
108

On Modeling Influence Maximization in Social Activity
Networks under General Se!ings

RUI WANG, University of Science and Technology of China
YONGKUN LI, University of Science and Technology of China and AnHui Province Key Laboratory of
High Performance Computing
SHUAI LIN, University of Science and Technology of China
HONG XIE, Chongqing University
YINLONG XU, University of Science and Technology of China
JOHN C. S. LUI, The Chinese University of Hong Kong

Finding the set of most in!uential users in online social networks (OSNs) to trigger the largest in!uence
cascade is meaningful, e.g., companies may leverage the “word-of-mouth” e"ect to trigger a large cascade of
purchases by o"ering free samples/discounts to those most in!uential users. This task is usually modeled as
an in!uence maximization problem, and it has been widely studied in the past decade. However, considering
that users in OSNs may participate in various online activities, e.g., joining discussion groups and commenting
on same pages or products, in!uence di"usion through online activities becomes even more signi#cant. In
this article, we study the impact of online activities by formulating social-activity networks which contain
both users and online activities, and thus induce two types of weighted edges, i.e., edges between users and
edges between users and activities. To address the computation challenge, we de#ne an in!uence centrality
via random walks, and use the Monte Carlo framework to e$ciently estimate the centrality. Furthermore, we
develop a greedy-based algorithm with novel optimizations to #nd the most in!uential users for node rec-
ommendation. Experiments on real-world datasets show that our approach is very computationally e$cient
under di"erent in!uence models, and also achieves larger in!uence spread by considering online activities.

CCS Concepts: • Information systems → Top-k retrieval in databases; • Social and professional topics
→ Consumer products policy;

Additional Key Words and Phrases: OSN, user activities, in!uence maximization, random walk
ACM Reference format:
Rui Wang, Yongkun Li, Shuai Lin, Hong Xie, Yinlong Xu, and John C. S. Lui. 2021. On Modeling In!uence
Maximization in Social Activity Networks under General Settings. ACM Trans. Knowl. Discov. Data 15, 6,
Article 108 (May 2021), 28 pages.
https://doi.org/10.1145/3451218

The work by Yongkun Li was supported in part by NSFC 61772484 and Youth Innovation Promotion Association CAS. The
work by John C. S. Lui was supported in part by the GRF 14200420.
Authors’ addresses: R. Wang, S. Lin, and Y. Xu, University of Science and Technology of China, 96 Jinzhai Rd, Baohe
District, Hefei; emails: {rwang067, shuailin}@mail.ustc.edu.cn, ylxu@ustc.edu.cn; Y. Li (corresponding author), University
of Science and Technology of China and AnHui Province Key Laboratory of High Performance Computing, 96 Jinzhai Rd,
Baohe District, Hefei; email: ykli@ustc.edu.cn; H. Xie, Chongqing University, No.174 Shazhengjie, Shapingba, Chongqing;
email: xiehong2018@cqu.edu.cn; J. C. S. Lui, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR; email:
cslui@cse.cuhk.edu.hk.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro#t or commercial advantage and that copies bear this notice and
the full citation on the #rst page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci#c permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
1556-4681/2021/05-ART108 $15.00
https://doi.org/10.1145/3451218

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 6, Article 108. Publication date: May 2021.

https://doi.org/10.1145/3451218
mailto:permissions@acm.org
https://doi.org/10.1145/3451218

108:2 R. Wang et al.

