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Approximate and Deployable Shortest Remaining
Processing Time Scheduler
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Abstract— The scheduling policy installed on switches of dat-
acenters plays a significant role on congestion control. Shortest-
Remaining-Processing-Time (SRPT) achieves the near-optimal
average message completion time (MCT) in various scenarios,
but is difficult to deploy as viewed by the industry. The reasons
are two-fold: 1) many commodity switches only provide FIFO
queues, and 2) the information of remaining message size is not
available. Recently, the idea of emulating SRPT using only a few
FIFO queues and the original message size has been coined as
the approximate and deployable SRPT (ADS) design. In this
paper, we provide the first theoretical study on the optimal
ADS design. Specifically, we first characterize a wide range of
feasible ADS scheduling policies via a unified framework, and
then derive the steady-state MCT, slowdown, and impoliteness
in the M/G/1 setting. Hence we formulate the optimal ADS
design as a non-linear combinatorial optimization problem, which
aims to minimize the average MCT given the available FIFO
queues. We also take into account the proportional fairness and
temporal fairness constraints based on the maximal slowdown
and impoliteness, respectively. The optimal ADS design problem
is NP-hard in general, and does not exhibit monotonicity or sub-
modularity. We leverage its decomposable structure and devise
an efficient algorithm to solve the optimal ADS policy. We carry
out extensive flow-level simulations and packet-level experiments
to evaluate the proposed optimal ADS design. Results show that
the optimal ADS policy installed on eight FIFO queues is capable
of emulating the true SRPT.

Index Terms— Emulating SRPT, proportional and temporal
fairness, scheduling policy, queueing system.
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I. INTRODUCTION

A. Background and Motivation

CONGESTION control (CC) is one of the most critical
issues in the modern data-center network (DCN) [2].

To maintain reliability and scalability, most CC schemes
coordinate in a distributed way, and part of the CC mechanism
is implemented in the network switches [3]. Hence, the end-
to-end latency depends primarily on the scheduling policy
installed on these switches. Nowadays, many datacenter appli-
cations are using request-response protocols, which generate
a lot of short messages. The application message is a block of
packets transmitted from a sender to the receiver. In general,
the message-size-based scheduling policy that prioritizes the
short messages is believed to significantly reduce the aver-
age message completion time (MCT). Moreover, Shortest-
Remaining-Processing-Time (SRPT) is known to achieve the
near-optimal average completion time [4], by prioritizing jobs
with the shortest remaining service time. However, SRPT is not
readily deployable as viewed by the industry for two reasons:

• First, many commodity switches by default only provide
support for FIFO queues per outgoing port, thus naturally
enforce the First-Come-First-Serve (FCFS) discipline.

• Second, the remaining message size information needed
for SRPT is not available in today’s transport protocols.

There have been some studies (e.g., [5]–[11]) on how to
harness the advantage of SRPT via feasible industry solutions.
A promising approach is to emulate SRPT based on the
preemptive size-based scheduling policies. The feasibility of
this idea relies on the following two facts.

• First, most commodity switches provide support for mul-
tiple FIFO queues (typically eight to ten [6], [12], [13]).

• Second, the original size of a message is available to the
switch.1 This information allows the switch to prioritize
the short messages in transmission.

The above two facts make it possible to emulate SRPT by
putting shorter messages into the FIFO queue with a higher
transmission priority, so that they can finish faster. This idea
is coined as approximate and deployable SRPT (ADS) by
Mushtaq et al. in [11]. Fig. 1 provides an illustration based
on the switch with K FIFO queues. It works as follows:

• The switch assigns the incoming message based on its
original message sizes to one of the K FIFO queues.

1RDMA is completely message-orientated [14]. The sender must specify
the size information in the first packet to be transmitted [9].
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Fig. 1. An illustrative ADS design with K FIFO queues.

Each FIFO queue has a predefined size interval. In Fig 1,
a smaller queue index means a higher priority for trans-
mission. These size intervals define the size-based priority
mapping.

• The switch will transmit the messages based on the
predefined priority. A newly-arrived short message (e.g.,
assigned to FIFO queue 2) can preempt the long message
being transmitted (e.g., in FIFO queue 3). The switch
will resume transmitting the interrupted message when
the FIFO queues with higher priority (than it) are empty.

Mushtaq et al. in [11] explore the ADS design space in
different dimensions based on the packet-level simulation (see
Section 3.1 in [11]). This paper provides the first theoretical
study on two critical dimensions in ADS design, i.e., the
priority mapping and the number of used FIFO queues.
Despite some system-level ADS studies (e.g., [5]–[11]), there
is no theoretical framework on how to jointly optimize the
size-based priority mapping and the number of adopted prior-
ity levels. In this paper, we take the initial step to fill this void,
and propose a unified theoretical framework for designing
ADS scheduling policy. Specifically, we aim to address the
following two fundamental questions:

Question 1: Given K ≥ 2 FIFO queues in the switch, what
is the optimal size-based priority mapping scheme?

Question 2: If the switch could provide sufficient FIFO
queues, what is the optimal number of priority levels?

Question 1 corresponds to the practical ADS scheduling
policy design given the switch with a fixed number of FIFO
queues. For Question 2, we investigate the optimal number
of priority levels to adopt. Although more available FIFO
queues provide a better design flexibility, we show that the
optimal ADS scheduling policy is not necessary to utilize all
the available FIFO queues. The number of used FIFO queues
may depend on factors such as the message size distribution
and the network load intensity. By investigating Question 2,
we reveal when it is necessary to upgrade the current switch
by increasing the embedded FIFO queues.

B. Main Results and Key Contributions

Our main results and key contributions in this paper are
summarized as follows:

• A Unified Framework for ADS Scheduler: We leverage
the discrete message size, and characterize a wide range
of ADS scheduling policies via a unified framework. The
scheduling policies within this framework only require
the original message size and a few FIFO queues,
thus provide a feasible industry solution for commodity
switches. Under this framework, we derive the steady-
state MCT, slowdown, and impoliteness in the M/G/1

setting, which facilitates the subsequent optimal ADS
policy design.

• Problem Formulation for ADS Policy Design: We
formulate the optimal ADS design as a non-linear
combinatorial optimization problem, with the goal to min-
imize the average steady-state MCT given the available
FIFO queues in the switch. We also take into account
the proportional fairness and temporal fairness constraints
based on the maximal steady-state slowdown and impo-
liteness, respectively. The two fairness considerations
enable us to avoid the starvation of long messages and
control the out-of-order delivery, respectively.

• Optimal ADS Policy: The above ADS design problem is
NP-hard in general, and does not exhibit monotonicity or
sub-modularity. We leverage the decomposable structure
in this problem, and devise an efficient algorithm to
solve the optimal ADS policy. Our approach leads to the
optimal priority mapping, and can also unveil the optimal
number of priority levels. As far as we know, we are the
first to jointly address the two fundamental challenges in
ADS design.

