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Abstract—P2P-Video-on-Demand (P2P-VoD) is a popular Internet service which aims to provide a scalable and high quality service to
users. At the same time, content providers of P2P-VoD services also need to make sure that the service is operated with a manageable
operating cost. Given the volume-based charging model by ISPs, P2P-VoD content providers would like to reduce peers’ access to the
content server so as to reduce the operating cost. In this paper, we address an important open problem: what is the “optimal replication
ratio” in a P2P-VoD system such that peers will receive service from each other and at the same time, reduce the access to the content
server? We address two fundamental issues: (a) what is the optimal replication ratio of a movie if we know its popularity, and (b)
how to achieve these optimal ratios in a distributed and dynamic fashion. We first formally show how movie popularities can impact
server’s workload, and formulate the video replication as an optimization problem. We show that the conventional wisdom of using the
proportional replication strategy is “sub-optimal”, and expand the design space to both “passive replacement policy” and “active push
policy” to achieve the optimal replication ratios. We consider practical implementation issues, evaluate the performance of P2P-VoD
systems and show how to greatly reduce server’s workload and improve streaming quality via our distributed algorithms.
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1 INTRODUCTION

IN the past few years, we have seen a growing in-
terest of using the peer-to-peer (P2P) technology to

deliver video-on-demand (VoD) services. There are al-
ready a number of successful P2P-VoD services offer
by companies like PPLive, PPStream and UUSee. The
advantage of using this technology is that the system can
utilize peers’ resources to satisfy other peers’ viewing
need, and thus to achieve a more scalable system as
compared to the traditional client-server architecture.
The main difference between P2P-VoD systems and P2P
live streaming systems is that peers in P2P-VoD service
need to contribute a much larger local cache space, e.g.,
physical memory and local storage so as to cache any
multimedia data, as well as their upload bandwidth
to transfer data among peers. For example, in PPLive
system [6], each peer needs to dedicate 1 GB of local
storage for the P2P-VoD service. This local storage is for
caching some previously watched movies so that in case
a new peer joins the system, this peer does not need
to download from the VoD content server but rather,
obtains the data directly from other peers. This unique
feature not only frees up the VoD content server to
serve other peers, but more importantly, reduces the
upload bandwidth traffic of P2P-VoD content providers.
Since content providers usually pay ISPs based on the
volume-based charging scheme, it is to the best interest
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of a P2P-VoD content provider to reduce the server’s
upload traffic, and a proper caching policy can surely
achieve such goal. Given the distributed cache spaces of
all peers in a P2P-VoD system, the aim of our paper is to
address how to utilize these resource efficiently so as to
reduce the operating cost of a P2P-VoD content provider.
Specifically, given the caching and upload capacities of
peers, can one characterize the “optimal caching policy” so
as to minimize the traffic to the P2P-VoD content server?

Different from the P2P file sharing applications, to
support peers in a P2P-VoD service, one has to guarantee
(1) a low start-up latency in accessing the movies; (2) to
support the required playback-rate for all peers through-
out their viewing sessions. To achieve these goals, a good
replication policy should replicate enough replicas so as
to support the required workload. To illustrate, consider
a P2P-VoD system with 100 peers and each peer offers
one cache unit (i.e., let’s say each cache unit can store one
movie only). There are two movies M1,M2 with the same
viewing popularity, i.e., each with 50 viewers. Assume a
replication policy keeps 99 replicas for M1 but only one
replica for M2. Then, requests for M2 will fail to find
sufficient peers’ support and have to access the P2P-VoD
server. The system is caching excessive number of M1

replicas, furthermore, the system cannot take advantage
of the upload bandwidth of those peers which cache M1.

It is challenging to characterize the optimal caching
policy in a P2P-VoD system, especially when peers have
different upload capacities and movies have different
viewing popularities. These factors make designing the
optimal replication policy an open problem so far. In this
paper, we address the following technical issues:
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• Given movies’ viewing popularities, what is the
optimal ratio of total storage space that should be
dedicated to each movie such that when a new peer
arrives, it is most likely to be served by other peers?

• Given the system dynamics (e.g., peers’ churn), how
to design distributed and adaptive algorithms to
achieve the optimal replication ratios?

It is interesting to note that previous work [6] and
conventional wisdom suggested using the proportional
replication strategy, i.e., replicating movies proportionally
to their popularity. However, authors in [17] reported
a contradicting result that the proportional replication
may have poor performance, especially for unpopular
movies. In this work, we give the formal justifications on
this contradiction and provide insights to the characteri-
zation of the optimal replication ratios. These insights
provide us the principles in designing practical and
effective replication algorithms. Our contributions are:
• We show that proportional replication is not the op-

timal strategy. Instead, one should replicate movies
proportionally to the deficit bandwidth (we will for-
mally define this concept in Sec. 2.4). The optimal
replication strategy should be more greedy for un-
popular movies.

• We expand the design space by considering both
passive and active replication. We propose a passive
replacement algorithm to decide which movie to
purge when a local storage is full; we also propose
an active replication algorithm to aggressively push
data to peers so as to achieve the desired replication
ratios. We evaluate our proposed algorithms and
show significant improvement of video quality and
large reduction on server’s workload.

This paper is extended from our earlier work [20].
The outline is as follows. In Section 2 we present a
mathematical model for P2P-VoD system and give an
optimization framework for the replication problem. In
Section 3 and 4, we discuss the optimal replication
ratios under the software and set-top box deployment
scenarios, respectively. In Section 5, we present our pas-
sive replacement and active push algorithm to achieve
the optimal replication ratios. In Section 6, we consider
several important practical issues in implementation and
present the performance results of our algorithms. Sec-
tion 7 states the related work and Section 8 concludes.

2 SYSTEM ARCHITECTURE AND MODEL

2.1 System Architecture

We first briefly describe a general architecture of a P2P-
VoD system, which mainly consists of (a) content servers,
(b) trackers and (c) peers. The content servers are the
source of content and can upload data to requesting
peers. Each peer seeks to download data from the sys-
tem, and in the meanwhile, it reports to the tracker the
data it caches in the local storage so as to provide upload
service to other peers. Each video file is divided into

small pieces called chunks. When a peer joins the system,
a local tracker recommends it a set of other peers for
downloading its required chunks. This peer exchanges
the buffer map with the recommended peers so that
it can determine the sources to download the required
chunks from. Interested readers may refer to [6] for a
detailed description.

