IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 2, FEBRUARY 2025 133

Two-Dimensional Balanced Partitioning and Efficient
Caching for Distributed Graph Analysis

Shuai Lin, Rui Wang*“, Yongkun Li

Abstract—Distributed graph analysis usually partitions a large
graph into multiple small-sized subgraphs and distributes them
into a cluster of machines for computing. Therefore, graph parti-
tioning plays a crucial role in distributed graph analysis. However,
the widely used existing graph partitioning schemes balance only in
one dimension (number of edges or vertices) or incur a large num-
ber of edge cuts, so they degrade the performance of distributed
graph analysis. In this article, we propose a novel graph partition
scheme BPart and two enhanced algorithms BPart-C and BPart-S
to achieve a balanced partition for both vertices and edges, and
also reduce the number of edge cuts. Besides, we also propose
a neighbor-aware caching scheme to further reduce the number
of edge cuts so as to improve the efficiency of distributed graph
analysis. Our experimental results show that BPart-C and BPart-S
can achieve a better balance in both dimensions (the number of
vertices and edges), and meanwhile reducing the number of edge
cuts, compared to multiple existing graph partitioning algorithms,
i.e., Chunk-V, Chunk-E, Fennel, and Hash. We also integrate these
partitioning algorithms into two popular distributed graph sys-
tems, KnightKing and Gemini, to validate their impact on graph
analysis efficiency. Results show that both BPart-C and BPart-S
can significantly reduce the total running time of various graph
applications by up to 60% and 70%, respectively. In addition, the
neighbor-aware caching scheme can further improve the perfor-
mance by up to 24%.

Index Terms—Distributed graph systems, graph partition, graph
algorithms, graph processing.

1. INTRODUCTION

RAPHS are efficient to represent the relationships among
G entities in various domains, and numerous graph appli-
cations have been developed to extract useful information from
graphs, such as personalized PageRank [2], [3], SimRank [4],
Node2vec [5], etc. However, large-scale graphs pose a challenge
for a single machine’s memory resources. For instance, many

Received 27 May 2023; accepted 5 November 2024. Date of publication
18 November 2024; date of current version 12 December 2024. This work
was supported in part by NSFC under Grant 62172382 and in part by Youth
Innovation Promotion Association CAS. An earlier version of this paper was
presented at the International Conference on Parallel Processing (ICPP 2022)
[DOI:10.1145/3545008.3545060]. Recommended for acceptance by D. Tiwari.
(Corresponding author: Yongkun Li.)

Shuai Lin is with the University of Science and Technology of China, Hefei
230026, China (e-mail: Shuailin@mail.ustc.edu.cn).

Rui Wang is with the Zhejiang University, Hangzhou 310027, China (e-mail:
rwang21@zju.edu.cn).

Yongkun Li and Yinlong Xu are with the Anhui Province Key Laboratory of
High Performance Computing, University of Science and Technology of China,
Hefei 230026, China (e-mail: ykli@ustc.edu.cn; ylxu@ustc.edu.cn).

John C. S. Lui is with the The Chinese University of Hong Kong, Ma Liu
Shui, Hong Kong (e-mail: cslui @cse.cuhk.edu.hk).

Digital Object Identifier 10.1109/TPDS.2024.3501292

, Yinlong Xu

,and John C. S. Lui"?, Fellow, IEEE

web graphs are several terabytes in size, which necessitates
frequent disk I/O operations on a single machine, resulting in
poor performance. Therefore, various distributed graph systems
have been proposed to leverage a cluster of machines for graph
analysis [6], [7], [8], [9], [10], [11], [12], [13], [14].

These distributed graph systems partition the large graph into
multiple subgraphs, each on a cluster machine. Each machine
only analyzes the local subgraph and transfers the tasks to
other machines if needed. To achieve efficient communication
and synchronization between cluster machines, these systems
usually adopt a BSP model [7], which analyzes the graph iter-
atively. In each iteration, all machines first perform analysis on
local subgraphs and then transmit the communication data to
other machines in parallel. When all machines finish the current
iteration, then they synchronously go to the next iteration. Due to
the simplicity and efficiency of the synchronous framework, this
BSP model is widely used in many distributed graph systems to
support general graph algorithms, including the state-of-the-art
systems KnightKing [6] and Gemini [14].

We highlight that the graph partitioning strategy is vital
in distributed graph systems, as it affects the load balancing
and communication overhead. Specifically, graph partitioning
affects the balance of computing loads among machines, which
depends on the distribution of vertices and edges in each sub-
graph. For example, for many random walk based algorithms,
the computing loads in each machine are decided by the number
of walkers and the number of steps that each walker can move
over the local subgraph, which are dependent on the number
of vertices and edges, respectively. On the other hand, graph
partition also affects the communication traffic since there may
be many edge cuts (i.e., edges between partitioned subgraphs).
And there would be a data transfer if a walker visited an edge cut.
These two factors greatly affect the time cost in each iteration for
BSP based distributed graph systems, and ultimately influence
the graph analysis efficiency. This motivates us to develop a
two-dimensional balanced graph partitioning scheme, which
partitions the large-scale graph into equal sizes on both vertices
and edges, meanwhile minimizing the number of edge cuts
between subgraphs.

However, the graph partitioning strategies that are widely used
in the existing distributed graph systems can usually balance
one dimension, either the number of vertices or edges. For
example, the common chunk-based graph partitioning strategy
is to chunk the vertices array into multiple disjoint intervals,
and by coordinating the chunking boundaries to get balanced
vertices or edges between intervals, we have Chunk-V and

1045-9219 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 15,2025 at 03:23:04 UTC from IEEE Xplore. Restrictions apply.

134 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 2, FEBRUARY 2025

Chunk-E, respectively. Both of them have been adopted in recent
distributed graph systems, such as Gemini [14] and Grid-
Graph [15] use Chunk-V, and KnightKing [6] uses Chunk-E.
Nevertheless, these algorithms can only balance one dimension,
while the other dimension is quite imbalanced. This is because
many real-world graphs have a scale-free nature [16], i.e., the
vertex degrees follow a power-law distribution. Thus, if the
vertices (or edges) are balanced, then the edges (or vertices)
are often highly imbalanced as some high-degree vertices are
easily gathered in the same subgraph [17].

For instance, when using the vertex-balanced Chunk-V to
partition the Twitter [18] graph into eight subgraphs, the num-
ber of edges varies from 61 to 737 million. Likewise, for the
edge-balanced Chunk-E, the number of vertices varies from
744 thousand to 14 million. This imbalance of vertices or edges
causes imbalanced computing loads among machines and high
synchronization overhead for the BSP model as it takes a long
time to wait for the slowest machine. When using KnightKing [6]
to run Deepwalk [19] on eight machines, the average waiting
time is up to 40% of the total time (see Section I'V-C).

Another simple graph partitioning strategy is to do hashing
on vertices by randomly assigning them to a subgraph according
to their hash results, and we call this partitioning strategy as
Hash. Hash is also widely used in distributed graph systems
like Giraph [11] and Pregel [7]. Due to the randomness, this
hash-based design can balance both vertices and edges, but it
introduces many edge cuts and thus incurs high communication
costs in distributed graph systems. For example, even we use
Hash to partition the Twitter or Friendster graph into eight
subgraphs, there are around 88% of edges cuts, and these edge
cuts cause an expensive communication time as high as 40%
of the total computing time (see Section IV-E). In summary,
none of the existing graph partitioning strategies can achieve
efficient distributed graph processing with load balancing and
lightweight communication overhead.

In this paper, we develop a two-dimensional balanced graph
partition scheme BPart,! which realizes the balanced graph par-
tition for both vertices and edges to achieve load balancing, and
minimizes the edge cuts between subgraphs to decrease the com-
munication overhead for distributed graph systems. The main
idea of BPart is to adopt a two-phase partition, which first splits
the large graph into many small pieces with regular distributions
of vertices and edges, and few edge cuts, and then elaborately
combine these small pieces into larger subgraphs to achieve
two-dimensional balanced partitioning. In the first phase, we
use a weighted graph partitioning policy to integrate the effects
of both vertices and edges, aiming to simultaneously relax the
imbalanced degree of both dimensions meanwhile making them
inversely proportional, so that the pieces can be combined to
form better-balanced subgraphs. In the second phase, we exploit
the inversely proportional feature of the numbers of vertices
and edges of the partitioned pieces, and combine them into
larger subgraphs to improve the balance of the two dimensions.
Through multiple rounds of the two-phase partitioning process,
we can balance both vertices and edges, thus reducing the
synchronization overhead, and meanwhile minimizing the edge

'The source codes of BPart: https:// github.com/ustcadsl/ BPart.

cuts and decreasing the communication overhead. Eventually,
we can achieve high-performance distributed graph comput-
ing with BPart. Our main contributions are summarized as
follows.

® We study the impact of graph partition in distributed graph

systems on the balanced computing loads between a cluster
of machines, and the communication overhead of minimiz-
ing the number of edge cuts. We also propose a weighted
policy to measure the effects of both vertices and edges.

® We propose a two-dimensional balanced partition scheme

BPart, via a two-phase partition, which uses a weighted
policy to partition the graph into many pieces and then
combine two pieces into a larger one. By combining the
pieces for multiple rounds, we can realize the desired bal-
ance for both vertices and edges and decrease the number
of edge cuts.

® Based on BPart, we propose two versions of graph par-

titioning algorithms, i.e., BPart-C and BPart-S. BPart-C
chunks the vertices into disjoint intervals by a weighted
policy and combines intervals into larger subgraphs. It
enables fast and two-dimensional balanced partitions, and
brings a few edge cuts. BPart-S partitions the vertex stream
and assigns each candidate vertex to a piece by quantifying
the impacts on pieces, e.g., the impacts on edge cuts and
the weighted policy, then it combines these pieces into
larger subgraphs. It achieves two-dimensional balanced
partitioning and minimizes edge cuts for efficient graph
processing.

® We also propose a caching strategy to allow each machine

to retain some redundant graph data to further reduce the
communication overhead. Specifically, we extend BPart to
support overlapped partitioning by allowing the partitioned
subgraphs to have some overlaps. This scheme enables
each machine to cache some relevant vertices and edges,
thus reducing the communication overheads between ma-
chines for distributed graph computation.

® We implement BPart-C and BPart-S into two popular dis-

tributed graph systems, Gemini [14] and KnightKing [6],
and conduct extensive experiments to demonstrate their
effectiveness and efficiency. The results show that BPart-C
and BPart-S can balance both vertices and edges among
subgraphs, thus balancing computing loads between ma-
chines. Moreover, the neighbor-aware caching strategy can
further decrease the communication costs.

The rest of this paper is organized as follows. In Section II, we
first introduce the framework of distributed graph computation
and analyze the impact of graph partition, then motivate the
design of BPart by analyzing the limitations of existing graph
partition schemes. In Section III, we present the main idea
and the design details of BPart and evaluate its performance
in Section IV. Finally, Section V reviews related work and
Section VI concludes this paper.

II. BACKGROUND AND MOTIVATION

In this section, we first present the computation framework
of distributed graph systems, and analyze how graph partition

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 15,2025 at 03:23:04 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: TWO-DIMENSIONAL BALANCED PARTITIONING AND EFFICIENT CACHING FOR DISTRIBUTED GRAPH ANALYSIS 135

Computing Waiting
—_— p— =]

Machine 0 3 |
(Store subgraph 0) ! :l
y

| . . I
Communication|

Machine 1
(Store subgraph 1)

I

Machine 2
(Store subgraph 2)

=R

Iteration O /

Wait all machines to finish computing and communication

Iteration 1

Fig. 1. Tllustration on the iteration-based BSP model.

affects computing load balance in a cluster, then we review ex-
isting graph partitioning algorithms and discuss their limitations
for distributed graph computing.