1 INTRODUCTION
Due to the popularity of online social networks (OSNs), and their excellent capability to spread
information, ideas, and innovations, viral marketing which exploits the “word-of-mouth” e"ect is
commonly used by companies to promote product sales [32]. For example, consider the scenario
that a company seeks to boost the adoption of a new product. One approach is to choose a set
of in!uential users (i.e., seed set) in an OSN and give them a discount or free samples. These
initial in!uential users may recommend the product to their friends, and their friends may further
attract friends of their friends to adopt the product. Finally, a large amount of people may buy the
product due to the in!uence spread through out the whole network. One key algorithmic issue
is how to #nd the seed set so as to trigger the largest in!uence spread or product adoption. This
viral marking problem can be modeled as in!uence maximization problem (IMP), which was
#rst formulated by Kempe et al. [29] as follows: given an OSN and an information di"usion model,
how to select a set of k users, which is called the seed set, so as to trigger the largest in!uence
spread over the OSN under the difusion model. Besides viral marketing, IMP also has been applied
in many other applications such as rumor blocking, which selects k seed users to trigger the spread
of a positive cascade to maximize the amount users not being in!uenced by a rumor [8, 22, 42].
More applications of IMP include network monitoring [3], social recommendation [48], and the
like [19–21]. Due to its wide range of applications and its NP-hardness [9, 11], IMP has been studied
extensively in the past decade [4, 6, 10, 16–18, 33, 40, 41].

We notice that current works mainly focus on using only the “friendship” relationships to spread
in!uence between users, while ignoring the fact that users in today’s OSNs may participate in
various kinds of online activities, e.g., joining a discussion group and clicking like or comment
on Facebook. Hence, users not only can create friendship relationships, which we call user–user
links, but can also form relationships by participating in online activities, which we call user–
activity–user links. For example, two users in Facebook form a user-activity-user link no matter
they are friends or not, if there is a discussion group that both of them join or a public page that
both of them write comments on. They may in!uence each other during the discussion. They may
also read each other’s comments or visit each other’s homepage and get in!uenced. To distinguish
with traditional OSNs, we call this kind of networks which contain both user–user relationships
and user–activity–user relationships as social-activity networks (SANs).

With the consideration of online activities in SANs, in!uence may also spread through the user-
activity-user links as well as the user-user links. In this article, we focus on the online activities
which generate positive in!uence, e.g., clicking like on the same public page in Facebook, giving
high rating to the same product in online rating systems, and joining in a community sharing
the same interest in OSNs. Due to the large amount of online activities, many pair of users may
participate in multiple common online activities. These pair of users may in!uence each other
more even though they are not friends. This is because they may have a lot of common interests or
common needs which drive them to participate these common activities. Thus, in!uence di"usion
through the user–activity–user links becomes more signi#cant. Therefore, one need to considering
social activities in selecting the seed set. However, social activities are ignored by previous works
on in!uence maximization. This motivates us to formulate the in!uence maximization problem for
SANs, and to determine the most in!uential nodes by taking online activities into consideration.

However, modeling in!uence maximization with online activities is challenging. First, in!uence
maximization in OSNs without online activities was already proved to be NP-hard, and considering
online activities makes this problem even more complicated. Second, the amount of online
activities in a SAN is very large even for small OSNs, this is because online activities happen
more frequently than friendship formation in OSNs. As a result, the underlying graph which

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 6, Article 108. Publication date: May 2021.

On Modeling Influence Maximization in Social Activity Networks under General Se!ings 108:3

Fig. 1. An example of SAN.

characterizes users and their relationships may become extremely dense if we transform the user–
activity–user links to user–user links, so it requires highly e$cient algorithms for #nding the
most in!uential nodes. To address the above challenges, in this article, we make the following
contributions.

—We generalize the in!uence di"usion models for SANs by modeling SANs as hypergraphs.
We approximate the in!uence of nodes in SANs by de#ning an in!uence centrality based
on random walk. Our in!uence centrality applies to both unweighted and weighted
graphs.

—We employ the Monte Carlo framework to estimate the in!uence centrality in SANs, and
also develop a greedy-based algorithm with two novel optimization techniques to solve the
in!uence maximization problem under both independent cascade (IC) model and linear
threshold (LT) model for SANs.

—We conduct experiments with six real-world datasets, and results show that our approach
is more e$cient while keep almost the same accuracy compared to the the most popular
in!uence maximization algorithm IMM [40].

