinUCB+Linear regression). Suppose the rewards
satisfy the linear model in Equation (6). Suppose o�ine evaluator
returns a sequence {~8 }#8=1 w.r.t. {(x8 ,08)}

#
8=1. Let \# ,

Õ
82 [#] x8x

)
8 ,

!,maxC ) {| |xC | |2}. Moreover, the random noise is 1-sub-Gaussian,
i.e. E[4UnC]  exp(U2/2), 8U 2 R. Then

'() ,ALinUCB+LR) 
832 (1 � 2 ln()))

�min
log

✓
1 �

)!2

_min (\#)

◆
� 1.

When the smallest eigenvalue _min (\#) is greater than a threshold
(1/2� ln())))!2, the regret is bounded by a constant 1632/�min�1.

Denote ^=)!2/_min (\#) as the condition number. Theorem 6 im-
plies that for a �xed ^ , the regret in) time slots is$ (log())). More-
over, when the logged data contain enough samples, i.e., _min (\#) is
greater than (1/2� ln())))!2, regret is upper bounded by a constant.
Using our analytic framework, we observe a similar thresholding
phenomena in [11] which focuses on the linear model.

5.2 Non-parametric Forest-based Online
Decision Making

We generalize the linear outcome model (in Equation (6)) to the case
that the mean of the outcome ~C is a nonparametric function of xC .
We use the non-parametric forest estimator to generalize algorithm
ALR+LinUCB in two aspects: (1) replace the LinUCB with our forest-
based online learning algorithm n-Decreasing Multi-action Forest
(abbr. Fst) outlined in BanditOracle 3; (2) replace linear regression
with Matching on Forest (abbr. MoF) outlined in O�ineEvaluator 5.
We denote the new contextual decision algorithm as AFst+MoF.

L,maxt T {| |xt | |2}. Moreover, the random noise is 1-sub-Gaussian,
i.e. E[e��t]  exp(�2/2), 8� 2 R. Then

R(T ,ALinUCB+LR) 
8d2(1 + 2 ln(T))

�min
log

✓
1 +

TL
2

�min(VN)

◆
+ 1.

When the smallest eigenvalue �min(VN) is greater than a threshold
(1/2+ ln(T))TL2, the regret is bounded by a constant 16d2/�min+1.

Denote �=TL2/�min(VN) as the condition number. Theorem 6 im-
plies that for a �xed �, the regret inT time slots isO(log(T)). More-
over, when the logged data contain enough samples, i.e., �min(VN) is
greater than (1/2+ln(T))TL2, regret is upper bounded by a constant.
Using our analytic framework, we observe a similar thresholding
phenomena in [11] which focuses on the linear model.

5.2 Non-parametric Forest-based Online
Decision Making

We generalize the linear outcome model (in Equation (6)) to the case
that the mean of the outcome �t is a nonparametric function of xt .
We use the non-parametric forest estimator to generalize algorithm
ALR+LinUCB in two aspects: (1) replace the LinUCB with our forest-
based online learning algorithm �-Decreasing Multi-action Forest
(abbr. Fst) outlined in BanditOracle 3; (2) replace linear regression
with Matching on Forest (abbr. MoF) outlined in O�ineEvaluator 5.
We denote the new contextual decision algorithm as AFst+MoF.
�-decreasing multi-action forest (Fst). A multi-action forest F
is a set of B multi-action decision trees. It extends the regression
forest of [40] to consider multiple actions in a leaf. Each context
x belongs to a leaf Lb (x) in a tree b2[B], and each leaf has mul-
tiple actions a2[K]. Given the dataset D={(xi ,ai ,�i)}Di=1, tree b
estimates the outcome of an action a under a context x as

L̂b (x ,a) ,

Õ
i 2[D] {Lb (xi)=Lb (x)} {ai=a }�iÕ
i 2[D] {Lb (xi)=Lb (x)} {ai=a }

. (7)

BanditOracle 3is the �-decreasing multi-action forest algorithm. For
a context x , the algorithm �rst uses the average of all trees as the
estimated outcome (Line 4). In the time slot t , with probability
1��t , the algorithm chooses the action with the largest estimated
outcome. Otherwise, the algorithm randomly selects an action to
explore its outcome. The oracle will update the data D using the

feedback (Line 8), and update the leaf functions {Lb (·)}Bb=1 of the
forest F using the training algorithm in the paper [40] (Line 9).

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Li Ye, Hong Xie, Yishi Lin, and John C.S. Lui

n-decreasingmulti-action forest (Fst).Amulti-action forest F is
a set of ⌫ multi-action decision trees. It extends the regression forest
of [40] to considermultiple actions in a leaf. Each context x belongs
to a leaf !1 (x) in a tree 12[⌫], and each leaf has multiple actions
02[]. Given the dataset D={(x8 ,08 ,~8)}⇡8=1, tree 1 estimates the
outcome of an action 0 under a context x as

!̂1 (x,0) ,

Õ
82 [⇡] {!1 (xi)=!1 (x) } {08=0}~8Õ
82 [⇡] {!1 (xi)=!1 (x) } {08=0}

. (7)

BanditOracle 3 is the n-decreasing multi-action forest algorithm. For
a context x , the algorithm �rst uses the average of all trees as the
estimated outcome (Line 4). In the time slot C , with probability
1�nC , the algorithm chooses the action with the largest estimated
outcome. Otherwise, the algorithm randomly selects an action to
explore its outcome. The oracle will update the data D using the
feedback (Line 8), and update the leaf functions {!1 (·)}⌫1=1 of the
forest F using the training algorithm in the paper [40] (Line 9).

BanditOracle 3: n-DecreasingMulti-action Forest (Fst)
1 Variables: the multi-action forest F of ⌫ trees, data D with
initial value ;, C with initial value 1

2 Function play(x):
3 for 0 2 [] do
4 ~̂0

1
⌫
Õ
12 [⌫] !̂1 (x,0)

5 0C

(
argmax02 [] ~̂0 w.p. 1�nC ,
a random action in [] w.p. nC .

