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Abstract
Finding from a big graph those subgraphs that satisfy certain conditions is useful in many applications such as community
detection and subgraph matching. These problems have a high time complexity, but existing systems that attempt to scale
them are all IO-bound in execution. We propose the first truly CPU-bound distributed framework called G-thinker for
subgraph finding algorithms, which adopts a task-based computationmodel, andwhich also provides a user-friendly subgraph-
centric vertex-pulling API for writing distributed subgraph finding algorithms that can be easily adapted from existing serial
algorithms. To utilize all CPU cores of a cluster, G-thinker features (1) a highly concurrent vertex cache for parallel task access
and (2) a lightweight task scheduling approach that ensures high task throughput. These designs well overlap communication
with computation tominimize the idle time of CPU cores. To further improve load balancing on graphs where the workloads of
individual tasks can be drastically different due to biased graph density distribution, we propose to prioritize the scheduling of
those tasks that tend to be long running for processing and decomposition, plus a timeout mechanism for task decomposition
to prevent long-running straggler tasks. The idea has been integrated into a novelty algorithm for maximum clique finding
(MCF) that adopts a hybrid task decomposition strategy, which significantly improves the running time of MCF on dense and
large graphs: The algorithm finds a maximum clique of size 1,109 on a large and denseWikiLinks graph dataset in 70 minutes.
Extensive experiments demonstrate that G-thinker achieves orders of magnitude speedup compared even with the fastest
existing subgraph-centric system, and it scales well to much larger and denser real network data. G-thinker is open-sourced
at http://bit.ly/gthinker with detailed documentation.
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1 Introduction

Problems that G-thinker Targets. Given a graph G =
(V , E) where V (resp. E) is the vertex (resp. edge) set,
we consider the problem of finding those subgraphs of G
that satisfy certain conditions. It may enumerate or count
all these subgraphs or simply output the largest subgraph.
Examples includemaximumcliquefinding [37], quasi-clique
enumeration [21], triangle listing and counting [16], sub-
graph matching [19], etc. These problems have a wide range
of applications including social network analysis and bio-
logical network investigation. They also often have a high
time complexity (e.g., findingmaximum cliques is NP-hard),
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Fig. 1 Set-Enumeration Tree

since the search space is the power set of V : For each sub-
set S ⊆ V , we check whether the subgraph of G induced
by S satisfies the conditions. Thus, existing serial algorithms
cannot scale to modern web-scale big graphs.

Subgraph finding is usually solved by divide and conquer.
Taking dense subgraph mining as an example, a common
solution is to organize the giant search space of the power set
of V into a set-enumeration tree [21].

Figure 1 shows the set-enumeration tree for a graphG with
four vertices {a, b, c, d} where a < b < c < d (ordered by
ID). Each node in the tree represents a vertex set S, and only
vertices larger than the last (and also largest) vertex in S are
used to extend S. For example, in Fig. 1, node {a, c} can
be extended with d but not b as b < c; in fact, {a, b, c} is
obtained by extending {a, b} with c. Edges are often used
for the early pruning of a tree branch. For example, to find
cliques, one only needs to extend a vertex set S with those
vertices in (V−S) that are commonneighbors of every vertex
of S, since all vertices in a clique are mutual neighbors. Also,
[21] shows that to find γ -quasi-cliques (γ ≥ 0.5), one only
needs to extend S with those vertices that are within 2 hops
from every vertex of S.
Problems Not Targeted by G-thinker. The problems we
consider above share two common features:

1. Pattern-to-instance: the structural or label constraints
of a target subgraph (i.e., pattern) are pre-defined, and
the goal is to find subgraph instances in a big graph that
satisfy these constraints;

2. There exists a natural way to avoid redundant sub-
graph checking, such as by comparing vertex IDs in a
set-enumeration tree, or partitioning by different vertex
instances of the same label as in [33,40].

Some graph-parallel systems attempt to unify the above
problems with frequent subgraph pattern mining (FSM),
in order to claim that their models are “more general.”
However, FSM is an intrinsically different problem: The
patterns are not pre-defined but rather checked against the
frequency of matched subgraph instances, which means that
(i) the problem is of an instance-to-pattern style (not our

pattern-to-instance). Moreover, frequent subgraph patterns
are usually examined using pattern-growth, and to avoid
generating the same pattern from different sub-patterns,
(ii) expensive graph isomorphism checking is conducted
on each newly generated subgraph, as in Arabesque [35],
RStream [38] and Nuri [17]. This is a bad design choice
since graph isomorphism checking should be totally avoided
in pattern-to-instance subgraph mining. After all, FSM is
a specific problem whose parallel solutions have been well
studied, be it for a big graph [34] or for many graph transac-
tions [20,45], and they can be directly used.
Motivations for G-thinker. A natural solution is to utilize
manyCPUcores to divide the computationworkloads of sub-
graph finding, but there is a challenge intrinsic to the nature
of subgraph finding algorithms: The number of subgraphs
induced by the power sets of V is exponential to the graph
size itself, and it is impractical to keep/materialize all of them
in memory; however, out-of-core subgraph processing gen-
erates an IO bottleneck that reduces CPU core utilization
rate.

In fact, as shall be clear in Sect. 2, all existing graph-
parallel systems have an IO-bound execution engine, making
them inefficient for subgraph finding.

We propose G-thinker for CPU-bound parallel subgraph
findingwhile keepingmemory consumption low. As an illus-
tration, it takes merely 354 seconds in total and 3.8 GB
memory per machine in our 16-node cluster to find the max-
imum clique (with 129 vertices) on the big Friendster social
network of [13] containing 65.6 M vertices and 1,806 M
edges. Note that the clique decision problem is NP-complete.

The success of G-thinker lies in a design that keeps CPU
cores busy. Specifically, it divides the mining problem into
independent tasks, e.g., representedbydifferent tree branches
inFig. 1.Note that each tree node represents a vertex set S that
are already assumed to be in an output subgraph, and incorpo-
rating more vertices into S (i.e., going down the search tree)
reduces the number of other candidate vertices to consider as
more structural constraints are brought in by the newly added
vertices. If the mining of the tree branch under S is expen-
sive, we can further divide it into child branches (rooted at
child nodes of S) for parallel mining; otherwise, the entire
tree branch can be mined by a conventional serial algorithm
to keep a CPU core busy.

Each tree node in Fig. 1 thus corresponds to a task that
finds qualified subgraphs assuming vertices in S are already
incorporated. For such a task, let us denote g as the subgraph
induced by S plus other candidate vertices (not pruned by ver-
tices in S) to be considered for forming an output subgraph;
we can thus consider the task as a mining problem on the
smaller subgraph g rather than the input graph. Using divide
and conquer, g shrinks as we move down the set-enumerate
search tree. Now, consider Fig. 2, wherewe denote the size of
g by |g|, we have (1) the IO cost ofmaterializing g by collect-
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Fig. 2 Computation and communication costs of a task in terms of
time. Here, a task that spawns from a vertex v needs to pull those
vertices in v’s neighborhood that are necessary for computation first
by communication to construct a task subgraph g, whose data volume
(and hence transmission time) is given by O(|g|) = cnet · |g|. The
computation over g often has a high time complexity O( f (|g|) = ccpu ·
f (|g|), where f (|g|) is problem dependent, e.g., |E |1.5 for triangle
counting while being exponential for maximum clique finding

ing vertices and edges is linear to |g|; and (2) the CPU cost
of mining g increases quickly with |g| since the mining algo-
rithm has a high time complexity. Thus, even though network
is slower than CPUs, the CPU cost of mining g surpasses the
IO cost to construct g when |g| is not too small. This enables
hiding IO cost inside the concurrent CPU processing when
computation and communication are well overlapped.

To effectively overlap computation and communication,
G-thinker keeps a pool of active tasks for processing at any
time, so that while some tasks are waiting for their data
(needed to construct subgraph g), other tasks (e.g., with g
already constructed) can continue their computation to keep
CPU cores busy. This approach also bounds memory cost
since only a bounded pool of tasks is in memory, refilled with
new tasks onlywhen the number of active tasks is insufficient
to keep CPU cores busy.
Contributions.Themain contributions of this work are sum-
marized as follows:

– The framework design of G-thinker satisfies all 7 desir-
abilities established in Sect. 3 necessary for scalability
and efficiency of subgraph finding problems.

– A novel vertex cache design is proposed to support
highly-concurrent vertex accesses by tasks.

– A lightweight task scheduling workflow is designed with
low scheduling overhead, which is able to balance the
workloads and minimize CPU idle time.

– An intuitive subgraph-centricAPI allowsprogrammers to
use task-based vertex-pulling to write parallel algorithms
easily adaptable from serial versions.

– G-thinker (http://bit.ly/gthinker) is open-sourced with
detailed documentation, and extensive experiments are

conducted to compare the scalability and efficiency of
G-thinker with existing systems.

As a journal extension of our ICDE conference paper [44],
this paper makes new improvements as follows:

– We now compare the systems over a total of 9 graph
datasets, including 4 new large datasets. Newly intro-
duced datasets expose some inefficiency of the previous
G-thinker implementation in load balancing, esp. when
some tasks can be drasticallymore expensive than others,
which occurred on new datasets. To further explore how
denser and larger graphs (especially those with a large
maximum clique size) impact G-thinker’s load balancing
mechanism, 9 additional graphs were further explored,
4 of which have maximum vertex degree close to or
beyond |V |/2 and 5 of which meet our density and size
requirements for data selection. Experiments show that
G-thinker scales well to even theWikiLinks graph dataset
with a maximum clique of size 1,109!

– We re-examine our old system design that assumes tasks
can be decomposed to the extent that each task is not a
long-running straggler. We find that long-running strag-
gler tasks are not prioritized for task decomposition, and
we thus implemented a new G-thinker system with a bet-
ter task prioritization and load balancing strategy that
significantly improves the performance when straggler
tasks exist.

– For the application of maximum clique finding, the per-
formance was found to be poor on the new LiveJournal
dataset (c.f. Table 2 in Sect. 11). We identified a problem
with the previous task decomposition strategy that does
not effectively utilize a vertex-coloring based prun-
ing technique and designed a new task decomposition
strategy that (1) utilizes that pruning and (2) effectively
decides the decomposition timing using a new task time-
out strategy. We then identify that the vertex coloring
process itself can become a performance bottleneckwhen
the task subgraph g is large, and thus, we design another
algorithm where the old task decomposition strategy is
adopted instead when g is large. This hybrid task decom-
position strategy reduces the running time onLiveJournal
from 1300 seconds to 168 seconds and also performs the
best on the other dense and large graphs that we tested.

Paper Organization. The rest of this paper is organized
as follows. Section 2 reviews existing graph-parallel sys-
tems and explains why they are IO-bound. Section 3 then
establishes 7 desirable features for a scalable and efficient
subgraph finding system and overviews the system archi-
tecture of G-thinker that meets all the 7 features. Section 4
introduces the adopted subgraph-centric programming API,
and Sect. 5, 6 and 7 then introduce how to write application
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code for maximum clique finding (MCF), triangle counting
and subgraph matching, respectively. Section 8 describes the
system design focusing on the two pillars to achieve CPU-
bound performance, i.e., vertex cache and task management.
Section 9 then describes the load balancing issue we found
about MCF in our experiments with the basic G-thinker sys-
tem and proposes an improved system design to allow better
load balancing. Based on this design, we present an improved
G-thinker algorithm for MCF that addresses the load balanc-
ing issue. Finally, Sect. 11 reports the experimental results
and Sect. 12 concludes this paper.

2 Related work

This section reviews existing graph-parallel systems and
explainswhy they are IO-boundandnot suitable for compute-
intensive subgraph finding problems.
IO-bound v.s. CPU-bound. The throughput of CPU com-
putation is usually much higher than the IO throughput of
disks and the network. However, existing Big Data systems
dominantly target IO-bound workloads. For example, the
word-count application ofMapReduce [11] emits everyword
onto the network, and for eachword that a reducer increments
its counter, the word needs to be received by the reducer first.
Similarly, in thePageRank application of Pregel [22], a vertex
needs to first receive a value from each in-neighbor and then
simply adds it to the current PageRank value. IO-bound exe-
cution can be catastrophic for computation problems beyond
those with a low time complexity. For example, even for tri-
angle counting with time complexity O(|E |1.5), [9] reported
that the state-of-the-art MapReduce algorithm uses 1,636
machines and takes 5.33 minutes on a small graph, on which
their single-threaded algorithm uses less than half a minute.

In fact, McSherry et. al [24] have noticed that exist-
ing graph-parallel systems are comparable and sometimes
slower than a single-threaded program. In another recent post
by McSherry [2], he further indicated that the current dis-
tributed implementations “scale” (i.e., using aggregate IO
bandwidth), but their performance does not get to “a simple
single-threaded implementation.”
Categorization of Graph-Parallel Systems. Our book [39]
classifies graph-parallel systems into vertex-centric systems,
subgraph-centric systems and others (e.g., matrix-based).
Vertex-centric systems compute one value for each vertex
(or edge), and the output data volume is linear to that of
the input graph. In contrast, subgraph-centric systems output
subgraphs that may overlap, and the output data volume can
be exponential to that of the input graph. Note that based
on this categorization, block-centric systems such as Blogel
[41] and Giraph++ [36] are merely extensions to the vertex-
centric systems.

Vertex-Centric Systems. Pioneered by Pregel [22], a num-
ber of distributed systems have been proposed for simple
iterative graph processing [23]. They advocate a think-like-
a-vertex programming model, where vertices communicate
with each other by message passing along edges to update
their states. Computation repeats in iterations until the
vertex states converge. In these systems, the number of
messages transmitted in an iteration is usually compara-
ble to the number of edges in the input graph, making
the workloads communication-bound. To avoid communica-
tion, single-machinevertex-centric systems emerge [7,18,30]
by streaming vertices and edges from disk to memory for
batched state updates; however, their workloads are still disk
IO-bound. The vertex-centric programming API is also not
convenient forwriting subgraph finding algorithms that oper-
ate on subgraphs.
Subgraph-Centric Systems. Recently, a few systems began
to explore a think-like-a-subgraph programming model,
including distributed systems NScale [27], Arabesque [35]
and G-Miner [6] and single-machine systems RStream [38]
and Nuri [17]. Despite more convenient programming inter-
faces, their execution is still IO-bound.

Assume that subgraphs of diameter k around individual
vertices need to be examined, then NScale (i) first con-
structs those subgraphs through breadth-first search (BFS)
around each vertex, implemented as k rounds of MapReduce
computations to avoid keeping the numerous subgraphs in
memory; (ii) NScale then mines these subgraphs in parallel
by reducers. Since this design requires that all subgraphs be
constructed before any of them can begin its computation, it
leads to poor CPU utilization and the straggler’s problem.

Arabesque [35] is a distributed system where every
machine loads the entire input graph into memory, and sub-
graphs are constructed and processed iteratively. In the i-th
iteration, Arabesque expands the set of subgraphs with i
edges/vertices by onemore adjacent edge/vertex, to construct
subgraphs with (i + 1) edges/vertices for processing. New
subgraphs that pass a filtering condition are further processed
and then passed to the next iteration. For example, to find
cliques, the filtering condition checks whether a subgraph g
is a clique; if so, g is passed to the next iteration to grow
larger cliques. Obviously, Arabesque materializes subgraphs
represented by all nodes in the set-enumeration tree (recall
Fig. 1) in aBFSmannerwhich is IO-bound.As an in-memory
system, Arabesque attempts to compress the numerousmate-
rialized subgraphs using a data structure called ODAG, but it
does not address the scalability limitation (as we shall show
in Sect. 11) as the number of subgraphs grows exponentially.

The task-based vertex-pulling API of G-thinker is first
proposed by our G-thinker preprint [40], but our execution
engine design is now significantly improved to eliminate
the bad designs mentioned there. In our task-based vertex-
pulling API, tasks are spawned from individual vertices, and
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a task can grow its associated subgraph by requesting adja-
cent vertices and edges for subsequent computation. This
API is then followed by G-Miner [6], as indicated by the
statement below Fig. 1 of [6]: “The task model is inspired
by the task concept in G-thinker.” The original G-thinker
prototype in our preprint [40] is to verify that our API can
significantly improve the performance of subgraph finding
compared with existing systems, but the execution engine
there is still a simplified IO-bound design that does not even
consider multithreading; it runs multiple processes in each
machine for parallelism which cannot share data.

