
41

Mining Graphlet Counts in Online Social Networks

XIAOWEI CHEN and JOHN C. S. LUI, The Chinese University of Hong Kong

Counting subgraphs is a fundamental analysis task for online social networks (OSNs). Given the sheer size and
restricted access of OSN, efficient computation of subgraph counts is highly challenging. Although a number
of algorithms have been proposed to estimate the relative counts of subgraphs in OSNs with restricted access,
there are only few works which try to solve a more general problem, i.e., counting subgraph frequencies. In
this article, we propose an efficient random walk-based framework to estimate the subgraph counts. Our
framework generates samples by leveraging consecutive steps of the random walk as well as by observing
neighbors of visited nodes. Using the importance sampling technique, we derive unbiased estimators of the
subgraph counts. To make better use of the degree information of visited nodes, we also design improved
estimators, which increases the accuracy of the estimation with no additional cost. We conduct extensive
experimental evaluation on real-world OSNs to confirm our theoretical claims. The experiment results show
that our estimators are unbiased, accurate, efficient, and better than the state-of-the-art algorithms. For the
Weibo graph with more than 58 million nodes, our method produces estimate of triangle count with an
error less than 5% using only 20,000 sampled nodes. Detailed comparison with the state-of-the-art methods
demonstrates that our algorithm is 2–10 times more accurate.

CCS Concepts: • General and reference → Estimation; • Mathematics of computing → Markov-chain
Monte Carlo methods; • Networks → Online social networks; • Theory of computation → Graph
algorithms analysis; Random walks and Markov chains;
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Monte Carlo
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1 INTRODUCTION
Analyzing properties of online social networks (OSNs) has attracted extensive attention because
of their increasing popularity, significant importance, and diverse applications [37]. In this work,
we focus on counting the number of subgraphs in OSNs. Subgraphs whose counts are desired
are also referred as “graphlets,” “motifs,” or “pattern subgraphs” [23]. Counting the number of
graphlets in OSNs is a fundamental analysis task. For example, computing the triadic tendencies
(e.g., clustering coefficient) has a long history in the social network analysis and modeling [12, 24,
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34, 46, 55]. Recently, Ugander et al. [51] analyzed the 4-node graphlet counts for social networks
and studied what properties are merely indicated by graph theory and what are actual social fea-
tures of the real-world graphs. There are also numerous applications of graphlet counts in social
science, e.g., large-scale graph comparison [4], anomaly and event detection [34, 55], and nodes
classification [51].

However, it is a challenging task to compute graphlet counts for OSNs. First, the complete net-
works are usually too large, which renders the exact computation impractical. In fact, counting
graphlets even on a moderately sized OSN has prohibitive computation cost, e.g., the computa-
tion of 4-node graphlets cannot finish within a week for a Twitter graph with 21.3M nodes in
our datasets using the state-of-the-art exact counting algorithm in [4]. It is natural to resort to
“efficient-to-compute estimations” of the graphlet counts in these cases. Second, most OSNs have
restrictions on the access to nodes and edges of the underlying networks. On one hand, networks
with massive size are usually stored in local or remote databases, which restricts the random ac-
cess to nodes and edges. For owners of the OSNs, the network data need accessing via Application
Programming Interface (API) of the databases. On the other hand, for researchers in academic
community, the networks are usually unknown beforehand [17, 37] and the they only have lim-
ited access via APIs provided by the OSNs’ operators. Such restricted access makes the retrieval
of entire topology prohibitively expensive due to extremely high query cost for both of owners
of OSNs and academic researchers. To address these challenges, graph sampling via crawling has
been widely applied for OSN measurement [17, 26, 27, 33, 56]. In particular, random walk-based
methods are popular due to its simple implementation and capability to remove bias of samples.

Our goal is to design an efficient random walk-based sampling algorithm to estimate the graphlet
counts in the OSNs. Different from some nodal properties, e.g., degree distribution, which has been
extensively studied with random walk-based methods [17, 31, 33], single node samples generated
by the random walk are not sufficient for the estimation of graphlet counts since single node carries
no information about local structures. To estimate graphlet counts, we need to examine the local
structures of networks during the random walk.

Summary of contributions. In this work, we design an efficient random walk-based algorithm to
estimate 3-, 4-, 5-node graphlet counts. It is important to point out that our algorithm can be easily
extended to graphlets with larger size. We summarize the contributions as follows.

—Novel algorithm: Our algorithm provides provably unbiased estimate. The main idea is to
consider the consecutive steps of the random walk and examine the neighbors of visited
nodes. To further improve the efficiency, we also propose improved estimators that make
better use of degree information of visited nodes. To the best of our knowledge, our algo-
rithm is the first to estimate all 3-, 4-, 5-node graphlet counts of OSNs via the random walk.

—Analytical bound: We provide an analytical bound on the sample size to guarantee that the
estimate is within (1 ± ϵ ) relative to the true counts with probability of at least 1 − δ . The
bound depends on the parameter ϵ and the confidence level δ as well as some parameters of
the graphs. The analytical bound guarantees the theoretical convergence of our estimator
and sheds light on what parameters of the graphs affect the performance of our algorithm.

—Extensive experiments: We validate our algorithm on real-world social networks. The ex-
periments show that our estimators are unbiased and accurate. Furthermore, our estima-
tors converge to the ground truth rapidly. Compared with the state-of-the-art random
walk-based methods [7, 52] that are only capable of computing the relative counts of
graphlets, our algorithm not only solves the more general problem, i.e., graphlet count-
ing, but also significantly outperforms the state-of-the-art methods in estimating relative
counts of graphlets.
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—Excellent empirical accuracy: The experiment results demonstrate that our algorithm is
practical, e.g., with only 20K visited nodes, the average relative error of estimated triangle
counts is within 5% for all the tested graphs.

In this article, we have several extensions as compared with our previous conference paper [8].
First of all, we propose a new improved estimator, which is designed for an important class of
access models. Second, we devote a new section to explain our implementation and its intricacy in
details. Third, this article provides all the proofs of the theoretical results and adds more illustra-
tive examples and details to make our presentation clearer. Finally, we extend the experiments by
adding evaluation on the new improved estimator and giving additional comparison with another
state-of-the-art method recently proposed in [7].

Paper organization. The rest of this article is organized as follows. In Section 2, we discuss the
related works of our article. The notations and background are provided in Section 3. We describe
the algorithm framework and improved estimators in Sections 4 and 6, respectively. The analytical
bound of our estimators is presented in Section 5. After showing the performance of our estimators
and comparing with the state-of-the-art methods, we conclude in Section 9. The supplementary
materials are provided in the Appendix.

2 RELATED WORK
Previous works on subgraph counting include exact counting methods and estimation methods.
In the following, we give a brief review on these methods.

2.1 Exact Counting
The exact counting of graphlets has extensive computation cost since the number of possible
k-node graphlets grows exponentially with k in O ( |V |k ), where V is the set of nodes in the
graph. Shervashidze et al. [48] show that for graphs with degree bound ∆, the exact number of
all graphlets of size k can be determined in time O ( |V | · ∆k ). Counting 3-, 4-, 5-node graphlets
attracts more attention than the general k-node graphlet counting. Alon et al. presented the most
time-efficient algorithm to compute the triangles via the matrix multiplication [5]. Despite its fast
running time ofO ( |E |1.41), the algorithm is not practical due to its high space complexity ofO ( |V |2)
associating with the matrix computation. A more practical algorithm “edge-iterator” in [45] counts
triangles with fast running time ofO ( |E |1.5) and a reasonable space requirement. The state-of-the-
art memory-based method for 3-, 4-node graphlet counting is proposed in [4]. This method’s core
idea is to count only a few graphlet types for each edge in parallel, then derive the exact counts
for other graphlet types by combining these counts with combinatorial equations. The time com-
plexity of this method is O ( |E | · ∆), O ( |E | · ∆ ·Tmax) and O ( |E | · ∆ · Smax ) for counting triangles,
4-node cliques and 4-node cycles, respectively. Here, ∆ is the degree bound,Tmax is the maximum
number of triangles incident to an edges, and Smax is the maximum number of 4-node stars inci-
dent to an edge. Hočevar and Demšar proposed a combinatorial graphlet counting method [21],
which leverages orbits and a system of linear equations. The equations connect the counts of
orbits for graphlets up to 5-nodes and allow computing all orbit counts by enumerating only one.
The algorithm in [21] is the state-of-the-art 5-node graphlet exact counting method. Recently,
[41] proposed an efficient 4-, 5-node graphlet counting method named “Escape,” which is built
on cutting a graphlet pattern into smaller ones, and uses counts of smaller patterns to get larger
counts. The single thread algorithm Escape has smaller running time in counting 4-node graphlets
than the method proposed by Ahmed et al. when both of the methods are restricted to use a single
core. There are also multiple close works in the area of subgraph enumeration, e.g., [2, 28, 30, 47].
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Fig. 1. An example of subgraph and induced subgraph.

2.2 Sampling Methods
Generally speaking, the access assumption of the graphs can be divided into three categories:
(i) full access, i.e., graphs could fit in the main memory and random access to graph data is allowed,
(ii) restricted access, i.e., full graph topology is not available, but APIs are provided to retrieve in-
formation, and (iii) streaming access, i.e., edges of graphs appear in streaming. Various sampling
methods have been designed for different settings. Usually methods designed for a specific set-
ting have the best performance in that setting and are not recommended to be adopted for other
settings. The sampling methods with full access assumption include the wedge sampling [46],
the three-path sampling [23], Moss [54], GRAFT [42], and so on. For streaming graphs, works on
graphlet counts estimation include the methods using independent edge sampling [3, 14, 15, 34,
53] and reservoir sampling [12, 24] cannot be easily extended to estimate the graphlet counts.

3 PRELIMINARIES
3.1 Notations and Definitions
Our input network is modeled as an undirected, unweighted, and connected graph G = (V ,E),
where V is the set of nodes and E is the set of edges. We assume G has neither self-loops nor
multi-edges. For a node v ∈ V , N (v ) represents the set of neighbors of v and dv = |N (v ) | is the
degree of v .
Subgraph: A k-node subgraph Gk = (Vk ,Ek ) of G satisfies Vk ⊆ V , Ek ⊆ E and |Vk | = k . An “in-
duced subgraph” ensures that all edges connecting nodes in Vk are also present in Ek , i.e., Ek =
{(u,v ) |u,v ∈ Vk ∧ (u,v ) ∈ E}. We distinguish between subgraph and induced subgraph. In gen-
eral, if we do not say “induced” subgraph, we mean a “normal” subgraph which just has a sub-
set of edges of the original graph. Consider examples in Figure 1. The edge set {(v1,v6), (v5,v6),
(v1,v4), (v4,v5)} forms a (non-induced) 4-node subgraph, while the node set {v1,v4,v5,v6} induces
a 4-node induced subgraph.
Isomorphic: Two graph G = (V ,E) and G ′ = (V ′,E ′) are isomorphic if there exists a bijection φ :
V → V ′ with (u,v ) ∈ E ⇔ (φ (u),φ (v )) ∈ E ′ for all u,v ∈ V [13].
Graphlet. Graphlets are defined as non-isomorphic, connected, and induced subgraphs in graphs. Let
Gk denote the family of k-node graphlets, i.e., Gk = {gk

1 , . . . , g
k
mk }. Here, mk denotes the number

of all distinct k-node graphlets. To illustrate, in Section 4, Table 2 depicts G3 and G4, while Table 3
depicts G5. The second row of the Tables 2 and 3 show all the 3-, 4-, 5-node graphlets. We can see
thatmk = {2, 6, 21} for k = 3, 4, 5, respectively.
Problem definition: Given the family of k-node graphlets Gk = {gk

1 , . . . , g
k
mk }, let Ck

i denote the
number of induced subgraphs that are isomorphic to the graphlet gk

i ∈ Gk in the input graph G.
Our goal is to compute {Ck

1 , . . . ,C
k
mk } efficiently.
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We refer to {Ck
1 , . . . ,C

k
mk } as the graphlet counts. The computation of graphlet counts is usually

restricted to graphlets of no more than 5 nodes [4, 6, 21, 23, 26, 54] due to the extremely high
computation cost. Besides, various applications, e.g., [48, 51] focus on graphlets with less than 6
nodes since graphlets with up to 5 nodes have the best cost–benefit tradeoff [6]. In this work, our
aim is to efficiently compute Ck

i , for k = 3, 4, 5.