This article is organized as follows. In Section 2, we formulate the in!uence maximization
problem for SANs. In Section 3, we present our random walk-based methodology. In
Section 4, we present the Monte Carlo method to estimate the in!uence centrality in SANs.
In Section 5, we present our greedy-based algorithm and optimization techniques to solve the
in!uence maximization problem. In Section 6, we present the experimental results. Related work
is given in Section 7 and Section 8 concludes.

2 PROBLEM FORMULATION
In this section, we #rst model the SAN with a hypergraph, and then formulate the in!uence
maximization problem for SANs.

2.1 Model for SANs
We use a hypergraph G (V ,E,E1, . . . , El) to characterize a SAN, whereV denotes the set of users,
E denotes the user-user links, and Ei (i = 1, 2, . . . , l) denotes the set of type i hyperedges in which
each hyperedge is a set of users who participated in the same online activity, and represented as
a tuple. Considering Figure 1, only activity a is of the #rst type, so E1 = {(1, 2, 3, 5)}. For ease of

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 6, Article 108. Publication date: May 2021.

108:4 R. Wang et al.

presentation, we denote N (j) as the set of neighbors of user j, i.e., N (j) = {i |(i, j) ∈ E}, Me (j) as the
set of users except for user j who connected to the hyperedge e , i.e., Me (j) = {i |i ∈ e,&i ! j}, and
denote Et (j) as the set of type t hyperedges that are connected to user j, i.e., Et (j) = {e |e ∈ Et &j ∈
e}. Considering Figure 1,N (1) = {2},Me (1) = {2, 3, 5}when e = (1, 2, 3, 5) and E1 (1) = {(1, 2, 3, 5)}.

2.2 Influence Maximization in SANs
To solve the in!uence maximization problem, we #rst introduce the in!uence di"usion process.
Before describing the in!uence di"usion process over SANs, we #rst introduce the two typical
in!uence di"usion models over OSNs, i.e., the IC model and the LT model [29]. Each user has
two states, i.e., either active or inactive. Initially, all users are in the state of inactive. We select
a set of users change their state to active. Let N (i) denote a set of all the neighbors user i . Let
di = |N (i) | denote the degree of user i . In the IC model, each active user i will activate each of her
inactive neighbor j ∈ N (i) to be active with probability qi j (0 ≤ qi j ≤ 1). Typically, the activation
probability is set to qi j = 1/dj [9, 10, 29, 40, 41]. After a neighbor j being activated, she will further
activate her inactive neighbors in the set N (j), and this di"usion process continues until no user
can change her state. In LT model, each user i is associated with a threshold θi (θi ∈ [0, 1]). The
state of an inactive user i will be changed into active if at least a fraction θi of her neighbors are
active. The di"usion process continues until no inactive user can be further activated. We call the
expected size of the #nal set of active users the in!uence spread, and denote it as σ (S (k)) if the set
of k initial active users is S (k).

Now we describe the in!uence di"usion process for SANs. The key issue is to de#ne the
in!uence between user i and user j (i.e., дi j) after taking online activities into consideration. Our
de#nition is based on three criteria:

—A user may make a purchase due to her own interest or being in!uenced by others through
user–user or user–activity–user links, so we de#ne the total in!uence probability by one-
hop neighbors as c (0 < c < 1), and call it the decay parameter. As we have l types of
online activities, we de#ne α jt (where 0 ≤ α jt ≤ 1 and 0 ≤ ∑l

t=1 α jt ≤ 1) as the proportion
of in!uence to user j through type t online activities, and call it weight of activities. Clearly,
1 −∑l

t=1 α jt indicates the proportion of in!uence from direct neighbors.
—For the in!uence to user j from direct neighbors, we de#ne the weight of each neighbor i

(i ∈ N (j)) as ui j , and assume that 0≤ui j ≤ 1 and ∑i ∈N (j) ui j =1.
—For the in!uence to user j through the type t online activities, we de#ne the weight of each

online activity a as vaj , where 0 ≤ vaj ≤ 1 and∑a∈Nt (j) vaj = 1, where Nt (j) means online
activities of type t that user j participated, and we can also represent these activities as a
set of hyperedges as Et (j). Besides, considering that maybe multiple users participated in
the same online activity a, we de#ne the weight of each user i who participated in a as ua

i j
(i ∈ N (a)\{j}), and assume that 0 ≤ ua

i j ≤ 1 and ∑i ∈N (a)\{j } u
a
i j = 1, where N (a) means all

users participated in activity a. If we represent the activity a as a hyperedge e , then N (a)\{j}
can also be represented as Me (j).