• Flow-Level Simulations: We carry out flow-level sim-
ulations based on the realistic heavy-tail message size
distributions. Results show that the optimal ADS policy
on eight FIFO queues can maintain almost the same
performance as SRPT in the M/G/1 setting. We also
demonstrate its robustness from two aspects. First, the
optimal number of priority levels is not sensitive to the
load and the message size variation. Second, the optimal
ADS policy derived from the M/G/1 analytical model can
still retain the performance of SRPT in the non-Poisson
scenario with the same load.

• Packet-Level Experiments: We carry out extensive
packet-level experiments on NS-3. The results validate
that the optimal ADS policy on eight FIFO queues is
capable of emulating the true SRPT in terms of the average
slowdown across different percentiles for short messages.

The remainder of this paper is organized as follows.
Section II reviews the related literature. Section III introduces
the system model and formulates the ADS design problem.
Section IV derives the optimal ADS policy. We provide the
flow-level and packet-level simulation results in Section V and
Section VI, respectively. Section VII concludes this paper.

II. LITERATURE REVIEW

We first review some ADS implementations in Section II-A,
and then compare the analytical models for ADS design in
Section II-B.

A. ADS Implementation

We introduce some ADS implementations, focusing on their
priority mapping schemes and the number of priority levels.

1) Priority Mapping Scheme: The priority mapping scheme
usually uses either static priority or dynamic priority.

• Static Priority based on Original Size: Some ADS imple-
mentations define a static scheduling priority based on
the original message size, thus are easy to implement.
Cisco’s dynamic packet prioritization (DPP) [5] adopts
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two priority queues and assigns messages by comparing
their original sizes to a predefined size threshold.

• Static Priority based on Remaining Size: Some proposals
define the static priority based on the remaining size,
which can achieve the near-optimal performance at the
cost of a higher implementation complexity. In pFab-
ric [6], each packet carries the number of currently
remaining bytes in this flow, so that the switch can
prioritize those packets with the lowest remaining size.
It relies on some specialized hardwares, thus cannot be
easily implemented on commodity switches. PIAS [7]
provides a different technique and assumes that the flows
are short until proven long. As the flow progresses, the
priority decreases accordingly.

• Dynamic Priority: Different from pFabric and PIAS that
compute the priorities at senders, pHost [8] and Homa [9]
compute the priorities entirely at receivers. In this case,
both pHost and Homa will assign the priorities dynam-
ically on receivers and integrate the priorities with a
receiver-driven flow control mechanism.

In this paper, we focus on the static priority defined based
on the original message size, which is easy to be implemented
on the commodity switches.

2) Number of Adopted Priority Levels: The aforementioned
studies (i.e., [5]–[9]) usually consider a small number of
FIFO queues (e.g., from 2 to 8). Moreover, Lu et al. in [10]
focus on achieving good MCT performance using only two
FIFO queues. So far, there is no formal study on the optimal
number of priority levels to be adopted in ADS design. This
aspect is critical in practice, since it unveils the necessity of
upgrading the switch hardware. We will address this issue and
propose a unified framework for ADS policy in this paper. This
framework allows us to jointly optimize the priority mapping
and the number of priority level, which will be elaborated in
the following.

B. Analytic Model for ADS Design

Some previous studies (e.g., [6], [7]) introduce their analyt-
ical models for priority mapping optimization. These models
are usually based on the K-class polling system [15], where
the incoming messages are classified based on K − 1 size
thresholds. Under this model, however, it is usually chal-
lenging to optimize the ADS scheduling policy due to the
non-convexity and the dimensionality:

• Non-Convexity: The optimization problem is usually
non-convex in the K−1 size thresholds (i.e., the decision
variables), thus it is challenging to obtain the optimal
priority mapping scheme. Some studies (e.g., [6], [11])
adopt a simple equal-splitting heuristic, which has no
optimality guarantee. Hence the previous studies do not
systematically address Question 1.

• Dimensionality: Under the K-class polling system, it is
not difficult to analyze the steady-state performance, but
it is challenging to investigate whether K priority levels
are optimal or not. Hence the aforementioned studies
usually overlook the optimal number of priority levels,
i.e., Question 2.

In this paper, we will propose a novel analytical model
to characterize the ADS scheduling policy by leveraging
the discrete message sizes. Specifically, we associate each
message size with a binary variable indicating its preemp-
tion allowance. This enables us to capture a wide range of
feasible ADS scheduling policies via a unified framework (as
a binary vector). We then formulate the optimal ADS policy
design as a combinatorial optimization problem. Although it
is not monotonic or sub-modular, we derive the optimal ADS
policy relying on the decomposable structure. Moreover, our
approach can also unveil the optimal number of priority levels
to be adopted, thus resolves the two fundamental key questions
proposed in Section I-A.

III. SYSTEM MODEL

We study the ADS scheduling policy design installed on the
switch of DCN. We model this problem based on the M/G/1
queueing system. Specifically, the messages of different sizes
arrive at the switch according to a Poisson process with the
rate λ. We quantify the message size in the number of packets,
and model it as a discrete random variable on the support set
N = {1, 2, . . . , N}, where N indicates the maximal message
size. Let f(n) denote the probability mass function (PMF),
and let F (n) �

∑n
i=1 f(i) denote the cumulative distribution

function (CDF). Without loss of generality, we consider a
normalized bandwidth, thus the service time of transmitting
a size-n message is n. Accordingly, we follow some classic
notations from [16] and denote the expected service time as

1
μ

�
N∑

n=1

nf(n), (1)

where μ represents the serving rate, and the network load
is ρ � λ

μ .
We will introduce some preliminary results in Section III-A,

and then characterize the ADS scheduling policy via a unified
framework in Section III-B. Finally, we formulate the ADS
design problem in Section III-C.

A. Preliminary Results

The scheduling policies in the queueing system can be
evaluated according to different performance metrics. In our
ADS design framework, we will focus on three crucial metrics:
response time, slowdown, and impoliteness.

• Response time indicates the efficiency of a scheduling
policy. In the network applications, the message com-
pletion time (MCT) measures the time from when the
first packet of a message is sent until the last packet
is received [17]. Therefore, when we focus on a single
switch, MCT and response time are equivalent.

• Slowdown is used to evaluate proportional fairness,
which is proposed in [18] and generalized in [19]. Specif-
ically, the slowdown of a message is defined as the
response time of the message divided by the time that
the same message would take to complete if it was the
only message in the system (e.g., [6]–[9]).

• Impoliteness is used to evaluate temporal fairness, which
is proposed in [20]. The impoliteness perceived by a
message is defined as the fraction of response time during
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TABLE I

COMPARISON BETWEEN ADS FRAMEWORK AND TYPICAL SCHEDULING POLICIES

which its seniority (i.e., the arrival order) is violated.
Moreover, the impoliteness takes values in [0, ρ], where
ρ is the network load.

For any scheduling policy P , we let Tn(P), Sn(P), and
Rn(P) denote the steady-state MCT, slowdown, and impolite-
ness associated with the size-n message, respectively. Partic-
ularly, when we focus on the normalized bandwidth, we have
Sn(P) = Tn(P)/n for any n ∈ N .