6 return 0C
7 Function update(x,0,~):
8 D D [{(x,0,~)} and C C � 1
9 F train_forest(D)//learn tree splits. In practice,

one can re-train the forest every)0 time slots

To analyze the regret of BanditOracle 3, we need the following two
de�nitions, which are adapted from De�nition 2b and 4b of [40].

De�nition 1 (honest). A multi-action tree on training samples
{(x1,~1,01), . . . , (xB ,~B ,0B)} is honest if (a) (standard-case) the tree
does not use the responses ~1, . . . ,~B in choosing where to replace its
splits; or (b) (double sample case) the tree does not use the responses
in a subset of data called “I-sample” to place splits, where “double
sample” and “I-sample” are de�ned in Section 2.4 of [40].

De�nition 2 (U-regular). A multi-action tree grown by recursive
partitioning is U-regular for some U > 0 if either: (a) (standard case)
(1) each split leaves at least a fraction U of training samples on each
side of the split, (2) the leaf containing x has at least< samples from
each action 0 2 [] for some<2N, and (3) the leaf containing x has
less than 2<�1 samples for some action 0 2 [] or (b) (double-sample
case) for a double-sample tree, (a) holds for the I sample.

Theorem 7 (Asymptotic regret of Fst). Suppose that all potential
outcome distributions (x8 ,.8 (0)) for 80 2 [] satisfy the same reg-
ularity assumptions as the pair (x8 ,.8) did in Theorem 3.1 in [40]2.
2The condition is: ` (x,0) = E[. (0) |- = x] and `2 (x,0) = E[. (0)2 |- = x]

are Lipschitz-continuous, and �nally that Var[. (0) |- = x] > 0 and E[|. (0) �
E[. (0) |- = x] |

2�X
|- = x] for some constants X,">0 and for X=1, uniformly over

all x2 [0, 1]3 . Here, we slightly modify the condition to add the case X=1.

Suppose the trees in F (Line 9) is honest, U-regular with U  0.2 in
the sense of De�nition 1 and 2, and symmetric random-split (in the
sense of De�nition 3 and 5 in [40]). Denote�, c

0

3
log((1�U)�1)
log(U�1) where

c 0 2 [0, 1] is the constant “c” in De�nition 3 of [40]. Let V=1� 2�
(2�3�)

and let the exploration rate to be nC=C�1/2(1�V) . Then for any small
l>0, the asymptotic regret of Fst (do not use logged data) satis�es

lim
)!�1

'() ,AFst�E;)

) (1�V�l)/2 = 0, hence lim
)!�1

'() ,AFst�E;)

)
= 0.

Theorem 7 states that our online forest-based bandit algorithm
�BC achieves a sub-linear regret w.r.t.) . Note that our estimator can
be biased. We see by appropriate choices of the exploration rate nC ,
our algorithm �BC balances both the bias-variance tradeo� and the
exploration-exploitation tradeo�s. For readers who study causal
inference, note that we do not need the “overlap” assumption [40]
on the logged data. This is because our exploration probability nC
ensures that each action is played with a non-zero probability.
Matching-on-forest o�line evaluator (MoF). O�ineEvalua-
tor 5 describes the Matching-on-Forest o�ine evaluator. It �nds
a (weighted) random “nearest neighbor” in the logs for the context-
action pair (x,0). For a decision tree1 2 [⌫], the “nearest neighbors”
of (x,0) is the data items in the same leaf !1 (x) which have the
same action 0. If a data sample belongs to the nearest neighbors of
(x,0) in more trees, then it will be returned by">� with a higher
probability.

O�lineEvaluator 5: Matching on Forest (MoF)
1 Input: a multi-action forest F with leaf functions
{!1 (·)}

⌫
1=1, and the logged data L

2 Function get_outcome(x,0):
3 1 a uniformly random number in {1, 2, · · · ,⌫}
4 Imatched {8 | !1 (x8)=!1 (x),08=0}
5 if I < ; then
6 8 a random sample from Imatched
7 L L\{(x8 ,08 ,~8)}//delete item

8 return ~8
9 return NULL

6 EXPERIMENTS
We use two real datasets of Weixin and Yahoo, as well as synthetic
data to carry out our experiments3. First, we show that it is better to
use both the logged data and the online feedbacks to make decisions,
compared with using just one of the data sources. Second, we show
why we need to judiciously use the logged data via our proposed
method. Third, we discuss the practicability of our algorithms.

6.1 Datasets and Experiment Settings
Synthetic dataset. Each user’s context x is drawn from [�1, 1]3
uniformly at random. Consider propensity scores P[action = 0 |x] =

3Code and Yahoo’s data are in https://github.com/lonyle/causal_bandit.

To analyze the regret of BanditOracle 3, we need the following two
de�nitions, which are adapted from De�nition 2b and 4b of [40].

De�nition 1 (honest). A multi-action tree on training samples
{(x1,�1,a1), . . . , (xs ,�s ,as)} is honest if (a) (standard-case) the tree
does not use the responses �1, . . . ,�s in choosing where to replace its
splits; or (b) (double sample case) the tree does not use the responses
in a subset of data called “I-sample” to place splits, where “double
sample” and “I-sample” are de�ned in Section 2.4 of [40].

De�nition 2 (�-regular). A multi-action tree grown by recursive
partitioning is �-regular for some � > 0 if either: (a) (standard case)
(1) each split leaves at least a fraction � of training samples on each
side of the split, (2) the leaf containing x has at leastm samples from
each action a 2 [K] for somem2N, and (3) the leaf containing x has
less than 2m�1 samples for some action a 2 [K] or (b) (double-sample
case) for a double-sample tree, (a) holds for the I sample.