3.2 Random Walk on Graphs
Access model: In this work, we assume the topology of the input graph G is not readily available
and we can only obtain it with restricted access, i.e., the graph data can only be accessed by calling
APIs provided by operators of OSNs. While APIs have various design specifications across different
OSNs, most of them support queries by taking node IDs as input. Some basic information collected
when querying a node u is the set of friends N (u), and other attributes of u (e.g., user name and
privacy settings) [17].
Random walk: Random walk-based methods fit in with the restricted access setting naturally. Sim-
ple random walk (SRW) on a graph is defined as follows. We start from an initial node v0 in the
graph and extract its information, and then randomly select one of v0’s neighbors (with equal
probability), say v1, and then we transit to and explore v1. We repeat this process until some stop-
ping criteria, e.g., stop after making a pre-defined number of transitions. In fact, SRW onG can be
modeled as a finite, time reversible Markov chain with state spaceV and transition matrix P,where

P(u,v ) =

{ 1
du

if(u,v ) ∈ E,
0 otherwise.

Let π (v ) be the steady-state probability of node v . It is easy to show that π (v ) = dv/(2|E |),v ∈
V [35]. Note that these steady state probabilities (a.k.a. stationary distribution) are important for
removal of the random walk sampling bias.
Theoretical guarantee: The mathematical foundations of the random walk root at theories for fi-
nite Markov chain. In the following, we review the Strong Law of Large Numbers (SLLN, a.k.a.
ergodic theorem) for the Markov chain [25, 36, 39], which serves as the basis for graph sampling
via random walk over a graphG, or more generally, the Markov Chain Monte Carlo (MCMC) sam-
plers [43]. Suppose the Markov chain with the state spaceM has the stationary distribution πππ ,
and the function f :M → R is an integrable function with respect to πππ . Then, the expectation
of f w.r.t. πππ , which is given by µ ! Eπππ [f ] ! ∑

X ∈M π (X ) f (X ) exists. Let {Xt }nt=1 represent the
sequence of visited states of the Markov chain. We define the sample average µ̂n ! 1

n
∑n

t=1 f (Xt )
as the estimator for the expectation µ.

Theorem 3.1. Suppose {Xn } is a finite, irreducible Markov chain with stationary distribution πππ .
As n → ∞, we have

µ̂n → µ almost surely (a.s.)

for any initial distribution and any function with Eπππ [| f |] < ∞.

The above theorem guarantees the convergence of the sample mean to the expectation. The
estimator µ̂n is an unbiased estimator of µ according to the SLLN. Later on, we use the SLLN to
prove the unbiasedness of our proposed estimator.

4 ALGORITHMIC FRAMEWORK
Our algorithm generates the subgraph samples through consecutive steps of the random walk.
Furthermore, we leverage the neighbors of the nodes visited along the random walk. We correct
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Table 1. Summary of Notations

Notation Meaning
G = (V ,E) Underlying graph with node set V and edge set E
Gk = (Vk ,Ek ) k-node subgraph with node set Vk and edge set Ek
N (v ) The set of neighbors of node v
gk

i i-th type k-node graphlet
Ck

i Count of the graphlet gk
i

Ĉk
i Estimated count of the graphlet gk

i
M (l ) State space of the expanded Markov chain1

X = (v1, . . . ,vl ) State inM (l ) , v1, . . . ,vl are the l nodes contained in state X
πππM Stationary probability of the expanded Markov chain
V (X ) Set of nodes in the state X
B (Gk ) Set of states which can find subgraph Gk = (Vk ,Ek ), i.e.,

B (Gk ) ! {X |X ∈M (k−1), |V (X ) | = k − 1,V (X ) ∈ Vk }
A (Gk ) The set of states whose node set is the same as Gk = (Vk ,Ek ), i.e.,

A (Gk ) ! {X |X ∈M (k ),V (X ) = Vk }
A (X ) The set of states inM (l ) whose node set is the same as state X
βk

i The cardinality of the set B (Gk ) where Gk is isomorphic to gk
i

αk
i The cardinality of the set A (Gk ) where Gk is isomorphic to gk

i

the sampling bias via importance sampling [40]. For ease of presentation, we summarize the main
notations in Table 1.

4.1 Basic Idea
We first describe the high level idea of our algorithm framework. For clarity, we introduce the
concepts of touched subgraph and visible subgraph. A k-node subgraph Gk = (Vk ,Ek ) is defined as
a touched subgraph if neighbor sets of nodes in Vk are available, i.e., we have obtained the N (v )
for all v ∈ Vk by querying node v through APIs. The subgraphGk = (Vk ,Ek ) is defined as a visible
subgraph if there is one and only one node v ∈ Vk whose N (v ) is not available, i.e., one has not
obtainedN (v ) yet. Such subgraph is “visible” because we can infer all edges between nodes inVk
so as to determine the graphlet type of the visible subgraph. To illustrate, consider the graph in
Figure 2(a). Assume, we already obtain the neighbors of nodes 4 and 7. According to the definition,
the subgraph induced by {4, 7} is a touched subgraph, while the subgraph induced by {4, 7, 8} is
a visible subgraph (a triangle). The subgraph induced by {5, 4, 8} is not visible since only N (4) is
obtained. In other words, we cannot determine whether 5 and 8 are connected with only N (4).

Since our goal is to compute the graphlet counts, only graphlets, i.e., connected subgraphs, are
considered in this work. We now discuss how to obtain the k-node connected subgraph sam-
ples. Our idea is to generate (k − 1)-node touched subgraphs first. Then, using these (k − 1)-node
touched subgraphs together with the neighborhood nodes, we can obtain many visible k-node
subgraph samples. We generate touched subgraphs through consecutive steps of the random walk.
Formally, we consider each k − 1 consecutive steps of the random walk which visits k − 1distinct
nodes as a (k − 1)-node subgraph. These (k − 1)-node subgraphs are touched subgraphs according
to the access model in Section 3.2. If the random walk fails to visit k − 1 distinct nodes with k − 1
steps, we just discard such consecutive k − 1 steps and continue the random walk.

1The expanded Markov chain with state spaceM (l ) remembers l consecutive steps of the corresponding random walk.
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Fig. 2. Illustration of the basic idea. (a) When k = 3, assume we visit the nodes 4 and 7 sequentially. Then,
we obtain the touched subgraph , and we can observe 2 visible triangles ( ) and 2 visible wedges
( ). (b) When k = 4, suppose we walk for three steps and visit nodes {4, 7, 1} sequentially, then the wedge

is a 3-node touched subgraph; we can observe 1 line ( ), 1 cycle ( ), 1 chordal-cycle ( ), and
1 tailed-triangle ( ). (c) When k = 5, we need to walk for four steps to get the touched subgraphs. Assume
we visit nodes {4, 7, 1, 2} sequentially, then there are 1 , 1 , 1 , and 1 visible to the walker; here the
4-node line is the 4-node touched subgraph.

Our algorithm explores the neighborhood of the node set Vk−1 to get k-node graphlet sam-
ples, which is motivated by the fact that the random walker needs to know the exact set of
neighbors when it randomly jumps to next node, and most APIs support the function to re-
turn a set of neighbors when querying a node. Since API calls are expensive, it is reasonable
to leverage the neighborhood information obtained during the random walk. Suppose, we have
obtained a (k − 1)-node touched subgraph Gk−1 = (Vk−1,Ek−1). Define the neighborhood of Vk−1
as N (Vk−1) = {∪v ∈Vk−1N (v )}\Vk−1. The key observation is that the k-node subgraphs induced by
Vk−1 ∪ {v},∀v ∈ N (Vk−1) are visible to the random walker when the nodes inVk−1 are visited dur-
ing the random walk. We use these k-node visible subgraphs as the obtained k-node subgraph
samples. Note that we do not need to query any node in N (Vk ) for extra neighborhood informa-
tion to determine the graphlet types of these k-node visible subgraph samples. It is sufficient to
get (k − 1)-node touched subgraphs first then to get the k-node subgraph samples. Specifically,
we get 2-, 3-, 4-node touched subgraph first for 3-, 4-, 5-node graphlet counts estimation. Refer to
Figure 2 for the illustration of the basic idea.

Each k-node induced subgraph is visible to the walker with unequal probability. We need to
compute the “ visible probability” of the subgraphs, and then use the importance sampling tech-
nique [40] to remove the bias. We explain the detailed derivation of unbiased estimator in following
subsections.

4.2 Mathematical Description
Now, we translate the basic idea to the formal mathematical description and define the MCMC
sampler. Our proposed algorithm considers the l = k − 1 consecutive steps of the random walk
as a touched subgraph. Accordingly, we define a Markov chain that remembers l steps of the
random walk as the expanded Markov chain. The state spaceM (l ) of the expanded Markov chain
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is defined as the set of all possible consecutive l steps of the random walk, where l represents
how many consecutive steps we take into consideration. The state X ∈M (l ) can be written as
X = (v1, . . . ,vl ), where (vi ,vi+1) ∈ E, 1 ≤ i ≤ l − 1. Each time the random walk proceeds to next
node, the expanded Markov chain transits to the next state. For example, suppose the expanded
Markov chain is at state Xt = (v1, . . . ,vl ), for the random walker, it is at node vl . If the walker
randomly chooses a neighbor vl+1 of vl and moves to it, then the expanded Markov chain transits
to the state Xt+1 = (v2, . . . ,vl+1).

Example. Consider Figure 2(c). In this case, we havek = 5 and l = k − 1 = 4. Suppose, the walker
already visits nodes 4 and 7 and is currently at node 1. Then, we say that the walker is at state
(4, 7, 1). If the random walker proceeds to node 2 in the next step, then the expanded Markov chain
transits to state (7, 1, 2).

For any two states Xi = (vi1 , . . . ,vil ) and X j = (vj1 , . . . ,vjl ) inM (l ) , the transition matrix PM
of the expanded Markov chain is

PM (Xi ,X j ) =
⎧⎪⎨⎪⎩

1
dvil

if (vi2 , . . . ,vil ) = (vj1 , . . . ,vjl−1 ),

0 otherwise.

Note that we define the expanded Markov chain only for the convenience of deriving the unbiased
estimator, since it describes the same process as the random walk. It is easy to verify that the
expanded Markov chain is irreducible and there exists a unique stationary distribution [18]. LetπππM
denote the stationary distribution of the expanded Markov chain. For the state X = (v1, . . . ,vl ) ∈
M (l ) , we have

πM (X ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dv1/2|E | l = 1,
1/2|E | l = 2,

1
2 |E |

1
dv2
· · · 1

dvl−1
l ≥ 3.

We now define the function f k
i :M (l ) → R. Let V (X ) ! {v1, . . . ,vl } denote the set of nodes in

X = (v1, . . . ,vl ), where l equals to k − 1 in our algorithm. If |V (X ) | < l , then f k
i (X ) = 0. Other-

wise, f k
i (X ) equals to the number of subgraphs induced by V (X ) ∪ {v} (∀v ∈ N (V (X ))) that are

isomorphic to gk
i . Let S (X ) ! {Gk (Vk ) |Vk = V (X ) ∪ {v},v ∈ N (V (X ))}. Here,Gk (Vk ) denotes the

subgraph induced by Vk . Formally, the real-valued function f k
i (X ) can be written as follows:

f k
i (X )=

{
0 if |V (X ) | < l ,
|{Gk |Gk ∈ S (X ) and Gk isomorphic to gk

i }| if |V (X ) |=l .

Example. (a) Example of S (X ): Figure 3 gives an example of S (X ), where there are two- tailed
triangles (g 4

4 , ), one clique (g 4
6 , ), and one cycle (g 4

5 , ). (b) Example of f k
i (X ): Refer to Figure 3.

We have f 4
4 (X ) = 2, f 4

6 (X ) = 1 and f 4
5 (X ) = 1.

The function f k
i (X ) indicates how many k-node visible subgraphs we can observe through the

(k − 1)-node touched subgraph. In next subsection, we derive an unbiased estimator of the graphlet
counts using the stationary distribution of the expanded Markov chain and the function f k

i .