For simplicity, we set ui j = 1/|N (j) | for unweighted graphs. Note that this uniform setting is
exactly the same as the IC model and LT model in OSNs, which is a common setting for unweighted
graphs and has been widely studied in [9, 10, 29, 40, 41]. Similarly, we also let vaj = 1/|Et (j) | and
ua

i j = 1/|Me (j) | by following the uniform setting. We would like to point out that our random walk
approach also applies to general settings, e.g., we can simply reset ui j ,vaj and ua

i j according to the
weights of weighted graphs. Now we can de#ne the in!uence of user i to user j, which we denote

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 6, Article 108. Publication date: May 2021.

On Modeling Influence Maximization in Social Activity Networks under General Se!ings 108:5

Table 1. List of Notations

Symbol Meaning
V Set of users
E Set user–user links
l Number of activity types

Ei (i = 1, 2, . . . , l) Set of type i hyperedges
G (V ,E,E1, . . . , El) Hypergraph to characterize a SAN

N (j) Set of neighbors of user j
Me (j) Set of users connected to user j by hyperedge e
Et (j) set of type t hyperedges connected to user j
di Degree of user i
qi j In!uence probability from user i to user j in IC model
θi Threshold of user i can be activated
S (k) Set of k initial active users

σ (S (k)) Expected size of the #nal set of active users
c (0 < c < 1) Decay parameter

α jt Proportion of in!uence to user j through online activity of type t
1 −∑l

t=1 α jt Proportion of in!uence from direct neighbors
ui j Weight of each neighbor i (i ∈ N (j))
vaj Weight of each online activity a
ua

i j weight of each user i participated in a, (i ∈ N (a)\{j})
дi j In!uence of user i to user j

as дi j :

дi j = c ×
(1 −∑l

t=1 α jt

|N (j) | × 1{i ∈N (j) }

+
∑

t ∈[1,l]

∑

e ∈Et (j)

α jt

|Et (j) | ×
1

|Me (j) | ×1{i ∈Me (j) }
)
.

(1)

The #rst term in the right hand side of Equation (1) denotes the in!uence di"used through user-
user links. The proportion of in!uence to user j through user-user links equals 1 −∑l

t=1 α jt . The
in!uence of user i to user j is set as 1/|N (j) |, if i ∈ N (j). The second term of Equation (1) represents
the in!uence di"used through user–activity–user links. There are l types of activities in total. The
proportion of in!uence to user j through user–activity–user links associated with type t activity
is set as α jt . The in!uence of user i to user j equals 1

|Et (j) | × 1
|Me (j) | , if i ∈ Me (j). This captures

that in the in!uence di"usion process, an activity e is #rst selected from type t edges uniformly at
random, and then a user is selected from users connected to user j by hyper-edge e uniformly at
random. The parameter c captures the in!uence decay rate during in!uence di"usion.

Now we formulate the in!uence maximization problem for SANs, which we denote as
IMP(SAN), as follows.

De"nition 1. IMP(SAN): Given a SAN G (V ,E,E1, . . . , El), an in!uence di"usion model with
parameters α jt , #nd a set of k nodes S (k), where k is an integer, so as to make the in!uence spread
σ (S (k)) maximized.

For ease of read, we list the mainly used notations in Table 1.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 6, Article 108. Publication date: May 2021.

108:6 R. Wang et al.