In Section III-B, we will introduce our proposed ADS
framework. To facilitate our later discussion, we first elaborate
the relation between several well-known scheduling policies
and the ADS framework based on Fig. 2 and Table I.

• The scheduling policy that treats all the arrived mes-
sages equivalently is called the symmetric policy, which
is always proportionally fair. Processor-Sharing (PS)
and Preemptive-Last-Come-First-Serve (PLCFS) are two
typical examples of symmetric policies, and achieve
Sn(PS) = Sn(PLCFS) = 1

1−ρ for any n ∈ N .
• The scheduling policy that prioritizes the short

messages can reduce the average MCT. Shortest-
Remaining-Processing-Time (SRPT) achieves the nearly
optimal average MCT. Preemptive-Shortest-Job-First
(PSJF) prioritizes the messages with the small original
size. In the M/G/1 setting, PSJF is 1.5-competitive to
SRPT in terms of the average MCT [20].

• The scheduling policy that prioritizes the message senior-
ity (i.e., the arrival order) can reduce the average impo-
liteness, thus advocates the temporal fairness. It is known
that First-Come-First-Serve (FCFS) is the mostly tempo-
rally fair, i.e., Rn(FCFS) = 0 for any n ∈ N . However,
Preemptive-Last-Come-First-Server (PLCFS) is the worst
temporally fair, i.e., Rn(PLCFS) = ρ for any n ∈ N .

As we will see in Section III-B, our proposed ADS frame-
work can generalize a wide range of preemptive size-based
scheduling policies, which are shown by the green region in
Fig. 2. The scheduling policies in this framework only rely on
a few FIFO queues and the original message size information.
As we will see in Section III-C, by appropriately optimizing
the ADS policy within this framework, we are able to harness
the advantage of SRPT under a tunable fairness guarantee.

B. Unified Framework for ADS Scheduling Policy

Recall that the ADS design aims to emulate SRPT via the
priority-based scheduling installed on a few FIFO queues.
The priority should only depend on the original message

Fig. 2. Comparing some scheduling polices (e.g., PS, PLCFS, SRPT, PSJF,
FCFS) to our ADS framework (i.e., green region).

size instead of the remaining message size (which is not
available). Therefore, we focus our ADS design on the pre-
emptive size-based scheduling policies, and propose a unified
framework to characterize them in the following. Table II
summarizes the key notations.

1) General Characterization: Our proposed ADS policy
characterization uses a binary variable xn ∈ {0, 1} to indicate
the preemption allowance associated with the message size
n ∈ N . The physical meaning of xn ∈ {0, 1} is as follows:

• The case of xn = 0 represents that the size-n messages
have the same priority as the messages of size n + 1.
In this case, all the messages of size n and size n+1 will
be assigned to the same FIFO queue in the switch, thus
will be transmitted according to the FCFS discipline.

• The case of xn = 1 represents that message size n has
a higher priority than other message sizes greater than
n. It has two-fold implications. First, any size-n message
will be assigned to FIFO queues with a higher priority
than the messages greater than n. Second, a newly-arrived
size-n message can immediately preempt the current
transmission of a message greater than n in the switch.

Based on the above discussion, we characterize a wide range
of preemptive size-based scheduling policies as the following
N -dimensional binary vector

x � (xn ∈ {0, 1}: ∀n ∈ N ) . (2)

We say that the message size n ∈ N is a preemption point if
and only if xn = 1. In particular, xN ∈ {0, 1} has no effect
on the scheduling policy, since N is the maximal message
size. For notation simplicity, we will fix xN = 1 in this paper.
Accordingly, the ADS policy x is chosen from the scheduling
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TABLE II

KEY NOTATIONS

policy set X , i.e.,

X �
(
x ∈ {0, 1}N : xN = 1

)
. (3)

The operator of the DCN could determine the adopted ADS
policy x ∈ X for the switch. Note that any scheduling policy
x ∈ X relies only on the original message size information,
thus is deployable via FIFO queues in the switch. However,
the policies in the set X differ in the number of required FIFO
queues, which represents the hardware resource requirement
on the switch. To better understand, we discuss two special
cases in the following.

2) Two Special Cases: As shown in Fig. 2, the vector x ∈ X
generalizes PSJF and FCFS as special cases.

• The case of x = 1N corresponds to Preemptive-Shortest-
Job-First (PSJF), where 1N denotes the N -dimensional
all-one vector. It strictly prioritizes the messages of the
smallest original size. Given the message size set N ,
it requires a total of N FIFO queues to implement PSJF
on the switch, one for each message size. Hence PSJF
is the most costly scheduling policy among the policy
set X .

• The case of x = (0N−1, 1) corresponds to First-Come-
First-Serve (FCFS), which has no prioritization across all
the message sizes. It only requires one FIFO queue to
implement FCFS on the switch.

The above discussions indicate that PSJF requires much
more FIFO queues than FCFS. Moreover, PSJF is also able to
attain a smaller average MCT than FCFS. Nevertheless, we will
show later that such a costly policy may not be the optimal
ADS design. That is, it is possible for us to devise an ADS

TABLE III

AN ILLUSTRATION BASED ON EXAMPLE 1

policy in the set X that achieves a smaller average MCT using
much fewer FIFO queues than PSJF. For this goal, we need
to characterize the message assignment outcome induced by
the policy x ∈ X .

3) Message Assignment to FIFO Queues: The scheduling
priority defined by the N -dimensional vector x ∈ X deter-
mines a unique message assignment to the FIFO queues.
To understand the message assignment, we use a simple
example to illustrate the connection between the binary vector
x and the FIFO queues.

Example 1: Suppose that N = 9, then the policy x =
(0, 0, 1, 0, 0, 0, 1, 0, 1) requires a total of three FIFO queues.

• The messages of sizes {1, 2, 3} will be assigned to FIFO
queue 1, which has the highest priority.

• The messages of sizes {4, 5, 6, 7} will be assigned to
FIFO queue 2, which has the second highest priority.

• The messages of sizes {8, 9} will be assigned to FIFO
queue 3, which has the lowest priority.

The above example shows that the scheduling policy x ∈ X
requires a total of

∑N
n=1 xn FIFO queues. To characterize the

message assignment to the
∑N

n=1 xn FIFO queues, we first
need to define some intermediate notations. Given the policy
x ∈ X , we let ln(x) denote the largest preemption point in
the message size subset {1, 2, . . . , n − 1}, i.e.,

ln(x) � max
1≤i<n

i · xi

s.t. xi = 1, (4)

where we let ln(x) = 0 if xi = 0 for any i ∈ {1, 2, . . . , n−1}.
Furthermore, let rn(x) denote the smallest preemption point
in the message size subset {n, n + 1, . . . , N}, i.e.,

rn(x) � min
n≤i≤N

i · xi

s.t. xi = 1, (5)

where we have rn(x) = n if xn = 1.
The above definitions imply ln(x) < n ≤ rn(x) for any

size n ∈ N . Table III illustrates ln(x) and rn(x) based
on Example 1. Moreover, Proposition 1 presents the general
message assignment outcome induced by the policy x ∈ X
based on ln(x) and rn(x). The proof is given in appendix.