G-Miner adds multithreading support to our old prototype
to allow tasks in a machine to share vertices, but the design
is still IO-bound. Specifically, the threads in a machine share
a common list called RCV cache for caching vertex objects
which becomes a bottleneck of task concurrency. G-Miner
also requires graph partitioning as a preprocessing job, but
real big graphs often do not have a small cut and are expen-
sive to partition; we thus adopt the approach of Pregel to
hash vertices to machines by vertex ID to avoid this startup
overhead.

All tasks inG-Miner are generated at the beginning (rather
than when task pool has space as G-thinker does) and kept
in a disk-resident priority queue. Each task t in the queue
is indexed by a key computed via locality-sensitive hashing
(LSH) on its set of requested vertices, to let nearby tasks in
the queue share requested vertex objects to maximize data
reuse. Unfortunately, this design does more harm than good:
Because tasks are not processed in the order of their genera-
tion (but rather LSH order), an enormous number of tasks are
buffered in the disk-resident task queue since some partially
computed tasks are sitting at the end of the queue while new
tasks are dequeued to expand their subgraphs. Thus, rein-
serting a partially processed task into the disk-resident task
queue for later processing becomes the dominant cost for a
large graph.

RStream [38] is a single-machine out-of-core system
which proposes a so-called GRAS model to emulate Arab-
esque’s filter-process model, utilizing relational joins. Their
experiments show that RStream is several times faster than
Arabesque even though it uses just one machine, but the
improvement is mainly because of eliminating network
overheads. (Recall that Arabesque materializes subgraphs
represented by all nodes in a set-enumeration tree.) Also, the
execution of RStream is still IO-bound as it is an out-of-core
system.

Nuri [17] aims to find the k most relevant subgraphs
using only a single computer, by prioritized subgraph expan-
sion. However, since the subgraph expansion is in a best-first
manner (Nuri is single-threaded), the number of buffered
subgraphs can be huge, and their on-disk subgraph manage-
ment can be IO-bound. As Sect. 11 shall show, RStream and

Nuri are not anywhere close to when G-thinker runs just on
a single machine.

3 G-thinker overview

Figure 3 shows the basic architecture of G-thinker on a clus-
ter of 3 machines. Let’s temporarily ignore the top part of
Fig. 3 for now, which are load balancing improvements to
be presented in Sects. 9 and 10. We assume that a graph is
stored as a set of vertices, where each vertex v is stored with
its adjacency list Γ (v) that keeps v’s neighbors. G-thinker
loads an input graph from the Hadoop Distributed File Sys-
tem (HDFS). As Fig. 3 shows, each machine only loads a
fraction of vertices along with their adjacency lists into its
memory, kept in a local vertex table. Vertices are assigned
to machines by hashing their vertex IDs, and the aggregate
memory of all machines is used to keep a big graph. The local
vertex tables of all machines together constitute a distributed
key-value store where any task can request for Γ (v) using
v’s ID.

G-thinker computes in the unit of tasks, and each task is
associated with a subgraph g that it constructs and then com-
putes upon. For example, consider the problem of mining
maximal γ -quasi-cliques (γ ≥ 0.5) for which [21] shows
that any two vertices in a γ -quasi-clique must be within 2
hops. One may spawn a task from each individual vertex v,
request for its neighbors (in fact, their adjacency lists) in
iteration 1, and when receiving them, request for the second-
hop neighbors (in fact, their adjacency lists) in iteration 2 to
construct the 2-hop ego-network of v for mining maximal
quasi-cliques using a serial algorithm like the Quick algo-
rithm [15,21]. To avoid double-counting, a vertex v only
requests those vertices whose ID is larger than v (recall
Fig. 1), so that a quasi-clique whose smallest vertex is u
must be found by the task spawned from u.

Such a subgraph finding algorithm is implemented in G-
thinker by specifying two user-defined functions (UDFs):
(1) spawn(v) indicating how to spawn a task from each indi-
vidual vertex in the local vertex table; (2) compute(frontier)
indicating how a task processes an iteration where frontier
keeps the adjacency lists of those vertices requested by the
current task in the previous iteration. In a UDF, users may
request the adjacency list of a vertex u to expand the sub-
graph of a task, or even decompose the subgraph by creating
multiple new tasks to divide the computation workloads.

As Fig. 3 shows, each machine also maintains a remote
vertex cache to keep the requested vertices (and their adja-
cency lists) that are not in the local vertex table, for access
by tasks via the input argument frontier to the UDF com-
pute(frontier). This allows multiple tasks to share requested
vertices to minimize redundant vertex requests, and once a
vertex in the cache is no longer requested by any task in the
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Fig. 3 G-thinker Architecture Overview (New Techniques to be Presented in Sects. 9 and 10 are Sketched at the Top)

machine, it can be evicted to make room for other requested
vertices. InUDF compute(frontier), a task is supposed to save
the needed vertices and edges in frontier into its subgraph,
since the holding of those vertices in frontierwill be released
by the current task right after compute(.) returns.

Tomaximize CPU core utilization, each computing thread
keeps a task queue of its own to stay busy and to avoid con-
tention. Since tasks are associated with subgraphs that may
overlap, it is infeasible to keep all tasks inmemory. G-thinker
only keeps a pool of active tasks in memory at any time by
controlling the pace of task spawning. If a task is waiting for
its requested vertices, it is suspended so that the computing
thread can continue to process the next task in its queue; the
suspended task will be added back to the queue once all its
requested vertices become locally available, in which case
we say that the task is ready.

Note that a task queue can become full if a task gener-
ates many new tasks into its queue, or if many waiting tasks
become ready all at once (due to other machines’ responses).
To keep the number of in-memory tasks bounded, if a task
queue is full but a new task needs to be inserted, we spill a
batch of tasks at the end of the queue as a file to local disk to
make room.

As shown inMachine 1ofFig. 3, eachmachinemaintains a
list of task files spilled from the task queues of the computing
threads. Tominimize the task volume on disks, when a thread
finds that its task queue is about to become empty, it will first
refill tasks into the queue from a task file (if it exists), before
choosing to spawnmore tasks fromvertices in the local vertex

table. Note that tasks are spilled to disks and loaded back in
batches to minimize the number of random IOs, as well as
lock-contention by the computing threads on a global task-
file list that tracks the current task files.

For load balancing, machines about to become idle will
steal tasks from busy ones (could be spawned from their local
vertex table) by prefetching a batch of tasks and appending
them to the task-file list on the local disk. These tasks will
later be loaded by a computing thread for processing when
its task queue needs a refill.
Desirabilities. This architecture design always guarantees
that a computing thread has enough tasks in its queue to keep
itself busy (unless the job has no more tasks to refill), and
since each task has sufficient CPU-heavy computation work-
loads, the linear IO cost of fetching/moving data is seldom
a bottleneck. This architecture exhibits an excellent perfor-
mance in most of the applications and datasets we tested,
where the computation cost of an individual task is much less
than the total computation workloads. The above assumption
may not hold in some (but rare) cases which we do identify
after testing on more datasets in this journal extension. This
issue requires a smarter system-algorithm codesign to allow
more effective load balancing, and we will describe these
improvements later in Sects. 9 and 10.

Other desirabilities of our architecture design include:
(1) bounded memory consumption: Only a pool of tasks is
kept in memory at any time, local vertex table only keeps a
partition of vertices, and remote vertex cache has a bounded
capacity; (2) tasks spilled from task queues are written to
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Table 1 Feature Comparison of Subgraph-Centric Systems

disks (and loaded back) in batches to achieve serial disk IO,
and spilled tasks are prioritized for refilling task queues of the
computing threads so that the number of tasks kept on disks is
minimized (in fact, negligible according to our experiments);
(3) threads in a machine can share vertex data in the remote
vertex cache, to avoid redundant vertex requesting and main-
tenance; (4) in contrast, tasks are totally independent (due
to the divide-and-conquer logic) and will never block each
other; (5) we also batch vertex requests and responses for
transmission to combat round-trip time and to ensure high
network throughput; and (6) if a big task is divided into many
tasks, these tasks will be spilled to disks to be refilled to the
task queues of multiple computing threads for parallel pro-
cessing; moreover, work stealing among machines will send
tasks from busy machines to idle machines.

We remark that G-thinker is the only system that achieves
these desirabilities and hence CPU-bound computation
workloads. Table 1 summarizes how existing subgraph-
centric systems compare with G-thinker in terms of these
desirabilities.
Challenges. To achieve the above desirabilities, we address
the following challenges. For vertex caching, we need to
ask the following questions: (1) how can we ensure high
concurrency of accessing vertex cache by multiple comput-
ing threads, while inserting newly requested vertices and
tracking whether an existing vertex can be evicted in the
meanwhile; (2) how can we guarantee that a task will not
request the adjacency list of a vertex v which has already
been requested by another task in the same machine (even
if response Γ (v) has not been received yet) to avoid redun-
dancy.

For task management, we need to consider (1) how to
accommodate tasks that are waiting for data, (2) how can
those tasks be timely put back to the task queues when their
data become ready, and (3) how tominimize CPU occupancy
due to task scheduling.

We will look at our solution to the above issues in Sect. 8,
after we present G-thinker API and applications.

4 ProgrammingModel

Without loss of generality, assume that an input graph G =
(V , E) is undirected. Throughout this paper, we denote the
set of neighbors of a vertex v by Γ (v) and denote the set of
vertices in Γ (v) whose IDs are larger than v by Γ>(v). We
also abuse the notation v tomean the singleton set {v}. Below,
we first introduce concepts including pull, task, comper and
worker.

Recall from Fig. 3 that G-thinker loads an input graph
fromHDFS into a distributed memory store where a task can
request Γ (v) by providing v’s ID. Here, we say that the task
pulls v.

Different tasks are independent,while each task t performs
computation in iterations. If t needs to wait for data after
an iteration, it is suspended to release the CPU core that it
occupies. Another iteration of t will be scheduled once all its
data responses are received.

A process calledworker is run on each machine, which in
turn runsmultiple computing threads that we call as compers
for simplicity. Figure 3 shows that each comper maintains
its own task queue, denoted by Qtask hereafter. Given these
concepts, let us see the API next.
Programming Interface. G-thinker is written in C++. Its
programming interface hides away the parallel execution
details, and users only need to properly specify the data types
and implement user-defined functions (UDFs) with serial
code based on the application logic.

Figure 4 sketches the core API including four classes to
customize. (1) Vertex: each Vertex object v maintains an
ID and a value field (which usually keeps v’s adjacency
list.1) (2) Subgraph provides the abstraction of a subgraph.
(3) Task: a Task object maintains a subgraph g and another
field context for keeping other contents. A task also provides
a function pull(v) to request Γ (v) for use by this task in the
next iteration.

Note that the template argument<VertexT> can be spec-
ified as any user-defined vertex class. For example, a vertex
object v can have a label field, and each adjacency list item
u ∈ Γ (v) can be associated with the label of u, and the
label and/or weight of edge (v, u). Moreover, the graph does
not need to be undirected though in our applications dis-
cussed in this paper, we have u ∈ Γ (v) ⇔ v ∈ Γ (u). For
applications that need bidirectional search, a vertex can even
maintain two adjacency lists, one for in-neighbors and one
for out-neighbors. In a nutshell, our API is totally flexible to
implement algorithms for weighted, labeled and/or directed
graphs. When we pull a vertex by its ID of type <KeyT>,
the entire vertex object with all its content (including Γ (v))

1 For a labeled graph, v’s adjacency list item to its neighbor u may also
keep the labels of u and edge (v, u).
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Fig. 4 Programming interface

gets fetched even though we simply say Γ (v) gets fetched
for simplicity.

The classes introduced so far have no UDF and users
only need to specify the C++ template arguments and to
rename the new type using “typedef” for ease of use. In
contrast, (4) Comper is a class that implements a comper
thread and provides two UDFs: (i) task_spawn(v), where
users may create tasks from a vertex v, and call add_task(t)
to add each created task t to Qtask . (ii) compute(t, frontier),
which specifies how an existing task t is processed for one
iteration; compute(.) returns true if another iteration of com-
pute(.) should be called on task t , and false if the task is
finished; input argument frontier is an array of previously
requested vertices. When compute(.) is called, the adjacency
lists of vertices in frontier should have been pulled to the local
machine, and a task may expand its subgraph g by incorpo-
rating the pulled data and then continue to pull the neighbors
of vertices in frontier.

If g is too big (e.g., the number of vertices and/or edges is
too large), in UDF compute(.), users may further decompose
the task and add the generated tasks to the current comper’s
Qtask by calling add_task(.). These tasks may be spilled to
disk due to Qtask being full and then fetched by other com-
pers or even workers.

There are also additional customizable classes omit-
ted in Fig. 4. For example, (5) Worker < ComperT >

implements a worker process, and provides UDFs for data
import/export (e.g., how to parse a line on HDFS into a ver-
tex object). (6) Aggregator allows users to aggregate results
computed by tasks. In Comper::compute(.), users can let a
task aggregate data to the aggregator or get the current aggre-
gated value. If the aggregator is enabled, each worker runs an
aggregator thread, and these threads at all workers synchro-
nize the aggregated values periodically at a user-specified

frequency (1 second by default). Before a job terminates,
another synchronization is performed to make sure data from
all tasks are aggregated.

We use aggregator in various applications: In maximum
clique finding, aggregator tracks the maximum clique cur-
rently found,which is used by compers to prune search space;
while in triangle counting, each task can sum the number of
triangles currently found to a local aggregator in its machine;
these local counts are periodically summed to get the current
total triangle count for reporting.

Users can also trim the adjacency list of each vertex using
a (7) Trimmer class. For example, in subgraph matching,
vertices and edges (i.e., items in Γ (v)) in the data graph
whose labels do not appear in the query graph can be safely
pruned. Also, when following a search tree as in Fig. 1, we
can trim each vertex v’s adjacency listΓ (v) into Γ>(v) since
a vertex set S is always expanded by adjacent vertices with
larger IDs.

If enabled, trimming is performed as a preprocessing step
right after the input graph is loaded, so that later during vertex
pulling, only trimmed adjacency lists are responded back in
order to reduce communication.

In the next three sections, we describe how to write 3
subgraph finding applications using our API: (1) maximum
clique finding (MCF), (2) triangle counting (TC) and (3) sub-
graph matching (GM), respectively.

We have also conducted a separate study in [15] on com-
puting maximal γ -quasi-cliques [21] with G-thinker, which
has achieved over 370× speedup when mining the YouTube
graph with over 1M vertices in our small 16-node cluster
(32 threads each, 512 totally). Since the quasi-clique min-
ing algorithm itself is very complicated, we leave it to our
separatework of [15] and focus here on introducing the appli-
cations MCF, TC and GM.

5 Application I: Maximum clique finding

We next illustrate how to write a G-thinker program for the
problem of finding a maximum clique following the set-
enumeration search tree in Fig. 1.

We denote a task by 〈S, ext(S)〉, where S is the set of
vertices already included in a subgraph g, and ext(S) is the
set of vertices that can extend g into a clique. Since vertices
in a clique are mutual neighbors of each other, a vertex in
ext(S) should be the common neighbor of all vertices in S.
For example, in Fig. 5, assume that S = {1, 2}, then ext(S) =
{3, 4, 5, 8} since they connect to bothVertices 1 and 2; Vertex
7, on the other hand, is not in ext(S) since it is not connected
with 2 so cannot be in the same clique with 2.