Theorem 7 (Asymptotic regret of Fst). Suppose that all poten-
tial outcome distributions (xi ,Yi (a)) for 8a 2 [K] satisfy the same
regularity assumptions as the pair (xi ,Yi) did in Theorem 3.1 in [40]2.
Suppose the trees in F (Line 9) is honest, �-regular with �  0.2 in
the sense of De�nition 1 and 2, and symmetric random-split (in the
sense of De�nition 3 and 5 in [40]). Denote A, � 0

d
log((1��)�1)
log(��1) where

�
0
2 [0, 1] is the constant “� ” in De�nition 3 of [40]. Let �=1� 2A

(2+3A)
and let the exploration rate to be �t=t�1/2(1��). Then for any small
�>0, the asymptotic regret of Fst (do not use logged data) satis�es

lim
T!+1

R(T ,AFst+E;)

T (1+�+�)/2 = 0, hence lim
T!+1

R(T ,AFst+E;)

T
= 0.

Theorem 7 states that our online forest-based bandit algorithm
Fst achieves a sub-linear regret w.r.t.T . Note that our estimator can
be biased. We see by appropriate choices of the exploration rate �t ,

2The condition is: µ(x , a) = E[Y (a) |X = x] and µ2(x , a) = E[Y (a)2 |X = x]
are Lipschitz-continuous, and �nally that Var[Y (a) |X = x] > 0 and E[|Y (a) �
E[Y (a) |X = x] |2+� |X = x] for some constants �, M>0 and for �=1, uniformly
over all x 2[0, 1]d . Here, we slightly modify the condition to add the case �=1.

2298

Unifying O�line Causal Inference and Online Bandit Learning for Data Driven Decision WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Figure 4: Cumulative regrets
ofAUCB+EM & variants (K=2)

Figure 5: Cumulative regrets
ofAUCB+PSM & variants (K=2)

Figure 6: Cumulative regrets
ofAUCB+IPSW and its variants

Figure 7: Cumulative regrets
of ALinUCB+LR, linear f

Figure 8: Total regrets of
AUCB+PSM and its variants
[Weixin, context-independent]

Figure 9: Total regrets of
AUCB+IPSW and its variants
[Weixin, context-independent]

Figure 10: Cumulative re-
gret of AUCB+IPSW [Yahoo,
context-independent]

Figure 11: Reward of
ALinUCB+LR and its vari-
ants [Yahoo, contextual]

our algorithm Fst balances both the bias-variance tradeo� and the
exploration-exploitation tradeo�s. For readers who study causal
inference, note that we do not need the “overlap” assumption [40]
on the logged data. This is because our exploration probability �t
ensures that each action is played with a non-zero probability.
Matching-on-forest o�line evaluator (MoF). O�ineEvalua-
tor 5describes the Matching-on-Forest o�ine evaluator. It �nds a
(weighted) random “nearest neighbor” in the logs for the context-
action pair (x ,a). For a decision treeb 2 [B], the “nearest neighbors”
of (x ,a) is the data items in the same leaf Lb (x) which have the
same action a. If a data sample belongs to the nearest neighbors of
(x ,a) in more trees, then it will be returned byMoF with a higher
probability.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Li Ye, Hong Xie, Yishi Lin, and John C.S. Lui

n-decreasingmulti-action forest (Fst).Amulti-action forest F is
a set of ⌫ multi-action decision trees. It extends the regression forest
of [40] to considermultiple actions in a leaf. Each context x belongs
to a leaf !1 (x) in a tree 12[⌫], and each leaf has multiple actions
02[]. Given the dataset D={(x8 ,08 ,~8)}⇡8=1, tree 1 estimates the
outcome of an action 0 under a context x as

!̂1 (x,0) ,

Õ
82 [⇡] {!1 (xi)=!1 (x) } {08=0}~8Õ
82 [⇡] {!1 (xi)=!1 (x) } {08=0}

. (7)

BanditOracle 3 is the n-decreasing multi-action forest algorithm. For
a context x , the algorithm �rst uses the average of all trees as the
estimated outcome (Line 4). In the time slot C , with probability
1�nC , the algorithm chooses the action with the largest estimated
outcome. Otherwise, the algorithm randomly selects an action to
explore its outcome. The oracle will update the data D using the
feedback (Line 8), and update the leaf functions {!1 (·)}⌫1=1 of the
forest F using the training algorithm in the paper [40] (Line 9).

BanditOracle 3: n-DecreasingMulti-action Forest (Fst)
1 Variables: the multi-action forest F of ⌫ trees, data D with
initial value ;, C with initial value 1

2 Function play(x):
3 for 0 2 [] do
4 ~̂0

1
⌫
Õ
12 [⌫] !̂1 (x,0)

5 0C

(
argmax02 [] ~̂0 w.p. 1�nC ,
a random action in [] w.p. nC .

6 return 0C
7 Function update(x,0,~):
8 D D [{(x,0,~)} and C C � 1
9 F train_forest(D)//learn tree splits. In practice,

one can re-train the forest every)0 time slots

To analyze the regret of BanditOracle 3, we need the following two
de�nitions, which are adapted from De�nition 2b and 4b of [40].

De�nition 1 (honest). A multi-action tree on training samples
{(x1,~1,01), . . . , (xB ,~B ,0B)} is honest if (a) (standard-case) the tree
does not use the responses ~1, . . . ,~B in choosing where to replace its
splits; or (b) (double sample case) the tree does not use the responses
in a subset of data called “I-sample” to place splits, where “double
sample” and “I-sample” are de�ned in Section 2.4 of [40].