3 METHODOLOGY
In this section, we present our methodology to address the (IMP(SAN)) problem. One key
issue is to measure the in!uence spread σ (S (k)) of a node set S (k). To achieve it, one needs
to compute the probability of each user being in!uenced by S (k), which involves iteratively
computing the in!uence probability by in!uence дi j for each user pair i and j. This computation
is computationally expensive, therefore, the accurate computation for σ (S (k)) is unrealistic. To
reduce the large computation cost, we #rst develop a random walk framework on hypergraphs to
estimate the in!uence di"usion process. Then, we de#ne a centrality measure based on random
walk to approximate the in!uence of a node set. With this centrality measure, we can approximate
the in!uence maximization problem by solving a centrality maximization problem.

3.1 Random Walk on Hypergraph
Here, we present our random walk-based framework, which is extended from the classical random
walk on a simple graph G (V ,E), which can be stated as follows. For a random walk at vertex
i (i ∈ V), it randomly selects a neighbor j (j ∈ N (i)), and then moves to j in the next step.
Mathematically, let Y (t) denote the position of the walker at step t , then {Y (t)} constitutes a
Markov chain with the one-step transition probability pi j , where pi j = 1/|N (i) | for unweighted
graphs and pi j = Ci j/

∑
k ∈i Cik for weighted graphs. Here,Ci j represents the weight of edge ei j , if

(i, j) ∈ E and Ci j = 0 otherwise.
We now de#ne the one-step transition probability pi j when performing a random walk on the

hypergraphG (V ,E,E1, . . . , El). Note that each hyperedge may contain more than two vertices, so
we take the one-step random walk from user i to user j as a two-step process.

—Step one: Choose a hyperedge associated to user i . Precisely, according to the in!uence
di"usion models in Section 2.2, we set the probability of selecting type t hyperedges as αit , and
choose hyperedges of the same type at random. Mathematically, if the walker is currently at user
i , then it chooses a hyperedge e of type t with probability αit

|Et (i) | .
Note that, αit quanti#es the strength that type t activities in!uence user i . It can be learned

from historical data or solicited from user input. We consider the case that αt is given and we
focus on selecting a subset of nodes to boost in!uence spreading. Note that this setting is similar
with most previous works on in!uence maximization, which assume that the in!uence model
is given. We vary αt to study the impact of online activities on seed set selection in Section 6.2.
Experiment results show that the selected seed set can bring a larger in!uence spreading compared
with the seed set selected by previous works ignoring activities in seed selection. Besides, our
method outperforms previous works more under a larger in!uence strength from activities, i.e.,
larger α .

—Step two: Choose a user associated to the hyperedge e selected in step one as the next stop
of the random walk. We consider random walks without backtrace. In particular, if a walker is
currently at node i , then we select the next stop randomly from the vertices that are connected to
the same hyperedge with user i . We de#ne the probability of choosing user j as 1/|Me (i) |.

By combing the two steps de#ned above, we can derive the transition probability from user i to
j as follows.

pi j =
1 −∑l

t=1 αit

|N (i) | × 1{j ∈N (i) }

+
∑

t ∈[1,l]

∑

e ∈Et (i)

αit

|Et (i) | ×
1

|Me (i) | × 1{j ∈Me (i) } .
(2)

The in!uence of user j over user i is дji = c × pi j .

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 6, Article 108. Publication date: May 2021.

On Modeling Influence Maximization in Social Activity Networks under General Se!ings 108:7

3.2 Influence Centrality Measure
Since the accurate computation ofσ (S (k)) is computationally expensive as we mentioned before, to
measure the in!uence spread of a node set, we de#ne a centrality measure based on random walks
on hypergraphs to approximate the in!uence of a node set S (k). We call it in!uence centrality, and
denote it as I (S), which is de#ned as follows.

I (S) =
∑

j ∈V h(j, S), (3)

whereh(j, S) aims to approximate the in!uence of S to j, which is called decayed hitting probability.
It is de#ned as

h(j, S) =

{∑
i ∈V cpjih(i, S), j " S,

1, j ∈ S, (4)

where c is the decay parameter de#ned in Section 2.2, and pji is the one-step transition probability
de#ned in Equation (2). Equation (4) aims to approximate the in!uence of S to user j of any-step
connected to S by the recursive computation. We approximate the in!uence of S to j of any-step
connected to S , i.e., h(j, S), iteratively. More speci#cally, we start the #rst iteration via an initial
guess on h(j, S) and then use the right hand side of Equation (4) to update the estimation of h(j, S).
The decaying parameter c ∈ (0, 1) governs the convergence of this iteration.