Proposition 1: For any n ∈ N , the messages of sizes in the
set {ln(x) + 1, ln(x) + 2, . . . , rn(x)} will be assigned to the
FIFO queue with the Kn(x)-th priority, where Kn(x) is

Kn(x) �
rn(x)∑
i=1

xi. (6)

So far, we have introduced the general ADS framework and
the corresponding message assignment outcome. Next we will
formulate the optimal ADS design problem.
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C. Problem Formulation

We will formulate the optimal ADS scheduling policy
design based on the steady-state performance metrics. Fol-
lowing the notations in Section III-A, we let Tn(x), Sn(x),
and Rn(x) denote the steady-state MCT, slowdown, and
impoliteness associated with the size-n message under the
ADS policy x ∈ X . We will introduce how to derive them
in Section IV-A.

To emulate SRPT, our optimal ADS design formulation aims
to minimize the average steady-state MCT. Moreover, we will
also take into account other crucial requirements, i.e., the
number of available FIFO queues and the fairness issues. Next
we introduce the details.

1) Average Steady-State MCT: Based on the above discus-
sion, the average steady-state MCT achieved by the policy
x ∈ X is given by

T̄ (x) �
N∑

n=1

Tn(x)f(n), (7)

where f(·) is the probability mass function of the message
size distribution. We will derive Tn(x) in Section IV-A.

2) Number of FIFO Queues: Let K denote the number of
available FIFO queues in the switch, which is the hardware
limitation in practice. Hence a feasible ADS policy x ∈ X
should not require more than K FIFO queues, i.e.,

N∑
n=1

xn ≤ K. (8)

Particularly, the case of K = 1 will force the feasible
scheduling policy to be FCFS, i.e., x = (0N−1, 1).

3) Fairness Requirement: In general, reducing the average
MCT requires that the scheduling policy should prioritize the
short messages. However, prioritizing short messages may lead
to undesirable outcomes. This motivates us to take into account
the fairness issue from the following two aspects.

• First, prioritizing short messages may result in a signif-
icantly large MCT for long messages. To prevent the
starvation of long messages, we introduce the following
constraints

Sn(x) ≤ Smax, ∀n ∈ N , (9)

which indicates that the maximal steady-state slowdown
should be no greater than Smax. According to the prelim-
inary results in Section III-A, the case of Smax = 1

1−ρ
corresponds to proportional fairness (e.g., [18], [19]).

• Second, prioritizing short messages may lead to the out-
of-order delivery, which could result in a significant jitter
for video streaming applications [21]. To prevent the
serious out-of-order delivery, the ADS scheduling policy
should respect the message seniority to some degree.
Hence we introduce the following constraints

Rn(x) ≤ Rmax, ∀n ∈ N , (10)

which indicates that the maximal steady-state impolite-
ness should be no greater than Rmax. According to the
preliminary results in Section III-A, the case of Rmax =
0 forces the policy to be FCFS, i.e., x = (0N−1, 1).

4) ADS Policy Design Problem: Based on the above discus-
sions, we formulate the optimal ADS policy design in Prob-
lem 1, which aims to minimize the average MCT considering
the aforementioned three types of constraints.

Problem 1 is a non-linear combinatorial optimization prob-
lem, which is NP-hard in general. Moreover, it does not exhibit
monotonicity or sub-modularity, thus the greedy algorithm has
no performance guarantee in this problem. In Section IV,
we will introduce how to efficiently solve Problem 1 by
exploiting its decomposable structure.

IV. ADS POLICY DESIGN

In this section, we first derive the steady-state performance
of the ADS policy x ∈ X in Section IV-A. We then introduce
the key idea of solving Problem 1 and the detailed algorithm
in Section IV-B and Section IV-C, respectively.

A. Steady-State Performance

We will derive the steady-state MCT Tn(x), slowdown
Sn(x), and impoliteness Rn(x) achieved by the ADS policy
x ∈ X based on a series of auxiliary systems.

1) Auxiliary Systems: Given the network workload charac-
teristics {λ,N , f(·)}, we define the auxiliary system A(i) in
the following.

Definition 1: The auxiliary system A(i) is an M/G/1 queue-
ing system satisfying the following conditions:

1) The arrival rate of A(i) is λA � λF (i).
2) The service time distribution of A(i) is

fA(t) �

⎧⎨
⎩

f(t)
F (i)

, if t ∈ {1, 2, . . . , i},
0, otherwise.

(12)

As we will see later, the steady-state analysis of the policy
x ∈ X is closely related to the above auxiliary systems.
To facilitate our later discussion, let us follow some classic
notations from [16], and introduce three formulas ρ(i), V (i),
and W (i) for the auxiliary system A(i).

• First, we let ρ(i) denote the load of the auxiliary system
A(i), i.e.,

ρ(i) � λA

i∑
t=1

tfA(t) = λ

i∑
t=1

tf(t). (13)

• Second, we let V (i) denote the expected remaining
service time of the job being served at a random time
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Fig. 3. An illustrative transmission progress of a size-n message.

point in the auxiliary system A(i). Given the M/G/1
setting, we have

V (i) � λA

2

i∑
t=1

t2fA(t) =
λ

2

i∑
t=1

t2f(t). (14)

• Third, we let W (i) denote the expected remaining service
time of all the jobs in the auxiliary system A(i) at a
random time point. Based on Kleinrock’s Conservation
Law [22], we have

W (i) � V (i)
1 − ρ(i)

. (15)

2) Steady-State MCT and Slowdown: We now derive the
steady-state MCT Tn(x) based on the aforementioned aux-
iliary systems. We will take a representative size-n message
as an example, and elaborate the scheduling progress of the
switch. As shown in Fig. 3, there are three major phases:

• Fig. 3(a): When a size-n message (i.e., the yellow rec-
tangle) arrives, it will be assigned to the FIFO queue of
the Kn(x)-th priority according to Proposition 1.

• Fig. 3(b): The switch will not start transmitting this size-
n message until those messages waiting in the top Kn(x)
FIFO queues are completed.

• Fig. 3(c): When this size-n message is being transmitted,
any newly-arrived shorter messages with a higher priority
will immediately preempt its current transmission.

The above discussions imply that the steady-state MCT Tn(x)
satisfies the following equation

Tn(x) = W
(
rn(x)

)︸ ︷︷ ︸
Part I

+ n︸︷︷︸
Part II

+ Tn(x)ρ
(
ln(x)

)︸ ︷︷ ︸
Part III

, (16)

which implies that the steady-state MCT Tn(x) equals to the
summation of three parts. Solving (16) with respect to Tn(x)
will lead to the closed-form expression. To understand this
equation, let us elaborate the physical meaning of the three
parts on the right-hand-side of (16):

• Part I in (16) represents the expected remaining service
time of messages in the top Kn(x) FIFO queues when
the size-n message arrives. We obtain this term in two
steps. First, Proposition 1 indicates that the messages of
sizes {1, 2, . . . , rn(x)} will be assigned to top Kn(x)
FIFO queues. Second, the top Kn(x) FIFO queues can be
viewed as a subsystem (i.e., the green region in Fig. 3(a)),

which is equivalent to the auxiliary system A(rn(x)).
Finally, substituting rn(x) into (15) yields Part I in (16).