Initially, top-level tasks are 〈S, ext(S)〉 = 〈v,Γ>(v)〉,
one for each vertex v. For example, in Fig. 5, we have tasks
〈1, {2, 3, 4, 5, 6, 7, 8}〉, 〈2, {3, 4, 5, 8}〉, etc.
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Fig. 5 A Graph for Illustrating the MCF Algorithm

Fig. 6 UDF task_spawn(.) for Maximum Clique Finding

Let us generalize our notations to denote the common
neighbors of vertices in set S by Γ (S) and denote those in
Γ (S)with IDs are larger than all vertices in S by Γ>(S). For
example, in Fig. 5, assume that S = {2, 3}, then Γ (S) =
{1, 4, 5} and Γ>(S) = {4, 5}.

Since vertices in a clique are mutual neighbors, we can
recursively decompose a task 〈S,Γ>(S)〉 (note that ext(S) =
Γ>(S)) into |ext(S)| sub-tasks: 〈S∪u, Γ>(S)∩Γ>(u)〉, one
for each u ∈ ext(S). For example, in Fig. 5, consider a task
with S = {1, 2} and ext(S) = {3, 4, 5, 8}, then extending
S with u = 3 gives a new task with S′ = {1, 2, 3} and
ext(S′) = Γ>(S) ∩ Γ>(u) = {4, 5}, while extending S with
u = 8 gives a new task with S′ = {1, 2, 8} and ext(S′) =
Γ>(S) ∩ Γ>(u) = ∅.

To process a task 〈S, ext(S)〉, one only needs to mine the
subgraph induced by ext(S) (denoted by g) for its cliques,
because for any clique C found in g, we can obtain C ∪ S
as a clique of G. For example, in Fig. 5, consider a task
with S = {1, 2} and ext(S) = {3, 4, 5, 8}, then we only
need to mine cliques from the subgraph induced by {3,4,5,8}
which gives a maximum clique C = {3, 4, 5}. Since both 1
and 2 connect to all vertices in C , we can obtain the current
maximum clique C ∪ S = {1, 2}∪ {3, 4, 5} = {1, 2, 3, 4, 5}.

Based on the above idea, the two UDFs of Comper are
sketched in Figs. 6 and 7, respectively. In the pseudocode,
we denote the vertex set of a subgraph g by V (g). Also,
for a task t = 〈S, ext(S)〉 in our problem, t .context keeps
S, i.e., the set of vertices already assumed to be in a clique
to find. We thus directly use t .S instead of t .context in the
pseudocode. We assume that an aggregator maintains the
maximum clique currently found, and we denote its vertex
set by Smax . We also assume that for any vertex v, Γ (v) has
been trimmed as Γ>(v).

First, let us consider task_spawn(v) in Fig. 6, which
directly exits if v cannot generate a clique larger than Smax
even if all v’s neighbors are included (Line 1), where Smax is

obtained from the aggregator. Otherwise, a task t is created
(Line 2) which corresponds to a top-level task 〈S, ext(S)〉 =
〈v,Γ>(v)〉. Line 3 then sets t .S set as {v}. To construct t .g
as the subgraph induced by Γ>(v) ∪ v, task t requires the
edges of vertices in Γ>(v) and thus it pulls these vertices
(Line 4). Finally, the task is added to task queue Qtask of the
comper that calls task_spawn(v) (Line 5). For example, in
Fig. 5, consider a task t spawned from v = 2, then it will
pull vertices in Γ>(2) = {3, 4, 5, 8}. As another example,
assume that Smax = {1, 6, 7, 8} has been identified, and t is
spawned from v = 7 with Γ>(7) = {8}, then Line 1 will
prune t since, even if we include 8 into S = {7}, we only
have a clique of 2 vertices which is smaller than Smax .

Next, let us consider compute(t, f rontier), the algorithm
of which is shown in Fig. 7. If |t .S| = 1 (Line 1), then t is
a newly spawned top-level task with S = {v} and with input
argument frontier containing all pulled vertices ∈ Γ>(v).
Line 2 thus constructs t .g using the vertices (and their adja-
cency lists) in frontier. When constructing t .g, we filter any
adjacency list item w if w /∈ Γ>(v) since w is 2 hops away
from v.

In contrast, if the condition in Line 1 does not hold, then
the current task t was generated by decomposing a bigger
upper-level task, which should have already constructed t .g
and thus we skip Line 2.

If t .g is too big, e.g., has more than τspli t vertices (Line 3),
we continue to create next-level tasks that are with smaller
subgraphs (Lines 4–9). Here, τspli t is a user-specified thresh-
old (set as 200,000 by default). Let the current task be
t = 〈S, Γ>(S)〉, then Lines 5–7 create a new task t ′ =
〈S∪u,Γ>(S)∩Γ>(u)〉 for each u ∈ Γ>(S). If t ′.S extended
with all vertices in t ′.g, namely ext(t ′.S), still cannot form a
clique larger than Smax , then t ′ is pruned and thus freed from
memory (Line 9); otherwise, t ′ is added to Qtask (Line 8) so
that the system will schedule it for processing.

On the other hand, if t .g is small enough (Line 10), it
is mined and Smax is updated if necessary (Lines 11-13).
Specifically,we prune t if t .S extendedwith all vertices in t .g,
namely ext(t .S), still cannot form a clique larger than Smax
(Line 11). Note that even though we do not need that check
for a split task due to Line 8, the check is useful for initial
tasks spawned from individual vertices. If t is not pruned, we
then run the serial MCF algorithm of [37] on t .g assuming
that a clique of size ∆ = |Smax |− |t .S| is already found (for
pruning). This is because vertices of t .S are already assumed
to be in a clique to find, and to generate a clique larger than
Smax , t .S should be extended with a clique of t .g with more
than ∆ vertices. Line 13 updates Smax if a larger clique is
formed with t .S plus S′

max , where S′
max denotes the largest

clique of t .g.
Here, compute(t, f rontier) always returns false (c.f.

Lines 11 and 14) to indicate that t is finished and can be
freed from memory. In other applications like mining quasi-
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Fig. 7 UDF compute(.) for Maximum Clique Finding

cliques, t may need to pull the neighbors of those vertices in
frontier to further grow t .g (into a 2-hop ego-network of the
spawning vertex v), in which iteration compute(t, f rontier)
should return true.

Also, note that using a set-enumeration search tree is not
the only way to avoid redundancy. For example, in Sect. 7,
we will see that our subgraph matching algorithm partitions
the search space using different instances of the same vertex
label.

6 Application II: Triangle counting

The next application we describe is triangle counting, which
counts the total number of triangles in a big input graph. We
want each triangle -v1v2v3 (w.l.o.g., v1 < v2 < v3) to be
counted exactly once, i.e., in the subgraph spawned by v1
which is the smallest vertex (in terms of ID) in -v1v2v3. Let
us reuse the graph in Fig. 5 for illustration: -135 should be
counted by a task spawned from vertex 1 rather than 3 or 5,
while -345 should be counted by a task spawned from 3.

We let v1 count -v1v2v3 by checking whether v3 ∈
Γ (v2), and since v3 > v2, we only need to check whether

Fig. 8 Application Code for Triangle Counting

v3 ∈ Γ>(v2). For example, in Fig. 5, -135 is determined by
checking that 5 ∈ Γ>(3) = {4, 5}; note that this builds first
upon the fact that 3, 5 ∈ Γ>(1).

As a result, we implement a trimmer to trim the adjacency
list of any vertex v into Γ>(v). The trimmer also sorts the
vertex IDs in the trimmed adjacency list in increasing order,
which is useful in an efficient method to check condition
v3 ∈ Γ>(v2) to be presented later.

For the sorted adjacency list Γ>(v1) = {u1, u2, . . . , uk},
each ui can be v2 in a -v1v2v3 except for the largest (and
last) neighbor uk , since there does not exist any vertex v3 ∈
Γ>(v1) such thatv3 > v2 (= uk). For example, inFig. 5when
v1 = 2, Γ>(2) = {3, 4, 5, 8} and uk = 8, then apparently
3, 4, 5 cannot be in Γ>(8). Therefore, a task t spawned by v1
does not need to pullΓ>(uk) to check condition v3 ∈ Γ>(v2).

Based on the above idea, the two UDFs of Comper are
sketched in Fig. 8. First, let us consider task_spawn(v1) in
Fig. 8, which directly exits if k < 2 (Line 1) since in this
case, Γ>(v1) = {u1} where v2 = u1 is the only neighbor of

123



G-thinker: a general distributed framework...

v1, and a triangle cannot be generated from only two vertices
{v1, v2}. Otherwise, a task t is created (Line 2) with t .S set as
{v} (Line 3). Line 4 then pulls Γ (v2) for all neighbors v2 ∈
Γ>(v1) except for the largest neighbor uk . We also let task t
track uk in its context (Line 5), since it is needed to recover
Γ>(v1) later in compute(t , frontier) over which v3 is iterated.
For example, in Fig. 5 when v1 = 2, Γ>(2) = {3, 4, 5, 8}
and uk = 8, so t pulls 3, 4, 5 and t .context = 8. Finally,
the task is added to task queue Qtask of the comper that calls
task_spawn(v) (Line 6).

Next, let us consider compute(t, f rontier) as shown
in Fig. 8. Specifically, Line 1 counts the number of tri-
angles using the pulled frontier containing Γ>(v2) for all
v2 ∈ Γ>(v1) − uk , the details of which are described in
the next paragraph. Line 2 then aggregates the counted tri-
angle count to the local aggregator, which maintains the
total number of triangles counted by the current worker, and
which is periodically synchronized with aggregators of other
machines to report the total number of triangles currently
counted. Finally, compute(t , frontier) returns false to finish t
in Line 3.

Finally, let us see how t counts the triangles which is given
by function triangle_count(frontier, last) in Fig. 8. Specifi-
cally, a counter is initialized as 0 in Line 1 (to be incremented
later in Line 8). Line 2 then recovers Γ>(v1) as an array
v1_nbs = {u1, u2, . . . , uk}, where u1, u2, . . ., and uk−1 are
obtained from frontier and uk is obtained from t .context .
For example, in Fig. 5 when v1 = 2, we recover Γ>(2) as
v1_nbs ∪ uk = {3, 4, 5} ∪ 8.

We remark that array v1_nbs is also sorted by vertex ID
since Line 4 of Comper::task_spawn(v) poses requests in
order and this order is preserved when G-thinker receives
responses into frontier.

Next, for each vertex v2 ∈ frontierwhich is given by u j =
v1_nbs[ j] (Line 3), we first obtain the neighbor list Γ>(u j )

which is given by another array v2_nbs (Line 4). Then, we
iterate v3 over v1_nbs (i.e., v3 ∈ Γ>(v1)) to determine if v3
is also contained in v2_nbs (i.e., Γ>(v2)) and increment the
counter if so (Line 8). For example, in Fig. 5 when v1 = 2,
u j ∈ Γ>(2) = {3, 4, 5, 8}. For a particular u j (i.e., v2), say
3, we have v2_nbs = Γ>(3) = {4, 5}, and we can determine
if -234 exists (note that 4 ∈ Γ>(2) and 4 > v2 = 3) by
checking if 4 ∈ v2_nbs.

Given a particular v2, the logic of checking all v3 ∈
Γ>(v1) with v3 > v2 for the condition of whether v3 ∈
Γ>(v2) is given by Lines 5–11. The key insight is that both
v1_nbs and v2_nbs have their elements already ordered by
vertex ID, so a merge-like operation can be applied that only
require one pass over v1_nbs and v2_nbs.

Specifically, let p (resp. q) be the current iterating position
in v2_nbs (resp. v1_nbs). Line 5 sets q as ( j + 1) to ensure
that v3 > v2, i.e., v3 iterates v1_nbs from the first vertex that
is larger than v2. Then, each time v3 as given by v1_nbs[q]

is compared with the next smallest vertex in v2_nbs (i.e.,
Γ>(v2)) to see if they are the same; if so, v3 is in Γ>(v2),
and thus, the counter is incremented (Lines 7–8). Note that
during the entire process of checking all v3 ∈ Γ>(v1), only
one pass over v2_nbs (i.e.,Γ>(v2)) is required as p only gets
incremented.

7 Application III: Subgraphmatching

The next application is subgraph matching. In the sequel, we
first define the subgraph matching problem, then review the
relatedwork tomotivate the use of G-thinker as an alternative
and finally describe how to write G-thinker programs for
subgraph matching.
Subgraph Matching. Given a small query graph GQ , sub-
graphmatching finds all its occurrences in a big data graphG.
To illustrate, consider the query graphGQ shown in Fig. 9(a),
and the goal is to find from the data graph shown in Fig. 9(b)
those subgraphs that match GQ in terms of labels and edges
between labels.

Note that each vertex inGQ (resp.G) has a unique integer
ID and a label. Let us define k1k2k3k4k5 as a match where
vertex with ID ki in G is matched to vertex i© in GQ . For
example, in Fig. 9(b), 25478 matches GQ , while 25178 does
not since G does not have edge (1, 5) that corresponds to
( 3©, 2©) in GQ .
Existing Methods: Vertex Traversal Plus Join. Almost
all existing works on distributed graph matching follow the
evaluation paradigm of (i) acyclic path traversal (IO-bound)
plus (ii) subgraph join (with intermediate subgraph instances
materialized). For example, both [14] and [31] first decom-
pose a query graph into small acyclic subgraphs called twigs
(see Fig. 9(c) for an illustration) and use vertex-centric graph
exploration to find subgraph instances thatmatch those twigs,
and then join twigs on joint vertices (e.g., 3© and 2© in
Fig. 9(c)) to obtain the subgraphs that match GQ .

Note that when GQ contains cycles, vertex-centric graph
exploration alone is not sufficient. For example, in Fig. 9(b),
suppose that we perform vertex-centric exploration on G
along query graph path 3© → 1© → 2©, we will explore
from vertex 1 (or 4) to 2 and then to 5 simply according
to neighbors’ labels. Then, we need to check all b-labeled
neighbors of vertex 5 to make sure vertex 1 (or 4) is among
them, which is essentially an equi-join on k3 (the vertex ID
in G matched to query vertex 3©) rather than a simple label-
based exploration.

More recently, PruneJuice [29] adopts a similar two-stage
approach: (1) vertex-centric path exploration to efficiently
prune partial matches (e.g., k1k2k3k4k5) that cannot be
matched, and (2) a refinement step called Template-Driven
Search (TDS) to eliminate false positives. The differences
from [14] and [31] are that (i) both stages are conducted
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(a) (b)

(c)

Fig. 9 An Example of Subgraph Matching

using vertex-centric message passing, and there is no sub-
graph join; (ii) Stage (1) is for pruning purpose rather than
to generate partially matched twigs for later join, and two
topological requirements are checked, i.e., cycle constraints
and path constraints, which are efficient to execute in the
vertex-centric paradigm and considers topological require-
ments beyond the immediate neighborhood of a vertex.

The pruning of PruneJuice in Stage (1) is very effective as
demonstrated in [29], but the problem is with Stage (2) that
refines each match with TDS, which verifies that each vertex
visited in G meets its neighborhood constraints set by GQ ,
where previously visited vertices need to be revisited making
the checking IO-bound. In fact, the refinement could be even
worse than subgraph join since matched vertices need to be
revisited which requires additional vertex-centric message
passing.

Another recent work, [25], proposes to combine binary
joins with a novel worst-case optimal joins over partially
matched subgraphs to construct matched subgraph instances
in G, which has been demonstrated to be more efficient
than using just one kind of subgraph-join operator. However,
just like all the previously mentioned approaches, exponen-
tially many partially matched subgraph instances need to be
materialized making the execution IO-bound. An important
contribution is, however, made by [25] where a cost-based
optimizer is designed to find an efficient subgraph-join plan
to execute.
Motivations to Use G-thinker. A CPU-effective solution
requires us to think outside the box of existing vertex-
traversal-plus-join design that is intrinsically IO-bound.
G-thinker comes to the rescue exactly: assume that ourmatch
starting from a vertex vQ in GQ , and all other vertices of GQ
are within k hops from vQ ; then for each data vertex v in G
that is matched to vQ , if we pull all vertices with in k hops
from v inG to construct a subgraph g to match upon, we will
not miss any result and g can be checked simply by back-

tracking search without the need of materializing partially
matched subgraph instances! This also avoids revisiting pre-
vious vertices as in PruneJuice’s TDS that causes repeated
data transmission.

