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Abstract—Counting 3-, 4-, and 5-node graphlets in graphs is important for graph mining applications such as discovering abnormal/
evolution patterns in social and biology networks. In addition, it is recently widely used for computing similarities between graphs and
graph classification applications such as protein function prediction and malware detection. However, it is challenging to compute these
graphlet counts for a large graph or a large set of graphs due to the combinatorial nature of the problem. Despite recent efforts in
counting 3-node and 4-node graphlets, little attention has been paid to characterizing 5-node graphlets. In this paper, we develop a
computationally efficient sampling method to estimate 5-node graphlet counts. We not only provide a fast sampling method and
unbiased estimators of graphlet counts, but also derive simple yet exact formulas for the variances of the estimators which are of great
value in practice—the variances can be used to bound the estimates’ errors and determine the smallest necessary sampling budget for
a desired accuracy. We conduct experiments on a variety of real-world datasets, and the results show that our method is several orders
of magnitude faster than the state-of-the-art methods with the same accuracy.

Index Terms—Graphlet kernel, subgraph sampling, graph mining

1 INTRODUCTION

OR complex networks such as online social networks

(OSNs), computer networks, and biological networks,
designing tools for estimating the counts (or frequencies) of
3-, 4-, and 5-node connected subgraph patterns (i.e., graph-
lets) shown in Fig. 1 is fundamental for detecting evolution
and anomaly patterns in a large graph and computing
graph similarities for graph classification, which have been
widely used for a variety of graph mining and learning

o P. Wang is with the MOE Key Laboratory for Intelligent Networks and Net-
work Security, Xi'an Jiaotong University, Xianning West Road, Xi'an,
Shaanxi 710049, China, and the Shenzhen Research Institute, Xi'an Jiaotong
University, Shenzhen 518057, China. E-mail: phwang@mail xjtu.edu.cn.

e |. Zhao and ].C.S. Lui are with the Department of Computer Science and
Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong,
Mainland China. E-mail: jzzhao@sei.xjtu.edu.cn, cslui@cse.cuhk.edu.hk.

o X. Zhang is with the King Abdullah University of Science and Technology,
Thuwal 23955, Saudi Arabia. E-mail: xiangliang.zhang@kaust.edu.sa.

e Z.Liis with the Huawei Noah's Ark Lab, Shatin, Hong Kong.

E-mail: li.zhenguo@huawei.com.

o ]. Cheng is with the Tencent Cloud Security Lab, Shenzhen 518057, China.
E-mail: geoffcheng@tencent.com.

e D. Towsley is with the Department of Computer Science, University of
Massachusetts, Amherst, MA 01003. E-mail: towsley@cs.umass.edi.

o ]. Tao is with the MOE Key Laboratory for Intelligent Networks and Net-
work Security, Xi'an Jiaotong University, Xianning West Road, Xi'an,
Shaanxi 710049, China. E-mail: jtao@mail .xjtu.edu.cn.

e X. Guan is with the MOE Key Laboratory for Intelligent Networks and
Network Security, Xi'an Jiaotong University, Xianning West Road, Xi'an,
Shaanxi 710049, China, and the Center for Intelligent and Networked Sys-
tems, Tsinghua National Lab for Information Science and Technology,
Tsinghua University, Beijing, China. E-mail: xhguan@mail.xjtu.edu.cn.

Manuscript received 14 Jan. 2017; revised 13 Aug. 2017, accepted 14 Sept.
2017. Date of publication 26 Sept. 2017; date of current version 5 Dec. 2017.
(Corresponding author: Junzhou Zhao.)

Recommended for acceptance by K. Yi.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TKDE.2017.2756836

tasks. To explore patterns in a large graph, Milo et al. [1]
defined network motifs as graphlets occurring in networks
at numbers that are significantly larger than those found in
random networks. Network motifs have been used for pat-
tern recognition in gene expression profiling [2], evolution
patterns in OSNs [3], [4], [5], [6], and Internet traffic classifi-
cation and anomaly detection [7], [8]. In addition to mining
a single large graph, graphlet counts also have been used to
classify a large number of graphs. The graphlet kernel [9]
(the dot product of two vectors of normalized graphlet
counts) and RGF-distance [10] (euclidean distance between
two vectors of normalized graphlet counts) are widely used
for graph similarity comparison, which is an important
problem in application areas as disparate as bioinformatics,
chemoinformatics, and software engineering. For example,
1) protein function prediction: identifying whether a given
protein is an enzyme is important for understanding its
function in biology. The biological network of a protein is
usually represented as an undirected graph where a node in
the graph represents an atom and an edge represents the
existence of a chemical bond (i.e, a lasting attraction)
between two atoms. Thus, one can infer whether a given
protein is an enzyme or not by computing the similarities
between the graph topologies of the protein and a large set
of enzymes given in advance [11], [12]; 2) compound function
prediction. Similarly, chemical compounds are usually repre-
sented as a graph, and computing the similarity between
them is important for applications such as predicting activ-
ity or adverse effects of potential drugs [13], [14]; 3) node and
community clustering. In addition to biological and chemical
applications, Yanardag and Vishwanathan [15] reveal that
computing similarities between the ego-networks of nodes
(e.g., researchers in coauthor networks) in other networks
such as coauthor networks and OSNs is useful for predicting
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Fig. 1. 3-, 4-, and 5-node undirected graphlets. Combinatorial explosion: A node v with degree d, in the graph of interest is included in at least

3dy(d, — 1) 3-node ClSes, L d,(d, —

the node classes (e.g., the field of researchers). Slmllarly, they
represent each online discussion thread on OSN Reddit' as a
graph where nodes correspond to users and there exists
an edge between two nodes if at least one of them responded
to another’s comment. Yanardag and Vishwanathan [15]
observe that computing the similarities between these
graphs is effective for the task of identifying whether a given
graph belongs to a question/answer-based community or a
discussion-based community; 4) malware detection. Attackers
currently use two effective and convenient ways to generate
and distribute attack payloads: (a) reuse the existing mali-
cious code to generate new malware variants, (b) use repack-
aging techniques to inject a small piece of malicious code
into popular mobile Apps such as Angry Bird. Meanwhile,
they can easily avoid traditional detectors based on pure syn-
tax. Recently, [16], [17], [18] observe that the malwares gener-
ated by the above two ways keep a large fraction of
relationships between subroutines and classes in the original
computer programs, which can be recovered from disassem-
bly of their executable binaries (software reverse engineer-
ing). They define graphs (e.g., view graph in [16], component
graph in [17], and call graph in [18]) to depict the relation-
ships between subroutines and classes in softwares, there-
fore comparing topology similarities between graphs is
useful for detecting the above malwares.