In general, there are two types of deployments: soft-
ware based and set-top box based. They share the similar
architecture as described above, but differ in the follow-
ing. In a software deployment like PPLive or PPstream,
the network is unstructured and regarded as full mesh.
A peer usually contributes to others only when it is
online watching a movie. The system operator cannot
control any peer to be online or offline. On the other
hand, an emerging trend is to install set-top boxes (with
hard-disk inside) at user’s homes and they form a P2P
network. This network is usually fully connected within
a local area so that a single tracker schedules the up-
load/download among peers. The operator can control
the whole network where peers are always “online” even
though they are not watching any movie.

Formally, we define active peers to be those currently
watching a movie and at the same time, providing up-
load service to other peers, while inactive peers are those
currently not watching any movie but staying online
and contributing their upload bandwidth to other peers.
Hence, a software based system only consists of active
peers, while a set-top box deployment may involve both
active and inactive peers.

In general, VoD includes various quality of services.
Supporting Standard Definition (e.g., 2Mbps) or High
Definition (e.g., 4Mbps) can be quite challenging due to
the high bandwidth requirement. Some VoD companies
restrict these services to a limited amount of premium
users. Some movies are of low resolution and can be eas-
ily supported by other peers. Replication mainly helps
in supporting the movies with medium playback rates
(e.g., 500kbps). P2P-VoD companies may also use other
techniques to partially support movies with extremely
high or low popularities (e.g. broadcast for very hot
movies and unicast for very cold movies). For most
movies with popularity in the middle range, replication
strategy needs to be carefully designed so as to alleviate
the server’s workload.

2.2 System Model
We consider a P2P-VoD system G = {S,P,M}, where S
is the logical P2P-VoD content server of the system1, P =
{P1, ..., PN} is the set of peers, and M = {M1, . . . , MK}
is the set of movies stored in S. Let PA represent the
set of active peers, and let Pk represent the set of active
peers which are watching movie Mk. We have Pk ⊆ PA.
Similarly, denote PI as the set of inactive peers. Let ũj

be the maximal upload rate ( i.e., upload capacity) of Pj .

1. A logical P2P-VoD content server may consist of many physical
servers which process any request from peers in a P2P-VoD system.
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Peers which watch movie Mk can access the data from
(a) S, or (b) any other peer which is watching Mk, or (c)
peers which have watched and cached Mk.

The upload bandwidth consumption of S is affected
by (a) the peer scheduling policies, and (b) movie repli-
cation strategies. For the ease of presentation, we decom-
pose these two design problems and use a realistic and
practical peer scheduling strategy: a peer first requests
data from other peers, and only when other peers cannot
supply sufficient bandwidth, then this peer requests data
from S. In here, we focus on the movie replication
strategy and show how it can significantly impact the
upload bandwidth consumption of S. Let us first state
the general P2P-VoD setting, then we give a general
model to show how replication strategy can affect the
upload bandwidth consumption of S.

2.3 Peer Scheduling Policy

A peer scheduling strategy includes two design issues:
(1) from a downloader’s viewpoint, it needs to decide
which peers to request the data from; (2) from an up-
loader’s viewpoint, it needs to decide which peers to
upload the data to when it receives multiple requests.

Let us first describe how an active peer downloads
a movie. Suppose a peer wants to watch movie Mk. In
general, its request can be supported by three different
sources: (a) the server S; (b) active peers which are
currently watching the same movie Mk, and we denote
these as the concurrent peers; (c) peers which are not
watching movie Mk but have stored Mk at their local
cache, and we denote these as the replication peers. Note
that a replication peer may be an active peer watching
another movie; or an inactive peer which has movie Mk

in its cache. Lastly, in order to have a short start-up
latency and good streaming quality, each peer needs to
download the movie at its playback rate r.

In real systems, peers may perform various operations
like fast forward, rewind and replay during the viewing
process. In this paper, we first consider a simplified
sequential viewing model, where peers watch the movies
from the beginning to the end sequentially. We use this
simplification to get a neat model and show the bench-
mark performance of our replication algorithms. In fact,
we only need some simple modifications so as to adapt
to the peer operations, which we will discuss later. We
consider the following practical peer scheduling policy:
a peer first seeks help from concurrent peers; if the
playback rate cannot be satisfied, the peer seeks help
from replication peers; if the playback rate still cannot
be satisfied, the server S will upload the data to this peer
so as to satisfy the playback rate.

We would like to comment on the rationale of this
scheduling policy. We let S be the last requesting target
of a peer in order to reduce the upload consumption
of S so as to reduce the operating cost of the P2P-VoD
system. Note that, in real systems, a peer may cache
only part but not the whole movie (details are discussed

in Section 6). Therefore, requesting from a replication
peer may result in frequent rescheduling: a peer Pi that
requests data from a replication peer Pj needs to look
up other peers for support when Pi’s viewing part is
not cached in Pj . Concurrent peers may also perform
various operations like fast forward, rewind, replay or
even depart, however, a typical peer is more likely to
stick to a movie it is interested in, so it is more likely that
Pi can download from one particular concurrent peer Pk

throughout the watching period. This is why we prefer
concurrent peers over replication peers to support the
viewing requirement. We note that in practical systems,
there might be complicated considerations on schedul-
ing. Our model is not restricted in this preference; in fact,
it can be easily extended to other scheduling policies.

There can be various scheduling policies regarding
how peer Pi should seek help from its concurrent peers.
We would like to point out that our model is applicable
to any policy that satisfies the following two properties:
(a) sequentiality: only the concurrent peers that arrived
earlier than Pi can assist in the data upload for Pi; and (b)
greediness: Pi downloads from earlier-arrived concurrent
peers as much as possible but not exceeding its required
playback rate; peers arriving later than Pi will not be
reserved for uploading unless Pi’s viewing requirement
is totally satisfied by the concurrent peers. Note that the
sequentiality property should be satisfied in any P2P-
VoD system due to the asynchronous nature of VoD
system. The greediness property is needed because it
ensures the maximum efficiency of cooperation among
concurrent peers within a swarm, which we will show in
later section. We call a scheduling policy that satisfies the
greediness property as greedy policy. Note that in a P2P-
VoD system, a greedy policy allows a peer to download
from earlier arrived concurrent peers in any manner, so
the scheduling policy can be easily implemented.