4.3 Derivation of the Unbiased Estimator
To derive the unbiased estimator ofCk

i , we need to remove the bias of thek-node visible subgraphs.
In particular, our goal is to design an appropriate re-weight function wk

i (X ) such that

1
n

n∑

t=1
wk

i (Xt ) f k
i (Xt ) → Ck

i a.s .
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Fig. 3. Example of S (X ). Suppose nodes 2, 3, 4 are visited sequentially and the random walker is at node 4.
The currently visited state is X = (2, 3, 4).

We first define the number of states that can find the subgraph Gk . If state X ∈M (k−1) is a
(k − 1)-node subgraph of Gk , we say that Gk is found by X . One important note is that a subgraph
Gk may be found by several states. Recall that V (X ) denotes the set of nodes in the state X . Define
the set of states that can find subgraph Gk = (Vk ,Ek ) as

B (Gk ) !
{
X |X ∈M (k−1), |V (X ) | = k − 1,V (X ) ⊂ Vk

}
.

Note that the size of B (Gk ) only depends on the graphlet type of Gk . Hence, we define βk
i =

|B (Gk ) | for any subgraph Gk isomorphic to the graphlet gk
i . Since each subgraph Gk isomorphic to

gk
i is found by βk

i states, we have
∑

X ∈M (k−1)

f k
i (X ) = βk

i C
k
i . (1)

Finally, the re-weight function is

wk
i (X ) ! 1

βk
i
· 1
πM (X )

, βk
i ! 0. (2)

The reciprocal of the re-weight function wk
i (X ) is the nominal “visible probability.” The re-

weight function consists of two parts. The first part 1/βk
i is due to that each k-node subgraph

isomorphic to gk
i can be found by βk

i distinct states. The second part is due to the non-uniform
sampling of states inM (k−1) . The condition βk

i ! 0 is satisfied for most graphlets, e.g., when k =
3, 4, 5, the only graphlet with βk

i = 0 is g 5
3 ( ). In fact, our algorithm can be applied to any k-node

graphlets with βk
i ! 0. For graphlets with βk

i = 0 (i.e., k = 5, i = 3), we will discuss the detailed
estimation method in next subsection. Combining the importance sampling [40] and SLLN, we
have the following theorem.

Theorem 4.1. The average of the function wk
i (X ) f k

i (X ) is

Ĉk
i ! 1

n

n∑

t=1
wk

i (Xt ) f k
i (Xt ), (3)

which is an asymptotic unbiased estimator of Ck
i , i.e., count of graphlet gk

i , when βk
i ! 0.

Refer to Appendix A.1 for details of the proof. Algorithm 1 demonstrates the sampling proce-
dure.
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ALGORITHM 1: Unbiased Estimate of k-Node GraphletCounts
Input: sampling budget n, graphlet size k , input graph G
Output: unbiased estimate of Ck

i for graphlet gk
i with βk

i ! 0
1: Ĉk

i ← 0, ∀1 ≤ i ≤ |Gk |
2: X = (v1, . . . ,vk−1) ← initial k − 1 random walk steps
3: random walk step counter t ← 0
4: while t < n do
5: for i ∈ {1, . . . , |Gk |} do
6: if βk

i ! 0 then
7: Ĉk

i ← Ĉk
i +w

k
i (X ) f k

i (X )/n
8: vt+k ← uniformly choose a neighbor of vt+k−1
9: X ← (vt+2, . . . ,vt+k )

10: t ← t + 1
11: return [Ĉk

1 , . . . , Ĉ
k
|Gk |]

4.3.1 Computation of βk
i . The remaining task is to compute βk

i , which is part of the re-weight
function in Equation (2). Define A (Gk−1) as the set of states whose node set is the same as the
connected subgraph Gk−1 = (Vk−1,Ek−1), i.e.,

A (Gk−1) !
{
X |X ∈M (k−1),V (X ) = Vk−1

}
.

Intuitively, |A (Gk−1) | equals to the number of ways to walk through Vk−1 during the random
walk. Theoretically, it is twice of the number of Hamilton paths2 in Gk−1 (each Hamilton path is
counted for both directions). Hence, the size of A (Gk−1) only depends on the graphlet type of
Gk−1. We define αk−1

j = |A (Gk−1) | for any Gk−1 isomorphic to gk−1
j . Counting Hamilton path is

an NP-complete problem. We need to enumerate all Hamilton paths in the graphlets to compute
αk−1

j . Fortunately, the computation of αk−1
j is not a big concern since the computation of graphlet

counts is usually restricted to k ≤ 5 in various applications [4, 48, 55]. Algorithm 2 in Appendix B
shows the computation of αk−1

j .
Let Hk−1 denote the set of (k − 1)-node connected subgraphs in Gk . The relationship between
B (Gk ) and A (Gk−1),∀Gk−1 ∈ Hk−1 is as follows.

B (Gk ) =
⋃

Gk−1∈Hk−1

A (Gk−1)

Let tj denote the count of (k − 1)-node graphlet gk−1
j inGk . Here,Gk is isomorphic to gk

i . It is easy
to verify that

βk
i =

|Gk−1 |∑

j=1
tj · αk−1

j . (4)

The computation procedure of βk
i is illustrated in Algorithm 3 Appendix B. Tables 2 and 3 list the

values of αk
i and βk

i for all the 3-, 4-, 5-node graphlets.

Example. For a triangle G3 induced by {u,v,w }, B (G3) = {(u,v ), (v,u), (v,w ), (w,v ), (u,w ),
(w,u)}. Hence, β3

2 = |B (G3) |=6. The set A (G3) = {(u,v,w ), (w,v,u), (v,u,w ), (w,u,v ), (u,w,v ),
(v,w,u)}. So, we have α3

2 = |A (G3) | = 6. There are four triangles in the 4-node clique (g 4
6 , ).

Based on Equation (4), we have β4
6 = 4×6 = 24.

2A path in G contains each vertex of G is a Hamilton path.
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Table 2. Coefficient αk
i and βk

i for 3, 4-Node Graphlets

Table 3. Coefficient α5
i and β5

i for 5-Node Graphlets

4.3.2 Special Graphlets. We like to point out that some special graphlets, such as line, cycle, and
clique are of more interest for applications in social networks. The βk

i for any k-node line is always
4. Similarly, for k-node cycles, we have |B (cycle) | = 2k . The k-node clique has |B (clique) | = k!.
For the special graphlets, we have just listed, the computation of βk

i is easier and can be computed
in constant time.

4.3.3 Practical Issues. Under the restricted access, the exact number of nodes and edges is usu-
ally unknown. Very often, one can obtain the approximated number of users in OSNs [11] (e.g.,
from financial reports or the Internet). However, the number of edges is not available in most
cases. Since our primary goal is the graphlet counts, it is essential to know the number of edges.
To address this problem, we use the following fact

Eπππ

[
1
dv

]
=

∑

v ∈V

dv

2|E |
1
dv
=
|V |
2|E | (5)

to estimate the number of edges. Here, πππ is the stationary distribution of the SRW. Assume the
sequence of visited node is v1, . . . ,vn+k−2 and the corresponding sampled states are X1, . . . ,Xn .
Here, Xi ! (vi , . . . ,vi+k−2). According to Equation (5), the number of edges can be estimated as

|V | n + k − 2
2 ∑n+k−2

t=1 1/dvt

→ |E | a.s . (6)

Define π̃M (X ) = 2|E | · πM (X ) and w̃k
i (X ) = 1/(βk

i · π̃M (X )). The graphlet counts can be estimated
with

Ĉk
i ! |V |

(
n + k − 2

n

) )
*
∑n

t=1 w̃
k
i (Xt ) f k

i (Xt )
∑n+k−2

t=1 1/dvt

+
, . (7)

The unbiasedness of Equation (7) can be proved by combining Theorem 4.1 and Equation (5). Note
that both w̃k

i (X ) and f k
i (X ) can be computed with the local neighborhood information and no

knowledge of 2|E | is required.
Another practical issue is that OSNs are not necessary connected. The random walk can only

crawl over nodes in the same connected components. However, it is not a big concern for OSNs
since most nodes (> 90%) of OSNs are in the largest connected components (LCCs) [37]. The LCCs
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are enough to represent the properties of the whole graphs. Besides, we can use the state-of-the-art
algorithm [26] with high accuracy to estimate number of nodes in the LCCs.

4.4 Estimators for 3-, 4-, 5-Node Graphlets
We now discuss the detailed estimators for 3-, 4-, 5-node graphlet counts in this subsection. Addi-
tionally, we propose a novel method to estimate the count of 5-node star(g 5

3 , ).

4.4.1 Estimator for 3-Node Graphlets. For 3-node graphlets, each edge (u,v ) ∈ E corresponds
to two states (u,v ) and (v,u) in the state space ofM (2) . Counting the “common nodes” in N (u)
and N (v ) is the key operation for 3-node graphlet counts estimation. Specifically, for each edge
(u,v ), the number of wedges (open triangles) containing edge (u,v ) isdu + dv − 2|N (u) ∩N (v ) | −
2, and the number of triangles containing edge (u,v ) is |N (u) ∩N (v ) |. The re-weight function
w3

1 =
1
4 · 2|E | = |E |/2 and w3

2 =
1
6 · 2|E | = |E |/3. Suppose, the sequence of nodes visited during the

random walk is v1, . . . ,vn+1, the estimator of wedge count is

Ĉ3
1 =

1
n

n∑

t=1

|E |
2

(
dvt + dvt+1 − 2 |N (vt ) ∩N (vt+1) | − 2) ,

and the estimator of triangle count is

Ĉ3
2 =

1
n

n∑

t=1

|E |
3 |N (vt ) ∩N (vt+1) | .

4.4.2 Estimator for 4-Node Graphlets. To estimate the counts of 4-node graphlets, we consider
each consecutive three steps of the random walk. Given the sequence of visited nodesv1, . . . ,vn+2,
we have

Ĉ4
i =

1
n

n∑

t=1
2|E |dvt+1

β4
i

f 4
i ((vt ,vt+1,vt+2)) .

The value of the function f 4
i ((vt ,vt+1,vt+2)) is determined by N (vt ), N (vt+1), and N (vt+2).

For example, if {vt ,vt+1,vt+2} induces a triangle, then f 4
6 ((vt ,vt+1,vt+2)) = |N (vt ) ∩N (vt+1) ∩

N (vt+2) |. Similar to 3-node graphlets, set intersection is the key operation to compute f 4
i .

4.4.3 Estimator for 5-Node Graphlets. All 3-, 4-, 5-node graphlet counts can be estimated with
Equation (3) except the 5-node star graphlets (g 5

3 , ) due to β5
3 = 0 (β5

3 = 0 is because all 4-node
graphlets in are , and we cannot walk through via SRW, i.e., there is no Hamilton path in

). However, we can use the relationship between induced subgraphs and non-induced subgraphs
to solve this problem. Let N k

i denote the sum of induced and non-induced subgraphs that are
isomorphic to graphlet gk

i . N 5
3 denotes the counts of subgraphs isomorphic to g 5

3 ( ). There is a
simple linear relationship between Ck

i and N k
i [23]. For example, we have the following:

N 5
3 =

∑

v ∈V

(
dv

4

)
=

21∑

i=1
ϕ5

i ·C5
i = C

5
3 +C

5
6 +C

5
9 +C

5
10

+ 2C5
14 +C

5
15 +C

5
16 + 2C5

18 +C
5
19 + 3C5

20 + 5C5
21,

(8)

where ϕ5
i denotes the number of g 5

3 contained in the graphlet g 5
i . Given the sequence of nodes

v1, . . . ,vn+3 visited by the random walk, the unbiased estimator of N 5
3 is

N̂ 5
3 ! 1

n + 3

n+3∑

t=1
2|E |

(
dvt

4

)
/dvt → N 5

3 a.s .
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Graphlet counts except C5
3 can be estimated with Equation (3), i.e.,

Ĉ5
i =

1
n

n∑

t=1
2|E |dvt+1dvt+2

β5
i

f 5
i ((vt ,vt+1,vt+2,vt+3)) , i ! 3.