Due to the combinatorial explosion of the problem, it is
computationally intensive to enumerate and compute
graphlet counts even for a moderately sized graph. For
example, for two medium-size networks Slashdot [19] and
Epinions [20] that each only contains 10° nodes and 10°
edges, more than 10! 4-node connected and induced sub-
graphs (CISes), and 10'* 5-node CISes. To address this prob-
lem, approximate methods such as sampling could be used
in place of the brute-force enumeration approach. As shown
in Fig. 2 (the graphical user interface of our system), a prac-
tical sampling method should satisfy that it can stop as soon
as possible when 1) it achieves the required accuracy or 2)
the sampling budget runs out, and then returns 1) graphlet
count estimates and 2) estimation errors.

1. http://www.reddit.com

1)(d, — 2) 4-node ClSes, and 3; d. (d, —

1)(d, — 2)(d, — 3) 5-node ClSes.

Despite recent progress in counting triangles [21], [22], [23],
[24], [25], [26] and 4-node graphlets [27], little attention has
been given to developing fast tools for characterizing and
counting 5-node graphlets. Recently, Pinar et al. [28] propose
a fast method ESCAPE for counting 5-node undirected graph-
lets by utilizing the relationships between 3-, 4-, and 5-node
graphlets counts. However, ESCAPE is not scalable to large
graphs, which requires more than 10 hours to handle graphs
with millions of nodes and edges. To address this challenge,
in this paper we propose a novel sampling method MOSS-5 to
estimate the counts of 5-node graphlets. MOSS-5 consists of
two sub-methods: T-5 and Path-5, which are customized to
fast sample 5-node ClISes in two specific graphlet groups
respectively. Based on the samples of T-5 and Path-5, we esti-
mate all 5-node graphlet counts and bound the estimates’
errors. Our contributions are summarized as:

e Our method for sampling 5-node ClSes and estimat-
ing 5-node graphlet counts is scalable and computa-
tionally efficient.

o To validate our method, we perform an in-depth
analysis to demonstrate the accuracy of our method.

<> Moss - X
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StdErr: 0.01

[ 100
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Fig. 2. The graphical user interface of our system.
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TABLE 1
Table of Notation
G=(V,E) G is an undirected graph
N, the set of neighbors of a node vin G
d, d, = |N,|, the cardinality of set N,
G 55), e G(Q‘? 5-node graphlets
GO)(s) 5-node graphlet ID of CIS s
c®) the set of all 5-node CISes in G
C§5), ce C;? ) is the set of 5-node CISes inG
1somorph1c to graphlet G ,1<i<21
Ns-- 5021 1'_|Ci | 1<i<2l
1, Ko sampling budgets of T-5 and Path-5
K=K + K, sampling budgets of MOSS-5
oV 1<i<2l the number of subgraphs m aClSs e C’ 2
that are isomorphic to G
d)Z@), 1<i<21 the number of subgraphs inaCISs e C %)
that are isomorphic to G
¢§3), 1<i<21 the number of subgraphs inaCISs e C’ )

that are isomorphic to G

We find that our method provides unbiased esti-
mates of 5-node graphlet counts. We also derive sim-
ple and exact formulas for the variances of the
estimators, which is critical in practice such as
bounding the estimates’ errors and determining a
proper sampling budget to achieve a desired accu-
racy. This has been lacking for previous estimators.

e We conduct experiments on a variety of publicly
available datasets, and experimental results demon-
strate that our method significantly outperforms the
state-of-the-art methods. To guarantee the reproduc-
ibility of the experimental results, we release the
source code of MOSS-5 in open source.’

The rest of this paper is organized as follows. The prob-
lem formulation is presented in Section 2. Section 3 presents
our 5-node graphlet sampling method MOSS-5. The perfor-
mance evaluation and testing results are presented in
Section 4. Section 5 summarizes the related work. Conclud-
ing remarks then follow.

2 PROBLEM FORMULATION

Let G = (V, E) be an undirected graph, where V and E are
the node set and edge set respectively. To define graphlet
counts of G, let us first introduce some notation. A subgraph
G’ of G is a graph of which node set and edge set are both
subsets of 1 and E respectively. An induced subgraph of G,
G' = (V', E'), is a subgraph that consists of some nodes of G
and all of the edges that connect these nodes in G, i.e., V' C V,
E = {(u v) u,v € V' (u,v) € E}. Until we explicitly say
“induced” in thzs paper, otherwise a subgraph is not necessarzly
induced. All undirected graphs’ 5-node graphlets G1 L
Géf studied in this paper are shown 1n Fig. 1. Denote by C'®)
the set of 5-node ClISes in G, and C’ the set of 5-node CISes
in G isomorphic” to graphlet G .The graphlet count of G

2. http:/ /nskeylab.xjtu.edu.cn/dataset/ phwang/code/mosscode.
zip

3. Two graphs G| = (V4, E1) and G = (15, E») are said to be isomor-
phic if there exists at least one bijection f : Vi — V5 such that any two
nodes v and v in V; are adjacent in G, if and only if f(u) and f(v) are
adjacent in Gs.