From an uploader’s viewpoint, it may receive mul-
tiple download requests simultaneously. In our work,
an active peer will serve its concurrent peers with a
higher priority. Only when its upload bandwidth is not
fully consumed by concurrent peers, the active peer will
provide the remaining upload bandwidth to other peers.
The rationale of the priority follows the same reasoning
stated above. For an inactive peer, it will upload to those
peers watching any movie that is stored in its local cache.
The assumption is not only for mathematical tractability,
but this simple scheduling rule can also maximize the
number of peers to receive data at the playback rate r.

2.4 Model of Movie Popularity on Server’s Workload

Let us illustrate how the movie popularity can affect the
server’s upload bandwidth. First, peer Pi’s download
rate can be supported partly by concurrent peers, partly
by replication peers, and partly by the server S. Let
d̃c

i and d̃r
i be the total download rates supported by

concurrent peers and replication peers, respectively. If
d̃c

i+d̃r
i is below the playback rate r, the server needs to fill
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up the gap r− d̃c
i − d̃r

i so as to satisfy the QoS guarantee.
For the ease of presentation, we denote d̃s

i = r − d̃c
i − d̃r

i

(∀i ∈ PA) as the filling upload rate from the server to
Pi. The expected upload bandwidth consumption of the
server S is denoted as U , which can be expressed as:

U = E

( ∑

i∈PA

d̃s
i

)
= E

( ∑

k∈M

∑

i∈Pk

d̃s
i

)
. (1)

Based on the peer scheduling policy above, we have:
Lemma 1: In a large scale P2P-VoD system, the expected
upload consumption at the server is approximately

U ≈
∑

k∈M

[
E

( ∑

i∈Pk

(r − d̃c
i )

)
−Rk

]+

, (2)

where Rk is the maximal upload bandwidth from
all replication peers that can contribute to Mk, or∑

i∈Pk
dr

i ≤ Rk.
Due to page limit, we omit all the proofs. Interested

readers may refer to the supplementary file for details.
Let us define the following important notation.
Definition 1: For movie Mk, we define deficit bandwidth
as

D̃k(nk) =
∑

i∈Pk

(r − d̃c
i ) =

∑

i∈Pk

(d̃r
i + d̃s

i ), (3)

and let
Dk(nk) = E

[
D̃k(nk)

]
(4)

be the expected deficit bandwidth of having nk concurrent
peers in Pk, i.e., the bandwidth gap between the total
required playback rates and the total download rates that
can be supported by nk concurrent peers. We can now
rewrite Eq. (2) and directly obtain the following lemma:
Lemma 2: Given the number of concurrent peers, the
expected upload consumption at the server is

U =
∑

k∈M
(Dk(nk)−Rk)+. (5)

Our objective is to find a replication strategy, which
determines Rk, such that U , the expected upload band-
width consumption of the server S, can be minimized.
Thus, we want to explore how the popularity of a movie
may affect Dk(nk), which in turn will affect the choice
of replication. First we state the following lemma:
Lemma 3: Under sequentiality requirement, any greedy
scheduling policy minimizes the deficit bandwidth.

Lemma 3 highlights the condition that concurrent
peers can cooperate most effectively. We state an impor-
tant lemma to calculate this minimum deficit bandwidth.
Lemma 4: Using a scheduling policy that satisfies the
sequentiality and greediness properties, deficit band-
width can be iteratively calculated by

D̃k(nk) = nkr −
∑

i∈Pk

d̃c
i , (6)

d̃c
i =

{
0, i = 1;
min

(∑i−1
j=1(ũj − d̃c

j), r
)

, i ≥ 2.
(7)

P1 P2 P3 P4 P5 P6

ui (kbps) 500 800 200 800 300 1000
d̃c

i (kbps) 0 500 600 400 600 500
D̃k(6) (kbps) 1000

TABLE 1: Example for calculating d̃k
i and D̃k(nk)

Let us use an example to illustrate the above frame-
work in calculating d̃c

i and D̃k(nk). Assume six peers
are watching movie Mk. These peers are P1,. . . , P6, with
P1 arriving the earliest. We fix the movie playback rate
at r = 600 kbps. If we know their upload capacities
ũi as illustrated in Tab. 1, we can calculate d̃c

1, . . . , d̃
c
6

respectively, and by summing up all (r− d̃c
i ) we can get

the deficit bandwidth, or D̃k(6) = 1000 kbps. This D̃k(6)
represents the bandwidth required to support all these
six peers. Referring to Eq. (3), if there is no replication
(or d̃r

i = 0), this is exactly the total upload bandwidth
that the server S needs to provide.

In summary, given each peer’s upload capacity ũi, one
can determine d̃c

i and D̃k(nk). Furthermore, given the
upload capacity distribution of Pk, we may determine
Dk(nk) by taking the expectation. Based on this frame-
work, we can show how movie’s popularity impacts the
upload bandwidth consumption of the server S. In later
sections, we will show some interesting implications.

2.5 Discussion on Peer Operations
We have considered the “sequential viewing” model in
the above analysis. In practice, the peers may perform
various operations (e.g., fast forward, rewind or replay)
when they watch the movies. In order to adapt to these
practical issues, we propose a revision on the system
design with a limited overhead on the trackers. Each
peer reports to the tracker the chunk it needs down-
loading as well as the largest chunk index it has already
downloaded. Denote by cd and cl the indices of these
two chunks. Note that cd might be smaller than cl due
to the fast forward operation, and that the set of chunks
a peer caches is a subset of {1, 2, . . . , cl} since peers may
skip some parts in the middle.

We use a simple model to capture the feature. When
a peer downloads the chunk cd of a movie, the tracker
recommends a set of other peers with cl ≥ cd. Assume
that a recommended peer has a probability β to have
cached this chunk. In general, β < 1 since it is possible
to have skipped this chunk before. However, β may not
be too small since a typical peer caches a large part, if
not all, of the movie it watches.

When considering peer operations, a greedy schedul-
ing policy may not minimize the deficit workload; how-
ever, if the fast forward operations are rare (comparing
to rewind and replay operations), a greedy scheduling
policy is near to optimal. In later sections, we will
compute the deficit workload using this revised model.

