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Abstract—Differential Privacy (DP) is well-known for its strong
privacy guarantee. In this paper, we show that when there
are correlations among attributes in the dataset, only relying
on DP is not sufficient to defend against the “attribute linkage
attack”, which is a well-known privacy attack aiming at deducing
participant’s attribute information. Our contributions are 1�
we show that the attribute linkage attack can be initiated with
high probability even when data are protected under DP, 2�
we propose an enhanced DP standard called “APL-Free ✏-DP”,
3� by leveraging on topology theory, we design an algorithm

“APLKiller” which satisfies this standard. Finally, experiments
show that our algorithm not only eliminates the attribute linkage
attack, but also achieves better data utility.

Index Terms—differential privacy, attribute linkage attack,
topology theory.

I. INTRODUCTION

In the current digital era, personal information is extremely
valuable. Since data collection is quite common, privacy
becomes a major concern. Recently, differential privacy (DP)
was proposed [1]. Companies like Google are using DP
algorithms to protect user privacy [2]. However, DP is not
without any pitfall [3]. In this paper, we show that even
datasets processed by DP are still prone to “attribute linkage
attack” [4] when attributes are correlated. Under such attack,
attackers can leverage part of attribute information to deduce
more information of a victim.

Table I is an example that illustrates the attribute linkage
attack. Table I(a) is a retail dataset D in which each record
is a unique itemset with its occurrence. Before demonstrat-
ing the attack, some terms should be formally defined. Let
I = {I1, I2, ..., In} be the item universe with size n. In the ex-
ample, we will represent beer, toothpaste, scissor and hanger
as I1 to I4 respectively. For an itemset S ✓ I, |S.items| is
the number of items in S and |S| is S’s occurrence. Thus,
D = {r : (S, |S|)}. For example, in Table I(a), an itemset S
can be {I1, I2}, with |S.items| = 2 and |S| = 4.

Note that in Table I(a), correlations exist among items.
For example, most customers who bought {I2, I3, I4} would
like to buy I1, which is beer. The consequence of having
such correlation is that all itemsets which contain {I2, I3, I4}
have zero occurrence, except for itemset {I1, I2, I3, I4} with
20 occurrence. To provide better privacy protection, the data
publisher may choose to use DP algorithms to perturb the

dataset D. For example, a traditional algorithm [1] to achieve
DP is designed. Given the DP algorithm, the lower occurrence
an itemset S has, the lower probability S will be added to the
perturbed dataset. Table I(b) shows a possible output Dp.

Unfortunately, once Dp is published, the attribute linkage
attack can be initiated. For simplicity, we use “Eve” to
represent the adversary and “Alice” to represent the victim. If
Eve knows that Alice went to this shop last week and bought
the itemset {I2, I3, I4} (this is the attacker’s prior knowledge),
she can search for all records in Dp which contain these
three items, and finally uniquely identify the first record in
Table I(b). The consequence is that Eve can now infer that
Alice also bought beer, which causes the leakage of Alice’s
privacy.

The root cause is that even though DP algorithms try to
add random noise to increase the privacy level, the private
information of individuals is embedded in and leaked through
the underlying item correlations which DP algorithms need
to preserve. As a result, most DP algorithms maintain the
correlation to preserve the data utility, but this also exposes the
attribute linkage vulnerability. In our example, the underlying
correlation makes sure that in D, {I1, I2, I3, I4}’s occurrence
is large, while any other itemset’s occurrence which contains
{I2, I3, I4} is zero. Such correlation is well preserved by the
DP algorithm, and as a result, increases the possibility for Eve
to deduce that “Alice drinks beer”.

In summary, our contributions are as followings. We first
show that correlations among items introduce the attribute
linkage attack in DP settings. Then we propose the “APL-
Free ✏-DP” standard which guarantees no attribute linkage
attack is possible in the published dataset. Finally, we design
a novel algorithm, “APLKiller”, which leverages the topology
theory [5] to defend against attribute linkage attack, while
preserves the data utility for published datasets.

II. BACKGROUND

In this section, we provide the background of DP, then
discuss how topology theory [6] can help to tackle the attribute
linkage attack.