T-5: Sample Path-5: Sample
CISes isomorphic to CISes isomorphic to
GP,ieQ, GY,ieQ,
Compute Compute
A andvar("), ie Q, A andvar(f?), ie Q,

\/
3

Compute 7, and var(7,)

Fig. 3. Overview of MOSS-5. MOSS-5 smartly combines two T-5 and
Path-5 sampling methods, which are two novel sampling methods pro-
posed in this paper.

is defined as n; = |C§5) |, 1 <i < 21. Aswediscussed above, it
is computationally expensive to enumerate and count all 5-
node ClSes in large graphs. In this paper, we develop a fast
sampling method to accurately estimate 5-node graphlet
counts 7y, ..., 1. For ease of reading, we list notation used
throughout the paper in Table 1.

3 OuUR METHOD OF ESTIMATING 5-NODE
UNDIRECTED GRAPHLET COUNTS
In this section, we introduce our method MOSS 5. We

observe that 1) except ClSes in C’ 20y C’ )yl ), 5-node
CISes include at least one subgraph 1som0rph1c to graphlet
G:(f) ; 2) except ClSes in C§5> U Cé‘r’) U C’és), 5-node CISes
include at least one subgraph isomorphic to graphlet G (15). Let
O ={1,...,21} = {1,2,6} and Q, ={1,...,21} — {2,3,8}.
Inspired by the above two observations, as shown in Fig. 3,
we develop a method MOSS-5 consisting of two sub-meth-
ods: T-5 and Path-5, where T-5 is customized to fast sample
5-node CISes isomorphic to GES), i € Q, and Path-5 is cus-
tomized to fast sample 5-node ClISes isomorphic to G,(/.‘r’),

J € Q. For any i € {);, we provide an unbiased estimate 72751)

of n; based on sampled CISes of T-5, and derive a closed-form
formula of the variance of 7] ’h ). For any j € )y, similarly, we

provide an unbiased estimate 17; ) of n; based on sampled
CISes of Path-5, and derive a closed-form formula of the vari-
ance of ﬁg_z)' Based on ﬁl(-n and f]](?), we propose a more accu-
rate estimator 7, of n,, k€ Q; UQy = {1,...,21} — {2} and
provide an unbiased estimator 7, of n,. To bound the error of
e k € {1,...,21}, we also derive the variance of each 7.

3.1 The T-5 Sampling Method
Denote

W= (dy—1)(dy—2) Y (ds — 1),

N, .
to each node v V. Define

ve V.
We assign a weight TV

o — > - o
K v

uses six steps:

and p{!) =

Step 1. Sample a node v from V according to the distribution
V= {p)ive V)
Step 2. Sample a node u from N, according to the distribu-
tion o) = {05}’ u € N,}, where a ) is defined as

o =1
Y Yeen (de = 1)

u € Ny;
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TABLE 2
Values of ¢ ¢, ,and ¢

i 1234567891011 12 13 14 15 16 17 18 19 20 21
#V 0011202244 5 4 610 9 12 10 20 20 36 60
#? 1002251047 2 4 6 10 6 6 14 24 18 36 60
#Y 0100000100 1 101 12012375

Step 3. Sample a node w from N, — {u} at random;

Step 4. Sample a node r from N,, — {u, w} at random;

Step 5. Sample a node ¢ from N, — {v} at random;

Step 6. Return the CIS s that includes nodes v, u, w, r, and ¢.

One may wonder why not sample v from V and v from N,
uniformly in the first two steps? This is because it is difficult
to compute and remove the sampling bias of s when sam-
pling v from V and v from N, uniformly. In contrast sarn—
pling v and u according to specific distributions p*) and o)
leads to the sampling bias of T-5 that can be easily derived
and removed, which will be discussed later (Theorems 1 and
2). We run the above procedure K times to obtain K CISes
sgl) eSS K . The pseudo-code of T-5 is shown in Algorlthm 1.
In Algorlthm 1, function WeightRandomVertex(V, p!)) returns
a node sampled from V according to the distribution

U ={pl):v eV}, function RandomVertex(X) returns a
node sampled from X at random, and function CIS({v,u,
w, r, t}) returns the CIS with the node set {v, u, w, r, t} in G.

Algorithm 1. The Pseudo-Code of T-5

input: G = (V, E) and K;.
output: 7, .
fori: € O, do
i —0;
end
fork e [1, K] do
v «— WeightRandomVertex(V, p);
u +— WeightRandomVertex(N,, o™);
w — RandomVertex( »—{u});
r «— RandomVertex(N, — {u, w});
t <— RandomVertex(N, — {v});
— CIS({v, u, w, r, t})
lft # wand t # r thenz
i =GO ()
)+
end 17;
end

For a CIS s isomorphic to graphlet G< , 1<i<21,
denote ¢> ) as the number of subgraphs in s that are isomor-
phic to graphlet G . In other word, s Contams ¢< ) sub-
graphs that are isomorphic to Gé . The value of ¢>L. is given
in Table 2. The following theorem shows the sampling bias
of T-5, which is critical for estimating 7;.

Theorem 1. Using the samplzng procedure once (ie., K; =1),
T-5returnsa CIS s € C sampled with probability

(1)

(1) _ 29; :
D; =T 1< <21,

Proof. As shown in Fig. 4, we can easily find that there exist

two ways to sample a subgraph isomorphic to graphlet

JANUARY 2018
subgraph s case 1 case 2

N step 3: step 4:
! X1—wW X|1—r

step 2: step 2:

*2 3| step 1: U step 1: XU
Xo—™V X2—™V

X4 Xs step4:  step 5: step 3:  step 5:

X4—T Xs—t X4—W X5—1

Fig. 4. The ways of T-5 sampling a subgraph s isomorphic to graphlet
fo), where v, u, w, r, and ¢t are the variables in Algorithm 1, i.e., the
nodes sampled at the 15¢, 20 31d 4th ang 5th steps, respectively.