• Part II in (16) represents the service time of transmitting
the size-n message itself given the normalized bandwidth.

• Part III in (16) represents the expected service time of
the messages that arrive later but have a higher priority
than this size-n message during the response time Tn(x).
We obtain this term in two steps. First, Proposition 1
shows that the messages of sizes in {1, 2, . . . , ln(x)} will
be assigned to the top Kn(x)−1 FIFO queues, thus have
a higher priority than the size-n message. Second, the top
Kn(x) − 1 FIFO queues can be viewed as a subsystem
(i.e., the green region in Fig. 3(c)), which is equivalent to
the auxiliary system A(ln(x)). Therefore, Tn(x)ρ(ln(x))
represents the expected service time of the messages that
will interrupt this size-n message during its transmission.

Based on Equation (16), we derive the steady-state MCT of
the size-n message as follows:

Tn(x) =
[

V (rn(x))
1 − ρ(rn(x))

+ n

]
1

1 − ρ(ln(x))
, (17)

where ρ(·) and V (·) are given in (13) and (14), respectively.
Given the normalized bandwidth, the steady-state slowdown
seen by a size-n message is:

Sn(x) =
[

V (rn(x))
1 − ρ(rn(x))

· 1
n

+ 1
]

1
1 − ρ(ln(x))

. (18)

3) Steady-State Impoliteness: We will take a representative
size-n message as an example, and derive the steady-state
impoliteness. Recall that the impoliteness perceived by the
size-n message is defined as the fraction of its MCT during
which the seniority (i.e., the arrival order) of this message
is violated [20]. We will derive the steady-state impoliteness
Rn(x) in two steps:

• According to the elaboration on Fig. 3, the seniority of
this size-n message will be violated if and only if the
later-arrived messages have a higher priority than this
size-n message. In this case, the current transmission of
the size-n message will be interrupted, thus its serenity
is not respected.

• According to the discussion on Part III in (16),
Tn(x)ρ(ln(x)) represents the expected total service time
of the messages that can interrupt the size-n message
during its completion time Tn(x).
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The above two aspects indicate that the steady-state impolite-
ness perceived by the size-n message is given by

Rn(x) � Tn(x)ρ(ln(x))
Tn(x)

= ρ(ln(x)). (19)

Note that Rn(x) is non-decreasing in n. That is, the longer
messages perceive the greater impoliteness.

So far, we have derived the steady-state performance
achieved by the ADS policy x ∈ X . We are now ready to
analyze the optimal ADS policy design in Problem 1.

B. Key Idea of Solving Problem 1

We will introduce the key idea of solving Problem 1 based
on its decomposable structure, the sub-problem definition, and
the recursive relation.

1) Decomposable Structure: According to the definition
of the N -dimensional binary vector x, Problem 1 has a
decomposable structure. Specifically, the preemption design
xn = 1 indicates that the messages of sizes {1, 2, . . . , n}
have a higher priority than the messages of sizes {n + 1, n +
2, . . . , N}. This naturally leads to Proposition 2. The proof is
given in appendix.

Proposition 2: For any i, n, j ∈ N satisfying i ≤ n < j,
the following is true: if xn = 1, then xj ∈ {0, 1} does not
affect the size-i messages’ steady-state MCT Ti(x), slowdown
Si(x), and impoliteness Ri(x).

Proposition 2 shows that the preemption design xn = 1
enables us to decompose the objective and constraints in
Problem 1 with respect to the size index n. This allows us
to decompose Problem 1 into sub-problems, and then solve
the original problem in a recursive manner. Next we define
the sub-problem of Problem 1.

2) Sub-Problem for ADS Design: Based on Problem 1,
we will define a series of sub-problems for ADS policy design.
Problem 2 corresponds to the type-(k, i) sub-problem.

We let H(k, i) denote the optimal value of the type-(k, i)
sub-problem. For presentation convenience, we will refer to
H(·, ·) as the cost matrix. Note that the type-(K, N) sub-
problem is mathematically equivalent to Problem 1. Therefore,
the optimal ADS policy x� defined in Problem 1 and the cost

H(K, N) satisfy

H(K, N) =
N∑

n=1

Tn(x�)f(n). (21)

Furthermore, to understand the major rationale of the type-
(k, i) sub-problem, we have two-fold elaboration:

• First, (20b) shows that the size i is a presumed preemp-
tion point. This is crucial to maintain the decomposable
structure according to Proposition 2. In this case, the
type-(k, i) sub-problem is only related to the top i binary
variables, i.e., (20f), which enables us to focus on the
message size subset {1, 2, . . . , i} in the objective function
(20a) and the fairness constraints (20d) and (20e).

• Second, (20c) shows that the type-(k, i) sub-problem
requires that there should be at most k preemption points
in the message size subset {1, 2, . . . , i}, where i is the
presumed one.

In Section IV-C, we will derive the optimal ADS policy
x� based on the cost matrix H(·, ·). Before, that, we need to
efficiently calculate the cost matrix via the following recursive
relation.

3) Recursive Relation: To facilitate the later discussion,
we define some intermediate functions as follows:

T̂n(s, e) =
[

V (e)
1 − ρ(e)

+ n

]
1

1 − ρ(s)
, (22a)

Ŝn(s, e) =
[

V (e)
1 − ρ(e)

· 1
n

+ 1
]

1
1 − ρ(s)

, (22b)

R̂(i) = ρ(i), (22c)

where ρ(·) and V (·) are given in (13) and (14), respectively.
Based on (22), one can express the size-n message’s steady-
state MCT in (17), the slowdown in (18), and the impoliteness
in (19) as follows:

Tn(x) = T̂n

(
ln(x), rn(x)

)
,

Sn(x) = Ŝn

(
ln(x), rn(x)

)
,

Rn(x) = R̂(ln(x)). (23)

Lemma 1 presents the recursive relation for the cost matrix
H(·, ·). We will elaborate how it works in the following proof.

Lemma 1: The cost H(k, i) in Problem 2 satisfies

H(k, i) = min
0≤q<i

H(k − 1, q) +
i∑

n=q+1

T̂n(q, i)f(n) (24a)

s.t. Ŝq+1(q, i) ≤ Smax, (24b)

R̂(q) ≤ Rmax, (24c)

where H(k − 1, q) represents the cost of the type-(k − 1, q)
sub-problem.

Proof of Lemma 1: To understand (24), we consider a
message size q ∈ {0, 1, . . . , i − 1}, and then focus on the
type-(k, i) sub-problem and the type-(k − 1, q) sub-problem.
The major reasoning consists of the following three steps:

• First, the type-(k, i) sub-problem requires that there
should be at most k preemption points among the mes-
sage sizes {1, 2, . . . , i}, where the message size i is a pre-
sumed one. The type-(k−1, q) sub-problem requires that
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there should be at most k − 1 preemption points among
the message sizes {1, 2, . . . , q}, where the message size
q is a presumed one.