A. Correlation Issues in Differential Privacy
A formal definition of DP is given as followings.

IEEE INFOCOM WKSHPS: BigSecurity 2021: International Workshop on Security and Privacy in Big Data

978-1-6654-0443-3/21/$31.00 ©2021 IEEE

IE
EE

 IN
FO

C
O

M
 2

02
1 

- I
EE

E 
C

on
fe

re
nc

e 
on

 C
om

pu
te

r C
om

m
un

ic
at

io
ns

 W
or

ks
ho

ps
 (I

N
FO

C
O

M
 W

K
SH

PS
) |

 9
78

-1
-6

65
4-

04
43

-3
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IN

FO
C

O
M

W
K

SH
PS

51
82

5.
20

21
.9

48
44

99

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 24,2021 at 07:57:40 UTC from IEEE Xplore.  Restrictions apply. 



ID Itemset Occurrences
1 beer, toothpaste, scissor, hanger 20
2 beer, toothpaste 4
3 beer 1
4 beer, toothpaste, scissor 12
5 scissor, hanger 3

(a) An example of retail dataset D.

ID Itemset Occurrences
1 beer, toothpaste, scissor, hanger 23
2 beer, toothpaste 2
3 beer, toothpaste, scissor 8
4 scissor, hanger 5
5 toothpaste 2

(b) A possible published dataset Dp using DP.

TABLE I: Examples of a retail dataset D and its perturbed version Dp using differential privacy.

ID / Item beer toothpaste scissor hanger
1 • • • •
2 • •
3 • • •
4 • •
5 •

TABLE II: Relation R for the dataset Dp in Table I(b).

Definition 1 (✏-differential privacy): A randomized mechanism
M provides ✏-differential privacy if for any two neighboring
datasets D1 and D2, for which only differ in one occurrence
for a record, and for any output Dp ✓ Range(M),

Pr(M(D1) = Dp)

Pr(M(D2) = Dp)
 e

✏
,

where the probability is taken over the randomness of M,
and ✏ is called “privacy budget”. The smaller ✏ is, the better
privacy guarantee a DP algorithm has.

Although DP provides a strong privacy guarantee, corre-
lation issues has been reported in several researches [7]–
[9]. They assume that the victim’s privacy is encoded in
a social correlation which is formed by a special group of
participants, e.g, friends or families. Once such underlying
social correlations are discovered, the victim’s privacy is under
leakage.

Few researches analyze the severity of the attribute linkage
attack in DP settings. In our paper, we find out that the victim’s
privacy can also be encoded in the attribute correlation which
is formed by all participants, and such correlation allows the
attacker to launch the attribute linkage attack. Our proposed
correlation issue is more general and severe with the following
reasons. First, it is easier for attackers to discover the attribute
correlation in data, compared with the record correlation.
Second, by leveraging the attribute correlation, the attacker
can construct the attribute linkage attack to leak the private
information. Third, it is harder for data publishers to defend
against the attribute linkage attack, because the underlying
correlation is formed by all participants instead of a small
group. Previously proposed methods cannot solve our issues
well. In order to eliminate the attribute linkage attack, we
introduce a methodology built upon topology theory.

B. Topology of Privacy
A formal methodology [6] is presented to study privacy

using topology theory. The dataset D is modeled as a relation
R, and an example for Dp in Table Ib is shown in Table II. To
eliminate the attribute linkage attack targeting on an itemset
S, a topology theory is proposed to prove that the “boundary
set” BS should exist in R.

ID Itemset Occurrences
1 beer, toothpaste, scissor, hanger 23
2 beer, toothpaste 2
3 beer, toothpaste, scissor 8
4 scissor, hanger 5
5 toothpaste 2
6 toothpaste, scissor, hanger 2
7 beer,scissor, hanger 3
8 beer,toothpaste, hanger 1

TABLE III: Perturbed D
0
p without attribute linkage vulnera-

bilities.

Definition 2 (Boundary Set): The boundary set BS of an
itemset S can be generated by removing each item from S.
That is,

BS = {S0 ⇢ S | |S � S
0| = 1}.