Gg5> by T-5. Each happens with probability

(1) @ 1 1 - o1
lOz: u dv —1 d’t' _ d -1 F(l) :

For a 5-node CIS s € C’ s has ¢> ! different subgraphs

isomorphic to graphlet G s, 1 <14 <21. Therefore, the
e

probability of T-5 sampling s is % O

We let G©)(s) be the 5-node graphlet ID of s when s is a
5-node CIS, and -1 otherwise. We define

K
=3 16O (s)) = ).
k=1

It is easy to obtain the expectation of m,(;l) as

E(m") = Kp\"n,.

Fori e Qq, p§1> is larger than zero and thus we estimate 7, as

oy my

k)

2

Theorem 2. For 1€Q, 7 ) is an unbiased estimator of m;, i.e.,
E®Y) = n", and the variance of 7V is
- 77,) . (@)

) in (1). We also

) as follows,

We estimate Var(

compute the covariance of 7

Y and i r]

~(1) nin; . .

C (1) (1) _ ity
OV(T]Z ? n] ) Kl ) ? 7é ja

which is used to compute the variance of the estimate of n,

) by replacmg r)L with 7 17,

i,j €y,

given in Section 3.3.

Proof. Fori € Q; and 1 < k < K;, we have

PEO)) =i) = 3 Pl = 91E () = 1)
seC()
:pgl)rh-
Since s&l), . s%) are sampled independently, the ran-

dom variable m; @) follows the binomial distribution with
parameters K; and D; )'L Then, the expectation and vari-
ance of ml1 are
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E(m") = Kip{"n;, Var(m") = Kip{"n;(1 = p{'n,).
Therefore, the expectation and variance of f7§1> are com-
puted as

(1) (1)
A (1 m; E(m; )
E(Ui >) = E( (1)> = M = M
K]pj Klpj
1)
. m; n; 1
Var(#;) = Var (—’) ( - ;7];).
Klpgl) Kl 7( )
For ¢ # jand i, j € (), the covariance of qul) and f;J,(-l) is

Cov(n7 , ﬁ;l))

m@) mY
= Cov — 7(1>
Kip;' Kip;

_ Cov(Z, 1G9 (s) = ). 1G9(s") = 7))
B Kip;''p;
i St Cov(1(GP) (s >:i>71<c<5><s§”> =4)

K%pgl)pg-w

Each sampled 5-node CIS is obtained independently, so we
have

Cov(1(GO(s\)) =

In addition, we have P(G®)(s!
when i # j. Therefore, we obtain

0,16 (s") = ) =0, kAL
D) =inGO(s) = j) =0

Cov(1(GP(s\)) =
=EA(GV() =

i),1(GO(s") = )
G (s))) = j))

E(1(GO(s{") = )ELGD (s{") = 5)
=0—pnpf''n;
-p; >p§ i n;j-

Now, we easily have

Cov(r]L ,fq(/ ))
K- 1 . 1 .
_ 2 Cov(1(GO(sy)) =), UG (s)) = )
Kip'pl"
_ nin;
K,

3.2 The Path-5 Sampling Method
The pseudo-code of Path-5 is shown in Algorithm 2. Let

I = (Z(dx— 1)) =D (de - 1),

zEN, zEN,

ve V.

We assign a weight I'? to each node v € V. Define I'*) =
r®
Sy T and pl? ’2). To sample a 5-node CIS, Path-5

mainly consists of six steps:

Step 1. Sample a node v from V according to the distribution
p(2) = {pg?) TV E V}’

Step 2. Sample a node v from N, according to the distribu-

tion (¥ = {r“ u € N,}, where we define
Ay = D) (X enan(dy — 1
T(U) — ( )(ZJENH { }( 4 ))7 u e Ny,
u FE?)
Step 3. Sample a node w from N, — {u} according to the distri-
bution ") = {u" : w € N, — {u}}, where we define
d,—1
o) = w € N, —{u};

v ZyGNUf{u} (dy - 1)’

Step 4. Sample a node r from N, — {v} at random;
Step 5. Sample a node ¢ from N,, — {v} at random;
Step 6. Return the CIS s that includes nodes v, u, w, r, and t.

Algorithm 2. The Pseudo-Code of Path-5

input: G = (V, E) and K.
output: iyf .
fori € )y do
P —0;
end
fork € [1, K] do
v« WeightRandomVertex(V; p?));
u + WeightRandomVertex(N,, t");
w — WeightRandomVertex(N, — {u}, u("¥);
r « RandomVertex (N, — {v})
t <— RandomVertex(N,, — {v});
— CIS({v, u,w,r,t});
1ft7éuandr7éwandt7érthen
i —GO(s?);
i i + paneL
end 2P
end

We run the above procedure K, times to obtain K5 CISes
3(12) s([? For a CIS s isomorphic to graphlet GZ(-S),
1<4<21, let ¢ ) denote the number of subgraphs in s that
are isomorphic to G(15). In other word, s contains ¢§2> sub-
graphs that are isomorphic to G§5). The value of ¢§2> is given
in Table 2. The following theorem shows the sampling bias

of Path-5.

Theorem 3. Using the samplmg procedure once (ie., Ko =1),
Path-5 samples a CIS s € C with probability

0 _ 20
Pi =10

. 1<i<o2l

Proof. As shown in Fig. 5, we can see that there exist two
ways to sample a subgraph isomorphic to graphlet G’
by Path-5. Each one happens with probability

v v, U 1 1 1
PP x 7l x ) x — de_1*W~

For a 5-node CIS s E C,(" , s has ¢ subgraphs isomor-
phic to graphlet Gl , 1 <4 <21. Thus, the probability of

(2)
?;
Path-5 sampling s is —5. O
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subgraph s case 1 case 2
X1 step 4: x;—r step 5: x;—t
X2 step 2: x,—u step 3: x,—w
X3 step 1: x3—v step 1: x3—v
X4 step 3: x4—w step 2: xg;—u
X5 step 5: xs—t step 4: xs—r

Fig 5. The ways of Path-5 sampling a subgraph s isomorphic to graphlet

G , where v, u, w, 7, and ¢ are the variables in Algorithm 2, i.e., the
nodes sampled at the 15t, gnd grd 4t gng 5th steps, respectively.