2.6 Model of Replication on Server’s Workload
Let us show how replication can help to reduce the
server’s workload. Intuitively, without using replication



5

(or when d̃r
i = 0), Dk(nk) will be the upload bandwidth

consumption of server S for movie Mk. Replication helps
to reduce server’s upload bandwidth consumption since
peers could use replicas to partially support the deficit
bandwidth Dk(nk). For the ease of presentation, we have
the following assumptions:
• We consider the system G = {S,P,M}, where P =
{P1, ..., PN}, M = {M1, ..., MK}, with αN out of the
N peers are active. An active peer wants to watch
movie Mk with probability ρk, with

∑K
k=1 ρk = 1.

• Each peer, either active or inactive, caches one movie
that it has watched before2.

• Peers’ upload and download scheduling policies
follow the properties in Section 2.3.

To model the distribution of number of active peers in
each movie, one can use a closed queueing network to
represent the P2P-VoD system. Let random variable ñk

denote the number of peers watching movie Mk. Similar
to the work in [18], we can express the probability for
movie Mk having nk viewers, for k = 1, 2, . . . , K, as:

P (ñ1 = n1, . . . , ñK = nK) = (αN)!
ρn1
1

n1!
. . .

ρnK

K

nK !
, (8)

with
∑K

k=1 nk = αN . Here, ρi implies the relative pop-
ularity of movie Mi. Based on this queueing model, we
have the following proposition:
Proposition 1: The average upload consumption of S is

U(q) =
∑

∑
nk=αN

{
(αN)!

ρn1
1

n1!
. . .

ρnK

K

nK !
×

∑

k∈M

[
Dk(nk)−

qk

∑

l∈M
(Cu

l (nl) +Dl(nl)− nlr)− qkCu
I ((1− α)N)

]+
}

, (9)

where qk is the fraction of cache space dedicated to Mk,
Cu

l (nl) = E
(∑

i∈Pl
ũi

)
, Cu

I (nI) = E
(∑

i∈PI ũi

)
.

Now the model of the optimal replication strategy can be
formulated as follows. We seek to find a set of replication
ratios q which satisfies:

min
q

U(q)

subject to qT · 1 = 1. (10)

In other words, we want to determine the number of
replicas for each movie Mk ∈ M, so that the average
upload bandwidth consumption of S can be minimized.

In general it is difficult to get a close form solution for
this optimization problem. However, as we will show in
the following section, when we consider some common
deployment cases, one can get some interesting implica-
tions and insights in designing replication strategies.

2. In general, a peer may also cache multiple movies. In such
systems, the optimal caching policy is coupled with the optimal
scheduling strategy and is hence hard to decide due to the NP-hardness
of scheduling strategy. Nevertheless, note that the typical cache size of
a peer is 1 GB (e.g., in PPLive), and typical movie size is about 500 MB.
Thus, we assume that besides the currently watching movie, an active
peer can cache one extra movie so as to cope with typical settings of
real systems.

3 OPTIMAL REPLICATION IN SOFTWARE DE-
PLOYMENT SCENARIO

In this and the next section, we discuss two typical
deployment scenarios for P2P-VoD services. These sce-
narios have different fraction of active peers and they
will affect the replication policies.

3.1 Deployment Scenario and Operation Modes
Recall the previous section, the two typical deployment
scenarios we consider are software and set-top box de-
ployment. In general, under the software deployment
scenario, the fraction of active peers, or α, is close to 1.
On the other hand, under the set-top box deployment
scenario, α can take on value in [0, 1] and may be
significantly less than 1. The fraction of active peers
can greatly influence the optimal replication strategy. In
order to further analyze any P2P-VoD system, we define
two operating modes as follows:
• Deficit mode: the average upload capacity of all peers

is less than the playback rate of a movie, i.e., u < r.
• Surplus mode: the average upload capacity of all

peers is larger than the playback rate of a movie.
In addition, we further divide it into two modes
(a) slightly-surplus mode, i.e., u & r, and (b) highly-
surplus mode, i.e., u >> r.

3.2 Server’s workload in Software Deployed Sys-
tems
In this subsection, we derive the server’s workload for
software deployment scenario where all peers in the
system are active, i.e., α = 1. Note that the deficit mode
is not a rational operating point for a software P2P-VoD
system where replication can rarely help. To see this,
we know that under the deficit mode, we have u < r.
The server’s total upload bandwidth consumption to
support all peers is N(r − u), where N is the number
of peers in the system. When N increases, the server’s
bandwidth consumption will become very large as it
increases linearly with N . Meanwhile, the upload band-
widths of peers are all used up to support concurrent
peers, and thus no replication strategy can help to reduce
the workload in S. The only way to reduce the workload
in S is to lower the playback rate r so that the system
can be in the surplus mode.

On the other hand, when the system is in the surplus
mode, replication is not always necessary. For a system
operating in the highly-surplus mode, concurrent peers
can support each other with ease. In other words, the
abundance of peers’ upload bandwidth makes repli-
cation unnecessary. This abundance in resource will
motivate the P2P-VoD system designer to increase the
playback rate r so as to improve video quality by better
utilizing peers’ resources, which eventually brings the
system to the slightly-surplus mode.

To summarize, the only interesting case for the software
deployment is when the system is operating at the
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bandwidth (kbps) 768 384 256 128
share 50% 30% 5% 15%

TABLE 2: Peers’ upload capacity distribution

slightly-surplus mode. As we will show, designing an
optimal replication strategy is a non-trivial task.

Under the software deployment scenario, by setting
α = 1 in Eq. (9), we have the following proposition:
Proposition 2: In software deployment, the average up-
load bandwidth consumption at the server S is:

U(q) =
∑

∑
nk=N

{
N !

ρn1
1

n1!
. . .