For any boundary itemset S
0 2 BS , if S

0 does not exist
in R, then the adversary can use S

0 as a prior knowledge to
deduce target’s itemset S, and S�S

0 contains the leaked item
information. In our example, if Eve knows S

0 = {I2, I3, I4},
she can deduce that Alice also bought I1, which is beer. The
author further presents a proof that only checking the maximal
itemsets is sufficient to protect D against the attribute linkage
attack.
Definition 3 (Maximal Itemset): Let DI be the set of itemsets
in the dataset D. An itemset S 2 D

I is a “maximal itemset”
if it is not a subset of any other itemset in D

I .
The above result suggests a defense methodology: For each

maximal itemset S, if one can artificially generate records for
all missing boundary itemsets of S, then no attribute linkage
attack can happen in Dp. We will use this idea to improve
traditional DP. In our example, Table III is a generated dataset
wherein every itemset is free from attribute linkage vulner-
abilities. Records 6-8 are the artificially generated records
to satisfy the boundary-presence requirement for the only
maximal itemset {I1, I2, I3, I4}. With the existence of itemset
{I2, I3, I4}, Eve cannot deduce that Alice bought beer.

III. ATTRIBUTE LINKAGE ATTACK ON DP-PROCESSED
DATASETS

In this section, we show that an attribute linkage attack can
be initiated in DP-processed datasets.

A. Attribute Privacy Leakage
We formally define the attribute linkage attack. We use “At-

tribute Privacy Leakage” (APL) to represent an itemset which
an adversary can use to capture user’s private information.
Definition 4 (APL): Given a dataset D, we say D has an APL
if there is an itemset Q ⇢ I, where I is the item universe,
such that

|{S|S 2 D
I
and Q ⇢ S}| = 1,
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where D
I is the set of itemsets in D. By using the itemset Q,

the adversary can uniquely identify S in D
I and S�Q is the

leaked information that the adversary could obtain. In our pre-
vious example, Q = {I2, I3, I4}, and S = {I1, I2, I3, I4}. By
using this APL, “Alice bought beer” is the leaked information.

In the rest of the paper, unless we state otherwise, all item-
sets mentioned are maximal itemsets and all APLs mentioned
are boundary itemsets which can be used to uniquely identify
maximal itemsets. Such an assertion implies that we allow
a highly powerful threat model: The adversary is allowed to
have the most prior information.

B. Attack Analysis

Let us first state the attack method.
Attack method: In this paper, we assume the adversary has
the following prior information in advance.

1) The victim’s itemset S is in D.
2) The adversary knows a boundary itemset Q ⇢ S, where

Q 6= ; and Q can uniquely identify S in D.
By accessing DP processed dataset Dp, the adversary will find
a set G = {S0|S0 2 D

I
p and Q ✓ S

0}, which is the set of
itemsets containing Q in Dp. Then Q is an APL in Dp and
the attack is successfully launched if and only if G = {S}.
Deriving probability: Note that the probability of successful
attribute linkage attack depends on the set G. Once there is
an itemset in G and it is not S, the attack will fail. Formally,
let P = {S0 | Q ✓ S

0 ✓ I and S
0 6= S}. Let C1 : S 2

D
I
p and C2 : P \D

I
p = ;, we have

Pr(Successful Attribute Linkage Attack) = Pr(C1C2).

Computing the above probability is non-trivial for different DP
algorithms. However, since DP algorithms need to maintain a
high data utility, the probability for a specific itemset S0 to be
added to Dp has a strong correlation with the occurrence for
S
0 in D. Based on this observation, one can assert that

Pr(C1C2) / fD(S) ·
Y

S02P

(1� fD(S0)),

where fD(S) is the frequency of itemset S in D.
In our attack, since Q is an APL for S in D, which means

that there is no other itemset containing Q, a strong correlation
exists between Q and S �Q. The correlation guarantees that
fD(S0) is close to 0, and such property is well preserved
by DP algorithms. The consequence is that in Dp, there is
high probability for the attacker to uniquely identify S. In the
next section, we will use experiments to demonstrate the high
probability of the attack in the DP setting.