Leverage the formula (8) and above equation, we have

Ĉ5
3 = N̂ 5

3 −
∑

i ∈ {1, ...,21}\{3}
ϕ5

i Ĉ
5
i → C5

3 a.s .

Applying the linearity of the expectation, one can easily prove that Eπππ [Ĉ5
3] = Eπππ [N̂ 5

3 ] −∑
i!3 ϕ

5
i

E[Ĉ5
i ], which is N 5

3 −
∑

i ∈ {1, ...,21}\{3} ϕ
5
iC

5
i = C

5
3 .

5 ANALYTICAL BOUND
We also provide an analytical bound on the needed sample size to guarantee our estimators are
within (1 ± ϵ ) accuracy with a high probability at least (1 − δ ). The bound is expressed in terms
of the accuracy parameter ϵ and the confidence level δ , as well as some parameters of the graph.
Since our analytical bound depends on the mixing time of the random walk, we introduce the
mixing time, which quantifies how fast the random walk approaches the stationary distribution.

Definition 5.1 (Mixing time). [38, Definition 1] The mixing time (parameterized by ξ ) of a Markov
chain is defined as

τ (ξ ) ! max
i

min{t : |πππ − πππ (i )
0 Pt |1 < ξ },

where πππ is the stationary distribution, πππ (i )
0 is the initial distribution concentrated at node vi , Pt is

the transition matrix after t steps, and | · |1 is the total variation distance.3

We start by analyzing the estimator in Equation (3), where |E | is known. Define
Mk

i = max
X ∈M (l )

wk
i (X ) f k

i (X ).

LetT be the mixing time that ensures the total variation distance between the distribution afterT
steps and the stationary distribution of the random walk is within 1/8, i.e.,T ! τ (1/8). The initial
distribution of the random walk is denoted by φφφ, and we define --φφφ--πππ ! ∑

v ∈V φ2 (v )/π (v ). The
following lemma describes the bound on the sample size to guarantee the estimates are within
1 ± ϵ of the true value with probability at least 1 − δ .

Lemma 5.1. There is a constant value ζ , such that if

n ≥ B1 ! ζ
Mk

i

Ck
i

log(∥φφφ∥πππ /δ )

ϵ2 T ,

we have
Pr

[
|Ĉk

i −Ck
i | ≤ ϵCk

i

]
≥ 1 − δ .

Moreover, the estimator in Equation (7) assumes the number of edges is unknown, which is a
common case for OSN analysis. To guarantee Ĉk

i is within (1 ± ϵ )Ck
i with probability at least 1 − δ ,

it requires that

n ≥ B2 ! ζ max
⎧⎪⎨⎪⎩
Mk

i

Ck
i
,

2|E |
|V |

⎫⎪⎬⎪⎭
log(2 --φφφ--πππ /δ )

ϵ2 (9T ).

3The total variation distance between two distribution d1 and d2 on a countable space S is given by |d1 − d2 |1 !
1
2
∑

x∈S |d1 (x ) − d2 ((x ) |.
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Fig. 4. Illustration of two different access models. (a) General access model. When querying a node u, we
obtain a set of the user IDs for the neighbors of node u as well as some other attributes of node u. (b) Special
access model. Some OSNs like Twitter and Weibo support the query that takes node u as input and return
a set of friend objects of node u. The object usually contains the detailed information of a node, e.g., friend
count (i.e., degree), location, and registration time.

This can be proved by finding the steps that guarantees both 1
n
∑n

t=1 w̃ (Xt ) f k
i (Xt ) and 1

n
∑n

t=1
1

dvt
are within (1 ± ϵ/3) of their expected value with probability at least 1 − δ/2. The fundamen-

tal concentration inequality we use in our proof is the Chernoff–Hoeffding bound for Markov
chain [9], which is a concentration inequality based on the mixing time. The detailed proof on
bound B1 and B2 can be found in Appendix A.2.

Remark. In addition to ϵ and δ , the sample size bound B1 and B2 also depend on the parameters
of the graphs. One parameter is the mixing time of the random walk. The smaller the mixing
time, the smaller the required sample size. For social network with small world properties, the
mixing time is Θ(log2 n) [1, 26, 38], which indicates good performance of our estimators in social
networks. Another parameter is Mk

i /C
k
i , which describes the ratio between the local maximum

graphlet counts and the average graphlet counts. For example, let ∆ ! max(u,v )∈E |N (u) ∩N (v ) |
denote the maximum number of triangles sharing the same edge. Then, we have M3

2/C
3
2 = (2|E | ·

maxX ∈M (2) f 3
2 (X ))/Ck

i = 2∆/(C3
2/|E |), where ∆ is the local maximum triangle count and C3

2/|E | is
the average triangle count of each edge. The initial distribution contributes a little to the bound
B1. According to the definition of --φ--πππ , it is a good practice to start the random walk from nodes
with high degree.

6 IMPROVED ESTIMATORS
In this section, two novel methods based on different access models are proposed to improve the
efficiency of the estimators.4 The first method is based on the general access model we describe
in Section 3.2. The second method is based on another important access model that can give
degree information for friends of visited nodes. We call such access model as special access model.
The difference of these two models are illustrated in Figure 4. The core idea of the improvement
methods is to make better use of the degree information of observed nodes during the random
walks.

6.1 Improvement for General Access Model
We first design an improved estimator for the general access model. The core idea is to view each
stateX ∈M (k−1) containingk − 1 distinct nodes as a (k − 1)-node subgraphGk−1 and compute the

4We define an estimator with smaller variance as a more efficient estimator.
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Fig. 5. Example of the observation (k = 4). Xa ,Xb ,Xc ∈ A (Gk−1). If the degree du ,dv ,dw are unequal to
each other, then the steady state probabilities πM (Xa ),πM (Xb ),πM (Xc ) are different from each other.

sampling probability of the subgraph Gk−1 instead of using the stationary distribution of the state
X . Meanwhile, the sample space becomes the set of all (k − 1)-node connected induced subgraphs.
The new estimator benefits from the better use of the degree information of visited nodes. The
idea is inspired by the following observation.

Observation 1. For Xa ,Xb ∈ A (Gk−1), it is possible to have πM (Xa ) ! πM (Xb ).

Figure 5 gives an example of the observation. Recall thatA (Gk−1) is the set of states inM (k−1)

whose node set is the same as subgraphGk−1. Once the stateX is visited, we can enumerate all the
states inA (Gk−1), hereGk−1 contains the same node set asX . However, the stationary probabilities
of these states differ even though they correspond to the same subgraph Gk−1. This motivates us
to design a new re-weight function that considers states corresponding to the same subgraph as a
whole. Our approach is to ignore the order of nodes in the states and view each state as a subgraph.
We derive the improved unbiased estimator by defining the real-valued function on the subgraph
and computing the sampling probability of the subgraph.

—Real-valued function: The function defined for the subgraphGk−1 simply takes the sum over
f k
i (X ),∀X ∈ A (Gk−1), i.e.,

Fk
i (Gk−1) !

∑

Xa ∈A (Gk−1 )

f k
i (Xa )

= |A (Gk−1) | f k
i (X ),∀X ∈ A (Gk−1).

The reason we define Fk
i (Gk−1) as the summation of f k

i (X ),∀X ∈ A (Gk−1) is due to the
fact that the summation of Fk

i (Gk−1) over all (k − 1)-node subgraphs inG is the same as the
summation of f k

i (X ) over all states inM (k−1) , i.e.,
∑

Gk−1

Fk
i (Gk−1) =

∑

X ∈Mk−1

f k
i (X ) = βk

i C
k
i .

—Sampling probability of subgraph: Following the definition of stationary distribution of
the Markov chain, we define the nominal sampling probability of the subgraph Gk−1 =
(Vk−1,Ek−1) during the random walk process as

P (Gk−1) ! lim
n→∞

1
n

n∑

t=1
1{V (Xt ) = Vk−1} =

∑

Xa ∈A (Gk−1 )

πM (Xa ).

Suppose {Xt }nt=1 corresponds to the sequence of subgraphs {Gt
k−1}nt=1 (the node set of Xt induces

the subgraphGt
k−1), here {Xt }nt=1 is a sequence of the states. According to the spirit of importance

sampling, we have the following (not formally proved):

1
n

n∑

t=1

1
βk

i

Fk
i (Gt

k−1)

P (Gt
k−1)

→ Ck
i a.s . (9)
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Similar to the definition ofA (Gk−1) in Section 4.3, letA (X ) denote the set of states inM (k−1) that
have the same node set as X . Rewrite the Equation (9) as follows:

1
n

n∑

t=1

1
βk

i

|A (Xt ) |
∑

Xa ∈A (Xt ) πM (Xa )
f k
i (Xt ) → Ck

i a.s .

Based on above discussion, we define a new re-weight function for the state X as follows.

W k
i (X ) ! 1

βk
i

|A (X ) |
∑

Xa ∈A (X ) πM (Xa )
.

The following theorem is a formal description of Equation (9).

Theorem 6.1. The average of the functionW k
i (X ) f k

i (X )

Ĉk
i ! 1

n

n∑

t=1
W k

i (Xt ) f k
i (Xt ) (10)

is an asymptotic unbiased estimator of Ck
i for the graphlet gk

i with βk
i ! 0.

Proof. Refer to Appendix A.3 for detailed proof. !

6.1.1 Properties of Re-weight FunctionW k
i (X ). The re-weight functionW k

i (X ) ignores the order
of nodes in X . Let Gk−1 denote the subgraph induced by the nodes in the state X . Compared with
wk

i (X ), W k
i (X ) divides the function f k

i (X ) by ∑
Xa ∈A (X ) πM (Xa )/|A (X ) | = P (Gk−1)/|A (Gk−1) |

(i.e., the average of πM (X ),∀X ∈ A (Gk−1)) instead of πM (X ) to remove the bias caused by unequal
stationary probabilities.

6.1.2 Properties of Sampling Probability P (Gk−1). Recall that Gk−1 denotes the subgraph indu-
ced by the nodes in the state X . We list the detailed comparison between P (Gk−1)/|A (Gk−1) | and
πM (X ) when k = 4, 5 in the Table 9 in Appendix C. Note that πM (X ) equals to P (Gk−1)/|A (Gk−1) |
when Gk−1 is isomorphic to graphlet дk−1

i with αk−1
i = 2. As a result, the improved estimator re-

mains the same for the graphlet whose all the (k − 1)-node connected subgraphs are isomorphic
to graphlets with αk−1

j = 0 or 2 (i.e., there is none or only one Hamilton path in the subgraph). For
example, the πM (X ) equals to P (Gk−1)/|A (Gk−1) | when Gk−1 is isomorphic to wedge ( ). Conse-
quently the improvement method does not apply for the 4-node graphlets д4

1 ( ), д4
2 ( ), and д4

3
( ), since all the 3-node connected subgraphs in these graphlets are isomorphic to .

6.1.3 Properties of the Improved Estimator. The intuition behind the improved estimator is that
we combine the states corresponding to the same subgraph together and make better use of degree
information of nodes in the subgraph. Similar to the definition Mk

i ! maxX ∈M (k−1) wk
i (X ) f k

i (X )

in Section 5, we define Ok
i ! maxX ∈M (k−1) W k

i (X ) f k
i (X ). With almost identical proof of bound

B1 and B2, we conclude that to guarantee the estimation is within (1 ± ϵ )Ck
i with probability at

least 1 − δ , the improved estimator requires the sample size at least B3 ! ζ
Ok

i
Ck

i

log( ∥φφφ ∥πππ /δ )
ϵ 2 T and

B4 ! ζ max{O
k
i

Ck
i
, 2 |E |
|V | }

log(2∥φφφ ∥πππ /δ )
ϵ 2 (9T ) for the situation where |E | is known and |E | is unknown, re-

spectively. DefineX ∗ ! argmaxX ∈M (k−1) wk
i (X ) f k

i (X ). Recall that all stateX ∈ A (X ∗) has f k
i (X ) =

f k
i (X ∗). Hence, we havewk

i (X ∗) = maxX ∈A (X ∗ ) wk
i (X ) (i.e., πM (X ∗) = minX ∈A (X ∗ ) πM (X )), other-

wise we can find some state X ∈ A (X ∗) such that wk
i (X ) f k

i (X ) is larger. Based on above dis-
cussion, we haveW k

i (X ∗)/wk
i (X ∗) =

|A (X ) | ·minX ∈A (X ∗ ) πM (X )∑
X ∈A (X ∗ ) πM (X ) ≤ 1, which indicatesOk

i ≤ Mk
i . So the

bound of the sample size for the improved estimator is smaller. Besides, we have Varπππ M [W k
i (X )
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f k
i (X )] ≤ Varπππ M [wk

i (X ) f k
i (X )] (proof can be found in Lemma A.4 in Appendix A.3). Hence, the

variance of the new estimator has the potential to be smaller, i.e., the new estimator is more ef-
ficient. In general, we do not have a deterministic conclusion that given the same samples, the
improved estimator has higher accuracy. We leave it as an open question. Some preliminary dis-
cussion is already provided in Appendix A.3.