ρnK

K

nK !
·

K∑

k=1

[Dk(nk)−

qk

K∑

l=1

(Cu
l (nl) +Dl(nl)− nlr)

]+
}

. (11)

3.3 Characteristics of Deficit Bandwidth
To minimize U , the decisions on qk are highly dependent
on the shape and characteristics of Dk(nk). Let us con-
sider some typical distributions (e.g., uniform, normal,
. . .) to represent peers’ upload capacity so as to gain a
deeper understanding. In addition, we also use numer-
ical and fitting methods to show the characteristics of
Dk(nk). In here, we present some typical examples.
Example 1: (Exploring the characteristics of Dk(nk)):
Assume nk peers are watching movie Mk, and the movie
playback rate is r = 500 kbps. Fig. 1 illustrates the
impact of movie popularities on the deficit bandwidth
Dk(nk) when we vary the nk ∈ [1, 100]. In Fig. 1(a),
the peers’ upload capacity is normally distributed with
average of 540 kbps and variance 200. It shows that
Dk(nk) is concave in nk and can be fitted into the form
Dk(nk) = D0 − Ae−λ(nk−n0). In Fig. 1(b), we set a more
realistic bandwidth distribution according to [4]. The
upload capacity distribution is illustrated in Tab. 2. In
Fig. 1(c), we still use this bandwidth distribution, and
we consider the impact of user operations. We assume
that due to this effect, when a peer seeks help from a
concurrent peer, it has a probability 0.8 to successfully
find the chunk needed. The deficit bandwidth Dk(nk)
shows very similar trend as the previous figures, but
only differs in that the deficit workload is a bit larger
compared to Fig. 1(b). We omit the similar cases that we
studied, but they all imply the following observation:
Observation 1:
• Dk(nk) is a concave function on movie popularity nk,

and it converges to a fixed value when nk approaches
infinity.

• The convergence rate of Dk(nk) increases with the aver-
age of upload capacity and decreases with the variance.

Physical meaning: The concavity and convergence fea-
tures imply that for unpopular movies, they have a
much higher marginal increase on the deficit bandwidth
Dk(nk) while for popular movies, the marginal increase
on Dk(nk) is minimal. An intuitive explanation of this
feature is that peers within a larger set can cooperate
more effectively and thus achieve higher utilization of

peers’ upload bandwidth. Using law of large number on
Eq. (7), for large enough i, we have

∑i−1
j=1 ũj ≈ (i − 1)u

with high probability. Furthermore, if we assume u > r
and i > r/(u− r) + 1, then we have

d̃c
i ' min


(i−1)u−

i−1∑

j=1

d̃c
j , r


 ≥ min ((i−1)(u−r), r) = r,

which means that any late arriving peer can receive
sufficient download from concurrent peers and will not
incur any bandwidth consumption on S.

The above analysis shows the reason why deficit
bandwidth Dk(nk) is sub-linear. This also implies that
the conventional wisdom of using the proportional repli-
cation strategy, or caching the more popular movies [6],
[21], [22], is sub-optimal. Looking at Fig. 1, we see that a
popular movie with 25 viewers needs nearly the same
deficit bandwidth as a movie with 100 viewers, while an
unpopular movie of five viewers needs more than half
of the deficit bandwidth as compared with a popular
movie with 100 viewers.

3.4 Characterizing the Optimal Replication Strategy
Now the impact of movie popularities on server’s work-
load is clear: without replication, the server’s workload
for movie Mk is simply Dk(nk). The goal of replication is
to reduce the workload on S. The non-linearity of Dk(nk)
implies one should be greedy in replicating unpopular
movies. In the following, we use examples to justify our
argument, and at the same time, determine the optimal
replication ratios q.
Example 2 (Sub-optimality of the proportional repli-
cation strategy): Assume that the system consists of
N = 600 active peers and K = 25 movies. Movie M1

- M5 are popular movies while movie M6 - M25 are
unpopular. Peers choose each of the popular movies with
a probability of ρpop = 1/6, or each of the unpopular
movies with a probability of ρunpop = 1/120. The play-
back rate is set at r = 500 kbps, Peers’ upload capacity
follows Tab. 2.

Denote qunpop as the fraction of cache space (which can
store 600 movies) of caching any unpopular movie (M6

- M25), and 1− qunpop as the fraction of caching popular
movies (M1 - M5). We develop a simulator to explore the
replication strategy. In particular, we vary the fraction of
cache space that is used to store unpopular movies from
0% (i.e., all cache space is used to store popular movies)
to 100% (i.e., all cache space is used to store unpopular
movies), and evaluate the system performance. Fig. 2
illustrates the upload bandwidth consumption on the
server when we vary qunpop.

If the system only replicates popular movies, then all
deficit bandwidth Dk of unpopular movies will con-
tribute to the server’s workload. This corresponds to
the first point from the left (about 15 Mbps) in Fig. 2.
Similarly, if all replications are for unpopular ones, the
server’s workload is around 6 Mbps and this corre-
sponds to the last point at the right of the figure. Since
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Fig. 1: Deficit bandwidth Dk vs. nk
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Fig. 2: Replication impact on server’s workload in a
software-deployed system, where r = 500 kbps.

popular moderate unpopular
proportional fraction 71% 14% 14%

optimal replication fraction 18% 32% 50%
deficit bandwidth fraction (q̂k) 21% 30% 49%

TABLE 3: Optimal replication vs. popularity fractions

5/6 fraction of the requests are for popular movies, using
the proportional replication strategy, only 1/6 or 17% of the
cache space should be dedicated to store the unpopular
movies. From the figure, we see that the workload on
the server will be around 10 Mbps. However, the optimal
replication fraction for unpopular movie should be around
70% where the server’s upload bandwidth consumption
is less than 2 Mbps. This simple example validates the
following observation:
Observation 2: In a software-based system, proportional
replication is far from optimal and incurs a higher server’s
workload as compared with the optimal replication strategy.
Example 3 (Exploring optimal replication ratio): We
consider a P2P-VoD system with 700 peers and 35
movies. M1 - M5 are popular movies with ρpop = 1/7; M6

- M15 are moderately popular movies with ρmid = 1/70;
while M16 - M35 are unpopular movies with ρunpop =
1/140. We simulate this system and explore the server’s
workload at each possible integral fraction combination
q ∈ {(qpop, qmid, qunpop) : qpop + qmid + qunpop = 100%}.
Using exhaustive search, the popularity fractions and op-
timal replication fractions of different movies are shown
in Tab. 3. Obviously, the optimal replication strategy
should be “aggressive” in caching unpopular movies.