C. Case Study

We use DiffPart [10] and PrivBayes [11] to demonstrate
the attribute linkage attack. These two algorithms are popular
and representative: one is partitioning-based and another is
sampling-based. Also, both algorithms aim to preserve the
item correlation to increase the data utility.
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(b) NLTCS dataset.

Fig. 1: Probability of having S vulnerable in MSNBC.

Experiment results: MSNBC1 and NLTCS2 are used to
demonstrate the feasibility of the attack in the real world. A
detailed description of datasets is in Section V. Note that there
is only one maximal itemset in both datasets, and it has APLs.
Therefore, we set the only maximal itemset in both datasets as
the target, and choose an arbitrary APL in the original dataset
to investigate whether the target is vulnerable in Dp. For each
parameter setting, we generate 1,000 datasets to compute the
average attack probability.

In Figure 1a, we use DiffPart algorithm, and increase the
occurrence of S to change fD(S) and to observe the impact.
The result shows that the probability of being vulnerable for S
increases quickly. We further use PrivBayes to show the attack
probability in Figure 1b. One can observe that in Figure 1, as
✏ increases, the property of being vulnerable for S is more
likely to be preserved. In summary, there are two important
conclusions.

1) Users need to carefully select parameters to reduce the
attack probability for traditional DP algorithms.

2) A larger ✏ can bring a better data utility, but also
increases the attack probability.

IV. DEFENSE METHODOLOGY

In this section, we propose an enhanced DP standard “APL-
Free ✏-DP” and our algorithm “APLKiller”.

A. APL-Free ✏-DP
First, let us provide the definition of APL-Free ✏-DP.

Definition 5: A randomized algorithm M satisfies “APL-Free
✏-DP” if M satisfies the following requirements:

1) For any Dp 2 Range(M), there is no APL in Dp.
2) For any two neighboring datasets D1 and D2, and for

any possible output Dp ✓ Range(M),
Pr(M(D1) = Dp)

Pr(M(D2) = Dp)
 exp(✏).

Besides providing the privacy guarantee of traditional DP,
APL-Free ✏-DP requires that there should be no APLs in Dp

to defend against the attribute linkage attack. It is important
to state that APL-Free ✏-DP follows the parallel composition
theorem.
Theorem 1 (Parallel Composition Theorem): Let Mi be

an APL-Free ✏i-DP algorithm, and let
kS
t
Dt = D be a

1https://archive.ics.uci.edu/ml/datasets/msnbc.com+anonymous+web+data
2https://www.icpsr.umich.edu/web/NACDA/studies/9681/publications

IEEE INFOCOM WKSHPS: BigSecurity 2021: International Workshop on Security and Privacy in Big Data

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 24,2021 at 07:57:40 UTC from IEEE Xplore.  Restrictions apply. 



&I{1,2,3,4}' t1, t2, t4, t5

&I{1,2}' t2, t3

&I1, I2'
⌦

&I2' 2

&I{3,4}' t5

&I3, I4'
⌦

&I{1,2}, I{3,4}' t1, t4

⌦

Fig. 2: The generation of 1-itemsets using LevelPart

set of arbitrary disjoint subsets of D. Then M[k](D) =
(M1(D1), ...,Mk(Dk)) provides APL-Free max

t
✏t-DP.

In the following section, we present our proposed APL-Free
✏-DP algorithm, which is called “APLKiller”.

B. APLKiller
Framework: The aim of APLKiller is to eliminate APLs. The
methodology is to make sure that whenever a maximal itemset
S is added to Dp, the boundary set BS should also be added
to Dp. Let l-itemset be the itemset which contains l items, and
let Dl be the part of records in D which contain the l-itemset.
Algorithm 1 shows the pseudocode of APLKiller. APLKiller
first generates l-itemsets in the decreasing order of the size by
calling “LevelPart” (Line 5). The benefit is that in each round,
all generated itemsets are guaranteed to be maximal itemsets.
Then all boundary itemsets are determined and added to Dp

such that there will be no APLs in Dp (Line 7 to Line 16).