With the above strong motivations, it is very promising to
build a subgraph matching engine on top of G-thinker that
is able to translate any user-provided query graph GQ into
our G-thinker UDFs (i.e., execution plans) for efficient exe-
cution. This would require (i) an initial statistics collection
over the input graphG to be used by a query optimizer to find
an efficient plan, (ii) a translator that translates the plan found
intoG-thinkerUDFs task_spawn(v) and compute(t , frontier),
(iii) change G-thinker execution engine from one-time job
computation into one that supports on-demand online query-
ing continuously, using a method similar to how we adapt
our offline Pregel+ [42] system for vertex-centric computa-
tion intoQuegel [43,46], a vertex-centric online query engine
for graph traversal queries such as shortest paths and reach-
ability.

Even though such a general-purpose subgraph matching
engine on top of G-thinker is strongly motivated, its devel-
opment workloads go beyond a journal extension and we are
working on it as our future work.

We next conduct a proof-of-concept study on the effi-
ciency of the above solution by hard-coding the G-thinker
UDFs for the specific query graph GQ shown in Fig. 9(a),
considering only the matching constraints within each ver-
tex’s immediate neighborhood (called local constraints in
PruneJuice for pruning purpose) during the vertex-pulling
stage to construct task subgraph g for subsequent backtrack-
ing search for matches.
G-thinker Algorithm for SubgraphMatching.We assume
that each adjacency list item already contains the correspond-
ing vertex’s label besides the vertex ID. If this is not the case,
one may use our Pregel algorithm for attribute broadcast as
described in [42] to preprocess the data graph G in a cost
linear to the size of G.

We implement a trimmer that removes all adjacency list
items of vertices in G whose labels are not among “a,” “b,”
“c” and “d” upon G is loaded from HDFS.

We start the subgraphmatching from query vertex 1©with
label “a” (c.f. Fig. 9(a)), where a task is spawned from each
data vertex in G with label “a” (denoted by va) to grow its
subgraph g for later backtracking search. Note that every
matched subgraph instance will be found since the subgraph
must contain ana-labeled vertex.Also note that this subgraph
will only be found once, i.e., by the task spawned from va .

The above logic is implemented in Comper’s UDF
task_spawn(va), which creates a task t for a vertex va only if
(1) va’s label is “a,” and (2) Γ (va) contains both labels “b”
and “c” (since query vertex 1© in Fig. 9(a) has two neighbors
with labels “b” and “c”). It then lets t pull those neighbors
of va with label “b” or “c,” and adds va to t .g. By the end
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(a) (b) (c)

Fig. 10 Illustration of the Subgraph Content in G-thinker for Subgraph Matching at the End of Different Steps

of task_spawn(va), the content of g is shown in Fig. 10(a).
This UDF also sets t .context (used for keeping the iteration
number) to 1 so that when t calls UDF compute(.) later, it will
enter the processing logic for iteration 1 (c.f., Fig. 10(b)).

Note that unlike the previous applications MCF and TC
we saw in the previous two sections where UDF compute(.)
has only one iteration, UDF compute(.) here in our subgraph
matching application has two iterations. This is because, for
example, query vertex 5© in Fig. 9(a) is two hops away from
1© so we need to get vertices up to two hops from va in G
for backtracking.

In UDF compute(t, f rontier), we maintain the iteration
number in t .context , based on which compute(.) branches to
the processing of iteration 1 or iteration 2. Newly-spawned
tasks will enter iteration 1 since t .context is set as 1 by
task_spawn(.).At the endof iteration 1, compute(.)will incre-
ment t .context so that next timewhen it is called, it will enter
iteration 2 for processing.

In iteration 1, we split frontier into two vertex sets: Vb
(resp. Vc) which consists of vertices with label “b” (resp.
“c”). While a vertex in Vc definitely matches vertex 2© in
Fig. 9(a), a vertex in Vb maymatch either 3© or 4©. Therefore,
for each vertex vc ∈ Vc, we split those b-labeled vertices in
Γ (vc) into two sets:

– U1 consisting of those vertices that are also in Vb (i.e.,
they can match vertex 3© or vertex 4©);

– U2 consisting of the rest (which can only match vertex 4©
since they are not neighbors of va).

Based on these two sets U1 and U2, we have 4 cases:

Case 1: U1 = ∅. In this case, we prune vc since vc does not
have a neighbor matching vertex 3©.

Case 2: |U1| = 1 and U2 = ∅. In this case, we also prune vc
since vc does not have two b-labeled neighbors.

Case 3: |U1| = 1 and U2 0= ∅. In this case, the vertex in
U1 has to match vertex 3©, and the vertex matching
vertex 4© has to be fromU2. We thus pull all vertices
ofU2 in order to find a neighbor matching vertex 5©.

Case 4: |U1| > 1. In this case, the vertex matching vertex 4©
can be from either U1 or U2, and thus we pull all
vertices from U1 ∪U2.

At the beginning of iteration 1, t .g only contains va .When
processing vc, if Case 3 or Case 4 holds, we add vc and edge
(va, vc) to t .g, and for each vertex vb ∈ U1 (i.e., vb can
match vertex 3©), we add vb and edges (va, vb), (vc, vb) to
t .g. Figure 10(b) provides an illustration of t .g.

Then in iteration 2 of compute(t, f rontier), f rontier
contains all vertices pulled by iteration 1, all of which have
label “b” that can match vertex 4©.

Let the set of all vertices with label “c” in t .g (i.e., match-
ing vertex 2©) be Vc. Then, for each vertex vb ∈ frontier, we
define Vd as the set of all vertices in Γ (vb) with label “d”
(i.e., matching vertex 5©).

If Vd 0= ∅, (1) we add vb to t .g, and (2) for every vertex
vc ∈ Vc∩Γ (vb), we add edge (vc, vb) (thatmatches ( 2©, 4©))
to t .g, and (3) for every vertex vd ∈ Vd , we add vd and edge
(vb, vd) to t .g. Figure 10(c) provides an illustrative example
of t .g after the above processing.

Finally at the end of iteration 2, we run a backtracking
algorithm on t .g to enumerate all subgraphs that match the
query graph. If we count the number of matched subgraphs
rather than output them directly, we can sum the count of
matched subgraphs to the aggregator similarly as in triangle
counting.

Our graph matching algorithm does not decompose a big
subgraph g into multiple tasks as in the application of MCF
described in Sect. 5. But this can be easily done if splitting by
a-labeled vertex alone leads to very unbalanced task work-
load distribution (e.g., some a-labeled vertex has a very high
degree): if the subgraph g is big, we can further decompose it
among the set of c-labeled neighbors of va that match query
vertex 4©, denoted by Vc. Specifically, for each vc ∈ Vc, we
can generate a task that further matches b-labeled vertices
(e.g., split into U1 and U2); the task assumes that va and
vc are already matched to vertex 1© and vertex 2© in GQ ,
respectively. In general, if g is big, a task t may continue
to decompose g by looking at one more vertex in the query

123



D. Yan et al.

graph (given that previous query vertices are alreadymatched
to the respective vertices in G).

8 System design and implementation

As Sect. 3 indicates, G-thinker has 2 key modules that enable
CPU-bound execution: (1) a vertex cache for accessing by
tasks with a high concurrency and (2) a lightweight task gen-
eration and scheduling module which delivers a high task
throughput while keeping memory consumption bounded.
We shall discuss them in Sects. 8.1 and 8.2 , respectively.
Now, let us first overview the components and threads in
G-thinker.

Refer to Fig. 3 again. Each worker machine maintains a
local vertex table (denoted by Tlocal hereafter), and a cache
for remote vertices (denoted by Tcache hereafter).When a task
t requests v /∈ Tlocal , the request is sent to the worker that
holds 〈v,Γ (v)〉 in its Tlocal ; the received response 〈v,Γ (v)〉
is then inserted into Tcache.

Refer to Task::pull(v) from Fig. 4 again. If v ∈ Tlocal ,
t .pull(v) obtains v directly; otherwise, t has to wait for v’s
response to arrive and we say that t is pending. When all
vertices that t waits for are received into Tcache, we say that
t is ready.

In Comper::compute(t , frontier), each element in frontier
is actually a pointer to either a local vertex in Tlocal , or a
remote vertex cached in Tcache.

Each machine (or equivalently, worker) runs 4 kinds of
threads: (1) compers which compute tasks by calling Com-
per’s 2 UDFs; (2) communication threads which handle
vertex pulling; (3) garbage collecting thread (abbr. GC)
which keeps Tcache’s capacity bounded by periodically evict-
ing unused vertices; (4) themain threadwhich loads the input
graph, spawns all other threads, periodically synchronizes
job status to monitor job progress and to decide task stealing
plans among workers.

G-thinker’s communication module sends requests and
responses in batches to guarantee high communication
throughput while keeping latency low. Compers append pull-
requests to the sending module, and the receiving module
receives responses, inserts the received vertices (along with
their adjacency lists) into Tcache, and notifies those pending
tasks that are waiting for these requested vertices to update
their task readiness.

In the next two subsections, we describe our design of
vertex cache and task management, respectively.

8.1 Data cache for remote vertices

In a machine, multiple compers may concurrently access
Tcache for vertices, while the received responses also need
to be concurrently inserted into Tcache; also, GC needs to

concurrently evict unused vertices to keep Tcache bounded.
To support high concurrency, we organize Tcache as an array
of k buckets, each protected by a mutex. A vertex object v is
maintained in a bucket Bi where i is computed by hashing
v’s ID. Operations on two vertices v1 and v2 can thus happen
together as long as v1 and v2 are hashed to different buckets.

Figure 11 illustrates the design of Tcache with k = 10
buckets and hash(v) = v mod 10, where each row cor-
responds to a bucket. In reality, we set k = 10, 000 which
exhibits low bucket contention in our tests. As Fig. 11 shows,
each bucket (i.e., row) consists of 3 hash tables (i.e., column
cells): a Γ -table, a Z-table and an R-table:

Γ -table keeps each cached vertex 〈v,Γ (v)〉 for use by com-
pers. Each vertex entry also maintains a counter
lock-count(v) tracking how many tasks are cur-
rently using v, which is necessary to decide
whether v can be evicted.

Z-table (or, zero-table) keeps track of those vertices in Γ -
table with lock-count(v) = 0, which can be safely
evicted. Maintaining Z-table is critical to the effi-
ciency of GC, since GC can quickly scan each
Z-table (rather than the much larger Γ -table) to
evict vertices, minimizing the time of locking a
bucket to allow access by other threads.

R-table (or, request-table) tracks those vertices already
requested but whose responses containing Γ (v)

have not been received yet, and it is used to avoid
sending any duplicate request. Each vertex v in the
R-table also maintains lock-count(v) to track how
many tasks are waiting for v, which will be trans-
ferred into Γ -table when Γ (v) is received.

Atomic Operations on Tcache. We now explain how each
bucket of Tcache is updated atomically by various threads
(i.e., compers, response receiving thread, and GC) with illus-
trations using Fig. 11.

There are 4 kinds of atomic operations OP1–OP4 as
described below. Since a bucket is protected by a mutex,
only one operation may proceed at each time.
(OP1) First, a compermay request forΓ (v) to process a task.
In this case, v’s hashed bucket is locked for update. Case 1:
if v is found in Γ -table, lock-count(v) is incremented and
Γ (v) is directly returned (see Vertices 10 and 11 in Fig. 11).
Moreover, if lock-count(v) was 0, it should be erased from
Z-table (e.g., vertex 10 in Fig. 11). Otherwise, Case 2.1: if
v is not found in R-table (see vertex 21 in Fig. 11), then it
is requested for the first time, and thus v is inserted into R-
table with lock-count(v) = 1, and v’s request is appended
to the sending module for batched transmission. Otherwise,
Case 2.2: v is already requested, and thus lock-count(v) is
incremented to indicate that onemore task iswaiting forΓ (v)

(see vertex 20 in Fig. 11).
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Fig. 11 Structure of Vertex Cache Tcache with Bi = id(v) mod 10; with Contents Before and After Atomic Update Operations

(OP2)When a response receiving thread receives a response
〈v,Γ (v)〉, it will lock v’s hashed bucket to move v from
R-table to Γ -table (see vertex 22 in Fig. 11). Note that lock-
count(v) is directly transferred from v’s old entry in R-table
to its new entry in Γ -table, and the latter also obtains Γ (v)

from the response.
(OP3)When a task t finishes an iteration, for every requested
remote vertex v, t will release its holding of Γ (v) in the Γ -
table of v’s hashed bucket. This essentially locks the bucket
to decrement lock-count(v) in the Γ -table (see Vertices 12
and 13 in Fig. 11), and if lock-count(v) becomes 0, v is
inserted into the bucket’s Z-table to allow its eviction by GC
(see vertex 12).
(OP4) When GC locks a bucket to evict vertices in the Z-
table, GC removes their entries in both the Z-table and the
Γ -table. Imagine, for example, the eviction of vertex 12 from
Tcache shown on the right of Fig. 11.
Lifecycle of aRemoteVertex.Let us denote the total number
of vertices in both Γ -tables and R-tables by scache, GC aims
to keep scache bounded by a capacity ccache. By default, we
set ccache = 2M which takes only a small fraction ofmemory
in each machine.

We include entries in R-tables when counting scache
because if v is in an R-table,Γ (v)will finally be received and
added to Γ -table. In contrast, we ignore entries in Z-tables
when counting scache since they are just subsets of entries in
Γ -tables. The number of buffered messages is also bounded
by scache since a request for v (and its response) implies an
entry of v in an R-table.

We now illustrate howOP1–OP4 update scache by consid-
ering the lifecycle of a remote vertex v initially not cached in
Tcache. When a task t requests v, the comper that runs t will
(1) insert v’s entry into R-table (we mean the R-table of the
bucket where v is hashed, but omit the mentioning of bucket
hereafter for simplicity), hence scache = |Γ -tables| + |R-
tables| is incremented by 1; and will (2) trigger the sending
of v’s request.

When response 〈v,Γ (v)〉 is received, the receiving thread
moves v’s entry from R-table to Γ -table, hence scache
remains unchanged. Finally, when v is released by all tasks
that need v, GC may remove v from Tcache (hence scache
is decremented by 1), including v’s entries in both Γ -table
and Z-table. If a subsequent task requests v again, the above
process repeats.
Keeping scache Bounded. Since scache is updated by com-
pers and GC, we alleviate contention by maintaining scache
approximately: each comper (resp. GC) thread maintains a
local counter that gets committed to scache when it reaches
a user-specified count threshold δ (resp. −δ), by adding it
to scache and resetting the counter as 0. We set δ = 10 by
default, which exhibits low contention on scache, and a small
estimation error comparedwith themagnitude of scache. Note
that the error is bounded bymerely ncomper×δwhere ncomper
is the number of compers in a machine.

We try to keep the size of Tcache, i.e., scache, bounded by
the capacity ccache, and if Tcache overflows, compers stop
fetching new tasks for processing, while old tasks still get
processed after their requested vertices are received in Tcache,
so that these vertices can then be released to allowGC to evict
them to reduce scache.

To minimize GC overhead, we adopt a “lazy” strategy
which evicts vertices only when Tcache overflows. To remove
δcache = (scache − ccache) vertices, the buckets of Tcache are
checked by GC in a round-robin order: GC locks one bucket
Bi at a time to evict vertices tracked by Bi ’s Z-table one by
one. This process goes on till δcache vertices are evicted.

In our lazy strategy, compers stop fetching new tasks only
if scache > (1 + α) · ccache, where α > 0 is a user-defined
overflow tolerance parameter. GC periodically wakes up to
check this condition. If scache ≤ (1+ α) · ccache, GC sleeps
immediately to release its CPU core. Otherwise, GC attempts
to evict up to δcache = (scache −ccache) > α ·ccache vertices,
which is good since batched vertex removal amortizes bucket
locking overheads. GC may fail to remove δcache vertices
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since some tasks are still holding their requested vertices for
processing, but enough vertices will be released ultimately
for GC to remove. This is because these tasks will complete
their current iteration and release their requested vertices.
We set α = 0.2 by default which works well in our tests (see
Table 8(b) in Sect. 11 for the details).