De�nition 2 (U-regular). A multi-action tree grown by recursive
partitioning is U-regular for some U > 0 if either: (a) (standard case)
(1) each split leaves at least a fraction U of training samples on each
side of the split, (2) the leaf containing x has at least< samples from
each action 0 2 [] for some<2N, and (3) the leaf containing x has
less than 2<�1 samples for some action 0 2 [] or (b) (double-sample
case) for a double-sample tree, (a) holds for the I sample.

Theorem 7 (Asymptotic regret of Fst). Suppose that all potential
outcome distributions (x8 ,.8 (0)) for 80 2 [] satisfy the same reg-
ularity assumptions as the pair (x8 ,.8) did in Theorem 3.1 in [40]2.
2The condition is: ` (x,0) = E[. (0) |- = x] and `2 (x,0) = E[. (0)2 |- = x]

are Lipschitz-continuous, and �nally that Var[. (0) |- = x] > 0 and E[|. (0) �
E[. (0) |- = x] |

2�X
|- = x] for some constants X,">0 and for X=1, uniformly over

all x2 [0, 1]3 . Here, we slightly modify the condition to add the case X=1.

Suppose the trees in F (Line 9) is honest, U-regular with U  0.2 in
the sense of De�nition 1 and 2, and symmetric random-split (in the
sense of De�nition 3 and 5 in [40]). Denote�, c

0

3
log((1�U)�1)
log(U�1) where

c 0 2 [0, 1] is the constant “c” in De�nition 3 of [40]. Let V=1� 2�
(2�3�)

and let the exploration rate to be nC=C�1/2(1�V) . Then for any small
l>0, the asymptotic regret of Fst (do not use logged data) satis�es

lim
)!�1

'() ,AFst�E;)

) (1�V�l)/2 = 0, hence lim
)!�1

'() ,AFst�E;)

)
= 0.

Theorem 7 states that our online forest-based bandit algorithm
�BC achieves a sub-linear regret w.r.t.) . Note that our estimator can
be biased. We see by appropriate choices of the exploration rate nC ,
our algorithm �BC balances both the bias-variance tradeo� and the
exploration-exploitation tradeo�s. For readers who study causal
inference, note that we do not need the “overlap” assumption [40]
on the logged data. This is because our exploration probability nC
ensures that each action is played with a non-zero probability.
Matching-on-forest o�line evaluator (MoF). O�ineEvalua-
tor 5 describes the Matching-on-Forest o�ine evaluator. It �nds
a (weighted) random “nearest neighbor” in the logs for the context-
action pair (x,0). For a decision tree1 2 [⌫], the “nearest neighbors”
of (x,0) is the data items in the same leaf !1 (x) which have the
same action 0. If a data sample belongs to the nearest neighbors of
(x,0) in more trees, then it will be returned by">� with a higher
probability.

O�lineEvaluator 5: Matching on Forest (MoF)
1 Input: a multi-action forest F with leaf functions
{!1 (·)}

⌫
1=1, and the logged data L

2 Function get_outcome(x,0):
3 1 a uniformly random number in {1, 2, · · · ,⌫}
4 Imatched {8 | !1 (x8)=!1 (x),08=0}
5 if I < ; then
6 8 a random sample from Imatched
7 L L\{(x8 ,08 ,~8)}//delete item

8 return ~8
9 return NULL

6 EXPERIMENTS
We use two real datasets of Weixin and Yahoo, as well as synthetic
data to carry out our experiments3. First, we show that it is better to
use both the logged data and the online feedbacks to make decisions,
compared with using just one of the data sources. Second, we show
why we need to judiciously use the logged data via our proposed
method. Third, we discuss the practicability of our algorithms.

6.1 Datasets and Experiment Settings
Synthetic dataset. Each user’s context x is drawn from [�1, 1]3
uniformly at random. Consider propensity scores P[action = 0 |x] =

3Code and Yahoo’s data are in https://github.com/lonyle/causal_bandit.

6 EXPERIMENTS
We use two real datasets of Weixin and Yahoo, as well as synthetic
data to carry out our experiments3. First, we show that it is better to
use both the logged data and the online feedbacks to make decisions,
compared with using just one of the data sources. Second, we show
why we need to judiciously use the logged data via our proposed
method. Third, we discuss the practicability of our algorithms.

6.1 Datasets and Experiment Settings
Synthetic dataset. Each user’s context x is drawn from [�1, 1]d
uniformly at random. Consider propensity scores P[action = a |x] =
ps(x ,a) for all actionsa 2 {0, · · · ,K�1}. Unless we vary it explicitly,
we set the propensity score ps(x ,a) = exp(sa)/(

ÕK�1
a=0 exp(sa)) by

default, where sa = exp(�xT�a (E[� |a]� E[� |(a+1) mod K])). We
generate the action a 2 {0, · · · ,K�1} according to the propensity
scores. We consider a reward function �=f (x ,a) for each (x ,a)
pair. Unless we vary it explicitly, we set f (x ,a) = xT�a + ba
for some parameter �a 2 Rd and bias ba = 0.5 ⇥ a. For the
contextual-independent cases, the expected reward for an action
a is E[� |a]=Ex [f (x ,a)|a] by marginalizing over the context x . By
default, we set the number of arms asK = 3. We present experiment
results under other settings in our supplementary materials [44].
Weixin A/B testing data and associated logs. Weixin pushes
billions of noti�cations to users everyday. TheWeixin’s anonymized
data contain A/B tests on the noti�cations strategies and their
associated logs. TheA/B test has two actions.We use the estimations
of A/B tests as the ground truth values [8]. Each dataset has 100,000
rows of logged data and 500,000 rows of online A/B test’s data,
where each row has 51 contexts, an action and an outcome. Here,
the action is the noti�cation strategy. The outcome is the company’s
3Code and Yahoo’s data are in https://github.com/lonyle/causal_bandit.