A. Distributed Graph Computation Framework

A bulk synchronous parallel (BSP) model is used by many
distributed graph systems to coordinate analysis tasks between
machines in a cluster [6], [7], [8], [9], [10], [11], [12], [13],
[14]. As shown in Fig. 1, the BSP model executes the graph
computation task in an iteration-based way, and each iteration
consists of two phases: computing and communication, i.e., each
machine first updates the local subgraph until no more changes
can be made, then sends and receives data to and from other
machines for further updates. All machines synchronize at the
end of each iteration, i.e., when they are all done with the analysis
tasks and the communication tasks of the current iteration, they
can go to the next iteration. Some systems process computation
and communication phases in a pipelined fashion to amortize
the communication cost.

The computation process of the BSP model shows that both
the balanced computing load and the amount of communication
tasks can greatly affect the performance of distributed graph
systems. First, if the computing loads are imbalanced, some
machines wait for data from slower machines, which brings
the waiting time and degrades the system’s performance. The
waiting time of a machine depends on when it and the slowest
machine finish their computation tasks and the total waiting
time of all machines, which we call synchronization overhead,
depends on the load balance of all machines. Ideally, if all
machines have equal workloads, they can quickly receive and
send data to other machines and proceed to the next iteration.
Second, the time for sending communication tasks, which we
call communication overhead, depends on the number of com-
munication tasks. If the number is small, all machines can finish
the communication phase fast and proceed to the next iteration.
Next, we analyze how graph partition affects the synchronization
overhead and the communication overhead.

B. Impact of Graph Partitioning

We observe that graph partition can greatly influence the
performance of distributed graph systems from two aspects.
First, the balanced degree of the number of vertices and the

number of edges between the partitioned subgraphs directly
influences the balance of the computing workloads between
machines. The main reason is that both the number of vertices
and the number of edges in a partitioned subgraph directly affect
the load of the computation tasks over subgraphs. To further
illustrate this, we take a typical kind of graph application, i.e.,
random walk, as an example. On the one hand, many random
walk based algorithms usually start random walks from each
vertex or each random walk randomly selects a vertex to start,
e.g., Deepwalk [19], node2vec [5], and random walk with dom-
ination [20], so the number of walkers in a subgraph usually
depends on the number of vertices in this subgraph. On the other
hand, according to the BSP model, each random walk continues
to walk until it requires the data of other subgraphs, so the
number of steps that the walkers in a subgraph can move depends
on the number of edges in this subgraph. As a result, the total
computing load in a machine is determined by both the number
of vertices and the number of edges of the subgraph stored in this
machine. Mathematically, the computing load over a subgraph
G; (1=0,1,...,n — 1, where n is the number of machines or
subgraphs) can be roughly estimated with the following formula.

L(Gi) = f (g ((Vil) , (| Ea])) ,

where V; and F; denote the vertex set and the edge set of
subgraph G, respectively.

Second, the number of edge cuts, i.e., edges spanning two
partitioned subgraphs, can directly influence the amount of
communication tasks. To illustrate this, we also take the example
of random walk. For each random walk, they repeatedly choose
an edge of the current vertex, and visit the destination vertex
of the chosen edge. If a random walk chooses an edge cut, it
can not continue to update in the local machine, as the visited
vertex is in another machine. Further, the system will generate a
communication walk, and send it to the corresponding machine.
So, if the number of edge cuts is high, then the communication
overhead is large in distributed graph system.

To meet the high-performance requirements of distributed
graph systems, it is very crucial to adopt a balanced graph parti-
tion while minimizing the number of edge cuts. In particular, itis
necessary to achieve a balanced partition in both the number of
vertices and the number of edges. With such a partition strategy,
the synchronization overhead and communication overhead can
be minimized, thereby improving the efficiency of graph sys-
tems.

C. Existing Graph Partitioning Algorithms

Chunk-based graph partitioning: A simple and common
graph partitioning method is the chunk-based strategy, which
simply cuts the vertices array into disjoint intervals. Fig. 2(a)
and (b) show the workflows of Chunk-V and Chunk-E, respec-
tively. Chunk-V chunk all vertices into multiple disjoint intervals
by grouping vertices with adjacent IDs into the same subgraph,
and balance the number of vertices by coordinating the chunking
boundaries. Due to the simple partition scheme, Chunk-V is used
in multiple systems, such as Gemini [14] and GridGraph [15]
Similarly, Chunk-E balances the number of edges by chunking

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 15,2025 at 03:23:04 UTC from IEEE Xplore. Restrictions apply.

136 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 2, FEBRUARY 2025

@@@@@@@@

¥ d;: The number of out-edges of vertex i

OOEEOEEOE VRO

Scan all vertices
(v, G;) or hashing|

[Vso| =3 [Ve,| =3 [Ve,| =3 do+d; = dy+ds+d,+ds+ds = d,+dg S(v, Gy) (highest score) or hash
| | I |
00@Ieeoleoe [eoleeeee[@®] [o @
Subgraph 0 Subgraph 1 Subgraph 2 Subgraph 0 ! Subgraph 1 ! Subgraph 2 Subgraph 0 Subgraph 1 Subgraph 2
(a) Chunk-V (b) Chunk-E (c) Fennel
Fig. 2. TIllustration on the chunk-based and stream-based partition algorithms: Chunk-V, Chunk-E, and Fennel.

each subgraph with the same number of edges, and is also
used in multiple systems, such as the state-of-the-art distributed
random walk system KnightKing [6]. Note that Chunk-V and
Chunk-E can balance either the number of vertices or edges,
but they do not consider the number of edge cuts, i.e., the
edges between subgraphs. The number of edge cuts for the
chunk-based algorithms depends on the locality of vertices with
adjacent IDs. For example, if we assign adjacent IDs to vertices
in the same community, then the chunk-based algorithms have
better locality and fewer edge cuts. On the contrary, if we assign
random IDs to vertices, then they have poor locality and more
edge cuts.

Stream-based graph partitioning: In order to balance the
number of vertices and meanwhile reduce the number of edge
cuts, the stream-based partitioning algorithms are proposed and
widely used in large-scale graph partition. They treat all vertices
as a vertex stream, and each time take vertices and their belong-
ing edges from the stream to decide which subgraph they belong
to. For example, the Fennel algorithm [21] each time takes one
vertex from the vertex stream, and decides which subgraph it
should belong to by computing a score for each subgraph, then
adds this vertex and its associated edges to the subgraph with
the highest score. Fig. 2(c) illustrates the process. The score is
defined as follows:

S (v,Gi) = Vi NN ()] = an|Vi]" ™,

where N (v) is vertex v's neighbor set, V; is the vertex set of
subgraph G, o and +y are constants. The first term |[V; N N (v)]
denotes the number of common vertices between v's neighbors
and subgraph G;. We should add vertex v to the subgraph G;
with the highest number of common vertices, so as to minimize
the edge cuts. The second term a7y|V;|7~! denotes the number
of vertices already assigned to GG; with a weighted factor, so it is
similar to a penalty factor to avoid a large subgraph continuing
to have more vertices, which penalizes large subgraphs and
balances the number of vertices.

Hash-based graph partitioning: Another simple graph parti-
tioning design is to use Hash, which randomly assigns each ver-
tex to a subgraph. Its workflow is similar to Fennel as shown in
Fig. 2(c), butinstead of computing a complicated score, it simply
generates a hash value for each vertex to decide which subgraph
to assign. Note that the randomness of hash-based algorithms
can achieve a balanced graph partitioning in the two dimensions
of the number of vertices and edges, but the cost is obvious, the
randomness also breaks the locality of the subgraph, resulting
in plenty of edge cuts and high communication overhead.

5
g

2

20.6

&=

v

0]

0.3

3

=)

-]

s

]

< Go Gy G, G Go Gy G, Gy Go G G, Gy

Chunk-V

Chunk-E Fennel

Fig. 3. The ratios of the number of vertices and the number of edges in
subgraphs Go — G'3.

D. Limitations of Existing Solutions

Limitation #1: Inefficiency of 2D balanced partition: 1t is
pointed out that existing graph partitioning algorithms except
for Hash can only balance one dimension, i.e., the number of
vertices or the number of edges, while the other dimension
is quite imbalanced due to the scale-free nature of real-world
graphs. Specifically, Chunk-V and Fennel only balance the
number of vertices and Chunk-E only balances the number of
edges. To demonstrate the above inferences experimentally, we
run the above-mentioned three graph partitioning algorithms,
i.e., Chunk-V, Chunk-E, and Fennel, to show the distributions
of the number of vertices and the number of edges. We take the
real-world graph Twitter graph as an example, and partition it
into four subgraphs to distribute them in a four-machine cluster,
and show the ratios of the number of vertices and the number of
edges in each subgraph in Fig. 3. We also observe similar results
under more graph datasets (see Section IV). From the results,
we can see that Chunk-V and Fennel can realize a balanced
partition for the number of vertices, that is, for all four subgraphs
Gy — (i3, the ratio of the number of vertices is close to 0.25.
However, the number of edges is quite imbalanced, and the
distribution is highly skewed, and the difference between the
maximum and the minimum numbers of edges, can reach up
to 8%. In contrast, for Chunk-E, all four subgraphs contain a
balanced number of edges, but the numbers of vertices are quite
imbalanced, and the difference between the maximum and the
minimum numbers of vertices can reach up to 13x.

We point out that such highly skewed distributions of vertices
or edges greatly affects the distribution of computing loads in
distributed graph processing, which leads to high synchroniza-
tion overhead. To further demonstrate, we take a random walk
application as an example, and run experiments to illustrate the
impact of imbalanced partition on the distribution of computing
loads. We start five random walks from each vertex over the

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 15,2025 at 03:23:04 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: TWO-DIMENSIONAL BALANCED PARTITIONING AND EFFICIENT CACHING FOR DISTRIBUTED GRAPH ANALYSIS 137

=
J
N

3 Machine2
[Machine3

3 Machine0
[Machinel

Total walking steps
OB NWLRUG
© B N W & 01 &

IterO Iterl Iter2 Iter3
Chunk-V

Iter0 Iterl Iter2 Iter3
Chunk-E

IterO Iterl Iter2 Iter3
Fennel

Fig. 4. The distribution of the computing loads between machines in different
iterations (IterO - Iter3).

1e3
[Fennel EEm Chunk-E
[Chunk-v I8 Hash

I
)

1.2) [Fennel
1 Chunk-V

BN Chunk-E
W Hash

=
N

o
IS

of message walks(M)
°
)

4
°

Twitter

Friendster

Twitter

Friendster

(a) Edge cuts (b) Total message walks

Fig.5. The ratio of edge cuts and total message when using different partition
algorithms.

Twitter graph and let each walk move four steps. Fig. 4 shows the
computing load (i.e., the number of total walking steps) of each
machine. We see that for the three partition algorithms, which
only balance one dimension, either the number of vertices or
edges, the computing loads between machines are imbalanced
in each iteration of the BSP model. In particular, for Chunk-V
and Fennel, which balance the number of vertices, the computing
loads are still highly imbalanced even though the initial number
of walks is balanced in the first iteration. This is because the
walkers move different numbers of steps due to the imbalanced
number of edges. For Chunk-E, the imbalanced number of ver-
tices causes imbalanced number of random walks and computing
loads between machines. From these results, we conclude that
existing chunk-based and stream-based partition algorithms can
not realize the balanced computing loads among a cluster of
machines due to the imbalanced graph partition, which finally
leads to low performance of distributed graph processing.
Limitation #2: High communication traffic: On the other
hand, the hash-based algorithms can balance both the number of
vertices and edges due to their randomness in assigning vertices
to subgraphs. However, the randomness also breaks the locality
of vertices in the same subgraph, bringing plenty of edge cuts
between subgraphs, which lead to high communication traffic
due to the high chance of visiting cut edges. To demonstrate this,
we use different partition algorithms, e.g., Chunk-V, Chunk-E,
Fennel, and Hash, to partition the Friendster and Twitter graphs
into eight subgraphs, and show the ratio of edge cuts in Fig. 5(a).
We can see that Chunk-E and Hash contain around 90% edge
cuts, that is, around 90% edges are crossing edges between
partitioned subgraphs. Fennel significantly reduces the edge cuts
to only around 30%, due to the efficient score computation. To
further show the impact of edge cuts on the communication
traffic, we also run a random walk application as an example,
by starting five random walks from each vertex and letting each
walk move four steps, and show the number of message walks,

i.e., walks being transmitted, in Fig. 5(b). The results show that
Chunk-E and Hash have more than 2x message walks than
Fennel as they have more edge cuts, which hurts the performance
of distributed graph processing.