To solve the in!uence maximization problem of IMP(SAN), we use the in!uence centrality
measure I (S) to approximate the in!uence of the node set S , and our goal is to #nd a set S of
k users so that I (S) is maximized. In other words, we approximate the in!uence maximization
problem IMP(SAN) by solving the centrality maximization problem CMP de#ned as follows.

De"nition 2. CMP: Given a hyperghraphG (V ,E,E1, . . . , El) and the corresponding parameters
α jt , #nd a set S of k nodes, where k is an integer, so as to make the in!uence centrality of the set
S of k nodes I (S) maximized.

Note that, the key di"erence between IMP(SAN) and CMP is the de#nition of in!uence spread
of a node set. In IMP(SAN), the in!uence spread of a node set is de#ned as an accurate value
σ (S (k)), i.e., the sum of probabilities of each user being activated by the initial node set S (k),
which is computationally expensive. While in CMP, the in!uence spread of a node set is de#ned
as an estimated value based on random walks on hypergraphs I (S), i.e., the sum of decayed hitting
probabilities h(j, S) from S to j for each user j. In summary, we use the process of random walks on
hypergraphs to simulate the process of in!uence di"usion among SANs. We did not provide the
analysis of theoretical bounds here, but we conduct the experiments on real world datasets and
compared our methods with the most popular in!uence maximization algorithm with theoretical
bounds, i.e., IMM [40], in Section 6.3. Experiment results show that our algorithm achieves almost
the same accuracy in seed selection as IMM, while it only requires much less running time.

4 CENTRALITY COMPUTATION
We note that the key challenge of solving the centrality maximization problem CMP is how to
e$ciently estimate the in!uence centrality of a node set I (S), or the decayed hitting probability
h(j, S). We give an e$cient framework to estimate h(j, S) as follows. We #rst rewrite h(j, S) in a
linear expression which is an in#nite converging series, and then truncate the converging series to
save computation time (see Section 4.1). To further estimate the truncated series, we #rst explain
the expression with a random walk approach, and then use a Monte Carlo framework via random
walks to estimate it e$ciently (see Section 4.2).

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 6, Article 108. Publication date: May 2021.

108:8 R. Wang et al.

4.1 Linear Expression
We #rst transform h(j, S) de#ned in Equation (4) to a linear expression.

Theorem 1. The decayed hitting probability h(j, S) can be rewritten as

h(j, S) = c eT
j Q
′e + c2eT

j QQ
′e + c3eT

j Q
2Q ′e + · · · . (5)

where Q is a (|V | − |S |) × (|V | − |S |) dimensional matrix which describes the transition probabilities
between two nodes in the set V − S , Q ′ is a (|V | − |S |) × |S | dimensional matrix which describes the
transition probabilities from a node in V − S to a node in S , I is an identity matrix, e is a column
vector with all elements being 1, and "nally e j is a column vector with only the element corresponding
to node j being 1 and 0 for all other elements.

Proof. Based on the de#nition of h(j, S) in Equation (4), we can get

h(j, S) =
∞∑

h=1
chP (j, S,h), for j " S,

where P (j, S,h) denotes the probability that a random walk starting from j hits a node in S at the
h-th step. Now if we denote piS as the probability that a random walk starting from i hits a node
in S in one step, we have

h(j, S) =
∞∑

h=1
chP (j, S,h) =

∞∑

h=1
ch
∑

i"S
(Qh−1)jipiS ,

=
∑

i"S

∞∑

h=1
ch (Qh−1)i jpiS =

∑

i"S
c (I − c Q)−1

ji piS ,

= c eT
j (I − cQ)−1 Q ′e .