2299

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Li Ye, Hong Xie, Yishi Lin, and John C.S. Lui

Figure 12: Di�erent algo-
rithms on synthetic data,
linear function f

Figure 13: Di�erent algo-
rithms using Thompson
Sampling, linear function f

Figure 14: Total regrets of
di�erent algorithms [Weixin,
context-independent]

Figure 15: Regrets of dif-
ferent algorithms [Yahoo,
context-independent]

Figure 16: Regrets of
AFst+MoF, ALinUCB+LR and
their variants, non-linear f̃

Figure 17: Total rewards of
AFst+MoF, ALinUCB+LR and
variants [Weixin, contextual]

metric to evaluate a strategy’s performance. We use the protocol in
[30] to evaluate an algorithm’s performance.

The Weixin’s observational datasets do not contain the propen-
sity score. Therefore, we estimate the propensity scores and the
inverse propensity score weights. For the o�ine evaluator PSM,
we use generalized linear model to estimate the propensity score.
For the inverse propensity score weighting evaluator IPSW, we use
the WeightIt R package to estimate the propensity score and get
the weight. We also use the di�erences-in-di�erences[9] method to
pre-process the outcomes in Weixin’s observational data.
Yahoo’s news recommendation data. The publicly available Ya-
hoo’s news recommendation dataset [43] contains 100,000 rows of
logs, where we split 20% of them as the logged data and 80% of them
as the online feedbacks. Each row contains: (1) six user features, (2)
candidate news IDs, (3) the selected news ID, (4) whether the user
clicks the news. Since the user features in this dataset were learned
via a linear model [43], the Yahoo’s data favors LinUCB [30] for
contextual decisions. We use the evaluation protocol of [30] and
run the algorithms for 50 times to take the average.

Table 5: Summary Table of Experiments

Experiment Question to answer
Exp1 - Exp3 The bene�ts to use both logged and online data?
Exp4 - Exp6 Why we need to judiciously use the logged data?

Exp7 Forest vs. linear models for contextual decisions?

6.2 Using Both O�line and Online Data
We compare the performance of algorithmAO+E (orAOc+E) with
its two variants that do not combine o�ine and online data: (1)

online bandit algorithm O (or Oc) that only uses online feedbacks;
(2) o�ine causal inference algorithm E that only uses logged data.
Exp1: Synthetic data.We run each algorithm 500 times to get the
average regret. We also plot the 20-80 percentiles as the con�dence
interval. In Figure 4, 5 and 6, we have 100 logged data points. We
observe that our “o�ine+online” algorithms always have smaller
regrets than the “only_online” variants. This is because using logged
data to warm-start reduces the cost of online exploration. The regret
for the “only_o�ine” version increases linearly in time, with a large
variance. This is because the decisions can be either always right
or always wrong depending on the initial decision. In particular, in
Figure 5 and 6, the 80-percentile of the regrets for the “only_o�ine”
variants are always zero, although the average regret is high. We set
K = 2 forAUCB+EM andAUCB+PSM because they cannot work well
for more actions [44]. We also set the context dimensions d = 2K .
Figure 4 shows that using the o�ine data does not reduce the
regret under the o�ine evaluator EM , because it is di�cult to �nd
exactly matched logged data point for contexts in high dimensions.
In Figure 5, algorithm AUCB+PSM improves the e�ciency to use
the logged data, and reduces the regret. Algorithm AUCB+IPSW can
work for K = 3 and further reduces the regret, as shown in Figure 6.

We also investigate the contextual decision case. In Figure 7,
recall that by default our outcome function E[�] = f (x ,a) = �Ta · x
is linear w.r.t. the contexts x . We see our “o�ine+online” algorithm
ALinUCB+LR has the smallest regret which is nearly zero, because
it uses the logged data to reduce the cost of online exploration.
Exp 2: Weixin data. We use the total regret as the performance
metric. Results on each dataset are in [44]. Figure 8 shows that after
200,000 rounds, our AUCB+PSM reduces the total regret by 37.1%
(or 45.5%) compared to UCB (or PSM). Our AUCB+IPSW reduces
the total regret by 45.1% (or 21.7%) compared to UCB (or IPSW).
For contextual decisions, Figure 17 shows that our “o�ine+online”
algorithmAFst+MoF has the highest total reward, where we re-train
the forest every 50 time slots. All three variants ofALinUCB+LR have
similar rewards which is samller than that of AFst+MoF, because
the linear model is probably not correct for Weixin’s data.
Exp 3: Yahoo’s dataset. Figure 11 shows that our “o�ine+online”
ALinUCB+LR improves the rewards by 21.1% (or 10.0%) compared
to the “only_online” LinUCB (or the “only_o�ine” LR algorithm).

Although Yahoo’s data were prepared to evaluate contextual
decisions [30], in Figure 10 we restrict the decisions to be context-
independent. Our “o�ine+online” AUCB+IPSW has a lower regret
than the “only_online” UCB algorithm. OurAUCB+IPSW has a lower
regret than the “only_o�ine” IPSW algorithm when T is large.

2300

Unifying O�line Causal Inference and Online Bandit Learning for Data Driven Decision WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Lessons learned. Our algorithms that use both data sources
achieve the largest rewards or the smallest regret on both real and
synthetic datasets, for both context-independent and contextual
decisions.

6.3 Proper Usage of the O�line Data
Besides our causal inference approach to use the o�ine logged
data, there are other heuristic methods which can use both data
sources. We will show that our proposed method has a superior
performance over the following heuristics.

(1) Historical average in data (historicalUCB [36]). This
method uses the empirical averages of each action in the
logged data as the initial values for the online bandit oracle.

(2) Linear regression. Instead of simply calculating the aver-
age, another way is to use supervised learning algorithm to
“learn” from o�ine data. The linear regression method learns
a total number of K linear models for each actions where
features are the contexts and labels are outcomes.

(3) Xgboost. Xgboost [12] is another supervised learning algo-
rithm that often performs well for tabular data. The Xgboost
method learns a total number of K models for the K actions.