III. DESIGN OF BPART

In this section, we first introduce our key observation on
partition constraints and the main idea of our new partition
scheme, which aims to achieve the two-dimensional balanced
partition by using a two-phase partition scheme. After that, we
present the design details in each phase. Baed on BPart, we
further propose two enhanced algorithms, BPart-C and BPart-S.
We then develop intersected partitioning, which allows each
partitioned subgraph to have some redundancy, i.e., the subgraph
stored on each machine also has related graph data of other
subgraphs, so that the communication cost between machines
during distributed processing can be reduced.

A. Observation & Main Idea

To support high-performance distributed graph processing
with balanced computing loads, the graph partition algorithms
should be balanced in two dimensions, i.e., the number of
vertices and the number of edges. In the following, we first
present an observation by analyzing existing partition schemes,
then show the main idea of BPart.

Observation: Existing graph partitioning algorithms usually
target balancing the measure in one dimension, i.e., either the
number of vertices or the number of edges, which often results
in a highly imbalanced distribution in another dimension, espe-
cially for real-world natural graphs. Specifically, if the number
of vertices is evenly distributed, then the number of edges may
be highly imbalanced between partitioned subgraphs, and vice
versa. The rationale of this observation is that natural graphs
like social networks often have a scale-free property, e.g., the
distribution of vertex degrees (i.e., the numbers of edges con-
nected to each vertex) follows a power-law distribution, with
a small fraction of vertices containing the large majority of
edges. As a result, in order to decrease the edge cuts, existing
one-dimensional balanced graph partitioning algorithms tend
to gather high-degree vertices in the same subgraphs, because
there are many edge connections between these high-degree
vertices. For example, if the numbers of vertices are evenly
partitioned among the subgraphs, then subgraphs containing
high-degree vertices often have significantly more edges than
the other subgraphs. That is, the number of edges among the
partitioned subgraphs is highly imbalanced.

To further validate this observation, we conduct experiments
on real-world graphs to show the distributions of the numbers
of vertices and edges, and to illustrate the skewness of the
imbalanced dimension. We partition the Twitter [18] graph into
64 small subgraphs with the chunk-based partition algorithms,
i.e., Chunk-V and Chunk-E, by using either the vertex-based bal-
ance indicator or the edge-based balance indicator, respectively.
Note that, we also observe similar trends on other graphs like
Friendster [22] and LiveJournal [23] and other one-dimensional
balanced graph partitioning algorithms like Fennel. Fig. 6(a)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 15,2025 at 03:23:04 UTC from IEEE Xplore. Restrictions apply.

138 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 2, FEBRUARY 2025

oo o
— Edge

oo So.0s

Eo.

<

= Vertex
= Edge K

\

Ehe 10 20 30 40
F Subgraph ID F

50 60 70 10 20 50 60 70

30 4o
Subgraph ID

(a) Partitioning with Chunk-V (b) Partitioning with Chunk-E

Fig. 6. The distribution of |V;|’s and | E;|’s of the subgraphs.
Input Graph e ..
P P Partitioning Phase Combining Phase
Power-law | _ P a
Degree Dist. s o
- Edge
o | = Edge o | = Vertex
8| 7 Vertex a 8 Eg+Es~Ey+E | o
£ T B VotVs=i+V, | &
[LY [-]
> [P Eoy Vs Q
— O | u .~
o - o o
@ 2.5 3
2 £ 2 2
g S E i E; 13
=] =3
2 z 2 Vo Combining E3 2
Reduced Sk
Subgraph 0 Subgraph 1 Subgraph 2 Subgraph 3
Fig. 7. Main idea of BPart with two-phase partition.

and (b) show the ratio of the number of vertices (i.e., |V;|/|V|)
and the ratio of the number of edges (i.e., |E;|/|E|) of each
subgraph, by using Chunk-V and Chunk-E, respectively. Here
V; and E; denote the vertex set and the edge set of subgraph G,
V and E denote the vertex set and the edge set of the original
graph. The results show that Chunk-V balances |V; |, while | E;| is
extremely imbalanced with highly skewed distribution. Among
them, the largest subgraph with 1.56% vertices even contains
more than 11% of the total edges, which is 119x higher than
the number of edges contained in the smallest subgraph with
only 0.1% of the total edges. Similarly, Chunk-E balances | F;|,
while |V;| is highly imbalanced, and the number of vertices in
the largest subgraph is 75 x that of the smallest subgraph.
Remark: This observation of the highly skewed distribution
in the imbalanced dimension (i.e., either the number of vertices
or the number of edges), also implies that it is difficult to achieve
two-dimensional balance through simple subgraph composition.
Mainidea: Two-phase partition: Torealize a two-dimensional
balanced partition, and meanwhile minimize the edge cuts, we
develop a new partition scheme, BPart, and its key idea is
to adopt a two-phase partition, which includes a partitioning
phase and a combing phase, as shown in Fig. 7. Specifically,
in the partitioning phase, instead of aiming to realize a perfect
balance in one dimension while making the other dimension
highly imbalanced among partitioned subgraphs, our goal is to
first partition the original graph into many small pieces, and
reduce the skewness of the distributions in both dimensions,
thereby removing the pow-law distributions among these small
pieces in both dimensions. The principle is that by generating
small pieces without extremely large numbers of vertices or
edges, these small pieces can be combined into larger subgraphs
with balanced numbers of vertices and edges, thereby achieving
balance in both dimensions. To achieve this goal, BPart leverages
a weighted policy that takes into account both the number of

vertices and the number of edges in the balance indicator, thus
reflecting the impacts of both dimensions during the partition.
Through this weighted policy, we can adjust the distributions
of both the numbers of vertices and edges, and coordinate the
two distributions to make them inversely proportional, that is,
the partitioned small pieces with fewer vertices must have more
edges, and vice versa. In the subsequent combining phase, we
aim to use the results of the partitioning phase to achieve a better
balance in both dimensions. To achieve this, we can selectively
combine two small pieces into a larger subgraph based on the
distributions of the numbers of vertices and edges, so that the
newly combined subgraphs have more balanced distributions in
both dimensions.

There are two challenges that need to be addressed to re-
alize the idea of above two-phase graph partitioning. First, in
the partitioning phase, how to design a weighted policy that
considers the impacts of vertices and edges at the same time,
so that the distribution of the number of vertices and edges
among the partitioned pieces can be adjusted to be inversely
proportional as desired. Second, in the combining phase, how to
combine small pieces into larger subgraphs to achieve a balanced
partition in both dimensions. We may need to perform multiple
rounds of combination to finally achieve the ideal balance of
vertices and edges. We carefully introduce the design details of
BPart to address these two challenges, and base on the design
of BPart, we also propose two versions of graph partitioning
algorithms BPart-C and BPart-S to accommodate different sce-
narios. Then, we also propose a caching strategy to allow each
machine to retain some redundant graph data to further reduce
the communication overhead. Next, we introduce them in detail.

B. Partitioning Phase Design

Two-dimensional weighted balance indicator: Traditional
graph partitioning strategies use either the number of vertices
|V;| or the number of edges | E;| in subgraph G; as the balance
indicator, e.g., Chunk-V and Fennel use |V;] as the balance indi-
cator, and Chunk-E uses | E;| instead. As a result, one can only
get balanced partitions in one dimension, either the number of
vertices or the number of edges, while the other dimension would
be highly imbalanced due to the scale-free nature of real-world
graphs. Therefore, we need to design a new two-dimensional bal-
ance indicator to guide the graph partition process. The key idea
is to use a weighted approach to integrate the influences of both
|V;| and | E;|. Mathematically, we design the two-dimensional
weighted balance indicator W, for subgraph G; as follows:

Wi =cx |Vi| + (1 —c¢) x |E;|/d, (1)

where ¢(0 < ¢ < 1) is a weighting factor to control the influence
ratio of |V;| and | E;|, and d is the average degree of the graph.
With this two-dimensional weighted balance indicator, the graph
partition goal is to make W; to be equal. In particular, ¢ = 0
corresponds to the edge balance indicator, which achieves the
balanced distribution of | E;|, and ¢ = 1 corresponds to the ver-
tex balance indicator, which achieves the balanced distribution
of |V;|. For the weighting factor, we recommend using equal
weights of |V;| and | E;| based on our empirical study, i.e., we set

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 15,2025 at 03:23:04 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: TWO-DIMENSIONAL BALANCED PARTITIONING AND EFFICIENT CACHING FOR DISTRIBUTED GRAPH ANALYSIS 139

N

©0.06

E === Vertex
~ 0.05

g
©0.04

t

g 0.03

‘6 0.02

2o0.01

[

 0.00

£ 10 20 30 40 50 60 70
- Subgraph ID

Fig. 8. The ratios of |V;|’s and | E;|’s with the weighted policy.

c= % by default. One can also set different weighting factors for
different graph partition situations to choose different balances
between the number of vertices and the number of edges.

Chunk-based weighted graph partitioning: Based on the
weighted balanced indicator W;, we first follow the chunk-
based partition workflow to propose a lightweight chunk-based
weighted graph partitioning algorithm BPart-C. The core idea
of BPart-C is to decide the chunking boundaries, which are
decided by the weighted balanced indicator WW;. Specifically, we
sequentially add the adjacent vertex IDs and their corresponding
edges to the same subgraph, until W; reaches W, where W
denotes the average value of the balanced indicator, and defines
as follows:

W5 x (5 x il + 5 < IB12)
where P is the number of partitioned subgraphs. Using the
weighted policy in the partitioning phase can reduce the skew-
ness of the distribution of |V;| and |E;|, and in particular, the
number of vertices could be proportional to the inverse of the
number of edges. The rationale is that as JV;’s are equal, then a
subgraph G; containing fewer vertices (i.e., smaller |V;|) must
have more edges (i.e., larger | E;|). We also run experiments to
further demonstrate this result. We partition the Twitter graph
into 64 small subgraphs with the chunk-based partition algo-
rithm by using the weighted balance indicator, and show the
ratio of the number of vertices and edges of each subgraph in
Fig. 8. We can see that neither |V;| nor |E;| is balanced among
subgraphs, while the skewness is greatly decreased compared
with the results in Fig. 6(a) and (b), and the two distributions
of |V;| and | E;| are inversely proportional to each other. This
implies that we could realize the desired balance for both vertices
and edges through appropriate combinations of these small
subgraphs.

Stream-based weighted graph partitioning: Based on the
weighted balanced indicator W;, we follow the stream-
based partition workflow to propose an efficient stream-based
weighted graph partitioning algorithm BPart-S. Specifically,
BPart-S treats all vertices as a vertex stream and computes a
score to decide which subgraph a vertex should belong to. We
extend the score designs of Fennel by using a weighted policy.
Mathematically, we design the partition score S (v, G;) of vertex
v and subgraph G; as follows:

S (v,Gy) = [Vi N N ()| —ayW) ™,

where V; denotes the current vertex set of subgraph G;, N(v)
denotes v's neighbors, |V; N N(v)| denotes the number of

TABLE I
|Vi| AND |E;| OF THE PARTITIONED 8 SMALL SUBGRAPHS

Subgraph Vil |Ei|/d
0 15264196 | 1137845
T 12651971 | 3750121
2 9181822 | 7220273
3 7079884 | 9322208
Z 6449143 | 9952990
5 5278939 | 11123154
6 5115450 | 11286643
7 4586962 | 11815131

common vertices between v’s neighbors and V;, the larger
number of |V; N N (v)| denotes fewer edge cuts between v and
subgraph G;. o and +y are just constants used for adjusting the
weights of the edge-cut number and the balanced degree, and
we set both of them as 1.5 by default.