• Second, given the above two presumed preemption points
q and i, if there is no other preemption point in the size
set {q + 1, q + 2, . . . , i − 1}, then for any message size
n ∈ {q + 1, q + 2, . . . , i}, the corresponding steady-state
MCT, slowdown, impoliteness are T̂n(q, i), Ŝn(q, i), and
R̂(q), respectively.

• Third, Ŝn(q, i) is decreasing in n ∈ {q +1, q +2, . . . , i},
the inequality (24b) is the necessary and sufficient condi-
tion of Sn(x) ≤ Smax for any n ∈ {q + 1, q + 2, . . . , i}.

Based on the above discussion, appropriately choosing the
optimal q ∈ {0, 1, . . . , i − 1} will lead to (24). �

C. Algorithm Design

Algorithm 1 summarizes our proposed approach for solving
the optimal ADS policy x�. It works in two steps as follows:

• Lines 2-10 calculate the cost H(k, i) and the policy
P (k, i) for any k ∈ {1, 2, . . . , K} and i ∈ {1, 2, . . . , N}.
Each iteration (k, i) consists of two parts:
– Lines 4-8 utilize the recursive relation in Lemma 1 to

calculate H(k, i) and P (k, i).
– Lines 9-10 obtain the cost H(k, i) = Ψ(q∗) and the

policy P (k, i) = q∗ for this iteration (k, i).
• Lines 11-15 generate the optimal ADS policy x� based

on the policy matrix P (·, ·). Specifically, we start with
the type-(K, N) sub-problem in Line 11, and find out the
optimal preemption points repetitively in Lines 12-15.

The running time complexity and the space complexity of
Algorithm 1 are O(KN2) and O(KN), respectively. The
number of available FIFO queues K is usually a small number
for commodity switch. Hence the implementation complexity
of Algorithm 1 primarily depends on the number of different
message sizes N in practice.2

Our above analysis takes into account the limitation from
the number of available FIFO queues, i.e., the constraint (8).
Hence we have addressed Question 1. Roughly speaking, the
analysis above is based on the two-dimensional dynamic pro-
gramming. To obtain the optimal number of adopted priority
levels, i.e., Question 2, one should remove the constraint (8)
and investigate the optimal ADS design. This setting will
not increase the analytical challenge; in fact the absence of
constraint (8) will simplify the sub-problem definition and the
recursive relation. In this case, the problem becomes a standard
one-dimensional dynamic programming. It is not difficult to
show that the corresponding simplified algorithm has the
running time complexity O(N2) and the space complexity
O(N). In Section V, we will investigate how the optimal
number of priority levels scales as N increases.

So far, we have finished the theoretical analysis of the ADS
policy design. To evaluate the performance, we first provide

2In this paper, we consider all the size values no greater than N , i.e.,
N = {1, 2, . . . , N}. To reduce the complexity, one could consider N =
{1, 10, 20, 30, . . . , N} as the feasible set for ADS design. In this case, the
omitted sizes (e.g., {2,3,…,9,…}) will not act as the preemption points.

Algorithm 1
Input : Arrival rate λ and message size PMF f(·)
Output: The optimal ADS policy x� in Problem 1

1 Initial H(0, 0) = 0, P (0, 0) = 0, and x� = (0N−1, 1)
2 for k = 1 to K do
3 for i = 1 to N do
4 for q = 0 to i − 1 do
5 if Ŝq+1(q, i) > Smax or R̂(q) > Rmax then
6 Ψ(q) = +∞
7 else

8 Ψ(q) = H(k − 1, q) +
i∑

n=q+1
T̂n(q, i)f(n)

9 Find q∗ = min
0≤q<i

Ψ(q)

10 Set H(k, i) = Ψ(q∗) and P (k, i) = q∗

11 Set k = K and n = N
12 repeat
13 Set n = P (k, n) and x�

n = 1
14 k = k − 1
15 until k = 0;

the flow-level simulation results in Section V. We then carry
out the packet-level experiments on NS-3 [23] in Section VI.

V. FLOW-LEVEL SIMULATION

In the flow-level simulation, we first evaluate the
steady-state performance of the optimal ADS design in
Section V-A. We then demonstrate its robustness from the per-
spective of message size distribution and non-Poisson arrival
in Section V-B and Section V-C, respectively.

A. Performance Comparison

We will compare the steady-state performance of different
scheduling policies in the M/G/1 setting. Specifically, we fol-
low the previous studies (e.g., [6], [11], [24]) and assume that
the message size follows a realistic heavy-tail distribution,
where 50% of the messages are of 1KB, 35% are between
(1KB,201KB], and 15% are between (201KB,3000KB].3

Hence we have N = 3000 in this setting. As for the scheduling
policies, we will evaluate the following cases:

• Case Alg(K) denotes the optimal ADS policy x� gen-
erated by Algorithm 1, which requires at most K FIFO
queues due to the constraint (8). In particular, the case
Alg(1) is equivalent to FCFS.

• Case Alg denotes the optimal ADS policy without the
constraint (8). Hence Alg may require up to N FIFO
queues, which is unknown in advance.

• Case ES(K) denotes the simple equal-splitting heuristic
installed on K FIFO queues. This heuristic is widely used
in some previous studies (e.g., [6], [7], [11]), thus it is a
reasonable baseline.

3The message sizes among the intervals (1KB,201KB] and
(201KB,3000KB] are uniformly distributed.
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Fig. 4. Steady-state performance (The number of required FIFO queues is labeled at each bar bottom).

We will compare the above cases with PSJF and SRPT. Note
that PSJF and SRPT do not have fairness guarantee, while
our optimal ADS policy has a tunable trade-off given the
constraints (9) and (10). In this simulation, we will set Smax

and Rmax to large values for the cases Alg(K) and Alg. This
enables us to make the reasonable performance comparison
with PSJF and SRPT.

Fig. 4 plots the average steady-state MCT, slowdown, and
impoliteness. In each sub-figure, the four bars for each policy
correspond to different load λ/μ ∈ {0.3, 0.5, 0.7, 0.9}. At the
bottom of each bar, we label the number of required FIFO
queues. At the top of each bar, we label the average steady-
state performance. Next we elaborate the major observations
obtained from Fig. 4.