(4) Stochastic Delayed Bandits (SDB [31]). Stochastic de-
layed bandit is a method proposed for bandit problem with
delayed feedback. It can deal with bandit with logged data
when we treat the logged data as the delayed feedbacks.

(5) Thompson sampling with informed prior. Thompson
sampling [2] is a Bayesian online decision algorithm. With
logged data, one can use the historical data to give a prior
distribution for each action. For example, one can use the
average reward for each action to calculate the prior.

All the above heuristics fall within our framework where di�erent
heuristics to use the o�ine data are di�erent o�ine evaluators.
Exp 4: Our method vs. others on synthetic data. Figure 12
compares our algorithm and the baseline heuristics (1)-(4) on the
synthetic data. Recall that by default, the outcome � = xT�a + ba
is the linear function w.r.t. the context x . We observe that our al-
gorithm AUCB+IPSW and the linear regression method have the
smallest cumulative regret. The linear regression method performs
comparatively well because linear regression is unbiased when
the reward is a linear function [37]. Xgboost performs worse than
our algorithm, because it cannot guarantee to unbiasedly estimate
the rewards. Using historical average to initialize UCB (i.e. histor-
icalUCB [36]) or using the stochastic delayed bandit result in the
highest regrets, because they ignore the impacts of the confounders.

Figure 13 compares di�erent heuristics to get the informed prior
for the Thompson Sampling (TS) algorithm [2]. All these heuristics
are instances in our framework where the online learning oracle is
Thompson Sampling. Our algorithms ATS+IPSW and AUCB+IPSW
that use the causal inference algorithm IPSW has the lowest regret.
Exp5: Our method vs. others onWeixin data. In Figure 14, we
have similar observations for Weixin dataset. Our algorithm com-
bining causal inference algorithm IPSW and UCB has the smallest
regret, while the historicalUCB algorithm that uses the historical
average to initialize the UCB algorithm has the highest regret. This

is because in real A/B tests, the expected rewards for the two deci-
sions A and B are often close to each other. Therefore even a small
bias on the estimated reward can lead to the wrong decision.
Exp6: Our method vs. others on Yahoo’s data. In Figure 15, we
compare di�erent algorithms’ regrets on Yahoo’s data. Here, we
randomly delete some data rows to simulate the selection bias in the
logged data. In particular, we delete a logged row with a probability
of 0.9 if the average reward for the chosen article is ranked among
the top-3 and the reward is 1, or if the average reward for the chosen
article is not among the top-3 and the reward is 0. We see that our
algorithmAUCB+IPSW achieves the lowest regret under this setting.
The linear regression does not perform well because the reward in
Yahoo’s data is not a perfectly linear function of the contexts [41].
Exp7: Linear vs. forest models for contextual decision. In Fig-
ure 16, we conduct experiments on synthetic data.We set the reward
� = f̃ (x ,a),(

Õd
j=1 {x �(�a)j })/d + 0.5⇥ {a=1} to be a nonlinear

function of the context x , where d = 10. We see our non-parametric
forest-based algorithm AFst+MoF can reduce the regrets of by over
75% (from around 40 to less than 10) compared to ALR+LinUCB.

Figure 17 shows that in Weixin’s data, our forest-based algo-
rithms (with circle marks) yields twice as many rewards as the
LinUCB-based algorithms, since the reward is probably not a linear
function of the contexts in Weixin’s data.

The features in Yahoo’s dataset were learned using a linearmodel,
and we compare the linear and forest models in the supplement [44].
Lessons learned. One needs to use the o�ine data properly to
reduce the regret in decisions. Our methods that combine causal
inference and online bandit learning achieve the smallest regret. For
contextual decisions, when the reward is not a linear function of
the context, the forest-based model outperforms the linear model.

7 RELATEDWORKS
O�ine causal inference (e.g. [35][38][33]) focuses on observational
logged data and asks “what the outcome would be if we had done
another action?”. Pearl formulated a Structural Causal Model (SCM)
framework to model and infer causal e�ects[33]. Rubin proposed
another alternative,i.e., Potential Outcome (PO) framework[35]. Re-
searchers propose various techniques for causal inference.Matching
(e.g. [32][38]) and weighting (e.g. [6][24][21]) are techniques that
deal with the imbalance of action’s distributions in o�ine data.
Other techniques include “doubly robust” [17] that combines re-
gression and causal inference, and “di�erences-in-di�erences” [9].
Recently, several works studied the individualized treatment ef-
fects [40][3]. O�ine policy evaluation is closely related to o�ine
causal inference. It estimates the performance (or “outcomes”) of
a policy, which prescribes an action for each context [39][28]. We
also use o�ine policy evaluation to evaluate the performances of
contextual bandit algorithms[29]. The o�ine policy evaluators can
be used as the “o�ine evaluator” in our framework. For example,
the Inverse Propensity Score Weighting method in this paper is
commonly used in o�ine policy evaluation [39]. Our paper is or-
thogonal to the above works in that we focus on combining (or
unifying) o�ine causal inference with online bandit learning algo-
rithms to improve the online decision accuracy. Our work points out
if we ignore the online feedbacks, these o�ine approaches can have
a poor decision performance. O�ine causal inference algorithms
can be seen as special cases of our framework.