We point out that the two versions of graph partitioning work-
flows, BPart-C and BPart-S, have different scenarios. BPart-C
can achieve fast graph partitioning by simple chunking, but the
number of edge cuts depends on the locality of the adjacent IDs.
In contrast, BPart-S requires a larger time cost to compute the
scores for all vertices, but it contributes to fewer edge cuts like
the Fennel algorithm. Therefore, there is a trade-off between the
partition overhead and communication cost for the two kinds
of partition algorithms. We also experimentally investigate this
trade-off in Section I'V-F. One can choose to use the lightweight
version, i.e., BPart-C, which has smaller partition overhead, or
the high-performance version, i.e., BPart-S, which has fewer
edge cuts and thus lower communication cost.

C. Combining Phase Design

In the combining phase, we target to achieve a two-
dimensional balanced partition for both dimensions. The key
idea is to combine the small pieces partitioned by the partitioning
phase into the final output subgraphs. For example, if we want
to partition a graph into N subgraphs, we first partition the
graph into 2 x N smaller pieces based on the weighted balance
indicator defined in (1). Then, we sort these small pieces by
the number of vertices, i.e., |V;|, and according to the inversely
proportional nature, the piece with a smaller |V;| generally has
a larger number of edges, i.e., | F;|, and vice versa. As a result,
we can combine the piece with the fewest vertices (also with
the most edges) and the piece with the most vertices (also
with the fewest edges) into a larger subgraph with moderate
numbers of vertices and edges, and continue this combination
for the remaining pieces. Finally, we can get IV larger subgraphs
and expect that these combined subgraphs have more balanced
vertices and edges. We further illustrate the above process by
using a precise example. Suppose that we intend to partition
the Friendster graph into 4 subgraphs, we first partition it into 8
smaller pieces based on the weighted balance indicator defined in
(1). Table I shows the distribution of |V;| and | E;| of each piece,
which is sorted in descending order of |V;|. Then we combine
subgraph ¢ with subgraph 7 —i (i =0, 1,2, 3), and show the
results after combination in Table II, in which the combined

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 15,2025 at 03:23:04 UTC from IEEE Xplore. Restrictions apply.

140 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 2, FEBRUARY 2025

TABLE I
|Vi| AND |E;| OF THE COMBINED 4 LARGE SUBGRAPHS

Subgraph [Vi] |E:]/d
0 19851158 | 12953026
T 17767421 | 15036765
2 14460761 | 18343428
3 13529027 | 19275198

Layer 2

Round 2

2N Pieces

4(N-1) Pieces 2(N-1) Pieces

Fig. 9. Multi-layer combination strategy.

subgraph i (¢ = 0, 1, 2, 3) is the combination of the small pieces
7 and 7 — ¢ in Table L.

Multi-layer combination strategy: From the results in Table II,
we can see that the distributions of |V;| and | E;| are much more
balanced than those in Table I, but they are still not perfectly
balanced. This example implies that only one shot of combina-
tion is usually not enough to achieve our goal. Fortunately, we
find that the two distributions of |V;| and | E;| of the combined
subgraphs still satisfy the desired inversely proportional nature,
which guides us to design a multi-layer combination strategy that
continues the combination in multiple rounds until the balanced
condition is satisfied. In detail, as illustrated in Fig. 9, after each
round of combination as introduced above, we check the bal-
anced degree of |V;| and | E;| for each combined subgraph. If the
subgraph reaches the balanced thresholds for both vertices and
edges, we take it as a final partitioned subgraph. Otherwise, we
re-partition the remaining unsatisfied /V,. subgraphs and proceed
to the next layer of combination, which implies that N — N,.
combined subgraphs have reached the balanced thresholds.

For example in Fig. 9, in the first layer, we first partition
the origin graph into 2 x N pieces and combine them into N
subgraph, of which only one subgraph reaches the balanced
thresholds, and the other IV, = N — 1 subgraphs are not bal-
anced. Thus, in the second layer, we partition the remaining
subgraphs into 4 x N, pieces and combine them in two rounds
to obtain [V, subgraphs. The first combination combines 4 x N,.
piecesinto 2 x N, pieces and the second combination combines
these 2 x N, pieces into IN,. subgraphs. Then, we check again
how well |V;| and |E;| of these combined N, subgraphs are
balanced, and repeat the above process until all the vertices
and edges of the combined subgraphs are balanced. Generally
speaking, according to our experiments, after two to three rounds
of combinations, we can get the desired balanced partition of
vertices and edges.

Connectivity of the combined subgraphs: Through this multi-
layer combination strategy, the final partitioned subgraphs are
composed of multiple small-size pieces. One might be concerned

B Chunk-E [BPart-C

s g0
o = 8
u 6 [
g, § e
[[
£ £,
[k2
o Initialization Computing Extra COMM. o Initialization Computing Extra COMM.
(a) Twitter (b) Friendster
Fig. 10. Time cost breakdown.

whether these small pieces belonging to the same final sub-
graph are still well connected, that is, whether there are enough
connected edges between these small pieces. We would like to
point out that even if we partition the graph into many smaller
pieces, there are still massive edge connections between any two
of these small pieces. To demonstrate this, we take Friendster
as an example, and partition it into 64 small pieces using the
partitioning phase of BPart-C and BPart-S, respectively. We
find that there are at least 159,000 and 50,000 edge connections
between any two pieces of BPart-C and BPart-S, respectively,
implying that the combined pieces are well connected and the
combination strategy will not make the combined subgraphs
disconnected.

D. Intersected Partitioning via Neighbor-Aware Caching

In this subsection, we develop a caching scheme that enables
the partitioned subgraphs to have certain redundancy of related
graph data. We first perform an empirical study to justify the
need of such an intersected partitioning design. To achieve
this, we first implement our graph partition algorithms BPart-C
and BPart-S on top of the state-of-the-art distributed graph
system KnightKing [6], which also supports random walks,
and study their impacts on distributed graph processing. For
illustration, we show one experiment which simultaneously
starts 5 x |V| random walks, and lets each walk move 10 steps
on Friendster and Twitter graphs. For the detailed experiment
settings, please refer to Section IV-A. We show the time cost
breakdown in Fig. 10, which includes three parts: initialization
of random walks, computing, and extra communication. Note
that KnightKing uses pipelining to reduce the total cost of the
computation and communication (refer to Fig. 1). So we do
not count the overlapped part of the communication time which
has already been amortized by the computation, and we only
record the communication time after computing, which we call
the extra communication time (abbreviated as Extra COMM).
We show the results of Chunk-E, which is the default partition
strategy used in KnightKing, and BPart-C, for fair comparison
as they are both chunk-based graph partition algorithms with
comparable partition overhead.

We can see that BPart-C largely decreases the computation
time by around 23.9% and 31.6% on Friendster and Twitter,
respectively, due to the two-dimensional balanced partition,
compared with Chunk-E. However, BPart-C increases the extra
communication time by around 41.3% and 13.6% on Friend-
ster and Twitter, respectively, because there is less overlapped
communication time that can be amortized by the computation
as we have reduced the computation time. Therefore, we also

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 15,2025 at 03:23:04 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: TWO-DIMENSIONAL BALANCED PARTITIONING AND EFFICIENT CACHING FOR DISTRIBUTED GRAPH ANALYSIS 141

propose a caching strategy to allow each machine to keep certain
redundant graph data so as to further reduce the number of edge
cuts and the communication overhead.

Given a fixed memory budget, the key issue of the caching
design is to decide which data should be chosen to cache
to improve the cache efficiency. We adopt a neighbor-aware
caching strategy to cache the more appropriate vertices accord-
ing to their neighborhood information. Specifically, when we
consider caching vertices for the machine storing subgraph G,
we classify the neighbors of the candidate vertex v (v € subgraph
Gj), ie, N (v), into three categories: (1) the set of neighbors
that belong to subgraph G;, which is denoted as N;(v), (2) the
set of neighbors that belong to subgraph G;, which is denoted
as IV (v), and (3) the set of neighbors that belong to the rest
subgraphs, which is denoted as } ;. p\ (g, q,} Ve (v), where

P denotes the subgraph set. Note that %ﬁw

d(v) denotes the degree of vertex v. Based on this classification,
we should first preferentially cache the vertices in N;(v) with
a larger ratio, because two times of communication may be
saved between the machines storing subgraphs G; and G,
respectively. Then, we should preferentially cache the vertices
in 3 24cp\(c,.6,) Vr(v) with a larger ratio, because one time
of communication may be saved between the machines stor-
ing subgraphs G; and G, respectively. Based on the above
observations, we compute a caching score for each candidate
vertex according to its neighbors’ information, then cache the
vertices with the highest score values. The score of vertex v (v €
subgraph G ;) in the machine storing the subgraph GG;, which is
denoted as C'(v, G;), is defined as follows:

C (U, GI)

, N N
N (@) x (2% B 4+ 56, 0,1 G
d(v) ’

= 1, where

where N;"(v) denotes the number of in-edges of vertex v
connected with subgraph 7, which is used for indicating the visit

frequency of vertex v during graph computation. 2 x N ()| and

d(v)
Y ke P\(G1.G) UE’ES)’” indicate the contribution in reducing the

communication of vertex v. Finally, we divide d(v) to give a
weight on the storage cost for vertex v. We compute C'(v, G;)
for each candidate vertex, and sequentially store the graph data
of these vertices in an ascending order of C'(v, G;) in a cache file.
After that, with a given memory budget, we can preferentially
cache the vertices in the front of the cache file, i.e., cache the
vertices with the highest scores.

IV. EVALUATION

BPart aims to provide a two-dimensional balanced graph
partition and meanwhile minimize the edge cuts, thus realizing
a balanced computing load among a cluster of machines and
decreasing the communication traffics for distributed graph pro-
cessing systems. To demonstrate the effectiveness and efficiency
of our partition scheme BPart, we implement both the chunk-
based version BPart-C, and the stream-based version BPart-S,
and compare them with four commonly used graph partition

TABLE III
STATISTICS OF THE GRAPH DATASETS
Graphs # of Vertices | # of Edges | Average Degree
LiveJournal [23] 7.5M 225M 29.99
Twitter [18] 41.39M 1.2B 35.72
Friendster [22] 65.60M 3.6B 21.54

algorithms Chunk-V, Chunk-E, Fennel and Hash, as well as
the state-of-the-art shared memory graph partitioning algorithm
Mt-KaHIP [24]. We first compare the balance degree in both
dimensions, i.e., the vertex balance degree and the edge balance
degree. Then we compare the balance of the computing load
and the total running time for various graph algorithms based on
the different partition algorithms. Here, we take both KnightK-
ing [6], which is the state-of-the-art distributed graph system
for running random walk algorithms, and Gemini [14], which
supports other graph algorithms, as the code bases, and integrate
all partition algorithms into the systems for comparison. After
that, we also compare with the hash-based partition algorithm,
including the comparison of the number of edge cuts and the
total running time for graph applications. We also evaluate the
partition overhead and study the impact of the caching strategy.

A. Experiment Setup

Testbed: Our testbed uses a cluster of eight machines con-
nected with a 56Gbps Ethernet. Each machine has two 24-core
Intel Xeon CPU E5-2650 v4 processors and 64GB DRAM. In
the experiments, we may vary the number of machines being
really used to study the impact of the cluster scale.

Datasets: Table III shows the statistics of the three graph
datasets with different scales used in our experiments, which are
all real-world social networks and are widely used to evaluate
many graph systems [6], [8], [25], [26], [27].