Denote
Ko
= UG () = ).
k=1

Then, we have
2 2
E(mg )) = Kgpg )ni.
Fori € O, pEZ) is larger than zero and we then estimate 7, as
(2>

sz@)

K3

Theorem 4. For i € Q,, i;(2) is an unbiased estimator of n; and

its variance is

soy_m (L
Var(m ) - K2 < (2) nz> (2)
bi
We estimate Var(n7 ) by replacing n; with '7; in (2). The
covariance of 1 ni and ;2)
A(2) A (2 nin; S
Cov(@?, ") = ~ K;’ i # Jyi,5 € Qa,

which is used to compute the variance of the estimate of n,
given in Section 3.3.

Its proof is similar to the proof of Theorem 2.
3.3 Hybrid Estimator of 5 Node Graphlet Counts

We estimate 1, as 77 ) and 7 '7 ) fori € Oy — Oy and i € Qy—
Q, respectively. When i € ; N}y, according to [29], we

estimate 7n; based on its two unbiased estimates 7, ’ and ﬁiz .
Formally, let
(2 (1
O Var(ng )) \® _ Var(ng )) .
Var(@") + Var@®) " Var(aV) + Var(i”)

Here Var(ﬁgl)) and Var(f)gz)) are estimated by Theorems 2
and 4. For i € Q; Uy ={1,3,4,5,...,21}, we finally esti-

mate n; as
AR L ADE@ e 0 N0y,
=< 7 i€y —Q, 3)
I i€ Qy— Q.

Note that Q; UQy ={1,2,...,21} — {2}. Next, we dis-
cuss our method for estlmatmg 1. For a CIS s isomorphic

to graphlet G7(35), 1<¢<21, let ¢§3> denote the number of
subgraphs in s that are isomorphic to graphlet Ggs)' In other
word, s contains ¢>§3) subgraphs that are isomorphic to G(QB)
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The value of ¢§3) is given in Table 2. Let
dy
A=) ( ) ) :
veV

Then, the number of all 5-node subgraphs (not necessarily
induced) in G isomorphic to graphlet G;‘B) is A4. Let
Q3 ={j: ¢§-3) > 0} and Q; = Q3 — {2}. We observe that

> ¢ n; = Au.

1€Qg

Since ¢g3) = 1, we estimate n, as

=M o7,

. *
L€Q3

Theorem 5. #); is an unbiased estimator of n;, 1 < i < 21. For

1e QU ={1,2,...,21} — {2}, the variance of 7; is
ar ar ‘)
M, i NQy,
v VLr( )+VLr( )
SN 4
ar(7;) Var(i"), e -0, W
Var(ﬁl@), 1€ Qo — Q.

In the above equation, we estimate Var(ﬁ,gn) and Var(i]f))
using the methods in Theorems 2 and 4. We compute the vari-
ance Var(ijy) =

ST @y var) + > 676 Covli, i),
ieﬂ.z LJGQ ]
where Cov(7);, ﬁ) =
(l)nz”7 ..
e BIEiNy,
)'Iﬂlj . .
- ](1 ) 1691—92,]691 0927
)771'7 . .
Klj’ ’LE(hﬁS)Q,.]ES)1*()27
A in . .
_A—QJ’ ’LGleQQ,]GQQ—Ql,
)\;-2)?11:'1_7' . .
— e 3 2692701,]6910927
0, i€ — Oy, j ey —Qy,
0, iGQQ—Ql,jEQl—Qz.

Proof. For i € O, UQ,, Theorems 2 and 4 tell us that }721)
and r/EQ) are unbiased estimators of n§1>, and they are inde-
pendent. Moreover, /\51) + /\52) = 1. Therefore, we easily
find that 7, is also an unbiased estimator of ngl),
variance is (4). Next, we study the expectation and vari-
ance of ij,. The expectation of 7, is computed as

’72)—A4—Z¢

LGQ*

and its

A4—Z¢ n; = N

LEQ*

Before we compute the covariance of 7, and #; for

1,7 € Q1 UQy and i # j, we first introduce three equa-

tions: (I) for any i, j € )1 U )y, we have Cov(ﬁgl), ﬁf)) =0
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because n ) and n are independent; (II) from Theo-
rem 2, we have Cov( @,fh >) = "’"7 ,i# jand 4,5 € Qy;
(II) from Theorem 4, we have Cov(nf ),77]2) )= "I’(r;f,

i # j and ¢,j € (). Based on these three equations and
eq. (3), we compute #); and 7; as follows:

e When i€ —Qy and j€ Oy —Q;, we have
Cov(iy;, ;) = Cov(a, 7)) = 0.
¢ When i€Qy—0; and je€ Q; —Qy, we have
Cov(iy;, ;) = Cov(n”, 7)) = 0.
e Whenie€ Q) —Qyand je€ O NQsy, we have
L . . . AV,
Cov(il;, ;) = Cov (i, AV + APy = — ]le

e Whenie QN andje Q) — Oy, we have

1
AE )’Ii’?]‘

= Cov( %
1

COV(ﬁi7 f)]) <1> + )\ )Yll ): 7751)) =

e Whenie Q;NOyandje Qy — Oy, we have

2
)‘E )’Ii’?]‘

= Cov( X,

COV(f}i, }c’]) (1> + )\ )nl(Z)’ ﬁj )) -

e Whenie Qy —Qand j € O N Dy, we have

AE'Z) nin;

Cov( %
2

)\51);};1) + /\;2);7(‘2)) _

COV(f]i, f)]) J

e Wheni,je QN and i # j, we have

Cov( ( +)\( nl 7/\§ r}] +)\ >)

)\<1>)\<1) AD A
=N, e + 5 )

Var(Ay — Z;eﬂ ¢(3)A ) =
Sicor (67 Var(@) + e iy 6 ) 6 Coi,
17]). O

COV(f]h f]])

Finally, we have Var(i),) =

3.4 Implementation and Complexities
In this subsection, we introduce our methods of implement-
ing the functions in Algorithms 1 and 2. We also analyze
their time and space complexities.