8.2 Taskmanagement

G-thinker aims tominimize task scheduling overheads. Tasks
are generated and/or fetched for processing only if memory
permits; otherwise, G-thinker focuses on finishing the pool
of currently active tasks to release resources, so that more
tasks can then be fetched for processing.
Task Containers. At any time, a pool of tasks are kept in
memory, which allows CPU cores to process ready tasks
when pending tasks are waiting for their requested vertices.
Specifically, each comper maintains in-memory tasks in 3
task containers: a task queue Qtask that we already saw, a
task buffer Btask and a task table Ttask .

We now introduce why they are needed. Figure 12 sum-
marizes the components in a comper (Fig. 12(b)), and their
interactions with other worker components shared by all
compers in a machine (Fig. 12(a)).

The upper-left corner shows the local vertex table Tlocal
that holds locally loaded vertices, which are used to spawn
new tasks. The next vertex in Tlocal to spawn new tasks is
tracked by the “next” pointer.
(1) Task Queue Qtask. We have introduced it before: for
example, a task t is added to Qtask when add_task(t) (c.f.,
Fig. 4) is called. Since compers do not share a global task
queue, contention due to task fetching is minimized, but it is
important to keep Qtask not too empty so that its comper is
kept busy computing tasks.

To achieve this goal, we define a task-batch to contain
C tasks, and try to keep Qtask to contain at least C tasks
(i.e., one batch). By default, C = 150 which is observed to
deliver high task throughput. Whenever a comper finds that
|Qtask | ≤ C , it tries to refill Qtask with a batch of tasks so
that |Qtask | gets back to 2C .

Also, the capacity of Qtask should be bounded to keep
memory consumption bounded, and we set it to contain at
most 3C tasks. When Qtask is full and another task t needs
to be appended to Qtask , the last C tasks in Qtask are spilled
as a batch into a file on disk for later processing, so that
t can then be appended rendering |Qtask | = 2C + 1. This
design allows tasks to be spilled to disk(s) in batches to ensure
sequential IO. Each machine tracks the task files with a con-
current linked list [26]L f ile of filemetadata for later loading,
as shown in Fig. 12(a) with the list head and tail marked.

Recall that tasks are refilled when |Qtask | ≤ C . To refill
tasks, (i) L f ile is examined first and a file is digested (if
it exists) to load its C tasks; (ii) if L f ile is empty, a com-

per then tries to generate new tasks from those vertices in
Tlocal that have not spawned tasks (using Comper’s UDF
task_spawn(v)) yet, by locking and forwarding the “next”
pointer of Tlocal .

This strategy prioritizes partially-processed tasks over
new tasks, which keeps the number of disk-buffered tasks
minimal, and encourages data reuse in Tcache. While task
spilling seldom occurs due to our prioritizing rule, it still
needs to be properly handled since (1) many pending tasks
may become ready together to be added to Qtask , and (2) a
task with a big subgraph may generate many new tasks and
add them to Qtask .

While sources for task refilling like L f ile and Tlocal are
shared by all compers in a machine, the lock contention cost
is amortized since a batch of tasks are fetched each timewhen
a resource is locked.
(2) Task Buffer Btask. Since Qtask needs to be refilled from
the head of the queue and to spill tasks from the tail, both
by its comper, Qtask is designed as a deque only updated by
one thread, i.e., its comper. Thus, when a response-receiving
thread finds that a pending task t becomes ready, it has to
append t to another concurrent queue Btask (see Fig. 12(b))
to be later fetched by the comper into Qtask for processing.
(3)TaskTableTtask. Recall that pending tasks are suspended
and properly notified when responses arrive. A comper keeps
its pending tasks in a hash table Ttask (see Fig. 12(b)). Since
each machine runs multiple compers, when a response con-
tainingΓ (v) is received, the receiving thread needs to update
the status of those tasks from all compers that are waiting for
v. In other words, for each pending task t , it needs to track
which comper holds t in its own task table Ttask .

For this purpose, each comper maintains a sequence num-
ber nseq . Whenever it inserts a task t into Ttask , it associates
t with a 64-bit task ID id(t) which concatenates a 16-bit
comper ID with the 48-bit nseq , and nseq is then incremented
for use by the next task to insert. Given id(t), the receiving
thread can easily obtain the comper that holds t , to get its
Ttask for update.

In Fig. 11, when we introduced the vertex cache, we sim-
plified vertex v’s entry in an R-table as maintaining only a
counter lock-count(v), but it actually maintains the ID list of
those tasks that requested v (see Fig. 12(a)).

Assume that a task t requests a set of vertices denoted
by P(t) in an iteration. In the task table Ttask as illustrated
in Fig. 12(b), an entry for a task t maintains key id(t) and
value 〈met(t), req(t)〉, where req(t) denotes the number of
requested vertices |P(t)|, and met(t) denotes how many of
them are already available. Bothmet(t) and req(t) are prop-
erly set when a comper inserts t into its own task table Ttask .

When the receiving thread receives Γ (v), v’s entry is
moved from R-table in Tcache to Γ -table as operation OP2 in
Sect. 8.1 is described. The receiving thread also retrieves v’s
pending task list from its R-table entry, and for each id(t) in
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(a) (b)

Fig. 12 Components in a Comper & Shared Components in a Worker

the list, it updates t’s entry in the task table Ttask of the com-
per that holds t , by incrementingmet(t); ifmet(t) = req(t),
t becomes ready and the receiving thread moves t from Ttask
to Btask .
TheAlgorithmof aComper.Now thatwe have seen the task
containers maintained by a comper, we are ready to describe
how a comper runs task computations. Every comper repeats
the two operations pop() and push() (see Fig. 12(b)) in each
round, and executes until the job end-signal is set by themain
thread.

Push: If Btask is not empty, push() gets a task t from Btask
and computes t for one iteration. Note that since t
is in Btask , its requested remote vertices have all
been cached in Tcache. If t is not finished (i.e., UDF
compute(t , frontier) returns true), t is appended to
Qtask along with the IDs of newly requested vertices
P(t) (see Fig. 12(b)). In UDF compute(.), when a task
t pulls v (i.e., when users call pull(v)), v is simply
added to P(t). The actual examination of v on Tcache
is done by pop() below.

Pop: If Qtask is not empty, pop() fetches a task t along with
P(t) from the head of Qtask for processing. Every
non-local vertex v ∈ P(t) is requested from Tcache:
(i) if at least one remote v ∈ P(t) cannot be found
from Tcache (i.e., in Γ -table of v’s hashed bucket,
recall OP1 in Sect. 8.1), t is added to Ttask as pend-
ing; (ii) otherwise, t computes formore iterations until
when P(t) has remote vertices to wait for (hence t is
added to Ttask), or when t is finished.

Task refilling is handled by pop(). Before pop() pops a task
from Qtask as described above, it first checks if |Qtask | ≤ C .
If so, it tries to first fill Qtask with tasks from one of the

following sources in prioritized order: (1) a task file from
L f ile, (2) Btask , (3) spawning new tasks from vertices in
Tlocal . This strategy prioritizes tasks that were processed the
earliest, which minimizes the number of disk-resident tasks
spilled from Qtask .

A task t always releases its holding of all its previously
requested non-local vertices from Tcache after each iteration
of computation (i.e., call of UDF compute(t , frontier)), so
that they can be evicted by GC in time.

Note that pop() generates new requests (hence adds
vertices to Tcache), while push() consumes responses and
releases vertices on hold in Tcache (so that GC may evict
them). A comper keeps running push() in every round so that
if there are tasks in Btask , they can be timely processed to
release space in Tcache.

In contrast, comper runs pop() in a round only if (1) the
capacity of Tcache permits (i.e., scache ≤ (1+ α)ccache), and
(2) the number of tasks in Ttask and Btask together does not
exceed a user-defined threshold D (= 8C by default which
is found to provide good task throughput), to keep memory
consumption bounded. Otherwise, new task processing will
be blocked till push() unlocks sufficient vertices for GC to
evict.

Note that it is important to run push() in every round so
that tasks can keep flowing even after pop() blocks. If both
pop() and push() fail to process a task after a round, the
comper is considered as idle: there is no task in Qtask and
Btask , and there is no more new task to spawn (but Ttask may
contain pending tasks). In this case, the comper sleeps to
release CPU core but may be awakened by the main thread
which synchronizes status periodically (with other worker
machines) if there are more tasks (e.g., stolen from other
workers).
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A G-thinker job terminates if the main thread of all
machines find that all their compers are idle.

One problem remains: when a comper pulls vertices of
P(t) = {v1, v2, . . . , v'} in pop() for a popped task t , if
v1 /∈ Tlocal ∪ Tcache, t will be added to the comper’s
Ttask and its request for v1 will get sent. Now, assume that
v2, . . . , v' ∈ Tlocal . If the receiving thread receives Γ (v1)

and updates t’s entry in Ttask before the comper requests
v' and increments met(t), then the receiving thread fails
to move t from Ttask to Btask and t will stay in Ttask for-
ever. To avoid this problem, in pop(), a comper will check if
met(t) = req(t) after requesting all vertices in P(t) against
Tcache, and if so, the comper moves t from Ttask to Btask by
itself.
Task Stealing. To balance workloads among all machines,
we let all the workers synchronize their task processing pro-
gresses, and let those machines that are about to become
idle to prefetch tasks from heavily-loaded ones for process-
ing. Specifically, the main threads of all workers periodically
(every 1 second by default) synchronize their progresses
which are gathered at a master worker, who generates the
stealing plans and distributes them back to the main threads
of other workers, so that they can collectively execute the
stealing plans before the next progress synchronization.

The number of remaining tasks at a worker is estimated
from |L f ile| and the number of unprocessed vertices in Tlocal .
Tasks stolen by a worker are added to its L f ile to be fetched
by its compers.

We, however, find that enabling work stealing leads to
almost the same performance as without work stealing,
since most tasks exchanged among workers are not time-
consuming to compute, and the time used to transmit such a
task t (including its subgraph g) is not shorter than the time
to compute t directly.

It is, therefore, important to locate and only exchange
tasks that are time-consuming to compute, as in ourG-thinker
improvement to be described in Sect. 9.
Fault Tolerance. Our design also naturally supports check-
pointing for fault tolerance: worker states (e.g.,L f ile, Qtask ,
Ttask and Btask , and task spawning progress) and outputs can
be periodically committed to HDFS as a checkpoint. When
a machine fails, the job can rerun from the latest checkpoint,
but tasks in Ttask and Btask need to be added back to Qtask in
order to request vertices into Tcache again (since Tcache starts
“cold”).

9 System improvement for load balancing

Motivation for Improvement. While the previous design
works well on the applications and graphs which we tested
in our ICDE conference paper [44], we tested more graph
datasets in this journal extension and found some caseswhere

the previous design is inefficient. Specifically, on the Live-
Journal dataset (see Table 2 in Sect. 11) with 7,489,073
vertices and 112,305,407 edges, the system takes over 1,300
seconds to find themaximum clique, which is quite slow con-
sidering that it only takes 354 seconds on the largerFriendster
dataset with 65,608, 366 vertices and 1,806,067,135 edges.

The inefficiency is mainly caused by the drastically dif-
ferent costs of tasks in LiveJournal, where the largest vertex
degree is 1,053,720. In contrast, the largest vertex degree in
Friendster is merely 5,124. Since tasks spawned from high-
degree vertices of LiveJournal can be very expensive, the
previous design that operates on task-batches and endeavors
to fill local task queues is no longer suitable: some tasks in a
local task queue can be so expensive that the comper becomes
the straggler.

Handling such graphs require a redesign of the system
engine to identify and prioritize expensive tasks for com-
putation and/or task decomposition, along with algorithmic
improvement tomost effectively utilize the new design’s per-
formance potential. In fact, more effective work stealing is
now possible since the new design can identify expensive
tasks. With both the system and algorithm improvement,
the running time of our MCF application on LiveJournal
reduces from over 1,300 seconds to within 168 seconds, and
other graphs with quite a few high-degree vertices see similar
improvements.

The rest of this section describes how we redesign G-
thinker’s system engine for better load balancing, while our
new application code for MCF (maximum clique finding) on
top will be described in Sect. 10.
NewWorker Components.Our new design aims to prevent
expensive tasks from being buffered in the local queue of a
comper, but rather to move them around to idle threads for
timely processing.

To achieve this goal, we categorize tasks into two cate-
gories: (1) big taskswhose subgraphs are large and expensive
to compute upon, and (2) small tasks that are relatively more
efficient to compute.

Our new engine is designed to allow big tasks to be sched-
uled as soon as possible, always before small tasks. For this
purpose, we maintain separate task containers for big tasks
and small ones, and always prioritize the containers of big
tasks for examination and processing.

Figure 13 shows our improved design where the old
comper-specific task containers Qtask , Btask and Ttask
(shown in Fig. 12(b)) are now denoted by Qlocal , Blocal and
Tlocal , respectively, which are used to keep small tasks only.
We similarly maintain three global task containers Qglobal ,
Bglobal and Tglobal accessible to all the compers in a worker,
to keep big tasks. Also, small tasks (resp. big tasks) that are
spilled from Qlocal (resp. Qglobal ) are now tracked by file-list
Llocal (resp. Lglobal ).
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Fig. 13 Components in a Worker after Improvement

We define a user-specified threshold τbig so that if a task
t has a subgraph with potentially more than τbig vertices to
check, it is appended to Qglobal ; otherwise, it is appended to
Qlocal of the current comper. It could be difficult to decide
the subgraph size of t as it changes with vertex pulling. So
when t is still requesting vertices to construct its subgraph,
we consider t as a big task iff the number of vertices to
pull in the current iteration of compute(.) is at least τbig ,
which prioritizes its execution to construct the potentially
big subgraph early (recall Fig. 6); while when t is mining
its constructed subgraph, for example in MCF where t =
〈S,Γ>(S)〉 (recall Fig. 7), we consider t as a big task iff
|Γ>(S)| > τbig , since there are |Γ>(S)| vertices to check to
expand S.

In our improvedG-thinker system,Comper now has a new
UDF is_bigtask(t) which is the only addition to the original
G-thinker API shown in Fig. 4, and for MCF, we implement
it to return whether max{|P(t)|, |Γ>(S)|} > τbig . Note that
in MCF, |Γ>(S)| = |V (t .g)|, i.e., the number of vertices in
task subgraph t .g.

In general, to allow our other two applications to run with
the improved system, we implement Comper::is_bigtask(t)
simply to return whether max{|P(t)|, |V (t .g)|} > τbig . Even
though TC and GM do not decompose big tasks further, big
tasks are still prioritized in scheduling and thus load balanc-
ing is improved. The default value of τbig is 1,000 which we

found to consistently work well in our various tests. If users
call add_task(t), the function will put t into either Qlocal or
Qglobal based on the above condition judgment.
Changes to the Algorithm of a Comper. There are three
major changes made to prioritize big tasks.

The first change is with “push”: a comper keeps flowing
those tasks that have their requested data ready for com-
putation, by (i) first fetching a big task from Bglobal for
computing. The task may need to be appended back to
Qglobal , or may be decomposed into smaller tasks to be
appended to Qglobal or the comper’s Qlocal depending on
child-task size. (ii) If Bglobal is, however, found to be empty,
the comper will instead fetch a small task from its Blocal for
computation.

The second change is with “pop”: a comper always
fetches a task from Qglobal first. If (I) Qglobal is locked by
another comper (i.e., a try-lock failure), or if (II) Qglobal is
found to be empty, the thread will then pop a task from its
local queue Qlocal .

In Case (I) when checking Qglobal to pop, if the number
of tasks is below a batch sizeC , the comper will try to refill a
batch of tasks fromLglobal . We do not check Bglobal for refill
since it is shared by all compers which will incur frequent
locking overheads. Note that “push” already keeps flowing
big tasks in Bglobal that are ready.