Observation 1 Let us first focus on cases Alg(K) for
K ∈ {1, 2, 4, 6, 8}, i.e., the left five cases in each sub-figure.
Given the same load, Fig. 4(a) shows that the average MCT
has a significant drop from K = 1 to K = 2, while the
average MCT only slightly decreases in K ∈ {2, 4, 6, 8}.
This is because that the average MCT is dominated by the
contribution from just a few long messages [25], thus is not
informative when there are many short messages. Fig. 4(b)
shows that the average slowdown of Alg(K) has a significant
drop from K = 2 to K = 4. Moreover, under the heavy
load 0.9, the average slowdown still has an evident drop from
K = 4 to K = 6. This means that the optimal two-priority
policy may be good enough for reducing the average MCT,
but is not good enough for slowdown. Fig. 4(c) shows that the
average impoliteness of Alg(K) monotonically increases in
K ∈ {1, 2, 4, 6, 8}. That is, the optimal ADS policy with more
priority levels will reduce the temporal fairness. Furthermore,

Fig. 5. Structure of x� in Alg(K) with λ/μ = 0.9.

we use Fig. 5 to show the structure of the optimal ADS policy
x� in Alg(K) where K ∈ {2, 3, 4, 5, 6}. Specifically, the
horizontal axis represents the message size. The vertical lines
represent the preemption points (i.e., {i ∈ N : x�

i = 1}) in
the optimal ADS policy x�.

Observation 2: Let us focus on cases Alg(8), SRPT and
PSJF. First, comparing Alg(8) and SRPT in Fig. 4(a) and
Fig. 4(b), we find that the optimal ADS policy installed on
eight FIFO queues is very close to the true SRPT in terms of the
average MCT and slowdown. Moreover, Fig. 4(c) shows that
Alg(8) is more polite than SRPT. Second, comparing Alg(8)
and PSJF in each sub-figure shows that Alg(8) outperforms
PSJF (that requires N = 3000 FIFO queues) in terms of
reducing the average MCT, slowdown, and impoliteness.

Observation 3: Let us focus on cases Alg(8) and ES(8).
Fig. 4(a) and Fig. 4(c) show that Alg(8) slightly outperform
ES(8) in terms of average MCT and impoliteness, respectively.
Fig. 4(b) shows that Alg(8) significantly outperforms ES(8)
in terms of the average slowdown. To better understand,
we further plot the steady-state slowdown for each message
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Fig. 6. Compare ES(K) and Alg(K).

Fig. 7. MCT distribution under λ/μ = 0.9.

size n ∈ N under load 0.5 in Fig. 6(a), where the three curves
correspond to SRPT, Alg(8) and ES(8), respectively. Fig. 6(a)
shows that Alg(8) performs much better than ES(8) in terms of
emulating SRPT for short messages (e.g., smaller than 200KB).
Furthermore, Fig. 6(b) compares the average slowdown of
Alg(8) and ES(K) under different load, which indicates that
the equal-splitting heuristic under 24 FIFO queues is still not
as good as Alg(8).

Observation 4: Let us focus on the case Alg itself. In Fig. 4,
the number of required FIFO queues is labeled at the bar
bottom. It shows that the optimal number of priority levels in
case Alg are {9, 9, 10, 10} under the load {0.3, 0.5, 0.7, 0.9},
respectively. This has two-fold implications. First, the optimal
number of priority levels is much smaller than the number
of different message sizes N = 3000 in this simulation
setup. Second, a heavier load may lead to more priority
levels in the optimal ADS design. In Section V-B, we will
further investigate how the network load and message size
distribution affect the optimal number of priority levels in
case Alg.

So far, we have focused on the average results. Now let
us investigate the percentile MCT shown in Fig. 7. Overall,
Alg(8) performs similar to SRPT and PSJF. In terms of
the 99-th percentile MCT, however, Alg(8) performs slightly
worse than SRPT and PSJF. The reasons are two-fold:

• Our ADS design only relies on the FIFO queues to
emulate SRPT, which leads to the drawback on the 99-th
percentile MCT.

• PSJF is a special case in our design space X . The goal
of our ADS design is to reduce the average MCT, which
possibly scarifies the 99-th percentile MCT. This is the
reason that Alg(8) performs better than PSJF in terms of
the average MCT, but could be slightly worse off than
PSJF in terms of the 99-th percentile MCT.

Fig. 8. Impact of N on case Alg.

B. Optimal Number of Priority Levels

Next we will focus on the case Alg, i.e., the optimal ADS
policy without the constraint (8). To unveil the impact of N ,
we follow the previous studies (e.g., [11], [26]) and consider
the following two heavy-tail message size distributions:

• In the first scenario, we suppose that the message size is
uniformly distributed on the support set {1, 2, . . . , N}.

• In the second scenario, we suppose that the message size
follows the Pareto distribution truncated on the support
set {1, 2, . . . , N}. The scale and shape parameters are
1 and 0.0001, respectively.

Fig. 8 plots the optimal number of adopted priority levels in
the above two scenarios. In each sub-figure, the horizontal axis
represents N in the logarithmic scale, and the vertical axis
represents the optimal number of priority levels in the case
Alg. The three curves in each sub-figure represent different
load. The two sub-figures in Fig. 8 lead to the consistent
insights, which are two-fold:

• First, the circle curve and triangle curve in each sub-figure
of Fig. 8 show that a significant load increase (i.e., from
0.01 to 0.95) increases only a few (i.e., no more than
three) priority levels in the optimal ADS design. That is,
the number of FIFO queues required by the optimal ADS
design is not sensitive to the load variation.

• Second, the optimal number of priority levels increases in
N according to the order O(log N). That is, the optimal
number of priority levels is much smaller than the number
of different message sizes (or the message size variation).

Therefore, the optimal ADS design is robust in the sense
that a tremendous environment change only slightly affects
its hardware requirement, i.e., the number of FIFO queues.

C. Non-Poisson Arrival

Recall that our theoretical analysis in Section III and
Section IV is based on the M/G/1 queueing model. Next
we evaluate the impact of the non-Poisson arrival on the
optimal ADS design. Specifically, we will focus on the realistic
message size distribution used in Section V-A, and consider
the following two non-Poisson arrival scenarios:

• D/G/1: we suppose that the inter-arrival time of messages
is deterministic and equals to 1

λ .
• G/G/1: we suppose that the inter-arrival time of messages

follows the uniform distribution on the support [0, 2
λ ].

In the above two scenarios, the message arrival rates are
both λ. We will calculate the optimal ADS policy x� based on
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Fig. 9. Deterministic inter-arrival time.

the M/G/1 model under the arrival rate λ, and adopt the derived
ADS policy to the above two scenarios. In each simulation
run, we randomly generate 10,000 messages and simulate the
scheduling policies Alg(K) and SRPT.

Fig. 9 corresponds to the D/G/1 scenario. The horizontal
axis in each sub-figure represents the load λ/μ. The vertical
axises in the two sub-figures represent the average MCT and
slowdown, respectively. Note that the two-priority ADS policy
Alg(2) can already maintain the performance of SRPT for the
light-load regime (e.g., λ/μ < 0.4). In the heavy-load regime
(i.e., λ/μ > 0.4), both the ADS policies Alg(4) and Alg(8)
perform almost the same as SRPT.

Fig. 10 corresponds to the G/G/1 scenario, where
the inter-arrival time is uniformly distributed. Comparing
Fig. 10(b) to Fig. 9(b) shows that the randomness of the arrival
process results in the performance degradation for Alg(2) and
Alg(4). Nevertheless, the circle curve in Fig. 10(b) shows that
the ADS policy Alg(8) still retains the performance of SRPT.