Function G©®)(s). Let A be the adjacent matrix of s. We
compute a bit string by concatenating all elements above
the main diagonal of A4, that is,

str = Apa|| ([ Aus|[ Azl - [[Aas|| Az all - - [[As5]| Ass.

Then, we compute G©)(s) by looking up key str in hash
table HT. Therefore, the average computational complexity
of function G©)(s) is O(1). Hash table HT is generated in
advance as: For each graphlet G( 1<5<13, we compute
a key str for each permutation of nodes in G\*), and then
store key str and its value j in hash table HT, i.e.,
HT[str] = j. There exist 5! = 120 different permutations for
5 nodes. Therefore, it is memory and computationally effi-
cient to generate HT in advance

Functions T'" and T(?). For each node v, we store its
degree d, and use a list to store its neighbors’ degrees

Clearly, it requires O(d,) operations to compute I'\'V and

I'?. Therefore, the space and time complexities of process-
ing all nodes are both O(|E D
WeightRandomVertex(V; pV)). We use a list V[1,...,|V]]
to store the nodes in V. We store an array AC’C’,F W,
- |V]] in memory, where ACC.T W] is defined as
AccT i =35 Ty, 1 <i§ |V|. Note that AcC.TW
(V] =TW. Let ACCTW[0]=0. Then, WeightRandom

Vertex(V, p\V)) is easily achieved by the following three
steps: step 1) select a number rnd from {1,...,T} at
random; step 2) find i such that ACCT! 0 [z —-1] <
rnd < ACCTW[i], which is solved by binary search; step
3) return V[i]. Thus, the space and time complexities of
WeightRandomVertex(V, p)) are O(|V]) and O(log|V])
respectively.

WeightRandomVertex(V, p@). It is achieved similarly to
that for WeightRandomVertex(V o).

WeightRandomVertex(N,, o). We use a list N,[1,...,d,]
to store the neighbors of v. We store an array AC’C’,U [1,
...,d,] in memory, where ACC.o"[i] is defined as
ACCoW[i] = Y0 (dy,y — 1), 1 < i < d,. Let ACC0![0] =
0. Then, WeigthandomVertex(Nv,o(“)) is easily achieved
by the following three steps: step 1) select a number rnd
from {1,..., ACC_6""[d,]} at random; step 2) find i such that
ACC 6W[i —1] < rnd < ACC 0[i], which is solved by
binary search; step 3) return N,[i]. Thus, the space and time
complexities of WeightRandomVertex(N,,o")) are O(d,)
and O(log d,) respectively.

WeightRandomVertex(N,, 7). It is achieved similarly to
that for WeightRandomVerteX(N ol )

WeightRandomVertex(N, — {u},u*"). As mentioned,
we use a list N,[1,...,d,] to store the neighbors of v, and
store an array ACCoWIL,...,d,] in memory, where
ACCoWi] = Y (dy, — 1), 1 < i < d,. Let POS,,, be the
index of win N,[1,...,d,], i.e,, N, [POSU «] = u. Then, func-
tion WerghtRandomVertex( — {u}, u") is easily achieved
by the following three steps. step 1) select a random num-
ber rnd from {1 ., ACCoV[d,)} — {ACC_oW[POS,, — 1] +

., ACC ot [POSU JJ}; step 2) find i such that ACC o)
[z - 1} < rnd < ACC_0\[i], which is solved by binary
search; step 3) return N,[i|. Therefore, the time complexity
of WeightRandomVertex(N, — {u}, u**) is O(logd,).

RandomVertex(N, {u}) Function RandomVertex(N,—
{u}) is achieved by two steps: step 1) select a number rnd
from {1,...,d,} —{POS,,} at random; step 2) return
N,[rnd]. Thus, the computational complexity of Random
Vertex(N, — {u})is O(1).

RandornVertex(N {u,w}). It is achieved by two steps:
step 1) select a number rnd from {1,...,d,} — {POS, .,
POS, ,,} at random; step 2) return N,[rnd]. Thus, the compu-
tational complexity of RandomVertex(N, — {u, w}) is O(1).

In summary, the space and time complexities of T-5 sam-
pling K; CISes are O(|V|+ |E|) and O(|E|+ Kilog|V])
respectively, and the space and time complexities of Path-5
sampling K, CISes are O(|V| + |E|) and O(|E| + K»log|V])
respectively. Therefore, the space and time complexities of
MOSS-5 are O(|V]|+ |E|) and O(|E|+ (K + K»)log|V])
respectively.
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TABLE 3
Undirected Graph Datasets Used in Our Experiments. Where
“max-degree” Represents the Maximum Number of Edges
Incident to a Node in the Undirected Graph

Graph nodes edges max-degree
com-Orkut [30] 3,072,441 117,185,803 33,313
LiveJournal [31] 5,189,809 48,688,097 15,017
Pokec [32] 1,632,803 22,301,964 14,854
Flickr [31] 1,715,255 15,555,041 27,236
Xiami [33] 1,753,620 16,018,571 19,727
Wiki-Talk [34] 2,394,385 4,659,565 100,029
Web-Google [35] 875,713 4,322,051 6,332
YouTube [31] 1,138,499 2,990,443 28,754
ca-HepPh [36] 12,008 118,490 491

JANUARY 2018
TABLE 4
Computational Time (Seconds) of MOSS-5
Graph sampling budget K
100,000 1,000,000 10,000,000
com-Orkut 69.1s 80.4s 193.8 s
LiveJournal 315s 404 s 128.7 s
Pokec 20.7 s 30.2s 125.2's
Flickr 104 s 19.6 s 111.6s
Xiami 104 s 18.6 s 99.3s
Wiki-Talk 46s 129s 95.7 s
Web-Google 4.1s 109s 79.3s
YouTube 25s 94s 78.6 s
ca-HepPh 0.53s 48s 46.3s

3.5 Parameter Settings

From Theorem 5, we can see that the variance of 7; greatly
depends on the sampling budget K for i € (3; — £),. In con-
trast, K, is used to guarantee the desired variance of 7;,
i€ Qy — Q4. Thus, K; and K, can be set according to the
above observations. Given a total sampling budget K (i.e.,
K = K + K,), how to set K| and K»? Our empirical study
shows that p,,(jl) and pEQ) have similar values. Therefore, T-5
and Path-5 exhibit similar estimation errors when K; = K>
and we set K1 = K, = & in this paper for simplicity.