Note that the largest eigenvalue of c Q is less than one, so by further expanding the expression
above with an in#nite series, we can rewrite h(j, S) as follows.

h(j, S) = c eT
j Q ′e + c2eT

j QQ ′ e + c3eT
j Q2Q ′e + · · · . !

We only keep the L leading terms of the in#nite series, and denote the truncated result ashL (j, S),
so we have

hL (j, S) = c eT
j Q ′e + c2eT

j QQ
′e + · · · + cLeT

j Q
L−1Q ′e . (6)

Since c is de#ned as 0 < c < 1, the series truncation error is bounded as follows.
0 ≤ h(j, S) − hL (j, S) ≤ cL+1/(1 − c). (7)

Based on the above error bound, we can see that hL (j, S) converges to h(j, S) with rate cL+1. This
implies that if we want to compute h(j, S) with a maximum error ϵ (0 ≤ ϵ ≤ 1), we only need to
compute hL (j, S) by taking a su$ciently large enough L, or L ≥ (log(ϵ−ϵc)

log c) − 1.

4.2 Monte Carlo Algorithm
In this subsection, we present a Monte Carlo algorithm to e$ciently approximate hL (j, S). Our
algorithm is inspired from the random walk interpretation of Equation (6), and it can achieve a
high accuracy with a small number of walks.

Consider the random walk interpretation of a particular term eT
j Q

t−1Q ′e (t = 1, . . . ,L) in
Equation (6). Let us consider a L-step random walk starting from j " S on the hypergraph. At
each step, if the walker is currently at node k (k " S), then it selects a node i and transits to i with

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 6, Article 108. Publication date: May 2021.

On Modeling Influence Maximization in Social Activity Networks under General Se!ings 108:9

probability pki , which is de#ned in Equation (2). As long as the walker hits a node in S , then it
stops. Let j (t) be the t-th step position, and de#ne an indicator X (j, t) as

X (j, t) =

{
1, j (t) ∈ S,
0, j (t) " S .

We can see that eT
j Q

t−1Q ′e is the probability that a random walk starting from j hits a node in
S at the t-th step. We have

eT
j Q

t−1Q ′e = E[X (j, t)]. (8)

By substituting eT
j Q

t−1Q ′e with Equation (8), we can rewrite hL (j, S) as

hL (j, S) = cE[X (j, 1)] + c2E[X (j, 2)] + · · · + cLE[X (j,L)]. (9)

Now we estimatehL (j, S) by using a Monte Carlo method with random walks on the hypergraph
based on Equation (9). Speci#cally, for each node j where j " S , we setR independentL-step random
walks starting from j. We denote the t-th step position of the R random walks as j (t)

1 , j (t)
2 , . . . ,j

(t)
R ,

respectively, and use Xr (j, t) to indicate whether j (t)
r belongs to set S or not. Precisely, we set

Xr (j, t) = 1 if j (t)
r ∈ S , and 0 otherwise, so ctE[X (j, t)] can be estimated as

ctE[X (j, t)] ≈ ct

R

∑R

r=1
Xr (j, t).

By substituting ctE[X (j, t)] in Equation (9), we can approximate hL (j, S), which we denote as
ĥL (j, S), as follows.

ĥL (j, S) =
c

R

∑R

r=1
Xr (j, 1) + · · · + cL

R

∑R

r=1
Xr (j,L). (10)

Algorithm 1 presents the process of the Monte Carlo method described above. We can see that
its time complexity isO (RL) as the number of types of online activities l is usually a small number.
In other words, we can estimate hL (j, S) in O (RL) time and compute I (S) in O (nRL) time as we
need to estimate hL (j, S) for all nodes. The main bene#t of this Monte Carlo algorithm is that its
running time is independent of the graph size, so it scales well to large graphs.

Note that ĥL (j, S) computed with Algorithm 1 is an approximation of hL (j, S), and the
approximation error depends on the sample size R. To estimate the number of samples required
to compute hL (j, S) accurately, we derive the error bound by applying Hoe"ding inequality [23],
and the results are as follows.