2301

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Li Ye, Hong Xie, Yishi Lin, and John C.S. Lui

Many works studied the stochastic multi-armed bandit prob-
lem. Two typical algorithms are UCB [4] and Thompson sampling
[16]. LinUCB is a parametric variants of UCB [14] tuning for lin-
ear reward functions. For the contextual bandit problem, LinUCB
algorithm has a regret of O(

p
T log(T)) [13][1] and was applied to

news article recommendation [30]. The Thompson sampling causal
forest by [15] and random-forest bandit by [18] were non-parametric
contextual bandit algorithms, but these works did not provide re-
gret bound. Guan et al. proposed a non-parametric online bandit
algorithm using k-Nearest-Neighbor [20]. Our causal-forest based
algorithm improves their bounds in a high-dimensional setting.
Lattimore et al. used the causal structure of a problem to �nd online
interventions [26]. Our paper is orthogonal to the above works in
that we focus on developing a generic framework to combine of-
�ine causal inference with these online bandit learning algorithms
such that o�ine logged data can be used to speed up theses bandit
algorithms with provable regret bounds. In addition, we propose
a novel �-greedy causal forest algorithm, and prove regret upper
bound for it (to the best of our knowledge, this is the �rst regret
bound for forest based online bandit algorithms).

Several works aimed at using logged data to help online decision
making. The historicalUCB algorithm [36] is a special case of our
framework, while they ignored users’ contexts. Bareinboim et al. [7]
and Forney et al. [19] combined the observational data, experimen-
tal data and counterfactual data, to solve the MAB problem with
unobserved confounders. They considered a di�erent problem of
maximizing the “intent-speci�c reward”, and they did not analyze
the regret bound. Ang Li and Judea Pearl [27] use conterfactual
logic to integrate experimental and observational data. Zhang et
al. [45] used adaptive weighting to robustly combine supervised
learning and online learning. They focused on correcting the bias
of supervised learning via online feedbacks, while we use causal
inference methods to synthesize unbiased feedbacks to speed up
online bandit algorithms. Our experiments in Section 6.3 show that
using historicalUCB [36], SDB [31] or the supervised learning algo-
rithm [45] to initialize the online learning algorithms can result in
higher regrets than our method.

8 CONCLUSIONS
This paper studies how to use the logged data to make better online
decisions. We unify the o�ine causal inference and online bandit
algorithms into a single framework, and consider both context-
independent and contextual decisions. We introduce �ve novel
algorithm instances that incorporate causal inference algorithms
including matching, weighting, causal forest, and bandit algorithms
including UCB and LinUCB. For these algorithms, we present re-
gret bounds under our framework. In particular, we give the �rst
regret analysis for a forest-based bandit algorithm. Experiments
on two real datasets and synthetic data show that our algorithms
that can use both logged data and online feedbacks outperform
algorithms that only use either of the data sources. We also show
the importance to judiciously use the o�ine data via our methods.

Our framework can alleviate the cold-start problem of online
learning, and we show how to use the results of o�ine causal
inference to make online decisions. Our uni�ed framework can
be applied to all previous applications of o�ine causal inference

and online bandit learning, such as A/B testing with logged data,
recommendation systems [42][30] and online advertising [10].

ACKNOWLEDGMENTS
This work of Hong Xie was supported in part by Chongqing Natural
Science Foundation (cstc2020jcyj-msxmX0652) and the Fundamen-
tal Research Funds for the Central Universities (2020CDJ-LHZZ-
057). John C.S. Lui is supported in part by the GRF 14200420. (Hong
Xie is the corresponding author)

REFERENCES
[1] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. 2011. Improved algo-

rithms for linear stochastic bandits. In Advances in Neural Information Processing
Systems. 2312–2320.

[2] Shipra Agrawal and Navin Goyal. 2012. Analysis of thompson sampling for the
multi-armed bandit problem. In Conference on Learning Theory. 39–1.

[3] Susan Athey, Julie Tibshirani, Stefan Wager, et al. 2019. Generalized random
forests. The Annals of Statistics 47, 2 (2019), 1148–1178.

[4] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time analysis of
the multiarmed bandit problem. Machine learning 47, 2-3 (2002), 235–256.

[5] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. 2002. The
nonstochastic multiarmed bandit problem. SIAM journal on computing 32, 1
(2002), 48–77.

[6] Peter C Austin. 2011. An introduction to propensity score methods for reducing
the e�ects of confounding in observational studies. Multivariate behavioral
research 46, 3 (2011), 399–424.

[7] Elias Bareinboim, Andrew Forney, and Judea Pearl. 2015. Bandits with unobserved
confounders: A causal approach. In Advances in Neural Information Processing
Systems. 1342–1350.

[8] Kjell Benson and Arthur J Hartz. 2000. A comparison of observational studies
and randomized, controlled trials. New England Journal of Medicine 342, 25 (2000),
1878–1886.

[9] Marianne Bertrand, Esther Du�o, and Sendhil Mullainathan. 2004. How much
should we trust di�erences-in-di�erences estimates? The Quarterly journal of
economics 119, 1 (2004), 249–275.

[10] Léon Bottou, Jonas Peters, Joaquin Quiñonero-Candela, Denis X Charles, D Max
Chickering, Elon Portugaly, Dipankar Ray, Patrice Simard, and Ed Snelson. 2013.
Counterfactual reasoning and learning systems: The example of computational
advertising. The Journal of Machine Learning Research 14, 1 (2013), 3207–3260.

[11] Jinzhi Bu, David Simchi-Levi, and Yunzong Xu. 2019. Online pricing with o�ine
data: Phase transition and inverse square law. arXiv preprint arXiv:1910.08693
(2019).

[12] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining. 785–794.

[13] Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. 2011. Contextual ban-
dits with linear payo� functions. In Proceedings of the Fourteenth International
Conference on Arti�cial Intelligence and Statistics. 208–214.

[14] Varsha Dani, Thomas P Hayes, and Sham M Kakade. 2008. Stochastic linear
optimization under bandit feedback. In COLT.

[15] Maria Dimakopoulou, Susan Athey, and Guido Imbens. 2017. Estimation consid-
erations in contextual bandits. arXiv preprint arXiv:1711.07077 (2017).

[16] Shi Dong and Benjamin Van Roy. 2018. An information-theoretic analysis for
Thompson sampling with many actions. In Advances in Neural Information Pro-
cessing Systems. 4157–4165.