4 EVALUATION

4.1 Datasets

We perform our experiments on a variety of publicly avail-
able graph datasets ranged from 0.1 to 117 million edges
taken from the Stanford Network Analysis Platform
(SNAP),* which are summarized in Table 3. We use the
state-of-the-art method ESCAPE [28] to exactly compute 5-
node graphlet counts 7y, ...,y for all these graphs. Fig. 6
shows the real values of 1y, ..., 1.

4.2 Metric

We study the Normalized Root Mean Square Error
(NRMSE) to measure the relative error of the graphlet count
estimate 7; with respect to its true value n;, i =1,...,21. It
is defined as

NRMSE(#;) = —VMSE(”) i=1,,21,

1;

where MSE(7),) denotes the mean square error of 7;, i.e.,

MSE(#;) = E((d; — 7)1')2) = Var(i;) + (E(7;) — 771)2-

We can see that MSE(#;) decomposes into a sum of the vari-
ance and bias of the estimator 7,. Both quantities are impor-
tant and need to be as small as possible to achieve a good
estimation performance. When 7, is an unbiased estimator
of n;, we have MSE(#),) = Var(#;) and then NRMSE(7);,) is
equivalent to the normalized standard error of 7, ie.,
NRMSE(#;) = v/Var(n,)/n,. In addition, we define w as
the relative error of #;, and also study the CCDF (coﬁwple-

mentary cumulative distribution function) of m’;”"‘, that is,

4. www.snap.stanford.edu

CCDF("” —ﬂi|7x) :P<|77¢ — 1, > x)
i ;

In our experiments, we calculate the NRMSE and CCDF
over 1,000 runs. Our experiments are conducted on a server
with a Quad-Core AMD Opeteron (tm) 8379 HE CPU 2.39
GHz processor and 128 GB DRAM memory.

4.3 Runtime

Table 4 shows the computational time of MOSS-5. We can
see that MOSS-5 is quite computationally efficient, which
takes less than 200 seconds to sample 10 million 5-node
CISes for all graphs studied in this paper. We observe that
the sampling budget K does not offer a strictly linear
increase in running time. This is because the time cost of
computing T'") and T'® cannot be neglected for all nodes
v € V, which equals 68, 30, 20, 10, 9, 4, 3, 1, and 0.05 seconds
for graphs com-Orkut, Livejournal, Pokec, Filckr, Xiami,
Wiki-Talk, Web-Google, YouTube, and ca-HepPh respec-
tively. Moreover, we observe that sampling large graphs
such as com-Orkut is computationally expensive than sam-
pling small graphs such as ca-HepPh. From the experimen-
tal results in Section 4.5 (Table 5), we show that MOSS-5
requires less than 2 minutes to compute 5-node graphlet
counts with NRMSEs smaller than 0.1 for graphs with mil-
lions of nodes and edges.

4.4 Accuracy

Fig. 7 shows NRMSEs of MOSS-5 with sampling budget
K =100, 000, 1,000, 000, 10,000, 000. For all graphs, most 5-
node graphlets’ NRMSEs are smaller than 0.1 when
K =100, 000, and all 5-node graphlets” NRMSEs are smaller
than 0.1 when K = 10,000, 000. In addition, we observe that
NRMSEs are proportional to LK, which is consistent with
Theorem 5. For example, in Fig. 7 we see that a one order
of magnitude increase in K decreases NRMSEs by \/%_o
Fig. 8 shows the CCDF of relative error %, 1<¢<2],
given by MOSS-5 with sampling budget K = 1,000, 000.
We can see that more than 99 percent of estimates #;
obtained by 1,000 independent runs have a relative error
smaller than 3NRMSE(#;). From Figs. 6, 7 and 8, we
observe that MOSS-5 exhibits smaller estimation errors
for graphlets with large graphlet counts (i.e., frequent
graphplets) than graphlets with small graphlet counts
(i.e., rare graphlets).
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Fig. 6. Real values of 5-node graphlet counts.

4.5 Comparison with Prior Art

MOSS wversus Fast Exact Counting Method ESCAPE [28].
Table 5 shows the expected smallest computational time of
MOSS-5 required to obtain all estimates #;,...,7,; with
NRMSE smaller than 0.1. To compute 7y, ...,ny;, the state-
of-the-art exact computing method ESCAPE requires
52 hours, 32 hours, 23 hours, 1 hour, 31 minutes, 10 minutes,
8 minutes, 3 minutes, and 2 minutes for graphs Flickr, com-
Orkut, LiveJournal, Pokec, Wiki-Talk, ca-HepPh, Xiami,
YouTube, and Web-Google respectively. We can see that
the computational time of ESCAPE does not strictly increase
with the graph size. For example, graph ca-HepPh is more
than ten times smaller than graphs YouTube and Web-
Google. To compute 7y, ..., 15, however, ESCAPE requires
much more time for ca-HepPh than for YouTube and Web-
Google. From Table 5, we see that our method MOSS-5 is 2
to 18,945 times faster than ESCAPE when providing accu-
rate estimates with NRMSE smaller than 0.1. From the
results in Section 4.4 (Fig. 7), we observe that when the max-
imum of NRMSEs of all graphlets’ estimates equals 0.1,
NRMSEs of many graphlets’ estimates are much smaller

than 0.1. In Table 5, we show the average NRMSE
372 NRMSE(#,;) when max;_; i NRMSE(#);) = 0.1. We

can see that the average NRMSE varies from 0.01 to 0.04 for
all graphs studied in this paper.