6.2 Improvement for the Special Access Model
Now, we design an improved estimator for the special access model, which is illustrated in
Figure 4(b). The method in this subsection assumes the APIs provided by the OSNs support the
function to return a set of neighbors’ IDs as well as the degree information of these neighbors
when querying a node u. Several OSNs support this kind of APIs, e.g., the GET friends/list5 and
GET followers/list6 of Twitter, GET friendships/friends,7 and GET friendships/followers8 of Weibo.
To leverage the degree information of neighbors, the inclusion probability is computed for each
subgraph observed by current visited state.

Recall that a subgraph can be observed by the state X if and only if the subgraph contains all
the nodes in X and one node in the neighborhood of X . The observed subgraphs of state X are
formally defined in Section 4.2 asS (X ) ! {Gk (Vk ) |Vk = V (X ) ∪ {v},v ∈ N (V (X ))}. The main idea
of the improvement method is to define an indicator function and the inclusion probability for each
subgraph Gk ∈ S (X ).

— Indicator function: We define an indicator function for the k-node subgraph Gk as
hk

i (Gk ) = 1{Gk is isomorphic to gk
i }.

It is trivial to verify that ∑
X ∈M (k−1) (

∑
Gk ∈S (X ) h

k
i (X )) =

∑
X ∈M (k−1) f k

i (X ) = βk
i C

k
i .

— Inclusion probability: All the states in B (Gk ) can observe the subgraph Gk . The inclusion
probability

P (Gk ) ! lim
n→∞

1
n

n∑

t=1
1{Xt ∈ B (Gk )} =

∑

X ∈B (Gk )

πM (X )

is defined to measure the probability that Gk is observed during the random walk.
Using the principle of the importance sampling, we have the following theorem.
Theorem 6.2. The average of the function

∑
Gk ∈S (X ) h

k
i (Gk )/P (Gk )

Ĉk
i =

1
n

n∑

t=1

)3
*

∑

Gk ∈S (Xt )

hk
i (Gk )

P (Gk )
+4
,

(11)

is an asymptotic unbiased estimator of Ck
i for graphlet gk

i with βk
i ! 0.

Proof. The detailed proof is present in Appendix A.4. !

Example. Table 4 shows an example of computing P (Gk ), where Gk is one of the k-node sub-
graphs in S (X ) presented in Figure 3. Refer to Figure 3 for detailed illustration of X and S (X ).
Computing P (Gk ) in the example leverages the degrees of visited nodes 2, 3, 4, and the degree
of the neighborhood node 1. Meanwhile, the nominal probability βk

i πM (X ) in Equation (3) only

5https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/api-reference/get-friends-list.
6https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/api-reference/get-followers-list.
7http://open.weibo.com/wiki/2/friendships/friends.
8http://open.weibo.com/wiki/2/friendships/followers.
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Table 4. Example of the Improved Estimator for Special Access Model (k = 4)

uses the degree of node 3 and the sampling probability in Equation (10) only uses the degrees of
node 2, 3, 4. We conclude that the improved estimator in Equation (11) removes the bias of each
subgraph Gk in S (X ) with more degree information.

Remark. When the number of edges is unknown, we just need to replace the exact |E | in Equa-
tion (10) and Equation (11) with the estimated |E | in Equation (6) to get unbiased estimates of
graphlet counts.

7 IMPLEMENTATION DETAILS
In this section, we discuss the detailed implementation of our estimators. A straightforward
implementation is to iterate through each node v ∈ N (V (X )) and determine the graphlet type
of the subgraph induced byV (X ) ∪ {v}. However, for the two estimators designed for the general
access model, we have more efficient implementation to compute the most time-consuming
operation in both estimators, i.e., the computation of f k

i (X ). In the following, we present the more
efficient implementation that can leverage previous computation results and reduce the running
time.

7.1 Representing Visible Subgraphs
First, we discuss how to represent the k-node visible subgraphs. Assume, we visit a (k − 1)-node
touched subgraph induced by the node set Vk−1 = {v1, . . . ,vk−1}. We allocate k − 1 bits for each
node u ∈ ⋃

v ∈Vk−1 N (v ). The least significant bit (LSB) to the most significant bit (MSB) of the
bit vector indicate whether the node u is adjacent to nodes {v1, . . . ,vk−1}, respectively. These bit
vectors are the compressed adjacent matrix of the k-node visible subgraphs. The degrees of nodes
in the visible subgraph can be viewed as degree signature of the subgraph, which can be used to
determine the graphlet types of the subgraphs [6].

Example. Figure 6(a) shows an example on representing 5-node visible subgraph induced by
the node set {u,v,w, z,x }. The subgraph induced by {u,v,w, z} is a touched subgraph. The MSB to
the LSB of the 4-bit vectors indicates whether the node is adjacent to nodes z,w,v,u, respectively.
The 4-bit vectors of u,v,w, z reveal the adjacent relationship between them. Besides, the 4-bit
vector of node x is [0, 0, 1, 1], which means node x is adjacent to node u and v . Hence, we know
all the edges between nodes u,v,w, z,x with the 4-bit vectors. The degree signature of the visible
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Fig. 6. Illustration of implementation details.

subgraph induced by {u,v,w, z,x } is {2, 4, 2, 2, 2}, which is sufficient for us to know that the
subgraph is isomorphic to (g 5

10).

7.2 Computation of fk
i

(X )

The bit vectors for nodes in Vk−1 are the “meta bit vectors,” which can be used to determine the
graphlet type of the subgraph induced by Vk−1. Each (k − 1)-bit vector combined with the “meta
bit vectors” corresponds to a k-node graphlet type. For each (k − 1)-bit vector B, we maintain
the counts of nodes in N (Vk−1) which have bit vectors B. These counts are used to compute
f k
i (X ).

Example. Figure 6(b) gives an example on computing f k
i (X ) with the counts of different bit

vectors B. The MSB to the LSB of the bit vectors indicate whether the node is adjacent to {w,v,u},
respectively. The bit vector of x combined with the meta bit vectors ofw,v,u is sufficient to deter-
mine the graphlet type of subgraph induced by {x ,w,v,u}. For example, if the bit vector of node
x is [1, 1, 1], which means x is adjacent tow,v , and u, the subgraph induced by {x ,w,v,u} has de-
gree signature {3, 2, 3, 2}, i.e., the subgraph is isomorphic to graphlet (g 4

5 ). If there are N1 nodes
in N ({u,v,w }) having the bit vector B = [1, 1, 1], then we have f 4

5 (X ) = N1. If the bit vector of
node x is [1, 1, 0] or [0, 1, 1], the subgraph induced by {x ,w,v,u} is isomorphic to graphlet (g 4

4 ).
Consequently, if there are N2 nodes inN ({u,v,w }) have the bit vector B = [1, 1, 0] or B = [0, 1, 1],
then f 4

4 (X ) = N2.

7.3 Update the Bit Vectors
Assume our current visited state isX1 = (v1, . . . ,vk−1). When the random walker proceeds tovk (a
neighbor ofvk−1), we transit to the next state X2 = (v2, . . . ,vk ). We need to update the bit vectors
for the computation of f k

i (X ). The naive implementation is to clear all previous bit vectors and
iterate through the neighborhood of the new touched subgraph. However, it is sufficient to simply
scan N (v1) and N (vk ). The idea is to clear the position that represents the adjacent relationship
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with node v1 for the bit vectors of nodes in N (v1). Then, set the same position in the bit vectors
for all nodes in N (vk ). We maintain the counts of each (k − 1)-bit vector B dynamically when we
are updating the bit vectors.

Example. Let k = 4. Assume node u ∈ N (v1) has bit vector [0, 1, 1] and the LSB indicates node
u is adjacent to v1. During the clear phase, the bit vector of u becomes [0, 1, 0]. We decrease the
count of [0, 1, 1] by 1 and increase count of [0, 1, 0] by 1. If node w ∈ N (v4) has bit vector [1, 1, 0]
after the clear phase (i.e., node w is adjacent to v2 and v3), then during the phase of setting the
LSB for bit vectors of nodes in N (v4), the bit vector for w becomes [1, 1, 1]. We increase count of
[1, 1, 1] by 1 and decrease count of [1, 1, 0] by 1.

Remark. When k ≥ 5, the degree signatures are not enough to determine the graphlet types.
To determine the graphlet types efficiently, we adopt a method in [20], whose main idea is
creating a look-up table to determine the graphlet types in constant time. To create the look-up
table, we represent the graphlets with the lower-triangle of their adjacent matrix, and then
place the lower-triangular matrix into a bit vector. The look-up table maps the bit vectors to
their corresponding graphlet types. For each graphlet, the look-up table contains all possible bit
vectors for such graphlet. Hence, we can determine the graphlet type in O (k2) time. However,
the space complexity of the look-up table grows exponentially as k increases. According to the
experimental results in [20], it is practical to create the look-up table when k ≤ 8.

7.4 Running Time Analysis
The expected size of N (V (X )) is L1 !

∑
v ∈V (k − 1)d2

v/(2|E |)9. Hence, the expected running time
of the naive implementation for computing f k

i (X ) is Θ(L1). However, the better implementation
can reduce the running time to Θ(L2), here L2 =

∑
v ∈V d2

v/|E |. Note that L2 does not depend on
the size of the graphlets, which is especially beneficial for extending our algorithm framework to
graphlets with larger size.

7.5 Discussion
Theoretically, our algorithm can be extended to count any k-node graphlets. However, generally
speaking, there exists no efficient method to compute the number of all k-node graphlets
when k is sufficiently large due to the combinatorial explosion. We give detailed reasons in the
following.

—First, number of all possible k-node graphlets (denoted as F (k )) grow exponentially as k
increases [19, 49]. The computation of F (k ) is described in [19]. We list the sequence of
F (k ) for k ≤ 19 in Table 5. As shown in Table 5, the number of distinct 19-node graphlets is
≈ 2.5×1034, which is extremely large even though k = 19 is relatively a small number. It is
difficult and impractical to compute and store all k-node graphlet counts since F (k ) grows
exponentially as k increases.

—Second, we cannot avoid the isomorphism checking when counting the graphlets. To sim-
plify the problem, assume we only compute one specific graphlet H here. For the exact
counting, the state-of-the-art algorithm has time complexity kO (k ) · n0.174k+o (k ) to compute
the number of graphlet H with k edges in a graph with n nodes [10]. For the sampling
algorithm, we need to check whether the sample is isomorphic to H , which has the time
complexity k2k! in worst case. In general, the computation of a specific graphlet has expo-
nential time complexity as k increases.