It is mathematically difficult to derive the optimal
ratios of replication from the optimization problem, and
one cannot afford to use exhaustive search for large scale

P2P-VoD systems. However, we obtain an interesting
finding: the optimal ratio for replication for movie Mk

should be close to the fraction of deficit bandwidth
Dk(nk) for movie Mk among the total deficit bandwidth,
i.e., let

q̂k =
Dk(nk)∑K
i=1Di(ni)

, (12)

then we have
qopt
k ' q̂k. (13)

For instance, in the above example q̂pop = 21%, q̂mid =
30% and q̂unpop = 49%, which are near to the optimal
ratios for replication. This example reveals the following
observation:
Observation 3: Proportional deficit bandwidth replication is
a good estimate to the optimal replication ratios.

Our model can be easily extended to heterogeneous
playback rates of movies. Further, Observation 3 still
holds for this case. Due to page limit, we omit the details;
interested readers may refer to the supplementary file.

Examples using other typical settings all strongly
support our observations. We like to point out that
there is an intuitive explanation to the above resource
allocation strategy: without replication, Dk(nk) is exactly
the server’s bandwidth consumption for movie Mk, and
thus, allocating remaining bandwidth in this ratio is the
most efficient method to balance each movie’s request
load to the server S. This idea leads to the replication
algorithm which we will discuss in the next section.

4 OPTIMAL REPLICATION IN SET-TOP BOX
DEPLOYMENT SCENARIO

In the set-top box deployment scenario, peers are always
online even when they are not watching any movie. In
other words, α might be significantly less than 1. The
existence of inactive peers greatly changes the system
design. Since the number of downloading peers may
be significantly less than uploading peers, therefore, the
playback rate of movies could be set higher compared
with the software based deployment. For example, if
only half of the total N peers in the system are watching
movies, then total available upload bandwidth from
peers is still uN , while the total download requirement
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is r ·N/2. Thus, the server can work with low workload
if r is set no larger than 2u. For better quality of service,
VoD providers have incentive to increase the playback
rate as high as possible, or r ' 2u. In this case, the movie
playback rate is usually larger than the average upload
capacity.

Since the playback rate is larger than the average
upload bandwidth, an active peer is unlikely to have
remaining bandwidth after serving concurrent peers. In
other words, nearly all the replication peers are inactive
peers, so

U(q) '
∑

∑
nk=αN

{
(αN)!

ρn1
1

n1!
. . .

ρnK

K

nK !

K∑

k=1

[
nk(r − u)− qkCu

I ((1− α)N)
]+}

. (14)

Fig. 3(a) illustrates this scenario with r = 1.1 Mbps
and the peer’s upload capacity follows Tab. 2. From the
figure, we can see that the deficit workload Dk(nk) is
linear in terms of nk, or

Dk(nk) ' nk(r − u). (15)

Intuitively, since the deficit bandwidth of concurrent
peers is linear in terms of the movie popularity, we
should replicate a movie proportionally to its popularity.
However, since the statistic of estimating the popularity
of an unpopular movie has a higher variance, one should
be a bit more “greedy” in replicating unpopular movies.
We use an example to support this claim.
Example 5 (Optimal replication in a set-top box sys-
tem): The setting of this example is similar to Example 2,
but the differences are that we add 600 idle peers, i.e.,
α = 0.5, and increase the playback rate to r = 1.1 Mbps.
Fig. 3(b) shows total workload of the server with respect
to qunpop. The optimal value for qunpop is around 22%, a
bit larger than the fraction of unpopular movie viewers
(17%). This result validates the above argument.

Note that the replication ratios in Observation 3 is
still a good estimate to the optimal replication ratio. In
this example, q̃pop = 81% and q̃unpop = 19%, where the
server’s workload is near the minimum.

Last but not least, comparing this result with that in
previous examples, we can conclude that the optimal
replication strategy is very different for the software de-
ployed and the set-top box deployed P2P-VoD systems.

5 ALGORITHMS TO CONTROL REPLICATION
RATIOS

Let us present several algorithms to achieve the optimal
replication ratio q in a P2P-VoD system. Note that a
P2P-VoD is with high churn, therefore, the replication
algorithms need to be robust and efficient in minimizing
the server’s workload. In general, there are two ways to
control or adjust the replication ratios:

Algorithm 1 Replacement Algorithm
1: for any peer that starts to watch a new movie do
2: if this movie is already stored in its local cache

then
3: do not replace any movie;
4: else
5: for each movie Mi in its local cache do
6: calculate the expected # of caches for Mi:

Nexp
i = [Di(ni)N ] /

∑
k Dk(nk);

7: calculate the current # of caches for Mi: N cur
i ;

8: calculate the satisfaction index for Mi:
SIi = N cur

i /Nexp
i ;

9: end for
10: replace the movie with the highest SIi.
11: end if
12: end for

• Passive adjustment: peers adjust the replication
ratio in the P2P-VoD system using replacement al-
gorithms, i.e., when a peer’s local cache is full, it
decides which movie(s) to purge so as to accom-
modate a new movie that can reduce the server’s
workload;

• Active adjustment: the server S and all peers ac-
tively push out (or upload) data for which the
replicas are not at the desired replication ratios.

5.1 Passive Adjustment via Replacement Algorithm

When the cache space of a peer is full, a peer has to
decide which movie(s) to purge from the cache space
such that new movies could be cached. Since we want to
explore the impact of movie popularities to the server’s
workload, we consider replication algorithms that re-
place the whole movie, instead of partial replacement.
Nevertheless, generalization can be easily made.

Previous work [6] suggested a weight-based evalua-
tion scheme, or replicating proportionally to a movie’s
popularity. Our previous examples already show the
sub-optimality of such replication algorithm and one
should replicate movie proportionally to its deficit band-
width. This leads to the following replacement algorithm,
which is illustrated in Algorithm 1.

The main idea behind this algorithm is to keep the
number of replicas proportional to the deficit bandwidth.
We define satisfaction index (SI) to express the extent that
a movie has enough replicas. When SIk < 1, it means
that the number of replicas for movie Mk is below the
desired replication ratio. On the other hand, if SIk > 1,
the number of replicas of Mk exceeds the desired ratio.
Therefore, in each round, we purge the movie that has
the highest SI from the local cache.