TABLE 5
Computational Time (Seconds) and Accuracy
of MOSS-5 in Comparison with State-of-the-Art Exact
Counting Method ESCAPE

Graph ESCAPE MOSS-5, max;—;. o1 NRMSE(#,) = 0.1
(time) time 572 NRMSE(#;)
Flickr 189,450 s 10s 0.039
com-Orkut 116,029 s 103 s 0.015
LiveJournal 82,445 s 31s 0.037
Pokec 3,696 s 31s 0.024
Wiki-Talk 1,877 s 47 s 0.018
Xiami 518s 82s 0.013
Web-Google 112s 25s 0.013
YouTube 193s 9% s 0.011
ca-HepPh 589s 64s 0.011
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Fig. 7. NRMSEs of estimates of 5-node graphlet counts n;, 1 < i < 21, given by MOSS-5 with sampling budget K = 10°, 105, 107.

MOSS versus Sampling Methods Guise [37] and Graft [38].
Most previous work focuses on estimating 5-node motif
concentrations, i.e., w; = —& 1=1,...,21. We run MOSS-

Zjil " ’
5 and the state-of-the-art sampling methods Guise [37] and
Graft [38] on all above graphs and increase their sampling
budgets until the estimation errors of motif concentrations
are within 10 percent. Guise uses a Metropolis-Hastings
Random Walk (MHRW) method to uniformly sample CISes
from all 3-, 4-, and 5-node CISes. To conduct a fair compari-
son, we adapt GUISE to focus on 5-node ClSes similarly
to [39]. Graft samples a fraction of edges from G at random,
and then enumerates all 5-node CISes that include at least
one edge in the set of sampled edges. In practice, it is not
easy to obtain an estimation with a desired accuracy for
Guise [37] and Graft [38]. In our experiments, we increase
their sampling budgets until the relative errors of their

estimates are no more than 10 percent with respect to the
real values of all graphlet concentrations. Fig. 9 shows the
runtime of Graft and Guise normalized with respect to the
runtime of MOSS-5 (i.e., the runtime of MOSS-5 of unit 1).
We can see that our method MOSS-5 is 2 to 3 orders of mag-
nitude faster than Graft and Guise.

5 RELATED WORK

In this paper, we study the problem of estimating the counts
of 3-, 4-, and 5-node graphlets for a single large graph, which
is much different from the problem of computing the num-
ber of subgraph patterns appearing in a large set of
graphs [40]. A variety of centralized and distributed algo-
rithms have been developed to enumerate and count all tri-
angles in large undirected graphs [41], [42], [43], [44], [45].
Recently, a considerable attention has been given to
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designing fast algorithms for counting higher order sub-
graph patterns such as 4- and 5-node graphlets. [28], [44],
[45], [46], [47] develop fast algorithms for counting 4- and 5-
node undirected graphlets by utilizing the relationships
between 3-, 4-, and 5-node graphlet counts. In addition, quite
a few efforts have been devoted to designing sampling meth-
ods for computing a large graph’s graphlet concentrations
(or, motif concentrations) [37], [38], [39], [48], [49], [50], [51],
but they fail to compute graphlet counts. Alon et al. [52] pro-
pose a color-coding method to reduce the computational cost
of counting subgraphs. Color-coding reduces the computa-
tion by coloring nodes randomly and enumerating only col-
orful CISes (i.e., CISes that consist of nodes with distinct
colors), but [27] reveals that the color-coding method is not
scalable and is hindered by the sheer number of colorful
ClISes. [21], [22], [23], [24] develop sampling methods to esti-
mate the number of triangles of static and dynamic graphs.
Jha et al. [27] develop sampling methods to estimate counts
of 4-node graphlets. These methods cannot be used to sample
and estimate 5-node grahplet counts. When the graph of
interest is not available but given a RESampled graph that
is obtained by sampling each edge with a fixed probability,
Minfer [53] aims to infer the underlying graph’s graphlet
concentrations from the RESampled graph. Moreover, [39],
[51], [54] assume that the graph of interest is not given in
advance, and they focus on designing crawling methods to
query as less nodes as possible to characterize graphlets. In
this paper, we assume that the entire graph of interest is
given in advance, and aim to design a fast sampling
method to reduce the time of computing graphlet counts.
When the entire graph is given in advance, Minfer [53]
and crawling methods in [39], [51], [54] exhibit much
larger errors than sampling methods such as our method
MOSS-5 (aim to estimate 5-node graphlet counts), 3-path
sampling [27] (aim to estimate 4-node graphlet counts),
and wedge sampling [25] (aim to estimate 3-node graphlet
counts) under the same computational time. In contrary,
these sampling methods require the statistics of all nodes
and edges such as degree, so they cannot be used to esti-
mate graphlet counts when the entire graph is not given in
advance. In addition, [55], [56] accelerate the speed of
exactly counting graphlets, and [47] develops a parallel
algorithm to exactly count 3- and 4-node graphlets.

6 CONCLUSIONS AND FUTURE WORK

We develop a computationally efficient sampling method
MQOSS-5 to estimate the counts of 5-node graphlets in a large
graph. We provide unbiased estimators of 5-node graphlet
counts, and derive simple yet exact formulas for the varian-
ces of the estimators. Meanwhile, we conduct experiments
on a variety of publicly available datasets, and experimental
results demonstrate that our method significantly outper-
forms the state-of-the-art methods. In future, we plan to
extend MOSS-5 on parallel and distributed computing sys-
tems for greater scalability.
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