9If we visit node v at the time t during the random walk, we need to include N (v ) at time t, . . . , t + k − 2, i.e., N (v ) is
read k − 1 times.
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Table 5. Number of Distinct k-Node
Graphlets [49]

k Number of distinct k-node graphlets
1 1
2 1
3 2
4 6
5 21
6 112
7 853
8 11117
9 261080
10 11716571
11 1006700565
12 164059830476
13 50335907869219
14 29003487462848061
15 31397381142761241960
16 63969560113225176176277
17 245871831682084026519528568
18 1787331725248899088890200576580
19 24636021429399867655322650759681644

—Third, the percentage of some k-node graphlets (e.g., cliques and cycles) among all k-node
graphlets decreases quickly as k increases [16, 22], which makes the needed sample size
increases quickly for the sampling methods. In the following, we explain the statement in
details. Let µk

i denote the percentage of the k-node graphlet gk
i among all k-node graphlets

in the graph G, i.e., µk
i = C

k
i /C

k . We first discuss the percentage of some special graphlets.
Take the percentage of k-node cliques as an example. The 3-, 4-, 5-node cliques in the graph
Epinion in our datasets take 2.29×10−2, 2.25×10−4, 1.47×10−6 percentage, respectively.
We can see that µk

clique decreases quickly as k increases. More empirical and theoretical anal-
ysis on the clique counts can be found in [16, 22]. Then, we discuss the relationship between
sample size and µk

i . Suppose each graphlet sample is sampled uniformly at random from the
set of allk-node graphlets in the graphG. Then, according to the Chernof–Hoeffding bound,
to guarantee the estimate ofCk

i within (1 ± ϵ )Ck
i with probability at least δ , we need at least

3
ϵ 2µk

i
ln 2

δ samples, i.e., to guarantee the estimation accuracy, the needed sample size grows
almost linearly with 1/µk

i . Even though smart importance sampling methods can be de-
signed to estimate count of the special graphlets [22], the needed sample size still has the
same trend.

In practice, we usually choose small k , say k ≤ 5. On one hand, the computation cost grows
dramatically as k increases, for both of exact counting methods and sampling methods. On the
other hand, it is easier to interpret the physical meaning of the k-node graphlets when k is small.
For example, the number of triangles can be used to measure the homophily and transitivity of
the OSNs. Besides, many applications, such as graph classification [48] based on k-node graphlets
counts are proposed when k ≤ 5.
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Table 6. Summary of the Datasets

Name Nodes Edges Description
Epinion [32] 76K 406K Trust network from the online social

network Epinion.
Slashdot [32] 77K 469K Friend/foe links between the users of

Slashdot social network.
Facebook [29] 63K 817K A small subset of the total Facebook

friendship graph.
Pokec [29] 1.6M 22.3M Friendship network from the Slovak

social network Pokec.
Flickr [29] 2.2M 22.7M Social network of Flickr users and

their friendship connections.
Orkut [44] 3.0M 106M Social networks of Orkut users and

their connections.
Twitter [44] 21.3M 265M Graph about who follows whom on

social media Twitter.
Weibo [44] 58.7M 261M Graph of a micro-blogging service

with millions of users in China.

8 EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of our proposed algorithm. We aim to answer the
following questions.

—How accurate is our method generally?
—Do the improved estimators improve the accuracy?
—Does our method outperform the state-of-the-art methods?

8.1 Experimental Setup
We test the performance of our proposed algorithm on various social networks. Table 6 lists the
datasets used in our experiments. For all the datasets, we remove the directions, self-loops, and
multi-edges, which can be easily avoided during the random walks. We report the number of nodes
and edges in the LCCs of the graphs in the table. In fact, all the graphs are connected except Flickr,
whose LCC contains 94% of the nodes. Exact counts of 3-, 4-node graphlets are computed with
the state-of-the-art algorithm proposed in [4]. For 5-node graphlets, we obtain the ground truth
with the method in [21]. Figure 8(a) and (c) shows the 4-, 5-node graphlet counts for all the graphs
whose ground-truth can be obtained. We ran the experiments on a Linux machine with 3.7GHz
Intel Xeon processor. All the algorithms are implemented in C++. The source code is available
at https://tinyurl.com/GraphletCount-Journal.
Error Metrics: To evaluate the performance of our proposed algorithm, we consider the following
metrics. These error metrics provide a comprehensive picture of the error distribution.

—Error of average estimate: we consider the relative error |E[Ĉk
i ]−Ck

i |
Ck

i
as a measure of the unbi-

asedness of the estimators. Here, E[Ĉk
i ] is the mean estimate value across 1,000 independent

simulations.
—Confidence bound: we construct a [5%, 95%]-confidence interval for the estimate z, which

is defined as the interval [LB,UB] such that Pr[z ≤ LB] = 0.05 and Pr[z ≥ UB] = 0.95. To
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estimate the confidence interval, we run the simulations for 1, 000 times, and use the 5th
and 95th percentile as the estimated LB and UB, respectively.

—Mean of relative error (MRE): we compute the average of |Ĉk
i −Ck

i |/Ck
i over 1, 000 indepen-

dent runs. This measures how close our estimate is to the ground truth.
—Normalized root mean square error (NRMSE): for an estimator Ĉk

i , the NRMSE is define as

NRMSE(Ĉk
i ) =

√
E[(Ĉk

i −Ck
i )2]

Ck
i

=

√
Var[Ĉk

i ] + (E[Ĉk
i ] −Ck

i )2

Ck
i

.

NRMSE is a combination of the variance and bias. When the estimator is unbiased, the
NRMSE equals to

√
Var[Ĉk

i ]/Ck
i .

Names of estimators: We denote the basic estimator in Equation (3) as Basic. The improved esti-
mator in Equation (10) for the general access model is referred as ImprG, while the estimator in
Equation (11) for the special access model is referred as ImprS. If the number of edges is unknown,
we need to replace the exact |E | in the estimators with the estimated |E |. Correspondingly, we ap-
pend “-U” at the end of the estimators’ name. For example, ImprG-U represents the estimator (10)
with exact |E | replaced by estimated |E |.

8.2 Performance Analysis
Accuracy: We demonstrate the accuracy of our proposed estimator ImprG in Table 7. Here, we
choose ImprG for presentation because it is applicable to the general access model and has better
performance than Basic. Note that for 3-node graphlets, the estimator Basic and the estimator Im-
prG are the same. We assume the exact number of edges is known. Only the accuracy for graphlets
g 3

2 , g
4
3 , g

4
5 , g

4
6 , g

5
17, g

5
19, g

5
20, g

5
21 is reported since their counts are the smallest among 3-, 4-, 5-node

graphlets, respectively, and they were observed to have lower accuracy. The extremely high com-
putation cost of the exact enumeration algorithms makes it difficult to obtain the 5-node graphlets
counts for all the graphs. Hence, we only show the results of 5-node graphlets for the graphs whose
ground truth can be obtained with reasonable running time. The sample size equals to 20K. The
findings are summarized as follows.

—Our estimator is unbiased: The 4th column of the table shows error of the average estimate
over 1,000 independent runs, which measures the unbiasedness of the estimators. The er-
ror is below 0.73% for all the reported graphlets except the 5-node clique of Epinion and
Slashdot. The results verify our claims in Theorems 4.1 and 6.1.

—Our estimator is accurate: First, we can see that the LB and UB are close to the ground
truth. Second, the MRE presented in the table is less than 5% for triangles and 4-node cycle,
3–12% for g 4

5 and g 4
6 except Sinaweibo, and 6.6–37% for the 5-node graphlets. These results

are enough for many applications, e.g., the computation of graph kernel [48].
—Our estimator has small variance: Our estimator is asymptotic unbiased, hence the NRMSE

simply represents the relative variance of our estimator. For the 3-, 4-node graphlets in the
table, the NRMSE is around 1.8–18% except the 4-node clique in Sinaweibo. For 5-node
graphlets, the NRMSE is below 0.4. Note that the NRMSE for unbiased estimator is an al-
ternative of the confidence bound since the [5%, 95%] confidence bound can be written as
Ĉk

i ± 1.96
√

Var[Ĉk
i ] theoretically.

—Our estimator is practical: We only use 20K random walk steps to estimate the graphlet
counts. For most OSNs, one can easily crawl 20K users’ profile within one day with just
one machine [17]. Besides, given the sample size, the accuracy does not degenerate with
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Table 7. Accuracy of the Proposed Estimator ImprG When the Sample Size Equals to 20K,
i.e., We Perform the Random Walk for 20K Steps

Here, we only show the results of 5-node graphlets for the graphs whose ground truth can be obtained with reasonable
running time.

the increase of the graph sizes, e.g., Twitter have slightly smaller MRE and NRMSE for the
triangle estimate than Slashdot given 20K sampled nodes. However, the number of nodes
in Twitter is 277 times of that in Slashdot.

Benefit of the improved estimators: We show the gain of the improved estimators (ImprG and
ImprS) in Figure 7. For fair comparison, we use the same set of 20K samples and then apply the ba-
sic and the improved estimators separately. We choose the MRE as the accuracy measure. We also
show the performance of the corresponding estimators when the number of edges is unknown.
Note that the basic and the improved estimators are the same for 3-node graphlets. For 4-node
graphlet, the ImprG only changes the estimates when the subgraph contains triangle, i.e., g 4

4 , g
4
5 , g

4
6 .

From Figure 7, we can observe the following:
—The improved estimators reduces the error for all the graphs and all the graphlet types

presented in the figure. For 4-node graphlets, the improved estimator ImprG reduces MRE
by 0.001–0.18, while for 5-node graphlets, it reduces MRE by 0.027–0.044. The improved
estimator ImprS reduces the MRE of 4-node graphlet estimation by 0.20 at most and reduce
MRE of 5-node graphlet estimation by 0.01–0.059.

Comparison between the improved estimators: Figure 8(a) and (c) shows when MREImprS (the MRE
of ImprS) is smaller, larger, and equal to MREImprG (the MRE of ImprG) for all the graphs in the
datasets whose ground-truth can be obtained. Figure 8(b) and (d) presents the detailed comparison
ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 4, Article 41. Publication date: April 2018.
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Fig. 7. Compare the accuracy of different estimators. The sample size is 20K.

between ImprG and ImprS for graphs Weibo and Slashdot, respectively. We choose Weibo and
Slashdot since they have the largest number of nodes among the graphs whose 4- and 5-node
graphlet counts can be obtained. For each graph, we apply different estimators to the same set of
samples. Note that ImprG and ImprS are the same for the graphlets and theoretically, which
is also validated in Figure 8(a) and (c). We denote the graphlets that contains nodes of degree one
as tailed graphlets. All the 4-, 5-node tailed graphlets are , , , , , , , , , , , ,

. Our observations are summarized as follows.

—For the tailed graphlets, ImprS is no better than ImprG. For example, the MRE of ImprG is
0.315 for 4-node tailed-triangle in Weibo, while the MRE of ImprS is 0.409.
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Fig. 8. Compare the accuracy of the improved estimators ImprG and ImprS. The sample size is 20K for all
the estimators. Here, MREImprS denotes the MRE of the estimator ImprS and MREImprG denotes the MRE
of the estimator ImprG. The markers of the line plots are explained as follows. The circle denotes where
MREImprS < MREImprG. The diamond denotes, where MREImprS > MREImprG. The square denotes where
MREImprS = MREImprG, i.e., ImprG and ImprS have the same estimation.

—For graphlets without tails, the ImprS has higher accuracy than ImprG. For example, ImprS
reduces the MRE by 0.138 compared with Basic estimator, while ImprG only reduces the
MRE by 0.066 when estimating the 4-node cliques in Weibo.

—For social networks with special access model, we can achieve the best performance by
appling the estimator ImprG to estimate the tailed graphlet counts and ImprS to estimate
the counts of graphlets without tails.

Note that for the tailed graphlets, the degrees of nodes in the tail have no contribution to the
estimators. That maybe one reason why ImprG has better performance than ImprS for the tailed
graphlets. Further theoretical analysis of estimator ImprS is left as future work.
Convergence: To show the convergence properties of the estimators, we choose graphs Weibo, Twit-
ter for 3-, 4-node graphlets, and Epinion, Slashdot for 5-node graphlets since they have the largest
number of nodes for each sized graphlets whose ground truth can be obtained. The graphlets ,
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Fig. 9. Convergence analysis of the estimators. We show the relative confidence bound of the estimates, i.e.,
LB/Actual and UB/Actual. Here, actual represents the actual counts.

, , , , are selected as the representative graphlets since they have the smallest counts
among the 3-, 4-, 5-node graphlets, respectively. Figure 9 presents the relative confidence bound,
i.e., LB/(True count) and UB/(True count) with increasing sample size. We vary the sample size in
increment of 1K. For each choice of sample size, we run 1,000 independent simulations. From the
figure, we can observe that

—The estimates converge to the ground truth rapidly. Take Figure 9(h) as example. When the
sample size varies from 10K to 20K, the relative interval between UB and LB changes from
[0.79, 1.24] to [0.85, 1.16]. Besides, as we increase the sample size, the LB and UB are more
balanced over the ground truth value.