The idea of the algorithm is derived from the opti-
mization framework. The objective of replication is to
minimize U . Noting Eq. 8, the distribution of peers in
each movie is centered around ñk = Nρk,∀k. Recalling
Proposition 1, if we set qk = ρk (which is the objective of
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Fig. 3: Replication in set-top-box system, where r = 1.1 Mbps, upload capacity distribution follows Tab. 2

Algorithm 2 Push Algorithm
1: while system is in an idle time slot do
2: find out a list of replication peer candidates which

will most likely be inactive at the publishing in-
stance;

3: estimate the total volume available for push
4: calculate the total volume desired for coming-to-

hot movies: ∑
k Dk(nk)× (movie length)

5: if total available volume is larger than desired
then

6: assign each movie Mi with the volume it desires;
7: else
8: for each movie Mi do
9: assign volume

Di(ni)∑
k Dk(nk) × (total available volume)

to the list of replication peer candidates;
10: end for
11: end if
12: end while

Algorithm 1), then we can minimize
∑K

k=1

[Dk(Nρk) −
Rk(n, qk)

]+, and can hence approximately minimize the
average workload of the server in Eq. 9.

Although requiring global information, this algorithm
is efficient in practice. Each peer reports to the tracker
the current cached movies, and the tracker can calculate
the satisfaction indices and broadcast to all peers. These
can be done in a proper frequency (e.g., once in five
minutes), and thus the overhead can be minimal. It is
also worth noting that this frequency cannot be too low,
otherwise, some movies will oscillate between high and
low satisfaction indices and the system cannot converge.
In Sec. 6, we evaluate the impact of delay in broadcasting
SI and show the convergence of the system.

5.2 Active Adjustment via Push Strategy

Our proposed replacement algorithm can reduce the
server’s workload, other factors still constrain the system
performance. For instance, the server’s workload may
dramatically increase when a popular movie is newly

released, since there will be a sudden surge of demand
but only few peers in the system have cached this movie.
By simply relying on the replacement algorithm, the
system will take a long time to converge to the optimal
replication ratios. To overcome this limitation, one can
take a proactive approach to push out a movie if we
know that it will be a popular object. This leads to the
push algorithm as depicted in Algorithm 2. In essence,
the push algorithm utilizes the excessive bandwidth in
idle time slots to push some data for future use so
server’s workload could be “flattened” over time. This
algorithm causes an overhead at the server. During a
time period, the server incurs an extra upload consump-
tion of Nor if it pushes the data to No peers. In the next
section, we will show that this overhead can be minimal
if we limit the number of peers to push the data to.

Predicting the dynamics of movie popularity is impor-
tant in our push algorithm, but is difficult in general.
One important feature is the “daily periodicity” [6], i.e.,
most peers access the network every evening, and this
is in particular true for TV series. We can take this advan-
tage and proactively replicate the content in the daytime.
The authors in [11] discussed popularity prediction in
a P2P-VoD setting using time-series analysis techniques.
Besides periodicity, the movie content also plays a major
role. An accurate prediction on the popularity dynamic is
still a challenging research topic and is beyond the scope
of this paper. In the following section, we assume the
popularity dynamics is known a priori and present the
performance results on using our proposed algorithms.

Our push algorithm shares the similar idea proposed
in [14], which considers homogeneous peers with the
same upload bandwidth and storage space. In this work,
the authors evaluate the system performance when the
request arrival rate is low, i.e., the system is in the highly
surplus mode. Hence, the system performs well even
though each video has only one replica. In contrast,
by carefully calculating the number of replicas for each
video, our design can support a higher playback rate
where the total upload bandwidth from all peers is
slightly larger than the total download requirement. We
do not compare the performance of the two approaches
due to the different system settings.
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6 PERFORMANCE EVALUATION

6.1 Performance of Replacement Algorithm
We carry out extensive simulation to validate our models
and evaluate the performance of our proposed replace-
ment algorithm. We consider a software-based P2P-VoD
system where α = 1. Unless otherwise specified, we use
the following as inputs to our simulator:
• The system contains N = 10, 000 active peers. Peer’s

upload capacity distribution follows Tab. 2, with
average of 531 kbps.

• The system provides K = 250 kinds of movies. Each
movie is with the playback rate of r = 500 kbps.

• Movie popularity follows a Zipf distribution [13]
with parameter γ = 1.

• At each round, an active peer requests a movie.
Active peers switch movie channel every round.

The movie playback rate and average upload capacity
we set are based on realistic settings like PPLive. The
tracker in the system records the current cache distribu-
tion in the system and that all peers can use this informa-
tion to do replacement. We compare server’s workload
using the following replacement algorithms: (a) Our
proposed algorithm, which keeps replicas proportional to
deficit bandwidth; (b) Proportional algorithm, which keeps
the replicas proportional to movie popularity; (c) First-in-
First-out (FIFO) algorithm, which keeps the newly cached
movie and purges the oldest one.

Fig. 4 illustrates the comparison of the proportional
replica distribution vs. the optimal replica distribution
(both normalized to 1). We use γ = 1 as the default value
unless otherwise specified, and arrange the movies in a
decreasing order of popularity. Our proposed algorithm
keeps fewer popular movies than the proportional dis-
tribution and is more greedy in replicating unpopular
movies. Thus, the optimal replica distribution is “flatter”
than the proportional distribution.

Fig. 5 compares the server’s workload using different
replacement algorithms. We record the server’s load after
round 20 since we are interested in the steady state
performance. In Fig. 5(a), the server’s average workload
is around 9 Mbps using our proposed replacement algo-
rithm, but is 75 Mbps using the proportional algorithm
or 74 Mbps using the FIFO algorithm. Hence, our pro-
posed push algorithm reduces the server’s workload by
a factor of eight. In Fig. 5(b), we add into user interactions,
i.e., peers may perform various operations, and has a
probability β = 0.8 of having the chunk requested by
a concurrent peer. We recompute the deficit workload
and decide the replication ratios, which shows a similar
reduction on server’s workload.

We also evaluate the performance of algorithms under
different system parameters. Due to the page limit, we
present our simulation results in the supplementary file.