[17] Miroslav Dudík, John Langford, and Lihong Li. 2011. Doubly robust policy
evaluation and learning. arXiv preprint arXiv:1103.4601 (2011).

[18] Raphaël Féraud, Robin Allesiardo, Tanguy Urvoy, and Fabrice Clérot. 2016. Ran-
dom forest for the contextual bandit problem. In Arti�cial Intelligence and Statis-
tics.

[19] Andrew Forney, Judea Pearl, and Elias Bareinboim. 2017. Counterfactual data-
fusion for online reinforcement learners. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR. org, 1156–1164.

[20] Melody Y Guan and Heinrich Jiang. 2018. Nonparametric stochastic contextual
bandits. In Thirty-Second AAAI Conference on Arti�cial Intelligence.

[21] Lars Peter Hansen. 1982. Large sample properties of generalized method of
moments estimators. Econometrica: Journal of the Econometric Society (1982),
1029–1054.

[22] Wassily Hoe�ding. 1994. Probability inequalities for sums of bounded random
variables. In The Collected Works of Wassily Hoe�ding. Springer, 409–426.

[23] Heinrich Jiang. 2017. Uniform convergence rates for kernel density estimation.
In Proceedings of the 34th International Conference on Machine Learning-Volume
70. JMLR. org, 1694–1703.

2302

Unifying O�line Causal Inference and Online Bandit Learning for Data Driven Decision WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

[24] Nathan Kallus. 2018. Balanced policy evaluation and learning. In Advances in
Neural Information Processing Systems. 8895–8906.

[25] Volodymyr Kuleshov and Doina Precup. 2014. Algorithms for multi-armed bandit
problems. arXiv preprint arXiv:1402.6028 (2014).

[26] Finnian Lattimore, Tor Lattimore, and Mark D Reid. 2016. Causal bandits: Learn-
ing good interventions via causal inference. In Advances in Neural Information
Processing Systems. 1181–1189.

[27] Ang Li and Judea Pearl. 2019. Unit selection based on counterfactual logic.
In Proceedings of the Twenty-Eighth International Joint Conference on Arti�cial
Intelligence.

[28] Lihong Li. 2015. O�ine evaluation and optimization for interactive systems.
(2015).

[29] Lihong Li, Wei Chu, John Langford, Taesup Moon, and Xuanhui Wang. 2012.
An unbiased o�ine evaluation of contextual bandit algorithms with generalized
linear models. In Proceedings of the Workshop on On-line Trading of Exploration
and Exploitation 2. 19–36.

[30] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. 2010. A contextual-
bandit approach to personalized news article recommendation. In Proceedings of
the 19th international conference on World wide web. ACM, 661–670.

[31] Travis Mandel, Yun-En Liu, Emma Brunskill, and Zoran Popovic. 2015. The Queue
Method: Handling Delay, Heuristics, Prior Data, and Evaluation in Bandits.. In
AAAI. 2849–2856.

[32] Daniel FMcCa�rey, Greg Ridgeway, and Andrew RMorral. 2004. Propensity score
estimation with boosted regression for evaluating causal e�ects in observational
studies. Psychological methods 9, 4 (2004), 403.

[33] Judea Pearl. 2000. Causality: models, reasoning and inference. Vol. 29. Springer.
[34] Paul R Rosenbaum and Donald B Rubin. 1983. The central role of the propensity

score in observational studies for causal e�ects. Biometrika 70, 1 (1983), 41–55.
[35] Donald B Rubin. 2005. Causal inference using potential outcomes: Design, mod-

eling, decisions. J. Amer. Statist. Assoc. 100, 469 (2005), 322–331.

[36] Pannagadatta Shivaswamy and Thorsten Joachims. 2012. Multi-armed bandit
problems with history. In Arti�cial Intelligence and Statistics. 1046–1054.

[37] Brandon Stewart. 2016. Causality with Measured Confounding. https://scholar.
princeton.edu/sites/default/�les/bstewart/�les/lecture10handout.pdf

[38] Elizabeth A Stuart. 2010. Matching methods for causal inference: A review and a
look forward. Statistical science: a review journal of the Institute of Mathematical
Statistics 25, 1 (2010), 1.

[39] Adith Swaminathan and Thorsten Joachims. 2015. Counterfactual risk mini-
mization: Learning from logged bandit feedback. In International Conference on
Machine Learning. 814–823.

[40] Stefan Wager and Susan Athey. 2018. Estimation and inference of heterogeneous
treatment e�ects using random forests. J. Amer. Statist. Assoc. 113, 523 (2018),
1228–1242.

[41] Huazheng Wang, Qingyun Wu, and Hongning Wang. 2016. Learning hidden
features for contextual bandits. In Proceedings of the 25th ACM International on
Conference on Information and Knowledge Management. 1633–1642.

[42] Yixin Wang, Dawen Liang, Laurent Charlin, and David M Blei. 2018. The decon-
founded recommender: A causal inference approach to recommendation. arXiv
preprint arXiv:1808.06581 (2018).

[43] Yahoo. 2020. Yahoo! Front Page Today Module User Click Log Dataset, version
1.0, Link:
webscope.sandbox.yahoo.com/catalog.php?datatype=r&did=49.

[44] Li Ye, Hong Xie, Yishi Lin, and John C.S. Lui. 2021. Supplementary material, Code
and Data for "Unifying O�ine Causal Inference and Online Bandit Learning for
Data Driven Decision, Link:
https://github.com/lonyle/causal_bandit.

[45] Chicheng Zhang, Alekh Agarwal, Hal Daumé Iii, John Langford, and Sahand
Negahban. 2019. Warm-starting Contextual Bandits: Robustly Combining Su-
pervised and Bandit Feedback. In International Conference on Machine Learning.
7335–7344.

2303