Algorithm 1 APLKiller
Input: D, parameter vectors F , C1 and C2, privacy budget ✏
Output: perturbed dataset Dp

1: l |I|
2: Initialize an empty set Dp and a vector of empty sets Q
3: Partition D into

Sn
i=1 Di //Di contains all i-itemsets

4: while l � 1 do
5: D0

l  LevelPart(l, Dl, Fl, C
l
1, C

l
2, ✏) //Generate D0

l

6: Dp = Dp [D0
l

7: for Sl
j 2 D0

l do
8: Ql = Ql [BSl

j
//Aggregate boundary itemsets for D0

l

9: end for
10: for Sl

k 2 Ql do
11: N l

k = 0
12: //Determine the noisy occurrence for boundary itemsets
13: while N l

k  0 do
14: N l

k = NoisyCount(|Sl
k|, ✏)

15: end while
16: Add Sl

k to Dp with |Sl
k| = N l

k

17: end for
18: //Remove influences of Qi on generating D0

l�1

19: Remove each Sl
k 2 Ql from Dl�1

20: l l � 1
21: end while
22: return Dp

Generation of l-itemset. The pseudocode of LevelPart is in
Algorithm 2, and it applies similar partitioning procedure with
DiffPart [10]. Figure 2 is an example to show the partitioning
procedure. Each rectangle represents a partition p, which
stores an hierarchy cut p.cut and a set of records in D. p.cut is
a set of nodes in the taxonomy tree T , and it determine which

Algorithm 2 LevelPart

Input: length l, dataset Dl, fan-out Fl, constant Cl
1 and Cl

2

Output: Perturbed dataset D0
l

1: Initialize D0
l

2: Construct taxonomy tree T with Fl

3: Create Partition p which includes all records and store root of T
into p.cut. Let p.B = ✏

2 , p.r = Par(p, l) and p.↵ = p.B
p.r

4: Add p to an empty queue Q
5: while Q 6= ; do
6: Dequeue p0 from Q
7: P  LevelSGP(p0, T, l, Cl

1) //Generate subpartitions of p0
8: for each pi 2 P do
9: if pi is leaf partition then

10: //Determine the noisy occurrence of the itemset
11: Npi = NoisyCount(|pi|, ✏

2 + pi.B)

12: if Npi �
p
2

Cl
2

✏/2+pi.B
then

13: Add Npi copies of pi.cut to D0
l

14: end if
15: else
16: Add pi to Q //Continue to generate subpatitions of pi
17: end if
18: end for
19: end while
20: return D0

l

I{1,2,3,4}

I{1,2}

I1 I2

I{3,4}

I3 I4

Fig. 3: Taxonomy tree T with f = 2 to control T ’s degree

records can be stored in p. An example of T is in Figure 3.
When p needs to generate its sub-partitions, a random node
u 2 p.cut will be picked and expanded to its child nodes in
T .

In Line 7, “LevelSGP” is called to generate the sub-
partitions for p. Such process will be repeated until each
partition in the queue Q is a leaf partition, which represents
a specific itemset S. After that, the noisy occurrence for S is
computed in Line 11, and is further compared with a bound
controlled by user-defined parameter Cl

2 in Line 12.
We now present our LevelSGP, and the pseudocode is in

Algorithm 3. It is used to generate sub-partitions for current
partition p, and it guarantees that all generated sub-partitions
contain l-itemsets. LevelSGP first generates sub-partitions in
Line 5, then uses the similar framework with DiffPart [10]: For
each non-empty sub-partition si, a noisy sum of occurrence
for all records in si is computed to determine whether current
sub-partition deserves to be preserved (Line 8 to Line 14).
For empty sub-partitions, a sampling mechanism is applied to
randomly sample empty sub-partitions (Line 17 to Line 22).

In order to generate sub-partitions which contain l-itemsets,
we design a novel procedure. Suppose we want to generate
p’s sub-partitions. First a random node u 2 p.cut is selected,
and is expanded by its child nodes in T . For example, in
Figure 2, the partition with cut {I3,4} can generate sub-
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Algorithm 3 LevelSGP

Input: Partition p, taxonomy tree T , length l, constant Cl
1

Output: Vector of sub-partitions V
1: Initialize empty vector V
2: if |p.cut| > l or |p.items| < l then
3: return V
4: end if
5: Randomly select u 2 p.cut, expand and generate the set of non-

empty sub-partitions S in which |si.cut|  l and |si.items| � l
for si 2 S.