VI. PACKET-LEVEL EXPERIMENT

We carry out extensive packet-level experiments on
NS-3 [23] to evaluate the performance of the optimal
ADS design. Specifically, we consider the network topology
shown in Fig. 11(a), where there are 62 senders, a receiver,
and a switch. The bandwidth of each link is 100Gbps.
We generate 3000 messages for each sender according to
the Poisson process. The message size is drawn from the
realistic heavy-tail distribution, where 50% of the messages
are of 1KB, 35% are between (1KB,201KB], and 15%
are between (201KB,3000KB]. We run the experiments for
different scheduling policies under different network load
{0.3, 0.5, 0.7, 0.9}.

A. Average Performance

Fig. 11 shows the average MCT and average slowdown
achieved by SRPT and Alg(K) with K ∈ {2, 4, 8} in the
packet-level experiments. We have two-fold observations:

• As shown in Fig. 11(b), the average MCT achieved by
these scheduling policies is comparable. As we men-
tioned, this is because that a few long messages dominate
the average MCT. Hence the average MCT is not that
informative when there are many short messages.

• As shown in Fig. 11(c), the average slowdown achieved
by Alg(2) still has a significant gap compared to SRPT.

Fig. 10. Uniformly distributed inter-arrival time.

The average slowdown of Alg(4) and SRPT is compa-
rable for the light-load regime (i.e., 0.3, 0.5, and 0.7).
Moreover, Alg(8) achieves a similar average slowdown
compared to SRPT even for the heavy load 0.9.

The above observations indicate that the optimal ADS pol-
icy Alg(8) achieves the similar average MCT and slowdown
compared to SRPT in the packet-level experiments.

B. Performance of Emulating SRPT

We demonstrate how well Alg(K) performs in terms of
emulating SRPT among the preemptive size-based policies
(e.g., PSJF and ES(K)). Fig. 12 plots the pack-level exper-
iment results achieved by PSJF, ES(K), and Alg(K) at load
0.9. The two sub-figures show the overall average slowdown
and percentile slowdown, respectively.

Fig. 12(a) plots the average slowdown across all messages.
It leads to two observations that are slightly different from the
flow-level simulation results in Section V.

• In Fig. 12(a), PSJF is a little better than Alg(8) in terms
of the average slowdown. In Fig. 4(b), however, Alg(8)
is a little better than PSJF.

• In Fig. 12(a), the average slowdown gap between ES(K)
and Alg(K) in the packet-level experiments is smaller
than that in the flow-level simulation shown in Fig. 6(b).

The above inconsistency is because that the flow-level sim-
ulation omits the packet-level dynamics, e.g., the packets of
a message sequentially arrive at the switch. Nevertheless, the
optimal ADS policy Alg(K) still has a significant advantage
over PSJF and ES(K). First, it requires a huge number of
FIFO queues to implement PSJF on the switch, while Alg(8)
needs only eight FIFO queues and achieves the comparable
performance to PSJF. Second, Fig. 12(a) only shows the
overall average slowdown, which still overlooks some critical
information especially for short messages. This motivates
us to compare ES(K) and Alg(K) based on the percentile
slowdown in the following.

Fig. 12(b) plots the average slowdown across different
percentiles for short messages. Based on the adopted message
size distribution, for example, when the horizontal axis is 85%,
the corresponding vertical axis represents the average slow-
down across the messages of sizes {1KB,2KB,…,201KB}.
In Fig. 12(b), the black curve without marker corresponds to
SRPT. The two circle curves represent cases ES(4) and ES(8).
The two triangle curves represent cases Alg(4) and Alg(8).
We find that the solid triangle curve (i.e., Alg(4)) is much
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Fig. 11. Packet-level experiment topology and results.

Fig. 12. Comparing PSJF, ES(K) and Alg(K) in the packet-level experi-
ments under the load 0.9.

closer to the black curve (i.e., SRPT) than the solid circle curve
(i.e., ES(4)) at any percentile. This means that Alg(4) is better
than ES(4) in terms of emulating SRPT. Moreover, we find that
the dash triangle curve (i.e., Alg(8)) almost overlaps with the
black curve (i.e., SRPT) at any percentile. This shows that the
ADS policy Alg(8) is capable of emulating the true SRPT,
especially for the short messages.

VII. CONCLUSION

This paper studies approximate and deployable
SRPT (ADS) design. The ADS design aims to emulate
SRPT relying only on a few FIFO queues and the original
message size information. We first characterize a wide
range of ADS policies via a unified framework as a binary
vector, and then derive the steady-state MCT, slowdown, and
impoliteness in the M/G/1 setting. We formulate the optimal
ADS policy design as a non-linear combinatorial optimization
problem, aiming to minimize the average steady-state MCT
given the available FIFO queues in the switch. We also take
into account the proportional fairness and temporal fairness
issue based on the maximal slowdown and impoliteness.
The optimal ADS design problem is NP-hard, and does
not exhibit monotonicity and sub-modularity. We leverage
the decomposable structure of the problem, and devise an
efficient algorithm to solve the optimal ADS policy. We also
carry out extensive flow-level simulations and packet-level
experiments based on the real-world heavy-tail message size
distributions. The results show that the optimal ADS policy
installed on eight FIFO queues is capable of emulating the
true SRPT. Furthermore, this paper focuses on the discrete
and finite message sizes. The optimal ADS design for the
continuous case still remains as an open problem, and needs
more investigations in the future.

APPENDIX

Proof of Proposition 1: The proof of this proposition
consists of two parts. First, we show that the messages of
sizes in the subset {ln(x)+1, ln(x)+2, . . . , rn(x)} have the
same priority (thus will be assigned to the same FIFO queue).
According to the definitions in (4) and (5), we have

xj =

{
0, if ln(x) + 1 ≤ j ≤ rn(x) − 1,

1, if j = rn(x).
(25)

Based on the definition of the N -dimensional vector x ∈ X ,
(25) indicates that the messages of sizes in {ln(x)+1, ln(x)+
2, . . . , rn(x)} have the same priority. Second, the priority
level of the message subset {ln(x)+1, ln(x)+2, . . . , rn(x)}
depends on the number of the preemption points among the
set {1, 2, . . . , rn(x)}. Hence we have Kn(x) =

∑rn(x)
i=1 xi.

This completes the proof. �
Proof of Proposition 2: The proof of this proposition

consists of two steps. First, the size-i messages’ steady-state
MCT Ti(x), slowdown Si(x), and impoliteness Ri(x) are

Ti(x) =
[

V (ri(x))
1 − ρ(ri(x))

+ i

]
1

1 − ρ(li(x))
,

Si(x) =
[

V (ri(x))
1 − ρ(ri(x))

· 1
i

+ 1
]

1
1 − ρ(li(x))

,

Ri(x) = ρ(li(x)), (26)

which depend on li(x) and ri(x).
Second, the policy x ∈ X satisfying xn = 1 indicates that

we have li(x) < ri(x) ≤ n for any i ≤ n.
The two aspects above show that (26) does not depend on

xj ∈ {0, 1} for any j > n, which completes the proof. �
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