Metrics of balanced degree: We use the following two metrics
to study the balanced degree of the partition results:

1) Bias: We define bias as the difference between the maxi-
mum value and the mean value, normalized by the mean value,
mathematically, for a set of n values {z;|i =0,1,...,n — 1},
the bias is defined as

max(z;) — mean(x;)

Bias: B =

)

mean(z;)

where max(z;) denotes the maximum value of {z;}, and
mean(z;) denotes the mean value. We choose the bias met-
ric because the synchronization overhead of the BSP model
is determined by the difference between the maximum and
mean computing loads, that is, all other machines need to wait
for the slowest machine (i.e., the machine with the maximum
computing load) to finish its computation before going to the
next iteration. The computing load of each subgraph is further
determined by the number of vertices and the number of edges.

2) Fairness: we also use another commonly used [28], [29],
[30] fairness measurement, i.e., the Jain’s fairness index [31], to
characterize the balanced degree of the partitioned subgraphs,

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 15,2025 at 03:23:04 UTC from IEEE Xplore. Restrictions apply.

142 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 2, FEBRUARY 2025

Vertex Balanced Algorithms

Edge Balanced Algorithms

2D Balanced Algorithms

Achunk-V (4) AChunk-V (8) AChunk-V (16)
Y Fennel (4) *Fennel (8) %Fennel (16)

Ochunk-E (4) @Chunk-E (8) @Chunk-E (16)

OBPart-c (4) @BPart-c (8) @BPart-c (16)
[OspPart-s (4) MBPart-s (8) MBPart-s (16)

A\ vertex Balanced Alg.

. 2D Balanced Alg.

N

dge: (Max-Mean)/Mean
N L]

Edge: (Max-Mean)/Mean
1]

8 Vertex Balanced Alg.

2D Balanced Alg.
(BPart)

dge Balanced Alg.

N (BPart) /
= E
3 Edge Balanced Alg.
@b o B ®

N
«

Vertex Balanced Alg.

2D Balanced Alg.

(BPart)
/Edge Balanced Alg.
1 2 3 4 5

Edge: (Max-Mean)/Mean
e =
)] 0]

1
=

-1 1

2 5 8
Vertex: (Max-Mean)/Mean

(a) LiveJournal

Fig. 11.
number of partitioned subgraphs.

which is defined as follows:

n—1 2
(Zi:o |331|>
nx 35 lail?

Note that the value of Jain’s fairness index ranges from % to 1.
F= % means that the partition is completely imbalanced, i.e.,
one subgraph contains all the vertices or edges, while F' =1
means that the partitioned subgraphs are completely balanced,
i.e., all subgraphs contain the same number of vertices or edges.

Graph algorithms: Besides evaluating the balanced degree,
we also evaluate the balance of the computing loads among
the cluster of machines and the total running time for different
algorithms. We consider seven widely used graph applications,
e.g., Deepwalk [19], personalized PageRank (PPR) [2], random
walk with domination (RWD) [20], random walk with jump
(RW1J) [32], node2vec [5], PageRank (PR) [33] and Connected
Components (CC) [34]. The first five algorithms are random
walk algorithms, and we start |V'| walks for them by using the
same setting as in KnightKing [6]. In each step of a walk, PPR
terminates with probability 0.1 and RWJ jumps to a random ver-
tex with probability 0.2. Deepwalk, RWD, RWJ, and Node2vec
terminate with a fixed number of steps. The last two algorithms
are iteration-based algorithms, and we run them on Gemini [14].
We run PR for ten iterations and CC until convergence. PR and
CC are iteration-based algorithms, which are executed for ten
iterations and until convergence, respectively, and we run them
on Gemini [14].

Fairness: F =

B. Balanced Degree of the Partitioned Subgraphs

We compare the balanced degree of the partition results of
the above-mentioned five graph partition algorithms on three
real-world graphs. We first show the bias metric of {V;} and
{E;}, when partitioning the large graph into 4, 8, and 16
subgraphs. As shown in Fig. 11, the x-axis denotes the bias
of {V;} and the y-axis denotes the bias of {E;}. The results
show that Chunk-V, Chunk-E, and Fennel can only achieve a
one-dimensional balanced partition. In particular, Chunk-V and
Fennel can achieve the vertex balanced partition, but the number
of edges is highly imbalanced, e.g., the bias of { F;} can reach

Vertex: (Max-Mean)/Mean

(b) Twitter

|
4

3 5

|
=

0
Vertex: (Max-Mean)/Mean

(c) Friendster

Balanced degrees of the number of vertices and the number of edges estimated with the bias metric. Note that the numbers in the parentheses denote the

up to 7.74 for Chunk-V and 9.15 for Fennel. Chunk-E can
achieve the edge balanced partition, however, the distribution
of the number of vertices is highly imbalanced, e.g., the bias
of {V;} can reach up to 9.06. Furthermore, as we partition
the graph into more subgraphs, the bias of {V;} and {E;}
gets larger. Our proposed BPart-C and BPart-S can realize a
two-dimensional balanced partition, and the bias for different
experiments is always very small, within 0.1. In addition to
the above graph partitioning algorithms commonly used in the
distributed graph systems, we also compare the state-of-the-art
shared memory graph partitioning algorithm Mt-KaHIP [24].
Mt-KaHIP uses a multi-level approach, which first coarsens the
original graph, and groups multiple vertices into a hyper-vertex
by using alabel propagation method. The coarsened graph is then
partitioned into multiple subgraphs, and finally, these subgraphs
are uncoarsened to recover vertices from super-vertices. Note
that Mt-KaHIP needs to load the whole graph data into memory
and traverse it multiple times to conduct graph partitioning, so
it is too memory-consuming and time-consuming to be used in
large-scale distributed graph processing. Even if it takes a lot of
memory and time, it still can only achieve balanced partitioning
of vertices, because the balanced index only considers the num-
ber of vertices. To further experimentally demonstrate its balance
degrees in vertices and edges, we use Mt-KaHIP to partition
three real-world datasets into eight subgraphs and show the bias
of {V;} and { E; }. The bias of {V; } for different datasets is small
than 0.03, but the bias of { F;} are 2.5853, 2.5622, and 0.7046
for LiveJournal, Twitter, and Friendster, respectively. The result
implies that Ma-KaHIP can only achieve balanced partition in
the number of vertices, and the distribution of the number of
edges is quite imbalanced. In the next experiments, we will not
talk about Mt-KaHIP as it requires more partitioning time but
has a similar partitioning result compared with Fennel. We then
show the result of Jain’s fairness index to show the balanced
degree of the partitioned subgraphs, Fig. 12(a) and (b) show the
values of the fairness index for the number of vertices and the
number of edges, respectively. In this experiment, we partition
the whole graph into 4 subgraphs. Fig. 12(c) and (d) further show
the results when partitioning the whole graph into 8 subgraphs.
We can see that when using our proposed BPart-C and BPart-S,
the fairness index is always very close to 1in both dimensions of

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 15,2025 at 03:23:04 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: TWO-DIMENSIONAL BALANCED PARTITIONING AND EFFICIENT CACHING FOR DISTRIBUTED GRAPH ANALYSIS

0.0
LiveJournal Twitter Friendster

0.0
LiveJournal Twitter Friendster

(a) Balance of vertices (4 sub- (b) Balance of edges (4 sub-

graphs) graphs)

Fig. 12.
trade-off when partitioning to 8 subgraphs.

143

Cchunk-v Mchunk-E [IFennel MBPart-c M BPart-s

T 0.9 T 0.9 T 0.9 T 0.9
£ £ £ £

n 0 "] "]

2 0.6 £ 0.6 £ £ .
K s 5 =

& & & &

0 0.3 0 0.3 0 0.3 0 0.3
£ £ £ £

o] []

z z £ z

0.0 0.0
LiveJournal Twitter Friendster LiveJournal Twitter Friendster

(c) Balance of vertices (8 sub- (d) Balance of edges (8 sub-
graphs) graphs)

Balanced degree estimated with Jain’s fairness index: (a) and (b) show the balance trade-off when partitioning to 4 subgraphs, and (c) and (d) show the

OMachi O 1 EMachine2 EMach 3 OMachined =] (=] EMachine7

0 525 T12 0

]]]]

£3.3 £ 2.0 £ E

5 = = 0.9 = 0.4

950 ol.5 o

£ £ £0.6 £

E] g10 E] 50.2

21.1 295 20.3 o

§ § " § §

Q0.0 R e Q0.0 R e Jo.0 R e 0.0 I

& & S & & o & & o & & o
(?° d‘o < oq'b qu ‘}9 ds P oq" oq’b d‘o (}“o < eq'b QQ’ o d‘o <@ oq’b qu

(a) Iteration 0 (b) Iteration 1

Fig. 13.

the number of vertices and edges, which indicates that they can
always achieve a very good balance in both dimensions. While
the fairness index values of the other three partition algorithms
only tend to lin one dimension of vertices or edges, and the
value is only around 0.4in the other dimension, indicating that
the results are highly imbalanced.

C. Balanced Degree of Computing Loads

We now evaluate how well the computational load is bal-
anced to illustrate the impact of balanced graph partitioning
on distributed graph systems. In this experiment, we adopt
KnightKing as a code base and integrate various partition al-
gorithms, including Chunk-V, Chunk-E, Fennel, BPart-C, and
BPart-S, into it for experiments. Note that we do not modify
the computation process of KnightKing. Since KnightKing is
optimized for random walks, we run five simple random walks
starting from each vertex, i.e., a total of 5|V| walks, letting
each walk terminate at the fourth step, so the system runs four
iterations in total. We first show the ratio of the total waiting time,
which is defined as the total waiting time divided by the total
running time of all machines. As shown in Fig. 14, for Chunk-V,
Chunk-E, and Fennel, the ratio of waiting time can reach up to
70%, which means that 70% of the total running time of the
machines in the cluster needs to wait for the slowest machine to
finish the computation. This huge ratio of waiting time is caused
by the imbalanced partition of the number of vertices or the
number of edges. On average, the ratios of waiting time are 45%
and 55% with 4 machines and 8 machines, respectively. While
for BPart-C and BPart-S, the ratio of waiting time is quite small,

(c) Iteration 2 (d) Iteration 3

The computing time of each machine in different iterations: imbalanced partition leads to imbalanced computing time distribution.

COchunk-v Bchunk-E [Fennel MBPart-c MBPart-s
0 0.6]
£ E
-] -
2 20.6
£ 0.4 B
[]
3 20.4
s s
902 2
= 0.2
e 3
2 2
= 0.0 = 0.0

: LiveJournal Twitter Friendster

(b) Eight machines

LiveJournal Twitter Friendster

(a) Four machines

Fig. 14. The ratio of the total waiting time of all machines to the total running
time of random walks: balanced partition algorithms significantly reduce the
waiting time.

for example, in the case of using 4 machines and 8 machines, the
proportion of waiting time is only 10% and 20%, respectively.
This is because BPart-C and BPart-S can achieve a balanced
partition in both dimensions and as a result, in each iteration,
each machine has a similar amount of computing load, which
ultimately contributes to the smaller synchronization cost.

To further illustrate why imbalanced partitions incur a large
amount of synchronization cost in waiting, we also show the
distribution of the computation time of each machine in every
iteration. As shown in Fig. 13, each sub-figure represents the re-
sults of one iteration, the x-axis denotes different graph partition
algorithms and the y-axis denotes the computation time of each
machine. Here we only show the results of Friendster on a cluster
of eight machines, and the results are similar for other datasets
or cluster scales. For Chunk-V, Chunk-E, and Fennel, we can
observe a highly imbalanced distribution of computation time

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 15,2025 at 03:23:04 UTC from IEEE Xplore. Restrictions apply.