6: Allocate records in p to sub-partitions in S
7: Bound d =

p
2Cl

1 ⇥ height(p.cut)/p.↵ //Compute the bound
8: for si 2 S do
9: Nsi = NoisyCount(|si|, p.↵)

10: if Nsi � d then
11: si.B = p.B � p.↵, si.r = p.r � 1, si.↵ = si.B

si.r
12: Add si to V //The subpartition can be further processed
13: end if
14: end for
15: j = 1
16: //Select some empty subpartitions by random sampling
17: while j  2|u.items| � |S| do
18: if NoisyCount(0, p.↵) � d then
19: Randomly generate an empty sub-partition s0j
20: if |s0j .cut|  l and |s0j .items| � l then
21: s0j .B = p.B � p.↵, s0j .r = p.r � 1, s0j .↵ =

s0j .B

s0j .r

22: Add s0j to V
23: end if
24: end if
25: end while
26: return V

partitions with cuts {I3}, {I4}, and {I3, I4}. However, given
the length constraint, not all sub-partitions are needed. For
example, the partition with cut {I3, I4} should be pruned, as
it only contains a 2-itemset {I3, I4}.

To filter out those pruned partitions, there are two situations
in which a partition should be pruned: (1) |p.cut| > l; (2)
|p.items| < l. In the first situation, since each node in p.cut

provides at least one item to generate itemsets, if the total
number of nodes is larger than l, the partition p will generate
at least (l+1)-itemsets and should be filtered out. In the second
situation, |p.items| is the sum of items for all nodes in p.cut.
If it is less than l, the partition p can generate at most (l�1)-
itemsets, which should also be pruned. By adding the length
check in Line 5 and Line 20, LevelSGP only generates sub-
partitions containing l-itemsets. Next we will introduce the
privacy budget allocation scheme.
Privacy budget allocation. Initially, in Line 3 of LevelPart,
a startup partition p is created. p.B records the remaining
budget for further sub-partition generation, and initially we
set it to be ✏

2 . The remaining ✏
2 budget will be finally used

to determine the noisy occurrence for the generated itemset.
p.↵ represents the computed budget cost for the incoming sub-
partition generation, and p.r is used to compute p.↵.

In Line 9 and Line 18 of LevelSGP, p.↵ is consumed to
compute the noisy sum of occurrences Nsi for the generated
sub-partition si. Then in Line 11 and Line 21, we update
si.B, si.r and si.↵, and preserve si for further partitioning

Dataset |D| |I.items| max(r)

MSNBC 989,818 17 17
Checkin-Foursquare 266,909 77 31

NLTCS 17,721 16 16

TABLE IV: Description of experimental datasets

operations. Note that since generated sub-partitions are disjoint
from each other, according to Theorem 1, p.B � p.↵ can be
allocated to each sub-partition. Finally, in Line 11 of LevelPart,
a leaf partition p is generated, and the remaining partitioning
budget p.B plus preserved ✏

2 are used for determining the
noisy occurrence for the itemset in p.cut.

In order to generate l-itemsets from p and to determine p.↵,
we first compute the maximum number of rounds for p to
reach the leaf partition, which is p.r. Then we let p.↵ = p.B

p.r .
Such privacy allocation scheme is proved to cost less than
✏/2 budget [10]. Note that every time a sub-partition si is
generated from p, we have si.r  p.r � 1. Based on this
finding, we first use the following theorem to compute p.r

for the initial partition in Line 3 of LevelPart. Then for any
generated sub-partition si from its parent partition p, we let
si.r = p.r � 1.
Theorem 2: Suppose p is an hierarchy cut which contains
single internal node u and |u.items| = n. Given the fan-out
parameter f , for fk  n

l  f
k+1 and l > 0, k � 0, we have

Par(p, l) = Par(u, l) =

(
0, l = 0
n�1
f�1 +

Pk
i=1(l � d n

fi e), l > 0

The detailed proof is in our technical report [12].
Handling of boundary itemsets. When LevelPart returns D0

l,
APLKiller first adds itemsets in D

0
l to the published dataset Dp

(Line 6). Then the boundary set BSl
j

for each l-itemset Sl
j is

derived. APLKiller collects those boundary itemsets in Line 8.
Then for each boundary itemset S

l
k, APLKiller repeatedly

generates a Laplace noisy occurrence for Sl
k until it is positive

(Line 13). After that, Sl
k is added to Dp. Note that in Line 19,

the record of each boundary itemset Sl
k is removed from Di�1.