In Case (II) when there is no big task to pop, a comper
will check its Qlocal to pop, before which if the number of
tasks therein is below a batch, task refill happens where lies
our third change as presented below.

Specifically, the comper will refill tasks from Llocal , and
then from its Blocal in this prioritized order to minimize the
number of partially processed tasks buffered on local disk
that are tracked by Llocal .

If both Llocal and Blocal are still empty, the comper will
then spawn a batch of new tasks from vertices in the local
vertex table for refill. However, we stop as soon as a spawned
task is big, which is then added to Qglobal (previous tasks are
added to Qlocal ). This avoids generating many big tasks out
of one refill.
New Work Stealing Strategy. Finally, since the main per-
formance bottleneck is caused by big tasks, task stealing
is conducted only on big tasks to balance them among
machines. The number of pending big tasks (in Qglobal plus
Lglobal ) in eachmachine is periodically collected by amaster
(every 1 second by default), which computes their average
and generates stealing plans to make the number of big tasks
on every machine close to that average. If a machine needs to
take (resp. give) less than a batch of C tasks, these tasks are
taken from (resp. appended to) the global task queue Qglobal ;
otherwise, we allow at most one task file (containingC tasks)
to be transmitted to avoid frequent task thrashing that over-
loads the network bandwidth. Note that in one load balancing
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cycle (i.e., 1 second by default) at most C tasks are moved at
each machine.

10 Improved algorithm for maximum clique

Motivation for the Timeout Mechanism. Recall that in our
MCF application, each task is denoted by 〈S, ext(S)〉, where
S is the set of vertices already included in a subgraph g,
and ext(S) = Γ>(S) is the set of vertices that can extend
g into a clique. As shown in Lines 3–9 of Fig. 7 in Sect. 5,
ourMCF program already recursively decomposes a big task
〈S,Γ>(S)〉 into |ext(S)| sub-tasks: 〈S∪u, Γ>(S)∩Γ>(u)〉,
one for each u ∈ ext(S). Since our new system prioritizes
such big tasks for decomposition, speedup is expected. For
example, on LiveJournal, we find that simply running with
our new system reduces the job execution time from 1300
seconds to 425 seconds. However, it is still slower than on
Friendster (taking 354 seconds only) the graph size of which
is one order of magnitude larger.

The problem with this solution is that, even though load
balancing improves, a lot of computation overheads are spent
not on the actual mining, but rather on creating decomposed
tasks whose subgraphs need to be materialized, and these
subgraphs can be big themselves. See, for example, Line 7
of Fig. 7 in Sect. 5. We are using the default parameter
τspli t = 200, 000 here, and if we reduce τspli t further, this
overhead will increase fast as more tasks need to be decom-
posed. For example, with τspli t = 150, 000, the program
could not complete in 90 minutes and was thus terminated
by us.

Note that the for-loop in Line 4 of Fig. 7 runs for |V (t .g)|
iterations which is larger than τspli t = 200, 000, mean-
ing that the task will generate over 200, 000 new tasks by
constructing their subgraphs which is very time-consuming.
Fortunately, on LiveJournal we found that there are only 22
such tasks that need decomposition, and the benefit from
better load balancing achieved outweigh the task creation
overhead.

In fact, depending on how vertices are interconnected
(e.g., vertex degree distribution), different tasks with com-
parable subgraph sizes can have drastically different compu-
tation cost, and some tasks with much fewer than τspli t =
200, 000 vertices in its subgraph can still be very expensive
and require decomposition.

However, naïvely reducing τspli t backfires since a lot of
tasks that are not expensive also get decomposed, causing
a lot of overheads in materializing new task subgraphs. To
explore finer-grained task decomposition to further improve
load balancing without paying an overly high cost on unnec-
essary subgraph materialization, we propose a so-called
timeout mechanism to locate and only decompose expensive
tasks.

To provide an intuition of our timeout mechanism using
the set-enumeration tree shown in Fig. 1, we would like to
let a task explore the search space in depth-first order ini-
tially by backtracking as in a serial algorithm to avoid any
subgraph materialization. If the task runs for a duration of
τtime, a timeout occurs and the task then wraps the remain-
ing search space as new tasks for divide and conquer. The
timeout threshold τtime is set to 1 second by default which
works well in our tests. We will elaborate on the algorithm
later in this section.
The Serial MCF Algorithm: A Review. Recall that we run
the serial MCF algorithm of [37] in Line 12 of Fig. 7 to
mine the maximum clique of t .g if a task t does not need
decomposition. Our timeout mechanism actually relies on
this algorithm which we review next.

This serial algorithm itself is a recursive one that conducts
a depth-first traversal of our set-enumeration search tree, and
it uses an upper bound computed by vertex coloring to prune
the search space. Specifically, this method assigns colors to
vertices, so that no two adjacent vertices are colored with
the same color. Vertex colors are used for pruning in [37]’s
algorithm.

Note that the number of colors is an upper bound of the
size of a maximum clique in a graph, since no two vertices
in a clique can share the same color (as they are mutual
neighbors). Since vertex-coloring is NP-hard, an approxi-
mate coloring algorithm called ColorSort is applied in [37]
which assigns a color to each vertex in ext(S) (i.e., the set
of candidate vertices to extend S into a clique).

In ColorSort(ext(S)), all vertices in ext(S) are colored
one by one where a vertex v is inserted to the first possible
color class Ck so that v is not adjacent to all the vertices
already in Ck . If v has at least one adjacent vertex in each
color classC1, . . . ,Ck , then a new color classCk+1 is created
to insert v. Finally, ColorSort(ext(S)) concatenates all the
vertex sets C1,C2, . . . to return an updated candidate list of
ext(S)where vertices are ordered in non-decreasing order of
color-value k. Note that the last color-value in the returned
ext(S) is also the largest color, which is again an upper bound
of the number of colors in the graph g induced by ext(S),
and hence an upper bound of the maximum clique size in g.

Figure 14 shows the pseudocode of [37]’s algorithm,
where the maximum clique found so far is kept in Smax ,
and max_clique(S, ext(S),C) is recursive (see its Line 8)
and extends S using the candidate vertices in ext(S). Here,
ext(S) is organized as a vertex array, and C is a vertex-color
array where the i-th element is the color-value of the i-th
vertex in ext(S).

The MCF mining over g starts by calling function
MCF(g). Initially, S = ∅, and Line 1 creates the initial
ext(S) = V (g) by sorting the vertices of g in non-increasing
order of degree (i.e., high-degree vertices go the first),
which is found to provide a tighter color-based bound [37].
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Fig. 14 Serial MCF Algorithm of [37]

Then, max_clique(S, ext(S),C) is called in Line 3 with
the prepared S, ext(S), and an initial color array C pre-
pared by Line 2 which we will explain later after describing
max_clique(S, ext(S),C) below.

In max_clique(S, ext(S),C), we extend S with one more
vertex v ∈ ext(S) starting from the last vertex in ext(S)
backwards (Lines 1–2). To avoid redundant checking, the
vertex v checked by an iteration is removed from ext(S)
in Line 10 before we consider the next iteration. Since we
guarantee that vertices in ext(S) are sorted by color (c.f.,
Lines 7–8), the candidate vertex v in Line 2 is guaranteed to
have the largest color-value among the remaining vertices in
ext(S).

For the current vertex v, its color-value C[v] serves as
an upper bound of the maximum clique that can be found
from the subgraph induced by the current ext(S). So if |S|+
C[v] ≤ |Smax |, we cannot generate a larger clique than Smax
by extending S with ext(S). Thus, if the condition in Line 3
does not hold, thenwe can skip the current and all subsequent
iterations (i.e., return directly in Line 11), since vertices in
ext(S) are popped backwards and C[v] cannot increase with
iterations.

Otherwise, a larger clique than Smax could be found, and
thus, we create S′ = S ∪ v (Line 4) and ext(S′) = Γ>(S′)
(Line 5) and recursively callmax_clique(.) over 〈S′, ext(S′)〉
if ext(S′) 0= ∅ (Lines 6–8). While if ext(S′) = ∅, clique S′

Fig. 15 Task Decomposition in the Timeout Mechanism

cannot be further extended, and we check if it is larger than
Smax and updates Smax if so (Line 9).

In the actual implementation, we directly reuse S for S′ to
avoid set copy: Line 4 becomes S ← S ∪ v but we will pop
v out of S right after Line 9, so that S is recovered for use in
the next iteration.

Finally, let us go back to Line 2 of MCF(g): We need
to assign the initial C[i] to be a safe upper bound for the
correctness of Line 3 in max_clique(.). For this purpose, we
set C[i] = dmax + 1 where dmax is the largest vertex degree.
This is correct since (dmax + 1) is a natural upper bound of
clique size (a vertex in a clique can be adjacent to ≤ dmax
neighbors); we can further tighten C[i] to be V (g) = i if
i ≤ dmax , since vertices in ext(S) are popped backwards
and V (g) itself serves as a natural upper bound of clique
size.
Motivation to Open up the Serial MCF Algorithm.While
our timeout mechanism can work with either the color-
ignorant decomposition strategy in Lines 4–9 of Fig. 7 in
Sect. 5, or the color-based decomposition strategy of [37]
shown in Fig. 14, it is more desirable to use the latter for
two reasons: (1) Color-based pruning can be utilized, and
more importantly, (2) we can decompose the search space of
ext(S) into segments to generate less tasks, whichwe explain
using Fig. 15 next.

Recall fromSect. 5 that each task inMCF is given by a pair
t = 〈S, ext(S)〉 where ext(S) = Γ>(S). As Fig. 14 shows,
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the algorithm of [37] organizes ext(S) as an array, and in
each iteration the last element v (see Line 2) is considered
which divides the search space into 2 cases: (1) v is included
into the clique (see Line 4) and the mining continues with
the remaining candidates ext(S′) (see Line 8), and (2) v is
excluded from the clique (see Line 10) and the mining con-
tinues with the remaining candidates by continuing the next
iteration (see Lines 1–2).

A nice feature of this solution is that we can partition the
candidate checking over ext(S) into groups as illustrated in
Fig. 15, where a parent task is divided into 4 child-tasks:
(1) Child-task 1 considers extending S with one vertex being
vertex 0, or 14, or 4, or 13; (2) Child-task 2 considers extend-
ing S with vertex 12, or 10, or 3, or 11; (3) Child-task 3
considers extending S with vertex 6, or 7, or 2, or 1; and
(4) Child-task 4 considers extending S with vertex 9, or 5,
or 8. For each task, however, we need to maintain a start-
ing pointer (e.g., to vertex 12 for Child-task 2) so that when
running the algorithm of Fig. 14 to check ext(S) backwards
from the end, we stop the iterating (Line 1 while-loop of
max_clique(.)) as soon as the starting pointer is passed.

Compared with using the color-ignorant decomposition
strategy in Lines 4–9 of Fig. 7 in Sect. 5, the new decom-
position strategy wins from 3 aspects. (i) Firstly, the
color-ignorant strategy generates one child-task for each
v ∈ ext(S), and when using the default parameter τspli t =
200, 000, itmeans that at least 200, 000 child-tasks are gener-
ated. In contrast, the strategy in Fig. 15 allows each child-task
to process a group of candidates in ext(S) so that the number
of child-tasks ismuch smaller and each child-task has enough
workload to justify its subgraph materialization and can ben-
efit fromour timeoutmechanism for effective load balancing.
(ii) Secondly, the strategy in Fig. 15 allows each child-task
to exclude candidates of previous child-tasks during task cre-
ation to reduce the number of task data to materialize. While
Line 7 of Fig. 7maymaterialize amore shrunk t ′.ext(S), this
color-ignorant strategy has tomaterialize asmany as |ext(S)|
child-tasks, and vertices are highly redundantly replicated
in child-tasks which can otherwise be avoided via grouping
and backtrackings (before timeout). (iii) Thirdly, the color-
ignorant strategy cannot utilize the color-based pruning in
Line 3 of max_clique(.) in Fig. 14.
Hybrid Task Decomposition Strategy. Interestingly, we
find that using the color-based decomposition strategy alone
is not optimal, since the coloring process itself has a time
complexity quadratic to the number of vertices in a graph,
which is extremely slow when there are many vertices (e.g.,
200, 000 which is the default value of τspli t ). In this case, the
color-ignorant decomposition strategy is much faster since
vertex coloring is avoided, and the candidate vertex prun-
ing by Line 7 of Fig. 7 is very effective in shrinking task
subgraphs.

Fig. 16 Hybrid Task Decomposition

Fig. 17 UDF task_spawn(v) in Hybrid Task Decomposition

As a result, our final strategy is to use the color-ignorant
decomposition strategy to decompose a task immediately if
|ext(S)| > τspli t . Otherwise, we use our color-based decom-
position strategy which recursively mines a task subgraph
until a timeout triggers task decomposition over the remain-
ing workloads. Recall from Fig. 15 that we partition ext(S)
into segments of 4 vertices as groups, andwe denote the num-
ber of vertices in each segment by τseg . The default setting
is τseg = 10, 000 which works well on various graphs.

In our experiments in Sect. 11,wewill compare this hybrid
strategy with the algorithms that use either strategy but not
both, to demonstrate the necessity and effectiveness of our
hybrid task decomposition strategy.
The Final Algorithm. We now present our final MCF G-
thinker algorithm that adopts the hybrid task decomposition
strategy. In this algorithm, the context field of each task t is
now given by a quintuple 〈iteration, S, ext(S),C , start_pos〉,
where ext(S) is the candidate vertex array as illustrated in
Fig. 15, start_pos is the start position in ext(S) to check (also
illustrated in Fig. 15), and C is the color array for the vertex
array ext(S).

Figure 16 overviews the algorithmworkflow. Specifically,
a task running UDF compute(t , frontier) can be either in iter-
ation 1 or in iteration 2. Iteration 1 is dedicated to Case (a):
a newly spawned vertex that constructs its subgraph from
pulled vertices in frontier (c.f. 1© in Fig. 16), or Case (b):
a task created due to color-ignorant decomposition (c.f. 5©).
Iteration 2 is dedicated to Case (c): a task created due to
color-based decomposition triggered by timeout (c.f. 6©).

The algorithm of Comper’s UDF task_spawn(v) is shown
in Fig. 17, which is almost the same as that in Sect. 5’s old
algorithm shown inFig. 6. The difference is thatwhen spawn-
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Fig. 18 UDF compute(t, f rontier) in Hybrid Decomposition

ing a task t out of v in Line 3, we set t .iteration as 1 so that t
will enter the first iteration in UDF compute(t , frontier) later
(c.f. 2© in Fig. 16). We also set t .start_pos as 0 since the
spawned task t should check all candidate vertices in array
ext(S) starting from the first vertex in ext(S).

Next consider UDF compute(t , frontier), where a task t
can be either in iteration 1 or in iteration 2. The algorithm
is shown in Fig. 18, where Lines 2–15 will only be run by a
task in iteration 1, while Lines 17–24 will be run by tasks in
both iteration 1 and iteration 2.

Specifically, compute(t, f rontier ) first obtains the cur-
rent maximum clique Smax from the aggregator in Line 1
to be used for pruning. Then, if t is newly spawned (i.e.,
Case (a)), it will run Line 3 to create its subgraph, where
vertex objects in Γ>(v) are obtained from frontier; while if
t falls in Case (b) (c.f. 5© in Fig. 16), frontier is empty since
no vertex is pulled by the color-ignorant task decomposition,
so Line 3 will do nothing.

Then, Lines 4–11 are almost the same as Lines 3–9 in
Sect. 5’s old algorithm shown in Fig. 7, where color-ignorant
task decomposition is performed due to ext(S) > τspli t . The
difference is that in Line 10, we need to set the iteration of
a newly-created task t ′ as 1 since t ′ falls in Case (b) (c.f. 3©
in Fig. 16); we also need to set t ′.start_pos as 0 since only a

task of Case (c) may consider a subset of candidate in ext(S)
as shown in Fig. 15, while all other tasks need to check all
candidates starting from the first vertex in array ext(S).

After color-ignorant decomposition has generated all
child-tasks (i.e., 3© in Fig. 16), compute(.) returns false in
Line 12 to end the current parent-task.