144 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 2, FEBRUARY 2025

[Ochunk-v B chunk-E

CFennel

MBprart-c MBPart-s

=
2]
-
2]

o
]
o
]

Normalized Computing Time
° Iy
o o
Normalized Computing Time
=
o

o
°

2
> &
o 7 ? o

(a) LiveJournal

Fig. 15.

among different machines in almost all iterations, in particular,
the machine with the longest computation time is two to three
times of the mean computation time, which causes other ma-
chines to have to wait for the slowest machine, leading to a high
synchronization cost in waiting. In contrast, For BPart-C and
BPart-S, the distribution of computation time is more balanced
in each iteration due to the two-dimensional balanced partition,
which saves a lot of waiting time and improves the efficiency of
the distributed graph systems.

D. Total Running Time of Graph Applications

We now evaluate the total running time of various graph
applications when using different graph partitioning schemes.
Here we consider seven widely studied graph application algo-
rithms: Deepwalk, PPR, RWD, RWJ, node2vec, PageRank, and
Connected Components. The first five algorithms are random
walk based graph algorithms, so we use the state-of-the-art
distributed random walk system KnightKing as the code base
to execute them. The last two algorithms are general iterative
graph algorithms, so we use the popular distributed graph system
Gemini as the code base to run them. We show the normalized
computing time in Fig. 15. The results show that for the first
five random walk based graph algorithms, our BPart-C and
BPart-S outperform the other three partition algorithms in all
situations. Specifically, we can reduce 20%-70% of the total
running time compared with Chunk-V and Fennel, and reduce
10%-30% of the total running time compared with Chunk-E. For
the other two general iterative graph algorithms, BPart-S always
outperforms other partition algorithms in all situations, which
can reduce 5%-70% of the total running time compared with
Fennel and Chunk-V, and reduce 10%-60% of the total running
time compared with Chunk-E. These results show that by bal-
ancing both the number of vertices and the number of edges in
each subgraph, our BPart-C and BPart-S balance the computing
loads, contributing to better performance for distributed graph
processing. We would like to point out that BPart-S always
outperforms BPart-C. This is because BPart-S generates fewer
edge cuts than BPart-C, so that it costs less time for transmitting
the computing data. However, this benefit is gained with the
cost of a relatively higher partition overhead, and we study the
trade-off between the partition overhead and the number of edge
cuts in Section IV-F.

¥ & © O £ & &
q,\q‘zéx@é‘v,@ S ©

(b) Twitter

N
)

=
«

Iy
=)

o
«

Normalized Computing Time
o
o

N N N
& & E LSS O

¥ R & &
< & & &

(c) Friendster

The normalized running time of different graph application algorithms with different graph partitioning schemes.

E. Comparsion With Hash

Note that the hash-based graph partitioning algorithm, by
assigning each vertex to a subgraph according to a randomly
generated hash value, can also achieve a certain degree of
balance in the two dimensions of the number of vertices and the
number of edges, due to the randomness, but it causes lots of edge
cuts which may result in high communication overhead. There-
fore, we also compare our BPart-C and BPart-S with Hash. We
compare the computation time of the seven graph applications
when using Hash, BPart-C, and BPart-S for partitioning, and
other settings are the same as those in Section IV-D. We show the
results under Twitter and Friendster in Fig. 16(a) and (b), respec-
tively, where the x-axis denotes different graph applications, and
the y-axis denotes the normalized computation time when using
Hash as one. From the results, we can see that even though all
three partitioning algorithms achieve two-dimensional balanced
partitioning, their computation times are different. Specifically,
BPart-S always outperforms Hash, e.g., for the first five random
walk based algorithms, BPart-S can decrease 5% to 20% of
the total computation time, while for other two iteration based
algorithms, BPart-S can reduce the computation time by 20%
to 35%. The reduction of the computation time mainly comes
from the decrease in the number of edge cuts, because fewer edge
cuts incur smaller communication costs during the computation
process. On the other hand, BPart-C outperforms Hash in most
cases, but it only decreases 2% to 10% of the total computation
time for Twitter and Friendster, this is because the number of
edge cuts between the partitioned subgraphs for the chunk-based
partitioning algorithm heavily depends on the locality among
vertex IDs.

To further demonstrate this, we also reorder the graph datasets
and make the adjacent IDs closer to each other. To be spe-
cific, we first run the Fennel algorithm to partition the origi-
nal graph into 128 subgraphs, and each subgraph has a good
locality. Then we reorder the vertex IDs by making the IDs in
each subgraph adjacent. We reorder two datasets, i.e., Twitter
and Friendster datasets, and denote them as Twitter-reorder
(Twi-R) and Friendster-Reorder (FS-R), respectively. We still
compare the computation time of the seven graph applications
under the Twitter-reorder and Friendster-reorder datasets, and
show the results in Fig. 16(c) and (d), respectively. We can see
that BPart-C can always outperform Hash as long as the adjacent

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 15,2025 at 03:23:04 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: TWO-DIMENSIONAL BALANCED PARTITIONING AND EFFICIENT CACHING FOR DISTRIBUTED GRAPH ANALYSIS 145

g [E0 Hash mmm BPart-C mEm BPart-s| E [E0 Hash mmm BPart-c mmm BPart-s| E [0 Hash mmm BPart-C mEm BPart-s| E [Hash mmm BPart-C mEm BPart-S
F F F F
o o o o
£ £ £ £
So.8 So.8 So.8 So.8
Q o o o
£ £ £ £
o -} o o
% 0.4 g 0.4 : 0.4 : 0.4
[[[[
N N N N
© © © ©
T) O & & ¢ I O & & © T) O & & ¢ e) O & & &
£ K & N § N Pe) N e
R AT R R AT R A
' 2 ' 2
o° & & o° & & o & & o° &
(a) Twitter (b) Friendster (c) Twitter-Reorder (d) Friendster-Reorder
Fig. 16. The normalized computation time of various graph applications when using Hash, BPart-C and BPart-S for graph partition.

TABLE IV
THE TIME OVERHEAD OF PARTITION ALGORITHMS (IN SECONDS)

LiveJournal | Twitter | Friendster
Chunk-V 0.1739 0.9849 1.572322
Chunk-E 0.1738 1.0045 1.572702
Hash 1.8463 9.5549 15.2458
Fennel 6.4711 55.4845 179.0585
BPart-C 0.4287 2.0680 3.105893
BPart-S 17.1727 89.6942 210.3751

IDs of the datasets have a better locality, for example, BPart-C
can decrease 20% to 25% of the total computation time com-
paring with Hash for Twitter-Reorder and Friendster-Reorder.
In particular, the performance of BPart-C and BPart-S are sim-
ilar for Twitter-Reorder and Friendster-Reorder, since both can
achieve a two-dimensional balanced partition and have a similar
number of edge cuts. Therefore, if the adjacent IDs of the graph
datasets have a good locality, we recommend using BPart-C as
the partitioning algorithm for distributed graph systems, because
BPart-C has a small partition overhead. We also investigate
the trade-off between the partition overhead and the number of
edge cuts in the next subsection.

E. Trade-Off Between Partition Overhead and Edge Cuts

Partition overhead: We first show the partition overheads
of different partition algorithms, including Chunk-V, Chunk-E,
Hash, Fennel, and our BPart-C, BPart-S. Specifically, we count
the time cost of partitioning the three real-world graphs into
eight subgraphs, respectively. As shown in Table IV, we can
see that the chunk-based partition algorithms, i.e., Chunk-V,
Chunk-E, and BPart-C, cost much less time to complete the
partitioning process compared with the stream-based partition
algorithms, i.e., Fennel and BPart-S. Hash takes less time
than the stream-based partition algorithms, but costs more time
than the chunk-based partition algorithms. This is because com-
puting the score for each vertex required by the stream-based
partition algorithms is more time-consuming than generating a
random number by hash, while computing hash is more time-
consuming than simply doing chunking according to the number
of vertices or edges in the chunk-based partition algorithms.
In addition, we can also observe that our proposed BPart-C
and BPart-S cost relatively more time than the corresponding
baselines, due to the multi-layer combination strategy, which

TABLE V
THE RATIO OF THE NUMBER OF EDGE CUTS (LE., THE EDGES BETWEEN
PARTITIONED SUBGRAPHS) TO THE TOTAL NUMBER OF EDGES

LJ Twi FS Twi-R FS-R

Chunk-V | 05758 | 0.7475 | 0.6592 | 0.6767 | 0.5774
Chunk-E | 0.9033 | 0.9026 | 0.7645 | 0.7075 | 0.6012
Fennel 0.6491 | 0.3338 | 0.3565 | 0.3209 | 0.3839
Hash 0.8750 | 0.8749 | 0.8750 | 0.8732 | 0.8731
BPart-C | 0.9007 | 0.8447 | 0.8224 | 0.7185 | 0.6087
BPart-S 0.7331 | 0.6226 | 0.5301 | 0.6650 | 0.5641

may need multiple rounds of combination to realize a two-
dimensional balanced partition, thus bringing a higher partition
overhead. We believe that this overhead is acceptable because
we can save a lot of running time in graph analytic tasks and
improve the efficiency of distributed graph systems by making
the computation more balanced. We point out that, the partition
is usually executed in preprocess, and it only needs to execute
once for all graph analytic tasks. Therefore, it is generally
acceptable to cost hundreds of seconds to partition the graph
in the distributed graph systems.

Number of edge cuts: Now we study the amount of edge cuts,
i.e., the number of edges between different subgraphs, brought
by different graph partitioning algorithms, which directly impact
the communication cost in distributed graph processing. We
count the ratio of the number of edge cuts, i.e., the number
of edges between different subgraphs divided by the number
of total edges in the whole graph, of the five graph datasets,
where Twi-R and FS-R are the reordered versions of Twitter
and Friendster as introduced in Section IV-E, by using different
graph partitioning algorithms, and show the results in Table V.
We can see those stream-based partition algorithms generally
have fewer edge cuts. For example, Fennel has only around
35% edge cuts for Twitter and Friendster, but Chunk-V and
Chunk-E have 65%-90% edge cuts. Note that BPart-C and
BPart-S have more edge cuts compared with their corresponding
baselines, because they partition the graph into smaller pieces in
the partition phase, and combine these smaller pieces into larger
subgraphs. However, BPart-C and BPart-S can achieve two-
dimensional balanced partitioning, while their corresponding
baselines achieve balance in only one dimension. Hash usually
has the most edge cuts compared with other algorithms, and it
always has around 87% edge cuts for all datasets, but Fennel and
BPart-S have around only 35% and 55% edge cuts, respectively.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 15,2025 at 03:23:04 UTC from IEEE Xplore. Restrictions apply.

146 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 2, FEBRUARY 2025

le9

I No cache
3 50%
N 100%

B No cache
0 50%
N 100%

N
°

)

Iy
o

I
N
)

e
®
IS

Total running time(s)
~

Number of transmitted walks
e @
IS

Twitter Friendster Twitter

Friendster

.0
LiveJournal LiveJournal

(a) Total number of transmitted
walks

(b) Total running time

Fig. 17. The impact of caching size by varying the number of cached edges
(50% or 100% of the number of edges of the subgraph).

On the other hand, for chunk-based partitioning algorithms,
including Chunk-V, Chunk-E, and BPart-C, the number of edge
cuts largely depends on the locality of vertices with adjacent
IDs. For example, in the reordered graphs Twi-R and FS-Rr, the
ratio of the number of edge cuts is around 65%, which is much
smaller than 83% in the original Twitter and Friendster without
reordering.

To sum up, the lower ratio of the number of edge cuts
brings smaller communication costs during the computation.
Therefore, there is a trade-off between the partition overhead
and the communication cost during the computation, so we
propose two versions of BPart, namely BPart-C and BPart-S, to
meet the needs of different scenarios. Note that both of them
can achieve two-dimensional balanced partitioning with low
synchronization costs during the distributed graph computation,
as illustrated in Section IV-C. Specifically, the chunk-based
algorithm BPart-C achieves very fast graph partitioning but has
the larger amount of edge cuts, which brings higher commu-
nication cost during distributed graph computing. While the
stream-based algorithm BPart-S has a larger partition overhead
and a lower ratio of the number of edge cuts, which helps
to reduce communication costs. In pursuit of efficient graph
analysis, we recommend using BPart-S for graph partitioning to
minimize synchronization and communication costs. Whereas
BPart-C is preferred if the graph already has good locality and
well-connected vertices are assigned adjacent IDs.