Effect of estimated edges: Figures 7–9 also demonstrate the results when |E | is replaced with the
estimated edge cardinality. However, we can see that the estimated edge cardinality does not
degenerate the performance too much. Except Flickr, the effect is negligible. And the MRE of
estimates in Flickr increases less than 0.05 with estimated edge cardinality. Besides, from Figure 9,
we can see that the results with estimated edge cardinality approach these with true |E | quickly,
which implies the effect of estimated edge cardinality becomes smaller when the sample size
increases.
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Fig. 10. Compare the accuracy of our proposed estimator ImprG and prior state-of-the-art methods. The
sample size for both methods is 20K.

8.3 Comparison with Previous Works
Here, we compare our improved estimator ImprG with the state-of-the-art methods. We focus on
the method Pairwise Subgraph Random Walk (PSRW) in [52] and the General Framework based
on Random Walk (denoted as GFRW for short) in [7]. We choose ImprG not ImprS since both of
ImprG and the compared methods do not consider the optimization for the special access model.
Hence, the comparison results reported in this section are pessimistic. Note that both of PSRW
and GFRW are designed to estimating the relative graphlet counts. The relative graphlet count of
gk

i is defined as ck
i ! Ck

i /
∑ |Gk |

j=1 Ck
j , which can be computed immediately with the graphlet counts.

To estimate the relative counts of subgraphs with our method, we define the ratio estimator ĉk
i !

Ĉk
i /

∑ |Gk |
j=1 Ĉk

j . In fact, the 2|E | in the numerator and denominator cancels out in ĉk
i . Hence, the esti-

mator ĉk
i can be computed without knowing |E |. We give a brief synopsis for the compared methods.

8.3.1 PSRW. To estimate the relative counts of k-node subgraphs, PSRW performs random
walk on a super graph. Each node in the super graph is a (k − 1)-node induced connected sub-
graph of the original graph. PSRW considers two steps of the random walk on the super graph as
a k-node subgraph sample. The neighbors of nodes in the super graph can be generated on the fly.
Note that PSRW cannot be easily extended to estimate graphlet counts since the number of edges
in the super graph is difficult to compute.

8.3.2 GFRW. Different from [52], the method in [7] performs random walks on super graph
whose node is a d-node induced connected subgraph of the original graph to estimate the relative
counts of k-node graphlets. Here, d is a tunable parameter. The consecutive k − d + 1 steps of the
random walk on the super graph are considered as a k-node graphlet sample. For fair comparison
with the method in [7], we choose the optimal parameter d reported in the article for 3-, 4-, 5-node
relative graphlet count estimation.
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Fig. 11. Compare the convergence performance of the estimators. We show the relative confidence bound of
the estimates, i.e., LB/Actual and UB/Actual. Here, actual represents the actual relative counts of subgraphs.

In the following, we present the empirical comparison between our methods and the state-of-
the-art methods from various aspects.
Accuracy: The accuracy of GFRW, PSRW, and the proposed method ImprG are compared in Fig-
ure 10. The sample size equals to 20K for all the methods. We show the accuracy on all the graphs
in the datasets for all 3-, 4-node graphlets. We use the error metric MRE. Our proposed method
outperforms PSRW and GFRW significantly. For example, the MRE of our method on estimating
the relative count of 4-node clique (g 4

6 ) is 2.8–28 times smaller than that of PSRW, 1.6–9.4 times
smaller than that of GFRW. Our estimator shows excellent empirical accuracy for relative counts
estimation, e.g., for the graph Flickr, the MRE of the relative counts estimation is below 8% for all
3-, 4-node graphlets.
Convergence: Figure 11 compares the convergence performance of the estimators. We choose Flickr
and Pokec for demonstration. All the methods converge to the actual relative counts as the sample
size increases. However, our proposed estimator has much more tight bound centered around the
ground truth. As shown in Figure 11, the gap between LB and UB of our estimator is no more than
half of that produced by PSRW when estimating the 4-node graphlet relative counts. It implies that
our proposed method also shows extraordinary performance on the estimation of relative counts.
Computation time: Table 8 compares the computation time of different methods. We ignore the
query time of OSNs and only show the in-memory computation time of sampling methods when
the sample size equals to 20K. Theoretically, the computation time of our method isO (nL + 22k−1T ),
here L =

∑
v ∈V d2

v/|E |, and n is the sample size. L represents the time spent on computing f k
i (X )

andT represents the time to judge the graphlet type of a k-node subgraph sample. LetC (d ) denote
the time spent on generating neighbors of nodes in the super graph, where each node is a d-node
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Table 8. Computation Time (In Seconds) of Different Methods

3-node 4-node 5-node
Exact ImprG GFRW PSRW Exact ImprG GFRW PSRW Exact ImprG GFRW PSRW

Epinion 0.10 0.018 0.002 0.002 1.7 0.029 0.012 0.39 11091.1 0.16 0.06 44.1
Slashdot 0.09 0.014 0.002 0.002 1.5 0.024 0.012 0.41 5702.4 0.17 0.05 47.5
Facebook 0.52 0.019 0.007 0.008 1.6 0.038 0.026 0.25 4405.0 0.34 0.19 29.4
Pokec 7.78 0.020 0.008 0.010 249 0.094 0.027 2.79 – – – –
Flickr 39.7 0.131 0.011 0.015 11194 0.552 0.034 3.62 – – – –
Orkut 197.8 0.037 0.005 0.007 13608 0.077 0.018 3.74 – – – –
Twitter 667.5 0.346 0.007 0.008 > 1 week 2.349 0.018 79.9 – – – –
Weibo 184.4 0.032 0.005 0.005 > 1 day 0.850 0.014 36.4 – – – –

Exact represents the exact enumeration methods. here we only show the results of 5-node graphlets for the graphs
whose ground truth can be obtained with reasonable time.

subgraph in the original graph. The computation time of GFRW is O (nC (d ) + 2kT ) and PSRW is
O (nC (k−1) + 2kT ). We summarize the findings in Table 8 as follows:

—When k = 3, PSRW is computationally more efficient than our method ImprG. However,
when k = 4, 5, the computation cost of our method ImprG is much smaller than PSRW. The
reason is that C (k ) increases quickly with k while L is independent on k .

—The method GFRW always has the least computation cost.
—Compared with GFRW, our method spends more time in exploring the neighborhood to

increase the accuracy of the estimation. The computation time of our method and GFRW is
negligible compared with the query time of OSNs. For all the graphs, the computation time
of our method is less than 2.4 seconds. We conclude that our method achieves the best time
cost and accuracy tradeoff.

9 CONCLUSION
We propose an efficient random walk-based method to estimate the number of 3-, 4-, 5-node sub-
graphs in OSNs. Our algorithm can also be easily extended to graphlets of larger size. Both the-
oretical analysis and experimental evaluation validate the unbiasedness and convergence of our
proposed estimators. Our estimators show excellent empirical accuracy for graphlet counts esti-
mation. Comparison with prior state-of-the-art method also shows the superb performance of our
estimators in estimating relative graphlet counts.

APPENDIXES

A PROOF OF THEOREMS AND LEMMAS

A.1 Proof of Theorem 4.1
Theorem 4.1. The average of the function wk

i (X ) f k
i (X ) is

Ĉk
i ! 1

n

n∑

t=1
wk

i (Xt ) f k
i (Xt ), (3)

which is an asymptotic unbiased estimator of Ck
i , i.e., count of graphlet gk

i , when βk
i ! 0.
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Proof. Use the definition of the expectation and the Equation (1), we have
Eπππ M

[
wk

i (X ) f k
i (X )

]
=

∑

X ∈M (k−1)

πM (X )
1
βk

i

1
πM (X )

f k
i (X )

=
∑

X ∈M (k−1)

f k
i (X )/βk

i = C
k
i .

According to the Theorem 3.1, we have Ĉk
i converge to Ck

i almost surely. !

A.2 Proof of Lemma 5.1
The following concentration inequality serves as the mathematical basis of our analytical bound.
We use the inequality to prove Lemma 5.1.

Theorem A.1 ([9, Theorem 3]). For an ergodic Markov chain with the state space V and sta-
tionary distribution πππ , define T = τ (ξ ) as its ξ -mixing time for ξ ≤ 1/8. Let v1, . . . ,vn denote an
n-step random walk starting from an initial distribution φφφ. Let f : V → [0, 1] be a function defined
on the state space V . Define µ ! Eπππ [f ] and µn ! 1

n
∑n

i=1 f (vi ). There exists some constant c (which
is independent of µ, ξ and ϵ) such that

Pr [|µn − µ | > ϵµ] ≤ c --φφφ--πππ exp
(
−ϵ2µn/ (72T )

)

for 0 ≤ ϵ ≤ 1. Here, --φφφ--πππ ! ∑
v ∈V

φ2 (v )
π (v ) .

Lemma 5.1. There is a constant value ζ , such that if

n ≥ B1 ! ζ
Mk

i

Ck
i

log(--φφφ--πππ /δ )

ϵ2 T ,

we have
Pr

[
|Ĉk

i −Ck
i | ≤ ϵCk

i

]
≥ 1 − δ .

Proof. Let hk
i (X ) =

wk
i (X )f k

i (X )

Mk
i

(hk
i (X ) ∈ [0, 1]). We have Eπππ M [hk

i ] = Eπππ M [wk
i f

k
i ]/Mk

i =

Ck
i /M

k
i . According to Theorem A.1, we have

Pr
[555Ĉk

i −Ck
i

555 ≥ ϵCk
i

]
= Pr

⎡⎢⎢⎢⎢⎣
555555
Ĉk

i

Mk
i
−

Ck
i

Mk
i

555555 ≥ ϵ
Ck

i

Mk
i

⎤⎥⎥⎥⎥⎦
= Pr

⎡⎢⎢⎢⎢⎣
555555
1
n

n∑

t=1
hk

i (Xt ) − Eπππ [hk
i ]

555555 ≥ ϵEπππ [hk
i ]

⎤⎥⎥⎥⎥⎦
≤c --φφφ--πππ exp )

*−ϵ
2 C

k
i

Mk
i
n/(72T ′)+

,
where T ′ is the 1/8-mixing time of the expanded Markov chain. Simple calculation shows that
T ′ = T . Extracting n for which δ = c ∥φφφ∥πππ exp(−ϵ2 Ck

i
Mk

i
n/(72T )), we have n = ζ

Mk
i

Ck
i

log(∥φφφ∥πππ /δ )

ϵ 2 T . !

We now prove the bound for the estimator designed for the situation where |E | is unknown.
Lemma A.2. There is a constant ζ , such that if

n ≥ B2 ! ζ max
⎧⎪⎨⎪⎩
Mk

i

Ck
i
,

2|E |
|V |

⎫⎪⎬⎪⎭
log(2 --φφφ--πππ /δ )

ϵ2 (9T ),
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we have
Pr

[
|Ĉk

i −Ck
i | ≤ ϵCk

i

]
≥ 1 − δ ,

where Ĉk
i is the estimator of Ck

i designed for unknown |E |.
Proof. Recall that

Ĉk
i ! |V |

(
n + k − 2

n

) )
*
∑n

t=1 w̃
k
i (Xt ) f k

i (Xt )
∑n+k−2

t=1 1/dvt

+
, .

We prove the bound by finding the steps to guarantee that both C̃k
i ! 1

n
∑n

t=1 w̃ (Xt ) f k
i (Xt ) and

d̂ ! 1
n
∑n

t=1
1

dvt
are within (1 ± ϵ/3) of their expected value with probability at least 1 − δ/2. Ac-

cording to the definition of w̃k
i (X ) = wk

i (X )/(2|E |), we have Eπππ M [C̃k
i ] = Ck

i
2 |E | . Similar to the proof

in Lemma 5.1, to guarantee C̃k
i is within (1 ± ϵ/3) of the expected value with probability at least

1 − δ/2, the sample size is at least n1 ! ζ
Mk

i
Ck

i

log(2∥φφφ∥πππ /δ )

ϵ 2 (9T ).
On the other hand, we have

Pr
[555d̂ − Eπππ [d̂]555 ≥ ϵ

3Eπππ [d̂]
]
≤ c --φφφ--πππ exp

(
−ϵ

2

9
|V |
2|E |n/ (72T )

)
.