In contrast, if ext(s) ≤ τspli t inLine 4 andhence the color-
ignorant task decomposition does not apply, compute(.) goes
to Line 13 to prepare the initial candidate array ext(S) and
color arrayC in Lines 14–15 for recursive processing, which
is the same as Lines 1–2 ofMCF(g) in Fig. 14. Note that the
above lines are run by a task of Case (a) before recursion in
Lines 17–24, while a task of Case (c) will directly run Lines
17–24 upon entering compute(.) since its iteration number is
2 and thus the condition in Line 2 fails (c.f. 6© in Fig. 16).

Next, consider Lines 17–24 of compute(.), which is sim-
ilar to Lines 11–14 in Sect. 5’s old algorithm shown in
Fig. 7, except that rather than callingmax_clique(.) of Fig. 14
to find the maximum clique from t .g, Line 21 now calls
max_clique_timeout(.) (to be introduced soon) that may gen-
erate child-tasks due to timeout.

Specifically, if ext(S) is empty (Line 18) and thus S can-
not be further extended, we directly check if S can become
a larger clique than Smax (Line 23). Otherwise, we call
max_clique_timeout(.) to find the maximum clique from
t .g, assuming that initially a clique of size S′

max is found
(Lines 20–21). If a larger clique is found on t .g, it merges
with S to generate a larger clique to update Smax (Line 22).

Note that both Lines 22 and 23 update Smax through the
aggregator. There, a new clique is replaced into the aggrega-
tor only if the old Smax in the aggregator is smaller. Such a
replacement may not actually happen since between Line 1
and Line 22 or 23, Smax could have been updated by another
task run by another comper.

Finally, we presentmax_clique_timeout(.) which is called
by Line 21 of Fig. 18 for the recursive mining of task
t = 〈S, ext(S)〉 with a timeout mechanism to decompose
long-running tasks. The algorithm of max_clique_timeout(.)
is shown in Fig. 19, which assumes that all vertices of Sprior
are already in a result clique, and which mines a maximum
clique on the subgraph g induced by ext(Sprior ), with the
vertices of the current clique on g tracked by S for recursive
expansion.

Note that (i) in our timeout mechanism, the recursive
exploration of the set-enumeration tree happens before time-
out, and (ii) max_clique(.) uses Smax for pruning during
recursion as shown in Lines 3 and 9 of Fig. 14. There-
fore, it will incur too many locking overheads if every task
always obtains the up-to-date Smax from the local aggrega-
tor during recursion. We, therefore, only obtain Smax from
the local aggregator when we create a new task for the first
time (i.e., Line 1 of Fig. 18); while during recursion before
a timeout, a task keeps using the latest Smax known by itself
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Fig. 19 Algorithm of max_clique_timeout(.)

in max_clique_timeout(.) without accessing the aggregator
again. In other words, Smax in Fig. 19 is a reference object
passed in at Line 21 of Fig. 18, rather than the value of the
local aggregator.

Refer to Line 19 of compute(.) in Fig. 18 again: We
first obtain the current time as the initial time to pass in
max_clique_timeout(.). This is the initial time for recur-
sion that stays the same during the recursive processing by
max_clique_timeout(.), so that a task can know the elapsed
time since the recursion begins, to check whether a timeout
should be triggered to decompose the task.

Line 20 of compute(.) also computes S′
max to pass into

max_clique_timeout(.) in Line 21 for recursion. Note that
while the recursion may update the current maximum clique
(by Line 22 of max_clique_timeout(.)), aggregator is not
accessed during the entire process of recursion before time-
out. While this task will not be notified about a larger clique
found by other concurrent tasks, this is acceptable since
it takes at most τtime time before decomposition, and the
reduced aggregator contention outweighs the early pruning
enabled otherwise.

Now, let us look atmax_clique_timeout(.). Lines 1–7 cor-
responds to the creation of child-tasks 1 to 3 in Fig. 15. Note
that Line 3 sets t ′.iteration as 2 so that the child-task will
run the task logic for Case (c) when calling compute(.) later

(c.f. 6© in Fig. 16). The last group that contains at most τseg
tasks (i.e., child-task 4 in Fig. 15) is actually processed by
the current task in Lines 8–24, the logic of which is similar
to max_clique(.) in Fig. 14 where candidate vertices are pro-
cessed one-by-one backwards in ext(S), except that (i) the
processing stops once start_pos is passed (c.f. the condition
inLine8), and that (ii) if timeout occurs at a vertexv ∈ ext(S)
(Line 16), task t ′ = 〈S′, ext(S′)〉 where S′ = S ∪ v is pro-
cessed by a new task (Lines 17–20, c.f. 7© in Fig. 16) rather
than recursively processed by the current task as in Line 21,
and this also happens for the remaining search space (Lines 8-
9) of the task due to timeout.

Note that each newchild-task (with iteration number being
2) will later call compute(.) where Line 21 of Fig. 18 will
call max_clique_timeout(.) to correctly enter its candidate
processing logic in Lines 8–24 again.

Also, note that our timeout mechanism only decomposes
a task to its proper granularity. Refer back to the upper right
corner of Fig. 3 for an intuitive illustration. For example, let
the initial time of recursion be t0, and assume that in a Level-k
recursion of max_clique_timeout(.), we find the current time
t1 > t0+τtime for the first time in Line 16, then the remaining
candidate vertices are wrapped as Level-(k+ 1) tasks. Then,
when we backtrack to Level-(k−1), all remaining candidate
vertices at Level-k are wrapped as Level-k tasks since their
current time t2 > t1 and thus t2 > t0 + τtime. This process
repeats during the backtracking, generating tasks at different
levels.

Finally, note that each task t maintains t .S = Sprior in
its context and mines t .g for a maximum clique S so that
Sprior ∪ S is a valid clique that can be compared with Smax
in the aggregator for replacement in Line 22 of Fig. 18. To
allow task decomposition, a new task t ′ will have t ′.S =
Sprior ∪ S (c.f. Lines 4 and 19) and when it is scheduled for
computation later, Line 21 of Fig. 18 will continue to find
a maximum clique on t ′.g induced by t ′.ext(S) by calling
max_clique_timeout(.) again.

11 Experiments

This section reports our extensive experiments. Specifi-
cally, Sect. 11.1 describes our experimental setting. Then,
Sect. 11.2 comparesG-thinkerwith existing systems, Sect. 11.3
compares the variants of our improved MCF algorithms,
Sect. 11.4 studies the scalability ofG-thinker, Sect. 11.5 stud-
ies the effect of various system and algorithm parameters on
the performance, and finally, Sect. 11.6 reports our efforts
to explore more challenging graph characteristics (size and
density) andmore diversified graph types, to demonstrate the
generality and excellent performance of our solution even for
graphs with extreme conditions.
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Table 2 Graph Datasets for System Comparison

11.1 Experimental setting

Systems Compared. We compare G-thinker with the state-
of-the-art graph-parallel systems, including (1) the most
popular vertex-centric system, Giraph [8], which is used
to demonstrate that the vertex-centric model does not scale
for subgraph mining, (2) G-Miner [6] open-sourced at [3],
and (3) Arabesque [35] open-sourced at [1]. NScale [27] is
not open-sourced and hence not compared. We also compare
with the single-machine out-of-core subgraph-centric system
such as RStream [38].
Applications.We use the 3 applications that we described in
earlier section for performance study: (1) maximum clique
finding (MCF), (2) triangle counting (TC), and (3) sub-graph
matching (GM).We comparewithGiraph onMCFandTCas
their vertex-centric algorithms exist [5,28]. Arabesque also
only provides MCF and TC implementations which we use
for comparison.

For the MCF application, we consider five G-thinker
implementations: (1)MCF: running the old MCF algorithm
in Figs. 6 and 7 on the old G-thinker system described in
Sect. 5; (2)MCF-I: running the oldMCF algorithm in Figs. 6
and 7 on the improvedG-thinker system described in Sect. 9;
(3) MCF-H: running our new MCF algorithm with hybrid
task decomposition as shown in Fig. 16 on our improved
G-thinker; (4)MCF-C: the variant of MCF-H that only uses
color-based task decomposition; in contrast, recall thatMCF-
I is the other variant that only splits tasks using τspli t (i.e.,
color-ignorant decomposition); finally (5)MCF-S: the vari-
ant of MCF-H that does not group candidate vertices into
segments of size τseg as illustrated in Fig. 15 while still using
the timeoutmechanism; this corresponds to the case ofMCF-
H by fixing τseg = 1, which generates a lot of decomposed
tasks upon timeout, one for each candidate vertex.
Code.All relevant code and documentation related to our old
G-thinker system can be found at theG-thinkerwebsite.2 The

2 https://yanlab19870714.github.io/yanda/gthinker

improved G-thinker system and the code on top (including
all MCF algorithm variants) are also open-sourced.3

Datasets. Table 2 shows the 9 real graph datasets that we use
in our experiments for system comparison: (1) YouTube is
the friendship social network of YouTube users; (2) Pokec is
the friendship network from theSlovak social networkPokec;
(3) Skitter is the Internet topology graph obtained from
traceroutes run daily in 2005; (4)WikiTalk is the Wikipedia
user network where edge (i, j) represents that user i edited
a talk page of user j ; (5) Orkut is the friendship social net-
work of Orkut; (6) Patent is the citation graph of US patents
where citations are made by patents granted between 1975
and 1999; (7) LiveJournal is the bipartite network of Live-
Journal users and their group memberships; (8) BTC is the
Billion Triple Challenge (BTC) 2019 dataset, a large-scale
RDFcrawl conducted from12/12/2018until 01/11/2019; and
(9) Friendster is an online gaming network where users can
form friendship edges.

Some of the above graph datasets are originally directed,
and we have converted every directed edge as undirected
since our applications work on undirected graphs. These
datasets cover all types including social networks, RDF
graphs, citation networks, bipartite networks, etc., and they
exhibit different characteristics such as size and degree dis-
tribution.

For GM,we use the query graph of Fig. 9(a) and randomly
generate a label for each vertex in the data graph among
{a, b, c, d, e, f , g} following a uniform distribution. Since
only 7 labels are scattered in a big graph, a subgraphmatching
job is expected to be highly compute-intensive with many
matched subgraphs.
Cluster Setting. All our experiments were conducted on
a cluster of 16 machines each with 64 GB RAM, AMD
EPYC 7281 CPU (16 cores and 32 threads) and 22TB disk.
All reported results were averaged over 3 repeated runs. G-
thinker requires only a tiny portion of the available disk and
RAM space in our experiments.

3 https://github.com/guimuguo/G-thinker
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We observed in all our experiments that the disk space
consumed by G-thinker is negligible (since compers priori-
tize spilled tasks when refilling their Qtask). We, therefore,
omit disk space report.

11.2 System comparison

Default Parameters. Unless otherwise stated, our experi-
ments use thewell-tested default parameters listed as follows,
which are verified to perform consistently well in various
applications on various graphs.

Our improvedG-thinker considers a task as a big task (i.e.,
adds it to Qglobal instead of Qlocal ) if the task’s subgraph has
more than 1,000 vertices. Recall that tasks are flushed and
refilled in batches. For big tasks, the batch size is C = 10,
and for small tasks, the batch size is C = 150. We allow the
number of tasks in task table plus task buffer to be at most
D = 8C .

The capacity of remote vertex cache Tcache (i.e., ccache)
is 2M. GC evicts vertices only when the size of Tcache
overflows, i.e., scache > (1 + α) · ccache with overflow tol-
erance parameter α = 0.2. For MCF, the color-ignorant
task decomposition threshold is τspli t = 200, 000, and the
timeout threshold used in color-based task decomposition is
τtime = 1 second.

In this subsection, for all our 3 applications, we run on
both the old G-thinker system described in Sect. 5 (denoted
by G-thinker) and on the improved G-thinker described in
Sect. 9 (denoted by G-thinker+).

For MCF, we only consider two variants: one that runs the
old MCF algorithm in Figs. 6 and 7 on G-thinker, the other
that runs our newMCF-HonG-thinker+.OtherMCFvariants
will be compared more comprehensively in Sect. 11.3.
Comparison among Distributed Systems. Table 3 reports
(1) the job running time and (2) the peak memory con-
sumption (taking the maximum over all machines) of our 3
applications over the 9 datasets shown in Table 2. We can see
that Arabesque and Giraph incur huge memory consumption
and could not scale to large datasets like LiveJournal, BTC
and Friendster, since they keep the materialized subgraphs
in memory.

G-Miner is relativelymemory-efficient since it keeps tasks
(containing subgraphs) in a disk-resident task priority queue;
G-Miner is also more efficient than Arabesque and Giraph.
However,whileG-Miner can handle some large datasets such
as Friendster, its performance can be tens of times slower
than G-thinker. This is caused by its IO-bound disk-resident
task queue, where task insertions are costly when the graph
size and hence task number become large. G-Miner also fails
to finish any application on LiveJournal and BTC within 24
hours, which is likely because of the uneven vertex degree
distribution of these graphs where the dense part incurs enor-
mous computation workloads (recall from Table 2 that their

max degrees are beyond 1M), and G-Miner is not able to
handle such scenarios efficiently.

As Table 3 shows, G-thinker consistently uses less mem-
ory than G-Miner and is consistently much faster than
G-Miner: G-thinker is up to tens of times faster (c.f. the
results on datasetsOkurt, Patent, Friendster), without count-
ing those experiments that G-Miner cannot finish in 24 hours.

Now, let us compare G-thinker with its improved version,
G-thinker+, with better load balancing by prioritizing big
tasks for scheduling. Note that in the application MCF, G-
thinker+ runs MCF-H with our hybrid task decomposition
strategy. We can see that (i) G-thinker+ is faster for most of
the cases, and very close to G-thinker in the other cases. In
contrast, (ii) G-thinker+ often wins over G-thinker by a large
margin, such as in the experiments of MCF on Skitter, Wik-
iTalk, Orkut, LiveJournal and BTC, and in the experiments
of GM on Orkut and Friendster. This makes G-thinker+ a
safe choice to begin with if users do not know which one to
choose.

The original G-thinker engine, however, has its own merit
when load balancing is not an issue, since there is no locking
overhead on a global task queue. For example, G-thinker
wins over G-thinker+ the most in the MCF experiment on
Friendster, i.e., 354.23 seconds v.s. 441.24 seconds. This is
because as a social network, Friendster does not have a very
high degree vertex (recall from Fig. 2 that the maximum
degree is 5,124) to spawn a straggler task.

On the other hand, when stragglers exist, using G-
thinker+ combined with our new MCF-H algorithm with
advanced task decomposition strategy can significantly boost
the performance, e.g., from 1,300.34 seconds to only 167.67
seconds on LiveJournal.
Comparison with Single-Machine Systems.We also tested
RStream whose code for TC and clique listing are pro-
vided [4]. However, their clique code does not output correct
results. For triangle counting, RStream takes 53 seconds
on YouTube, 283 seconds on Skitter, and 3,713 seconds
on Orkut; in contrast, our G-thinker running with a single
machine takes only 4 seconds on YouTube, 30 seconds on
Skitter, and 210 seconds on Orkut. This large performance
difference is as expected since RStream runs out-of-core and
is IO-bound. For big graphs such as BTC and Friendster,
RStream used up all our disk space.