G. Impact of Caching

We now study the impact of the caching scheme based on our
partition algorithms. In the interest of space, we only consider
BPart-S as it has fewer edge cuts. We first study the impact of
cache size by evaluating the performance when caching different
numbers of edges. We load the vertices with higher caching score
presented in Section III-D, until the number of edges of all loaded
vertices reaches the pre-defined threshold. In this experiment,
we consider two cases in which the number of cached edges
is set as 50% and 100% of the number of edges of the local
subgraph, respectively. We also include the results of no cache
for comparison. We start 5 x |V/| simple random walks and let
each walk move 10 steps. Fig. 17(a) counts the total number
of transmitted walks, and the results show that when we cache
more edges, the communication overhead is greatly reduced.

1le9

B No cache
=1 Cache low-score vertices
BN Cache high-score vertices

2.5

B No cache

[Cache low-score vertices
B Cache high-score vertices

N
°
)

I
«
)

Y

Total running time(s)
~N

Number of transmitted walks

Twitter

0.0
LiveJournal Twitter Fri Live] Friendster

(a) Total number of transmitted
walks

(b) Total running time

Fig. 18. The impact of different caching policies (the number of cached edges

is fixed).

Fig. 17(b) further shows the corresponding total running time,
and we can see that as we cache more edges, the total running
time also decreases 6%—24%.

We also study the impact of different caching policies, e.g., by
caching different vertices. We fix the number of cached edges as
100% of the number of edges in the local subgraph and consider
two different choices. One is to cache the vertices with high
scores in the caching file, and the other is to cache the vertices
with low scores. Fig. 18(a) shows the total number of transmitted
walks, and we can see that caching the edges of the vertices with
high scores is beneficial for reducing the communication over-
head. Finally, Fig. 18 shows the total transmitted walks and total
running time corresponding to different caching policies, and we
see that caching the vertices with high scores can significantly
reduce the amount of communication and the total running time,
this result justifies the rationale of our caching design.

V. RELATED WORK

Graph processing systems: In recent years, many distributed
graph systems have been proposed for processing very large
graphs [7], [8], [9], [12], [26], [35], [36], which typically lever-
age a cluster of machines, each of which handles the local
analytic tasks and then communicates with other machines to
proceed the analytics tasks. Pregel [7] is the first work to focus
on distributed graph processing, and proposes a vertex-centric
BSP computation model. Since then, many works follow this
model to further improve the efficiency of distributed graph
systems. For example, PowerGraph [8], PowerLyra [26], and
Gemini [14] design new graph partition strategies and compu-
tation models to efficiently process graphs with scale free na-
ture. KnightKing [6] proposes a walk-centric BSP computation
model to process the random walk applications. LiveGraph [37]
optimizes graph storage for transactional graph processing situa-
tions. GraphScope [38] exposes a unified programming interface
with various graph computations. And Mycelium [39] provided
distributed queries with private protection, etc. However, these
works pay no attention to the imbalanced computing loads be-
tween machines due to the imbalanced graph partitions. Differ-
ent from them, BPart targets to achieve the balance of computing
loads through two-dimensional balanced partitioning, thereby
greatly reducing the synchronization overhead and improving
the efficiency of distributed graph systems.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 15,2025 at 03:23:04 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: TWO-DIMENSIONAL BALANCED PARTITIONING AND EFFICIENT CACHING FOR DISTRIBUTED GRAPH ANALYSIS 147

In addition to distributed graph systems, a number of out-of-
core single-machine graph processing systems are also proposed
to handle large graphs [15], [27], [40], [41], [42], [43], [44],
[45]. They store the graph data on external storage devices,
like SSDs, and iteratively load a subgraph into memory and
perform computations associated with that subgraph. Further-
more, some in-memory single-machine graph processing sys-
tems have been proposed to solve the problem of random access
in graph analytics [46], [47]. The goal of these systems is
to effectively utilize high-speed storage devices, such as L1
cache, L2 cache, and L3 cache, to improve the computational
efficiency of graph analysis tasks. Besides, some graph systems
focus on dynamic graph processing [48], [49], and they adopt
hybrid storage to store static graph data and evolving graph
data.

Graph partition strategies: Numerous attempts have also been
made to enhance the efficiency of graph partitioning and speed
up graph processing, which fall into two main types:vertex-cut
partitioning algorithms and edge-cut partitioning algorithms The
vertex-cut partitioning algorithms [8], [26], [50], [51], [52] split
the edge set into multiple disjoint partitions, and cut the ver-
tices that have edge connections with more than one subgraph.
Generally, each subgraph will store a copy of these vertices’
information to enable computation, thus introducing a lot of
redundant data. Edge-cut partitioning algorithms [21], [24],
[53], [54], [55], [56], [571, [58], [59], [60], [61], [62], [63],
[64], [65], [66], [67] are more commonly used. They split the
vertex set into multiple disjoint partitions and cut the edges that
connect the vertices of two different partitions. Typically, the
graph computations through these edge cuts are transmitted
between subgraphs through the network in distributed graph
processing systems.

Note that in practical distributed systems, stream-based par-
titioning, which assigns equal numbers of vertices or edges
sequentially as partitions by taking them as streams, is widely
used [6], [15], [43]. However, these algorithms can only achieve
balanced partitioning in one dimension, i.e., either the number
of vertices or edges. By randomly assigning each vertex to a
subgraph, hash-based partitioning can achieve balanced parti-
tioning in two dimensions, but it results in many edge cuts
and high communication costs in distributed graph computation.
Besides, GD [17] uses gradient descent to split a graph into two
subgraphs, and it can also achieve balanced partitioning in two
dimensions, but it is very time-consuming and can only partition
a graph into powers of two subgraphs. Unlike them,BPart aims to
divide the graph into any number of subgraphs, while achieving
two-dimensional balanced graph partitioning with few edge cuts
between subgraphs.

VI. CONCLUSION

In this paper, we propose a two-dimensional balanced graph
partitioning scheme BPart, which realizes balance for both the
number of vertices and the number of edges of the partitioned
subgraphs. We also propose two graph partitioning algorithms,
BPart-C and BPart-S, and integrate them into distributed graph

systems. Evaluation results show that the computing load is well-
balanced across machines, which greatly reduces the overall
running time of graph applications. Besides, we also propose
a caching scheme which enables the partitioned subgraphs to
have certain redundancies, thereby further reducing the com-
munication cost for distributed graph computation.

ACKNOWLEDGMENT

In this journal version, we developed two enhanced partition
algorithms BPart-C and BPart-S, and also proposed a neighbor-
aware caching scheme to reduce the communication overhead
for distributed graph analysis. We added extensive experiments
to validate the effectiveness and efficiency of BPart-C, BPart-S
and the caching scheme

REFERENCES

[1] S.Linetal., “Towards fast large-scale graph analysis via two-dimensional
balanced partitioning,” in Proc. 51st Int. Conf. Parallel Process., 2022,
pp.- 1-11.

[2] D. Fogaras, B. Récz, K. Csalogdny, and T. Sarl6s, “Towards scaling fully
personalized PageRank: Algorithms, lower bounds, and experiments,”
Internet Math., vol. 2, no. 3, pp. 333-358, 2005.

[3] A. Kyrola, “DrunkardMob: Billions of random walks on just a PC,” in
Proc. 7th ACM Conf. Recommender Syst., 2013, pp. 257-264.

[4] G.JehandJ. Widom, “SimRank: A measure of structural-context similar-
ity,” in Proc. 8th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining,
2002, pp. 538-543.

[5] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data
Mining, 2016, pp. 855-864.

[6] K. Yang, M. Zhang, K. Chen, X. Ma, Y. Bai, and Y. Jiang, “KnightKing:
A fast distributed graph random walk engine,” in Proc. 27th ACM Symp.
Operating Syst. Princ., 2019, pp. 524-537.

[7]1 G. Malewicz et al., “Pregel: A system for large-scale graph processing,”
in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2010, pp. 135-146.

[8] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Pow-
erGraph: Distributed graph-parallel computation on natural graphs,” in
Proc. 10th USENIX Conf. Operating Syst. Des. Implementation, 2012,
pp- 17-30.

[9] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I.

Stoica, “GraphX: Graph processing in a distributed dataflow framework,”

in Proc. 11th USENIX Conf. Operating Syst. Des. Implementation, 2014,

pp- 599-613.

S. Seo, E. J. Yoon, J. Kim, S. Jin, J.-S. Kim, and S. Maeng, “HAMA: An

efficient matrix computation with the MapReduce framework,” in Proc.

IEEE 2nd Int. Conf. Cloud Comput. Technol. Sci., 2010, pp. 721-726.

C. Avery, “Giraph: Large-scale graph processing infrastructure on

hadoop,” in Proc. Hadoop Summit, vol. 11, no. 3, pp. 5-9, 2011.

Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and J. McPherson, “From

“think like a vertex” to “think like a graph”,” in Proc. VLDB Endowment,

vol. 7, no. 3, pp. 193-204, 2013.

S. Salihoglu and J. Widom, “GPS: A graph processing system,” in Proc.

25th Int. Conf. Sci. Statist. Database Manage., 2013, pp. 1-12.

X. Zhu, W. Chen, W. Zheng, and X. Ma, “Gemini: A computation-centric

distributed graph processing system,” in Proc. 12th USENIX Conf. Oper-

ating Syst. Des. Implementation, 2016, pp. 301-316.

X. Zhu, W. Han, and W. Chen, “GridGraph: Large-scale graph processing

on a single machine using 2-level hierarchical partitioning,” in Proc.

USENIX Conf. Usenix Annu. Tech. Conf., 2015, pp. 375-386.

N. Przulj, D. G. Corneil, and I. Jurisica, “Modeling interactome: Scale-free

or geometric?,” Bioinformatics, vol. 20, no. 18, pp. 3508-3515, 2004.

D. Avdiukhin, S. Pupyrev, and G. Yaroslavtsev, “Multi-dimensional bal-

anced graph partitioning via projected gradient descent,” in Proc. VLDB

Endowment, vol. 12, no. 8, pp. 906-919, 2019.

[18] Twitter,2010. [Online]. Available: https://law.di.unimi.it/webdata/twitter-

2010/

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 15,2025 at 03:23:04 UTC from IEEE Xplore. Restrictions apply.

148

[19]

[20]

[21]

[22]
(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

(35]

[36]

(37

—

[38]

[39]

[40]

[41]

[42]

[43]

[44]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 2, FEBRUARY 2025

B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online learning of
social representations,” in Proc. 20th ACM SIGKDD Int. Conf. Knowl.
Discov. Data Mining, 2014, pp. 701-710.

R.-H. Li, J. X. Yu, X. Huang, and H. Cheng, “Random-walk domina-
tion in large graphs,” in Proc. IEEE 30th Int. Conf. Data Eng., 2014,
pp. 736-747.

C. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnovic, “FEN-
NEL: Streaming graph partitioning for massive scale graphs,” in Proc. 7th
ACM Int. Conf. Web Search Data Mining, 2014, pp. 333-342.

Friendster, 2013. [Online]. Available: http://konect.cc/networks/
friendster/
LiveJournal, 2006. [Online]. Available: http://konect.cc/networks/

livejournal-groupmemberships/

Y. Akhremtsev, P. Sanders, and C. Schulz, “High-quality shared-memory
graph partitioning,” IEEE Trans. Parallel Distrib. Syst., vol. 31, no. 11,
pp- 2710-2722, Nov. 2020.

A. Bulug and J. R. Gilbert, “The combinatorial BLAS: Design, imple-
mentation, and applications,” Int. J. High Perform. Comput. Appl., vol. 25,
no. 4, pp. 496-509, 2011.