They have been processed as the boundary itemset, and they
should not cause any influence in generating (l� 1)-itemsets.

C. Algorithm Analysis

We first give the privacy analysis of our algorithm.
Theorem 3: APLKiller satisfies APL-Free ✏-DP.

Moreover, for the time complexity analysis, we have the
following result.
Lemma 1: The time complexity of APLKiller is O(mn),
where m is the number of records in the dataset D, and n

is the number of items in the item universe.
The detailed proof is given in our technical report [12].

V. EVALUATION

In this section, we analyze the privacy guarantee and data
utility of our algorithm. Detailed information about datasets is
shown in Table IV, where |D| is the number of records in the
dataset, |I.items| is the size of item universe, and max(r) is
the maximum number of items in one record.
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A. Privacy Guarantee Analysis
Figure 4 shows the experiment result, and the experiment

design is similar with that in Section III-B. One can observe
that by using APLKiller, there is no single APL in the
generated dataset, which shows a high privacy guarantee.
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(a) MSNBC dataset.
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(b) NLTCS dataset.

Fig. 4: Privacy comparison using real-world datasets.

B. Data Utility Analysis
Since counting query is the most fundamental operator in

data mining today, we focus on it. For each parameter setting,
50,000 random counting queries are generated. Given a query
Q, the relative error [10] for Q is computed as |Q(D0)�Q(D)|

max(Q(D),s) ,
where Q(D0) is the query result on the generated dataset,
Q(D) is the query result on the original dataset, and s is the
sanity bound in order to weaken the influence of queries with
extremely small counting answers. we set the sanity bound to
0.01% of the size of the original dataset.
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Fig. 5: Relative error for APLKiller, DiffPart and PrivBayes.

In Figure 5, each point is the average computed by generat-
ing 50,000 queries in terms of 1,000 rounds. For DiffPart and
APLKiller, we change the parameter ✏ and c1, which is used to
control the partitioning bound. In APLKiller, we allow users
to set Cl

1 for generating l-itemsets, and we set Cl
1 = c1 for

any length l. Note that it is time-consuming for PrivBayes to
process large datasets (over 24 hours), so PrivBayes is not used

for MSNBC and Checkin datasets. In Figure 5a and Figure 5b,
experiment results show that the relative error for APLKiller
is reduced by 3.6% in average, as ✏ varies. In Figure 5c, one
can check that APLKiller reduces the relative error by 6.8%
compared with that of DiffPart, and 49.1% compared with that
of PrivBayes. These show APLKiller has a higher data utility.

For traditional DP algorithms, although a smaller ✏ can
decrease the probability of being attacked, the data utility
becomes worse. However, APLKiller eliminates this dilemma:
No matter how the privacy parameter ✏ is set, the probability
of being attacked is guaranteed to be zero. Therefore, our
algorithm lets publishers to publish the dataset with good
data utility, while defending against the attribute linkage attack
comprehensively.

VI. CONCLUSIONS

In this paper, we first show that the attribute linkage attack
is a severe problem when using DP. In order to eliminate
this attack, we improve DP and propose APL-Free ✏-DP. We
further design an algorithm, APLKiller, which leverages the
topology-theoretic approach to defend against the attribute
linkage attack. However, in our paper, we did not consider the
probabilistic attribute linkage attack, which is a more advanced
attack. Also, we did not give a clear instruction on how to
choose APLKiller’s parameters to get better data utility. These
are potential directions for future research.

The work of John C.S. Lui was supported in part by the
RIF R4032-18.
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