Another important performance measure is the num-
ber of peers which can watch movie at the normal
playback rate r (which we call satisfied peers) when given
a finite server upload capacity. We set the simulation

environment as the previous case and the server upload
capacity is restricted at 10 Mbps. Fig. 5(c) shows the
comparison on fraction of satisfied peers using different
replacement algorithms. From the figure, our proposed
replacement algorithm can ensure the maximum ratio
of peers that can watch the movie at the playback rate,
achieving approximately 100% of satisfied peers, while
the ratio is around 96% when using the proportional or
FIFO algorithm. These results validate that our proposed
replacement algorithm can reduce the server’s workload
and at the same time, improve streaming quality.

We also considered practical issues on implementa-
tions, e.g., the delay of broadcasting information from
the tracker, replacement based on incomplete informa-
tion, the impact of multiple cache space and the peer
departure. Due to the page limit, we present the evalu-
ation the system performance in the supplementary file.

6.2 Performance of Push Algorithm
In here, we show that the proposed push algorithm can
significantly improve the system performance, particu-
larly for a set-top box deployed system. The key idea
is to push some data to some inactive peers in advance
such that the server’s workload could be flattened down
when publishing a new popular movie. The simulation
setting is similar to the previous one but the differences
are:
• There are 5,000 active peers and 5,000 inactive peers.
• Playback rate of a movie is doubled to r = 1.0 Mbps.
• Initially there are K = 249 kinds of movies
{M1,...,M249} with a Zipf popularity distribution
(γ = 1). At the beginning of round tp, a new popular
movie M250 is published. The popularities of these
250 movies follow a new Zipf distribution and M250

is the most popular one.
Movie M1 - M249 can be stored in local cache of active

and inactive peers. In a traditional system, before round
tp, M250 will not be in any local cache since no peer
requests this unpublished movie. Hence, the system will
have a very heavy workload at the publishing instance.
With the push strategy, the new movie M250 can be
pushed into inactive peers’ cache before being published.
We divide a day into 24 rounds (1 hour/round), of
which we allow 18 rounds in advance to push a new
movie before the publication. To avoid introducing much
overhead, in each round we only push the data of this
new movie into forty inactive peers. At tp = 19, the new
movie is published. After the publishing instance of the
new movie, we do not push the data any more.

Fig. 6 illustrates the improvement using the push strat-
egy. With a limited overhead, this strategy can signifi-
cantly decrease the server’s workload at the publishing
instance of a new movie. In other words, this allows
the system to “prepare” the data ahead of the flash
crowd event. In comparison, the system without using
the push strategy will experience heavy workload not
only at the time of the new movie publication, but also
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Fig. 4: Proportional vs. optimal replica distribution
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Fig. 6: Performance improvement using push strategy

in the following rounds after publishing the movie, as it
is slow to adjust to the optimal replication ratio.

7 RELATED WORK

Replication has long been an effective strategy to im-
prove performance in P2P systems. Existing literatures
have different objectives and hence lead to different con-
clusions. Kangasharju et al. [7] studied how to replicate
P2P content distribution systems so as to optimize file
availability. The main result is the logarithmic replication
rule which states the number of copies for a file should
be proportional to the logarithm of file popularity. Lin
et al. [9] formulated the replication problem as an op-
timization problem and compared the performance of
several decentralized algorithms in terms of improving
file availability. They showed each algorithm has an
advantage depending on system parameters. Tewari et
al. [16] claimed that in P2P networks, proportional repli-
cation is optimal in terms of minimizing the average
number of links traversed to a download. They showed
that the least-recently-used (LRU) algorithm automat-
ically achieves near-proportional replication. Cohen et
al. [3] discussed the optimal replication to improve the

effectiveness of blind search in a decentralized unstruc-
tured P2P network. They showed that uniform and pro-
portional replication yield the same performance while
the optimal lies in between them. Leukopoulos et al.
[10] proposed a hybrid Genetic Algorithm to study the
data replication for given current replica distribution.
Khan et al. [8] compared ten static heuristic Internet data
replication algorithms so as to give insight the selection
of a particular algorithm to be used in a given scenario.

Recent popularity of P2P-VoD systems leads to the
rethinking of replication. Previous replication algorithms
are not suitable due to a very different objective: to
minimize the server’s workload. However, early works
in P2P-VoD did not address this issue. Authors in [4],
[5] showed the benefit of a peer-assisted VoD system
by utilizing peers’ upload bandwidth. The deployment
was restricted to single video approach, i.e., peers only
redistribute content to concurrent peers and hence there
is no real replication. Huang et al. [6] did original re-
search in the design and implementation of a real P2P-
VoD system. The multiple movie cache scheme revealed
the possibility of replication, and showed reduction on
server’s workload. However, the weight-based replace-
ment algorithm, which replicates movies proportionally
to popularity, was reported to have poor performance
for unpopular movies in [17]. Similar proportional repli-
cation strategies were also implemented in [21], [22].

Recently some work focused on replication for P2P
VoD systems. Poon et al. [12] reformulated the replica-
tion problem in terms of minimizing server’s workload.
Cheng et al. [2] proposed and evaluated a heuristic algo-
rithm of lazy replication. These two works were based
on simulations but did not provide theoretical analysis.
Tan et al. [15] discussed content placement for a P2P-
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VoD system. Wu et al. [19] used dynamic programming
to derive the optimal replacement strategy for P2P-VoD
system. These two works assumed homogeneous up-
load capacity, which is different from our model which
considers peer heterogeneity. Besides, our model differ-
entiates concurrent peers and replication peers which
is different from [19]. Chen et al. [1] considered pre-
fetching strategy for a peer-assisted IPTV system based
on a structured IPTV platform, which is different from
unstructured P2P systems.

8 CONCLUSION

Movie replication is an effective technique in the de-
sign of P2P-VoD systems. However, it remains an open
problem to answer what the optimal replication policy
should be so as to minimize the server’s workload.
In this paper, we present mathematical models and
formulate an optimization framework to understand the
impact of movies’ popularities on server’s workload,
and reveal important principles in designing optimal
replication algorithms. We show that conventional pro-
portional replication strategy is far from optimal; rather,
one should be more “aggressive” to replicate unpopular
movies. Furthermore, to operate the system at the op-
timal point, we propose both passive replacement and
active push strategies. Our algorithms are effective even
under a dynamic environment (e.g., with peers arriving
or leaving the P2P-VoD system) and movies with differ-
ent playback rates. We discuss practical implementation
issues and validate via extensive simulations to show
that we achieve high QoS guarantee in streaming and at
the same time, reduce workload at the server.
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