R. Chen, J. Shi, Y. Chen, B. Zang, H. Guan, and H. Chen, “PowerLyra:
Differentiated graph computation and partitioning on skewed graphs,”
ACM Trans. Parallel Comput., vol. 5, no. 3, pp. 1-39, 2019.

R. Wang, Y. Li, H. Xie, Y. Xu, and J. C. Lui, “GraphWalker: An I/O-
efficient and resource-friendly graph analytic system for fast and scalable
random walks,” in Proc. USENIX Conf. Usenix Annu. Tech. Conf., 2020,
Art. no. 38.

I. Rhee, A. Warrier, M. Aia, J. Min, and M. L. Sichitiu, “Z-MAC: A hybrid
MAC for wireless sensor networks,” IEEE/ACM Trans. Netw., vol. 16,
no. 3, pp. 511-524, Jun. 2008.

K. Li and P. Hudak, “Memory coherence in shared virtual memory sys-
tems,” ACM Trans. Comput. Syst., vol. 7, no. 4, pp. 321-359, 1989.

M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A.
Goldberg, “Quincy: Fair scheduling for distributed computing clus-
ters,” in Proc. ACM SIGOPS 22nd Symp. Operating Syst. Princ., 2009,
pp. 261-276.

R. K. Jain et al., “A quantitative measure of fairness and discrimination,”
Eastern Res Lab., Digital Equipment Corporation, Hudson, MA, vol. 21,
no. 4, pp. 1-37, 1984.

R. Hussein, D. Yang, and P. Cudré-Mauroux, “Are meta-paths necessary?
Revisiting heterogeneous graph embeddings,” in Proc. 27thACM Int. Conf.
Inf. Knowl. Manage., 2018, pp. 437-446.

L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank citation
ranking: Bringing order to the web,” Stanford InfoLab, Tech. Rep. 1999-
66, Nov. 1999. [Online]. Available: http://ilpubs.stanford.edu:8090/422/

L. He, Y. Chao, K. Suzuki, and K. Wu, “Fast connected-component
labeling,” Pattern Recognit., vol. 42, no. 9, pp. 1977-1987, 2009.

H. Chen, M. Liu, Y. Zhao, X. Yan, D. Yan, and J. Cheng, “G-Miner: An
efficient task-oriented graph mining system,” in Proc. 13th EuroSys Conf.,
2018, pp. 1-12.

A. Khan, G. Segovia, and D. Kossmann, “On smart query routing: For
distributed graph querying with decoupled storage,” in Proc. USENIX
Conf. Usenix Annu. Tech. Conf., 2018, pp. 401-412.

X.Zhuetal., “LiveGraph: A transactional graph storage system with purely
sequential adjacency list scans,” 2019, arXiv: 1910.05773.

W. Fan et al., “GraphScope: A unified engine for big graph processing,”
in Proc. VLDB Endowment, vol. 14, no. 12, pp. 2879-2892, 2021.

E. Roth, K. Newatia, Y. Ma, K. Zhong, S. Angel, and A. Haeberlen,
“Mycelium: Large-scale distributed graph queries with differential pri-
vacy,” in Proc. ACM SIGOPS 28th Symp. Operating Syst. Princ., 2021,
pp. 327-343.

A. Kyrola, G. Blelloch, and C. Guestrin, “GraphChi: Large-scale graph
computation on just a PC,” in Proc. 10th USENIX Conf. Operating Syst.
Des. Implementation, 2012, pp. 31-46.

A. Roy, 1. Mihailovic, and W. Zwaenepoel, “X-stream: Edge-centric
graph processing using streaming partitions,” in Proc. 24th ACM Symp.
Operating Syst. Princ., 2013, pp. 472-488.

K. Vora, G. Xu, and R. Gupta, “Load the edges you need: A generic I/O
optimization for disk-based graph processing,” in Proc. USENIX Conf.
Usenix Annu. Tech. Conf., 2016, pp. 507-522.

H. Liu and H. H. Huang, “Graphene: Fine-grained IO management for
graph computing,” in Proc. 15th Usenix Conf. File Storage Technol., 2017,
pp. 285-299.

Z. Ai, M. Zhang, Y. Wu, X. Qian, K. Chen, and W. Zheng, “Squeezing
out all the value of loaded data: An out-of-core graph processing system
with reduced disk 1/0,” in Proc. USENIX Conf. Usenix Annu. Tech. Conf.,
2017, pp. 125-137.

[45]

[40]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]
[65]

[66]

[67]

S. Wang et al., “NosWalker: A decoupled architecture for out-of-core
random walk processing,” in Proc. 28th ACM Int. Conf. Architectural
Support Program. Lang. Operating Syst., 2023, pp. 466—482.

S. Sun, Y. Chen, S. Lu, B. He, and Y. Li, “ThunderRW: An in-
memory graph random walk engine,” in Proc. VLDB Endowment, vol. 14,
pp. 1992-2005, 2021.

K. Yang, X. Ma, S. Thirumuruganathan, K. Chen, and Y. Wu, “Random
walks on huge graphs at cache efficiency,” in Proc. ACM SIGOPS 28th
Symp. Operating Syst. Princ., 2021, pp. 311-326.

P. Kumar and H. H. Huang, “GraphOne: A data store for real-time analytics
on evolving graphs,” ACM Trans. Storage, vol. 15, no. 4, pp. 1-40, 2020.
R. Wang, S. He, W. Zong, Y. Li, and Y. Xu, “XPGraph: XPline-friendly
persistent memory graph stores for large-scale evolving graphs,” in Proc.
55th IEEE/ACM Int. Symp. Microarchitecture, 2022, pp. 1308-1325.

F. Petroni, L. Querzoni, K. Daudjee, S. Kamali, and G. lacoboni, “HDRF:
Stream-based partitioning for power-law graphs,” in Proc. 24th ACM Int.
Conf. Inf. Knowl. Manage., 2015, pp. 243-252.

C. Xie, L. Yan, W.-J. Li, and Z. Zhang, “Distributed power-law graph
computing: Theoretical and empirical analysis,” in Proc. 27th Int. Conf.
Neural Inf. Process. Syst., 2014, pp. 1673-1681.

M. Hanai, T. Suzumura, W. J. Tan, E. S. Liu, G. Theodoropoulos, and
W. Cai, “Distributed edge partitioning for trillion-edge graphs,” in Proc.
VLDB Endowment, vol. 12, no. 13, pp. 2379-2392, 2019.

L. Wang, Y. Xiao, B. Shao, and H. Wang, “How to partition a billion-node
graph,” in Proc. IEEE 30th Int. Conf. Data Eng., 2014, pp. 568-579.

F. Bourse, M. Lelarge, and M. Vojnovic, “Balanced graph edge partition,”
in Proc. 20th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2014,
pp. 1456-1465.

1. Stanton and G. Kliot, “Streaming graph partitioning for large distributed
graphs,” in Proc. 18th ACM SIGKDD Int. Conf. Knowl. Discov. Data
Mining, 2012, pp. 1222-1230.

G. Karypis and V. Kumar, “A software package for partitioning unstruc-
tured graphs, partitioning meshes, and computing fill-reducing orderings
of sparse matrices,” Dept. Comput. Sci. Eng., Univ. Minnesota, Army HPC
Res. Center, Minneapolis, MN, vol. 38, no. 2, pp. 1-31, 1998.

W. E. Donath and A. J. Hoffman, “Lower bounds for the partitioning
of graphs,” in Selected Papers of Alan J. Hoffman: With Commentary,
Singapore: World Scientific, 2003, pp. 437-442.

B. W. Kernighan and S. Lin, “An efficient heuristic procedure for parti-
tioning graphs,” Bell Syst. Tech. J., vol. 49, no. 2, pp. 291-307, 1970.

C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for im-
proving network partitions,” in Proc. 19th Des. Autom. Conf., 1982,
pp. 175-181.

M. Holtgrewe, P. Sanders, and C. Schulz, “Engineering a scalable high
quality graph partitioner,” in Proc. IEEE Int. Symp. Parallel Distrib.
Process., 2010, pp. 1-12.

S. Gong, Y. Zhang, and G. Yu, “HBP: Hotness balanced partition for
prioritized iterative graph computations,” in Proc. IEEE 36th Int. Conf.
Data Eng., 2020, pp. 1942-1945.

W. Fan, M. Liu, P. Lu, and Q. Yin, “Graph algorithms with partition trans-
parency,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 2, pp. 1554-1566,
Feb. 2023.

C. Martella, D. Logothetis, A. Loukas, and G. Siganos, “Spinner: Scalable
graph partitioning in the cloud,” in Proc. IEEE 33rd Int. Conf. Data Eng.,
2017, pp. 1083-1094.

G. Karypis and V. Kumar, “Parallel multilevel series k-way partitioning
scheme for irregular graphs,” SIAM Rev., vol. 41, no. 2, pp. 278-300, 1999.
P. Sanders and C. Schulz, “Engineering multilevel graph partitioning
algorithms,” in Proc. Eur. Symp. Algorithms, Springer, 2011, pp. 469—480.
C. Walshaw and M. Cross, “JOSTLE: Parallel multilevel graph-
partitioning software—An overview,” Mesh Partitioning Techn. Domain
Decomposition Techn., vol. 10, pp. 27-58, 2007.

C. Chevalier and F. Pellegrini, “PT-Scotch: A tool for efficient parallel
graph ordering,” Parallel Comput., vol. 34, no. 6/8, pp. 318-331, 2008.

Shuai Lin received the bachelor’s degree from the
University of Electronic Science and Technology
of China. He is currently working toward the PhD
degree with the School of Computer Science and
Technology, University of Science and Technology
of China. His research interests in graph processing
systems. He also interests in graph algorithms and
graph databases.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 15,2025 at 03:23:04 UTC from IEEE Xplore. Restrictions apply.

Rui Wang received the bachelor’s degree in computer
science from Donghua University in 2016 and the
PhD degree in computer science from the Univer-
sity of Science and Technology of China (USTC) in
2021. She is a postdoctoral fellow with the School
of Computer Science and Technology, Zhejiang Uni-
versity (ZJU). Her research interests lie in graph
computing and storage systems. She is also interested
in databases, key-value systems, machine learning
systems, etc.

Yongkun Li received the BEng degree in computer
science from USTC in 2008 and the PhD degree in
computer science and engineering from The Chinese
University of Hong Kong in 2012. He is currently
an associate professor with the School of Computer
Science and Technology, University of Science and
Technology of China. His research mainly focuses

LIN et al.: TWO-DIMENSIONAL BALANCED PARTITIONING AND EFFICIENT CACHING FOR DISTRIBUTED GRAPH ANALYSIS 149

Yinlong Xu received the BS degree in mathematics
from Peking University in 1983 and the MS and PhD
degrees in computer science from the University of
Science and Technology of China (USTC) in 1989
and 2004, respectively. He is currently a professor
with the School of Computer Science and Technol-
ogy, USTC, and is leading a research group in doing
some storage and high performance computing re-
search. His research interests include network coding,
storage systems, etc. He received the Excellent PhD
Advisor Award of Chinese Academy of Sciences,
in 2006.

John C. S. Lui (Fellow, IEEE) received the PhD de-
gree in computer science from the University of Cali-
fornia at Los Angeles. He is currently the Choh Ming
Li chair professor with the CSE Department, The Chi-
nese University of Hong Kong. His current research
interests include machine learning, online learning
(e.g., multiarmed bandit and reinforcement learning),
network science, future Internet architectures and
protocols, network economics, network/system secu-
rity, and large-scale storage systems. He is an elected
member of the IFIP WG 7.3, and a senior research

on memory and file systems, including key-value fellow of the Croucher Foundation. He is a fellow of ACM and Hong Kong
systems, distributed file systems, as well as memory Academy of Engineering Sciences. He received various departmental teaching
and I/0 optimization for virtualized systems. awards and the CUHK Vice-Chancellor Exemplary Teaching Award.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 15,2025 at 03:23:04 UTC from IEEE Xplore. Restrictions apply.