Nuri is also not competitive with G-thinker, since Nuri
is implemented as a single-threaded Java program while G-
thinker can use all CPU cores for mining. As Fig. 11 of [17]
shows, Nuri takes over 1,000 seconds to find the maximum
clique of YouTube, while our G-thinker demo video on http://
bit.ly/gthinker shows that running 8 threads on one machine
takes only 9.449 seconds to find the maximum clique.
Comparison with Graph DBMS Neo4j. Neo4j is a graph
database management system that supports a query language
called Cypher. With Cypher, we can write a query for sub-
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Table 3 System Comparison

graph matching (GM) for execution by Neo4j. For example,
the query graph in Fig. 9(a) can be represented as:

MATCH (n1:v {label:’a’})
-[:r]-(n2:v {label: ’b’})-[:r]-(n3:v

{label:’c’})-[:r]-(n4:v {label:’b’})
-[:r]-(n5:v {label:’d’}) WHERE
(n1)-[:r]-(n3) RETURN count(*) as count

We thus compare the performance of GM using Neo4j
with that using G-thinker. One difficulty we encountered is
that since our graphs are large, importing such a graph into
Neo4j is very slow. This data import issue has also been
reported in other works [12,32]. For example, [32] indi-
cates that “Loading data into SQL Server takes significantly
less time than loading into Neo4j. The time grows linearly
with the sample size for SQL and grows exponentially for
Neo4j.” After exploration, we found that using the “neo4j-

admin import”4 command to import large graphs into Neo4j
is efficient, which is adopted in our experiments reported
below.

Neo4j has two releases that we tested, “Community
Server” and “Neo4jDesktop.”Wefirst deployedNeo4jDesk-
top 1.4.1 with DBMS version 4.2.3 on aMacBook Pro laptop
with 2.6 GHz 6-core Intel Core i7 CPU, 16 GBDDR4 RAM,
and 512 GB SSD. Table 4(a) reports Neo4j’s data import
time and query execution time for GM when we apply the
Cypher query above that corresponds to the query graph in
Fig. 9(a), over those datasets that Neo4j is able to process on
our laptop. We also include the running time of G-thinker for
comparison. We can see that G-thinker is orders of magni-
tude faster than Neo4j for GM; in fact, it is even faster than
the data import phase of Neo4j alone, thanks to G-thinker’s
efficient CPU-intensive backtracking workloads.

4 https://neo4j.com/docs/operations-manual/current/tutorial/neo4j-
admin-import/.
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Table 4 Neo4j v.s. G-thinker for GM

Table 5 Neo4j v.s. G-thinker for TC

Neo4j Desktop seems to have a bug that leads to an input
error “missing END_ID field” when we import Orkut, as we
double-checked the input file but the format of the reported
line is correct. This problem does not pop up in Community
Server as Table 4(b) shows.

As Table 4(a) shows, Neo4j has reasonable performance
on YouTube, Pokec and Patent given that the jobs were run
on a laptop. However, on Skitter andWikiTalk, Neo4j cannot
finish in 8 hours even though their timeonG-thinker is similar
to that of the other 3 datasets on G-thinker, and hence, we
terminated the jobs.

We also deployed Neo4j’s Community Edition 4.2.3 on
a server in our cluster, but the performance was found to
be worse than the Desktop release as shown in Table 4(b),
possibly due to CPU frequency being lower. While Orkut
can be imported in this setting, the GM job cannot finish on
Orkut in 8 hours, while G-thinker finishes it in only 38.02
seconds.

Regarding the other two applications, TC andMCF,Neo4j
only supports finding maximal cliques but not maximum
cliques, so we only report the results of triangle counting,
which are shown in Table 5. Note that BTC and Friendster
cannot fit in the RAM of our laptop so are not reported. We
can see that Neo4j performs well on small graphs though still
slower than G-thinker, but on big graphs likeOrkut and BTC,
Neo4j can be one to two orders of magnitude slower, demon-
strating the necessity of having a system like G-thinker for
mining big graphs.

11.3 Comparison of MCF variants

We next compare the 5 variants of G-thinker’s MCF algo-
rithms. As a recap, MCF denotes the old MCF algorithm on
the basic G-thinker system, while the other 4 variants are on
the improved G-thinker: MCF-I runs the old algorithm (with
color-ignorant task decomposition strategy only), MCF-H
uses both the color-ignorant and the color-based task decom-
position strategies, and MCF-C only uses the color-based
strategy, while MCF-S is similar to MCF-H but set τseg = 1.

Table 6 shows the performance of our 5 MCF variants
on our 9 datasets. Friendster does not have a load balancing
issue since its vertex degree distribution is not very biased and
the major workloads of mining come from the large number
of vertices, and therefore, MCF performs the best and much
better than all the other variants that attempt to balance tasks
using a shared big-task queue Qglobal on each machine.

For all the other datasets, MCF-H performs consistently
well. Note that although MCF-H is not the best on some
datasets, the performance difference from the best algorithm
is negligible and likely due to the randomness in different
program runs caused by OS thread scheduling. For example,
Patent essentially is insensitive to which algorithm is chosen
and always completes in around 9 seconds.

The importance of our new task decomposition strate-
gies is well demonstrated on LiveJournal. (1) Using the old
algorithm, the old G-thinker needs 1,300 seconds due to
the stragglers’ problem. (2) By simply switching to the new
system that prioritizes big tasks for processing, the time is
already reduced to 425 seconds, which shows the effective-
ness of our G-thinker improvement that adds Qglobal to each
machine. (3) By further using our new MCF-H algorithm
with the advanced hybrid task decomposition strategies, the
time is further reduced to 167.67 seconds, which shows the
effectiveness of our new MCF algorithm.
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Table 6 Comparison of MCF Variants

As an ablation study, (4) MCF-C removes the color-
ignorant task decomposition strategy so that vertex coloring
has to be run even for tasks with big subgraphs, which can
be time-consuming. We can see that the running time is
increased from 167.67 seconds to 716 seconds, even longer
than MCF-I.

As another ablation study, (5) MCF-S does not allow a
new task to handle a group of candidate vertices when time-
out triggers task decomposition. This makes the new tasks
having a lot of duplicate vertices materialized which can be
avoided otherwise through backtracking over the candidate-
grouped tasks (c.f. Fig. 15). We can see that the running
time is increased from 167.67 seconds to 1,124.32 seconds,
indicating the necessity of candidate-grouped task decompo-
sition.

Overall, the integration of our color-based task decom-
position strategy is non-trivial and has to be combined with
color-ignorant task decomposition (to avoid expensive color-
ing in large task subgraphs) and with candidate-grouped task
decomposition while using the timeout mechanism. Missing
any technique here could backfire even compared with the
simplyMCF-I.

11.4 Scalability

Since bothG-thinker andG-Miner can scale toFriendster, we
compare their scalability using MCF. G-Miner additionally
requires vertices to be pre-partitioned before computation.
Unfortunately, we are not able to partition Friendster when
there are only 2machines or less, as G-Miner reports an error
caused by sendingmore data thanMPI_Send allows (the data
size exceeds the range of “int”), andwedenote these results as
“Partitioning Error” in Table 7 on system scalability results.

Table 7(a) reports the vertical scalability when we use 16
machines but vary the number threads (or, compers). We can
see that additional threads improves the performance of both
systems, but the improvement is not significant beyond 16
threads. This limitation is because tasks spawned frommany
low-degree vertices do not generate large enough subgraphs

to hide IO cost in the computation. Our machines are con-
nected by GigE, and the problem may disappear if 10 GigE
is used. G-thinker is also significantly faster than G-Miner.

Since 16 computing threads is the limit of vertical scalabil-
ity, Table 7(b) reports the horizontal scalability whenwe vary
the number ofmachines but fix the number of threads on each
machine to 16. We can see that additional machines improve
the performance and the speedup is significant. G-thinker is
also significantly faster than G-Miner. The only exception is
that running with 2 machines is slower than using 1 machine,
and the slowdown is caused by the introduction of network
communication which is, however, amortized well as more
machines are used so that each machine incurs less commu-
nication volume.

Execution with a single machine is also interesting to
explore when studying vertical scalability, since there are
no remote data to request and this IO overhead (that causes
task waiting) is avoided. Table 7(c) shows the results when
we vary the number of threads, and we can see significant
speedup all the way to 32 compers.

11.5 Effect of parameters

System Parameters. Table 8(a) shows the performance of
G-thinker when we change vertex cache capacity ccache. We
can see that while small values of ccache such as 0.2M and
0.02M make the performance much slower, the improve-
ment from 2M to 20M is not significant; in contrast, to get
this small improvement, the memory cost is significantly
increased (from 3.9 GB to 9.7 GB). This justifies our default
choice ccache = 2M.

Table 8(b) shows the performance of G-thinker when we
change the overflow-tolerance parameter α. Recall that GC
keeps evicting unused vertices when the vertex cache over-
flows, and a larger α means that GC is “lazier” and acts only
when a large capacity overflow occurs (hence more mem-
ory usage). We can see that larger α only slightly improves
the performance. In fact, when α = 2, Tcache may contain
3·ccache vertices as comparedwith the defaultα where Tcache
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Table 7 MCF over Friendster: Scalability Results (along with the Speedup Charts)

Table 8 MCF over Friendster: System Parameters

may contain 1.2·ccache vertices (almost 1/3 thememory used
by the former), but the speedup is not very significant. This
justifies that α = 0.2 is a good trade-off between memory
usage and task throughput.

Other system parameters are similarly chosen with exten-
sive tests, and the complete results are omitted.
MCF Algorithm Parameters. Table 9 shows the perfor-
mance of MCF-H when we fix one parameter of τspilt and
τseg as the default value and vary the other.

As Table 9 (a) shows, τspilt = 200, 000 gives the best per-
formance as it improves load balancing. We have also tried
τspilt = 150, 000 but the time skyrockets, and we have to
cut it after running for 90 minutes. This is because there
are simply too many subgraphs being decomposed using
the color-ignorant strategy, and since this strategy gener-
ates a task for each candidate in ext(S), many subgraphs are
materialized causing most time devoted to subgraph materi-
alization.

123



G-thinker: a general distributed framework...

Table 9 MCF Parameters, on LiveJournal

As Table 9 (b) shows, τseg = 10, 000 gives the best
performance. Smaller values of τseg cause more subgraph
materialization overheads, while larger values of τseg limit
the degree of parallelism as each decomposition generates
fewer tasks.

11.6 MCF Experiments on larger and denser graphs

Recall from Table 2 that the largest maximum clique size we
found on the previously tested datasets is 129, which is on
Friendster that has the most edges (1.8 billion) and a high
average degree of 27.53.

Given that our improved MCF-H algorithm is powerful
in finding the maximum cliques, we would like to study

its performance limit by pushing toward larger and denser
graphs that are likely to have a very large maximum clique
size. For this reason, we searched extensively the public
graph datasets with three criteria that should be met together:
(1) |V | > 1, 000, 000, (2) |E |/|V | > 5 and (3) maximum
vertex degree ≥ 10, 000. We also pay special attention to
graphs where the maximum vertex degree is close to or even
larger than |V |/2, which are likely to have a very dense core.

Table 10 shows 9 datasets of various graph types that
we found meeting the above criteria. Specifically, the first
4 datasets have the maximum vertex degree being close to or
larger than |V |/2,while the other 5meet our 3 degree and size
criteria. Interestingly, only two graphs have large maximum
cliques:WikiLinks andWebUKhavemaximumclique sizes of
1,109 and 944, respectively, while all the other datasets have
a maximum clique size of no more than 55. This shows that
(1) the maximum clique size is graph-dependent and is not
easy to predict unless being actually mined, which shows the
importance of having a fast MCF algorithm like ourMCF-H;
(2) graphs with a very high maximum vertex degree usually
do not produce a large maximum clique size, which is a sur-
prising result. For example,MovieLens is very dense with an
average degree of 142.42 and a maximum degree > |V |/2,
but |Qmax | is merely 29.

Also, recall that the timeout threshold τtime of MCF-H is
set to 1 second by default. However, we find that this setting
will lead to too many task decompositions onWikiLinks and
WebUK that have a maximum clique size of around 1,000,
since when the recursion depth is high, our timeout-based
decomposition will generate too many tasks at deep levels
(recall from the upper-left corner of Fig. 3), making the cost
ofmaterializing task subgraphs the dominant cost. Therefore,
we tuned τtime for these two datasets and found that τtime =
2, 500 seconds gives the best performance for such deep-
recursive scenarios in general.

Table 11 shows the performance of our 5 MCF algo-
rithm variants on our 9 datasets in Table 10, where we used
τtime = 2, 500 seconds on WikiLinks and WebUK, and used
the default τtime = 1 second for the other datasets. We can
see that our recommended algorithm,MCF-H, performs con-
sistently the best or close to the best on all the 9 datasets.

Table 10 Graph Datasets for Testing MCF Performance Limit on Larger and Denser Graphs
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Table 11 Comparison of MCF Variants on Larger and Denser Graphs

Table 12 MCF-H Performance on WikiLinks: Effect of τtime

For example, MCF-H is one order of magnitude faster than
MCF on MovieLens and many times faster than MCF on
Wiktionary, WikiLinks, Wiki-topcats and DBpedia, demon-
strating that our improved techniques in MCF-H effectively
improved load balancing and eliminated straggler tasks.

As we mentioned earlier, it is an interesting new find-
ing from running MCF-H over graphs in Table 10 that, for
a graph with a large maximum clique size, we should not
use the default τtime = 1 second but a much longer timeout
threshold to prevent deep-recursive mining from generating
too many small tasks at deep levels due to task timeout. To
illustrate the impact of τtime, we show the performance of
MCF-H on WikiLinks in Table 12 when we vary τtime. We
can see that MCF-H achieves the best performance when
τtime = 2, 500 seconds. Larger τtime reduces the effect
in decomposing stragglers, but smaller τtime leads to a lot
of overhead caused by task decomposition in a deep set-
enumeration tree. In fact, when we reduce τtime = 1, 000,
MCF-H could not finish in 8 hours and hence we terminated
the job. Note that as shown in Table 11, MCF only takes
3.81 hours meaning that a very small τtime backfires and the
performance can be even worse than without conducting any
task decomposition.

We further explored potential solutions to avoid decom-
posing tasks deep in the set-enumeration tree. Recall Fig. 19,
whereLine 16decomposes the current task as soon as timeout
is detected. We consider a variant where the if-condition in
Line 16 additionally requires that |ext(S)| ≥ τdec,where τdec
is a user-defined threshold that prevents a task from decom-
position after timeout till backtracking to the level where

Table 13 Improved MCF-H onWikiLinks: Effect of τdec

|ext(S)| is large enough. As a result, this strategy will avoid
generating too many small tasks due to timeout.

We consider MCF-H expanded with the above improve-
ment and ran it on WikiLinks with varying τdec. (Note that
τdec = 0 is essentially the original MCF-H.) The results are
reported in Table 13, where we can see that τdec = 1, 000
significantly improves the performance compared with the
original MCF-H (i.e., τdec = 0). On the other datasets, this
technique leads to performance similar to that of MCF-H, so
we omit their results.

12 Conclusion

We presented the first truly CPU-bound graph-parallel sys-
tem called G-thinker for large-scale subgraph finding, with
a user-friendly subgraph-centric programming interface and
a task-based execution engine. This journal extension fur-
ther improved load balancing by proposing to add a global
task queue to each machine for prioritized scheduling of big
tasks.We also identified the performanceweakness of a basic
algorithm for maximum clique finding (MCF) and proposed
hybrid task decomposition strategies (i.e., color-ignorant,
plus color-based with timeout mechanism and candidate
grouping) to scale to large graphs with a high vertex degree
(e.g., over 1MonLiveJournal) andhighdensity (e.g., |E |/|V |
= 142.42 on MovieLens). Results show that our best MCF
algorithm, MCF-H, is able to find large maximum cliques
which require deep algorithmic recursion, such as 1,109 on
WikiLinks in 70 minutes 51 seconds, and 944 on WebUK in
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691 seconds, but for such graphs we need to use a large time-
out threshold rather than the default value of 1 second to
prevent task over-decomposition.

Many futureworks on top of G-thinker are currently under
way in our research group, including mining pseudo-clique
structures that are even more expensive to find than cliques,
such as quasi-cliques and k-plexes.Another interesting future
work is to develop a general-purpose engine for subgraph
matching on top of G-thinker, which is a very appropriate
topic as we have explained in Sect. 7, the subsection on
“Motivations toUseG-thinker.” Note that the search space of
subgraph matching can be regarded as a state space tree [10]
for efficient backtracking similar to how clique-like struc-
tures can be recursively searched using a set-enumeration
tree, so all our proposed task decomposition and schedul-
ing techniques in this paper can still be applied for parallel
subgraph matching.
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