To guarantee that d̂ is within (1 ± ϵ/3) of the expected value with probability 1 − δ/2, the sample
size is at least n2 ! ζ ( 2 |E |

|V | )
log(2∥φφφ∥πππ /δ )

ϵ 2 (9T ). Hence, when the sample size is at least max{n1,n2},
we have

(1 − ϵ )Ck
i ≤

(1 − ϵ/3)Ck
i /2|E |

(1 + ϵ/3)1/2|E | ≤
C̃k

i

d̂
≤

(1 + ϵ/3)Ck
i /2|E |

(1 − ϵ/3)1/2|E | ≤ (1 + ϵ )Ck
i

with probability at least 1 − δ . This completes the proof. !

A.3 Properties of the Improved Estimator for General Access Model
A.3.1 Unbiasedness of the Improved Estimator.
Theorem 6.1. The average of the functionW k

i (X ) f k
i (X )

Ĉk
i ! 1

n

n∑

t=1
W k

i (Xt ) f k
i (Xt ) (10)

is an asymptotic unbiased estimator of Ck
i for the graphlet gk

i with βk
i ! 0.

Proof. LetHk−1 denote the set of all (k − 1)-node connected subgraphs in G.

Eπππ M

[
W k

i (X ) f k
i (X )

]
=

∑

X ∈M (k−1)

πM (X )
1
βk

i

|A (X ) |
∑

Xa ∈A (X ) πM (Xa )
f k
i (X )

=
1
βk

i

∑

Gk−1∈Hk−1

)3
*

Fk
i (Gk−1)

∑
Xa ∈A (Gk−1 ) πM (Xa )

∑

X ∈A (Gk−1 )

πM (X )+4
,

=
1
βk

i

∑

Gk−1∈Hk−1

Fk
i (Gk−1) =

1
βk

i

∑

X ∈M (k−1)

f k
i (X ) = Ck

i

By SLLN, Ĉk
i → Ck

i almost surely. !

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 4, Article 41. Publication date: April 2018.



Mining Graphlet Counts in Online Social Networks 41:33

A.3.2 Accuracy Comparison Between the Basic Estimator and the Improved Estimator. Our es-
timators are asymptotically unbiased, the mean squared error of the estimators is almost equal
to their “variance.” Hence, smaller variance of the estimators indicates higher accuracy. For the
sample average

µ̂n ! 1
n

n∑

t=1
f (Xt )

based on an irreducible Markov chain {Xt } with its stationary distribution πππ , we introduce the
asymptotic variance of the estimator µ̂n , which is defined as

σ 2 ( f ) ! lim
n→∞

n · Var (µ̂n ) = lim
n→∞

1
n
E

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎢⎢⎣

n∑

t=1
( f (Xt ) − Eπππ [f ])

⎤⎥⎥⎥⎥⎦
2⎫⎪⎪⎬⎪⎪⎭

(12)

for any function f with Eπππ [f 2] < ∞. We review the central limit theorem (CLT) as follows.
Theorem A.3 (Central Limit Theorem [25]). For a finite, irreducible Markov chain {Xt } with

its stationary distribution πππ ,
√
n[µ̂n ( f ) − Eπ [f ]] d−→ N (0,σ 2 ( f )), as n → ∞,

for any function f with Eπππ [f 2] < ∞ regardless of initial distribution, and σ 2 ( f ) is given by Equa-
tion (12).

Asymptotic variance can be used to compare the performance of different MCMC estimators
through its connection to the CLT. Similar to the i.i.d. samples, the asymptotic variance σ 2 ( f )
can be used to decide approximately how many samples are needed to achieve certain accuracy.
Note that σ 2 ( f ) is independent on the initial state of the Markov chain. When the Markov chain
is already in the stationary regimes, the estimator with smaller asymptotic variance has better
performance. We rewrite the asymptotic variance formula for further analysis. LetM denote the
state space of the finite Markov chain. Suppose the chain {Xt } is in the stationary regime, i.e.,
X0 ∼πππ ,Xt ∼πππ . Then, Equation (12) can be rewritten as follows:

σ 2 ( f ) = Var( f (X0)) + 2
∞∑

k=1
Cov( f (X0), f (Xk ))

=
)3
*
∑

X ∈M
[f (X ) − E[f ])]2π (X )+4

,︸ >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>︷︷ >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>︸
γ0

+2
∞∑

k=1

{
E[f (X0) f (Xk )] − E2

πππ [f ]
}

︸ >>>>>>>>>>>>>>>>>>>>>>>>>>>>>︷︷ >>>>>>>>>>>>>>>>>>>>>>>>>>>>>︸
γk

= γ0 + 2
∞∑

k=1
γk .

Here, γk is also called “lag k autocovariance.” Different from the i.i.d. samples, the correlation
structure over random samples given by the Markov chains can significantly affect the asymptotic
variances. The computation of the asymptotic variance depends on the transition matrix, which is
basically another form the adjacent matrix of the underlying networks. Hence, it is impractical to
compute the asymptotic variance in general.

To compare the accuracy of these estimators, we only need to compare their asymptotic vari-
ance. We first compare the γ0 of the basic estimator and the improved estimator. The following
lemma shows that γ0 of the improved estimator is smaller.

Lemma A.4. Let γ0 = Varπππ M [wk
i (X ) f k

i (X )] and γ ′0 = Varπππ M [W k
i (X ) f k

i (X )]. We have γ ′0 ≤ γ0.
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Proof. Let Hk−1 denote the set of all (k − 1)-node connected subgraphs in G.

γ0 − γ ′0 = Varπππ M [wk
i (X ) f k

i (X )] − Varπππ M [W k
i (X ) f k

i (X )]

=
∑

X ∈Mk−1

((
wk

i (X ) f k
i (X )

)2 −
(
W k

i (X ) f k
i (X )

)2)
πM (X )

=
1

(βk
i )2

∑

Gk−1∈Hk−1

⎧⎪⎪⎨⎪⎪⎩
)3
*

∑

Xa ∈A (Gk−1 )

( f k
i (Xa ))2

πM (Xa )
+4
,
− )3

*
∑

Xa ∈A (Gk−1 )

|A(Gk−1) |2πM (X ) ( f k
i (Xa ))2

(
∑

Xb ∈A (Gk−1 ) πM (Xb ))2
+4
,

⎫⎪⎪⎬⎪⎪⎭
=

∑

Gk−1∈Hk−1

(Fk
i (Gk−1))2

|A (Gk−1) |2 (βk
i )2

⎧⎪⎪⎨⎪⎪⎩
)3
*

∑

Xa ∈A (Gk−1 )

1
πM (Xa )

+4
,
−

( |A(Gk−1) |2
(
∑

Xa ∈A (Gk−1 ) πM (Xa ))

)⎫⎪⎪⎬⎪⎪⎭
According the fact that arithmetic mean is always not smaller than harmonic mean, we have

1
|A (Gk−1) |

∑

Xa ∈A (Gk−1 )

1
πM (Xa )

≥ |A(Gk−1) |
(
∑

Xa ∈A (Gk−1 ) πM (Xa ))
.

This leads to γ0 − γ ′0 ≥ 0. !

The covariance part is much more difficult to analyze. We give some detailed analysis of the
covariance in the following. For a general Markov chain with finite state spaceM and stationary
distribution πππ , the sum of lag k autocovariance can also be expressed as

∞∑

k=1
γk =

∑

Xi ! Xa
Xi , X j ∈ M

π (Xi )дa (Xi ,X j ) ( f (Xi ) − Eπππ [f ]) ( f (X j ) − Eπππ [f ]),

where Xa is a state inM and the asymptotic variance does not depend on the choice of Xa [50].
Here дa (Xi ,X j ) = E[N a

j |Xi ] and N a
j is a random variable which counts, after the Markov chain

leaves from the initial state Xi , how many times it has visited state X j , until it reaches state Xa
for the first time. The value of дa (i, j) depends on the transition matrix of the Markov chain. The
detailed computation of дa (i, j) can be found in [50]. For our problem, let γk denote the lag k auto-
covariance of the basic estimator andγ ′k denote the lagk autocovariance of the improved estimator.
For simplicity, we replace wk

i (X ) f k
i (X ) with w (X ) f (X ) andW k

i (X ) f k
i (X ) withW (X ) f (X ).

∞∑

k=1
γk −

∞∑

k=1
γ ′k =

∑

Xi ! Xa
Xi , X j ∈ Mk−1

πM (Xi )дa (Xi ,X j ) f (Xi ) f (X j ) (w (Xi )w (X j ) −W (Xi )W (X j ))

For the covariance part, we cannot decide whether the improved estimator has smaller covariance
since the asymptotic variance depends on the transition matrix. We leave it as an open question
to be solved in future work.

A.4 Proof of Theorem 6.2
Theorem 6.2. The average of the function

∑
Gk ∈S (X ) h

k
i (Gk )/P (Gk )
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Ĉk
i =

1
n

n∑

t=1

)3
*

∑

Gk ∈S (Xt )

hk
i (Gk )

P (Gk )
+4
,

(11)

is an asymptotic unbiased estimator of Ck
i for graphlet gk

i with βk
i ! 0.

Proof. Let Hk be the set of all k-node connected subgraphs in G. A subgraph Gk isomorphic
to gk

i is denoted as Gk ≃ gk
i .

Eπππ M

⎡⎢⎢⎢⎢⎢⎣
∑

Gk ∈S (X )

hk
i (Gk )

P (Gk )

⎤⎥⎥⎥⎥⎥⎦
=

∑

X ∈M (k−1)

)3
*
πM (X )

∑

Gk ∈S (X )

hk
i (Gk )

P (Gk )
+4
,

(13a)

=
∑

X ∈M (k−1)

)33333
*

∑

Gk ∈ S (X )
Gk ≃ gk

i

πM (X )
∑

Xa ∈B (Gk ) πM (Xa )

+44444
,

(13b)

=
∑

Gk ∈ Hk
Gk ≃ gk

i

∑

X ∈B (Gk )

(
πM (X )

∑
Xa ∈B (Gk ) πM (Xa )

)
= Ck

i (13c)

Equations (13a) and (13b) are expanded from previous lines based on the definitions. Equation (13c)
exchanges the summation order of Equation (13b). Each stateX corresponds to f k

i (X ) k-node con-
nected subgraphs. EachGk ≃ gk

i corresponds to βk
i states. The summation ∑

X ∈M (k−1)
∑

Gk ∈ S (X ) •
and ∑

Gk ∈ Hk
Gk ≃ gk

i

∑
X ∈B (Gk ) • have the same combination of X and Gk , which validates the correct-

ness of Equation (13c). Finally, we have Ĉk
i → Ck

i almost surely by SLLN. !

B PSEUDO-CODE OF COMPUTING αk
i

AND βk
i

ALGORITHM 2: Computation of αk−1
j

Input: Gk−1 = ({v1, . . . ,vk−1},Ek−1) isomorphic to gk−1
j

Output: αk−1
j

1: αk−1
j ← 0

2: for each permutation x1, . . . ,xk−1 of {1, . . . ,k − 1} do
3: for i ∈ {1, . . . ,k − 2} do
4: if (vxi ,vxi+1 ) " Ek−1 then
5: continue
6: αk−1

j ← αk−1
j + 1

7: return αk−1
j
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Table 9. Comparison Between πM (X ) and P (Gk−1) When k = 4, 5

ALGORITHM 3: Computation of βk
i .

Input: Gk = (Vk ,Ek ) isomorphic to gk
i

Output: βk
i

1: tj ← 0, ∀1 ≤ j ≤ |Gk−1 |
2: for v ∈ Vk do
3: Gk−1 ← (k − 1)-node subgraph induced by Vk \{v}
4: if Gk−1 is a disconnected subgraph then
5: continue
6: j ← id of (k − 1)-node graphlet Gk−1 isomorphic to
7: tj ← tj + 1
8: βk

i ←
∑ |Gk−1 |

j=1 tjαk−1
j

9: return βk
i

C COMPARISON BETWEEN πM (X ) AND P (Gk−1)

Here, we let Gk−1 be the subgraph induced by the nodes in the state X . Table 9 illustrates the
detailed comparison between πM (X ) and P (Gk−1)/|A (Gk−1) |.
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