Theorem 2. Let the output of Algorithm 1 be ĥL (j, S), then we have

P {|ĥL (j, S) − hL (j, S) |>ϵ }≤ 2L exp(−2(1 − c)2ϵ2R). (11)

Proof. Let X1, . . . ,XR be R independent random variables with Xr ∈ [0, 1] for all
r = 1, . . . ,R, and set T = (X1 + · · · + XR)/R. According to Hoe"ding’s inequality, we have

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 6, Article 108. Publication date: May 2021.

108:10 R. Wang et al.

ALGORITHM 1: Monte Carlo Estimation for hL (j, S)

1: function hL (j, S)
2: σ ← 0;
3: for r = 1 to R do
4: i ← j;
5: for t = 1 to L do
6: Generate a random number x ∈ [0, 1];
7: for T = 0 to l do
8: if x ≤ αiT then ! α0T = 1 −∑l

T=1 αiT ;
9: E ← ET (i);

10: break;
11: x ← x − αiT ;
12: Select a hyperedge e from E randomly;
13: i←select a user from {k |k∈e,k!i} randomly;
14: if i ∈ S then
15: σ ← σ + ct/R;
16: break;
17: return σ ;
18: end function

P {|T − E (T) | > ϵ } ≤ 2 exp(−2ϵ2R). By applying this inequality, we have
P {|ĥL (j, S) − hL (j, S) | > ϵ }

= P
{
|

L∑

t=1

ct

R

R∑

r=1
Xr (j, t) −

L∑

t=1
ctE[X (j, t)]| > ϵ

}
,

≤ P
{ L∑

t=1
|c

t

R

R∑

r=1
Xr (j, t) − ctE[X (j, t)]| > ϵ

}
,

≤
L∑

t=1
P
{
|c

t

R

R∑

r=1
Xr (j, t) − ctE[X (j, t)]| > (1 − c)ctϵ

}
,

≤ 2L exp(−2(1 − c)2ϵ2R). !

Based on Theorem 2, we see that Algorithm 1 can estimate hL (j, S) with a maximum error ϵ
with least probability 1 − δ (0<δ , ϵ <1) by setting R ≥ log(2L/δ)/(2(1 − c)2ϵ2).

5 CENTRALITY MAXIMIZATION
In this section, we develop e$cient algorithms to address the centrality maximization problem
CMP de#ned in Section 3.2. Noted that even though we can e$ciently estimate the decayed hitting
probability h(j, S) by using random walks (see Section 4), #nding a set S of k nodes in a SAN to
maximize its in!uence centrality I (S) is still computationally di$cult as it requires to estimate the
in!uence centrality of all combinations of k nodes. In particular, CMP is NP-hard.

Theorem 3. The centrality maximization problem CMP is NP-hard.

Proof. We #rst brie!y introduce the vertex cover problem. An instance of vertex cover problem
is speci#ed by a graphG (V ,E) and an integer k , and asks there exists a vertex set S ⊆ V such that
|S | ≤ k and for every (i, j) ∈ E, {i, j} ∩ S ! ∅.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 6, Article 108. Publication date: May 2021.

On Modeling Influence Maximization in Social Activity Networks under General Se!ings 108:11

We now map our centrality maximization problem into an instance of the vertex cover problem
by taking the same graph G (V ,E) and asking whether there exists a vertex set S such that |S | ≤ k
and I (S) ≥ (n − k) × c + k . We aim to show that S is a vertex cover if and only if I (S) ≥ (n − k) ×
c + k . Assuming S is a vertex cover. Note that h(i, S) = 1 if i ∈ S and h(i, S) = c otherwise. Observe
that for every (i, j) ∈ E, {i, j} ∩ S ! ∅. This implies that I (S) = (n − k) × c + k . Suppose S is not
a vertex cover, then there should be an edge (u,v) which satis#es that {u,v} ∩ S = ∅. A random
walk from u passing through v and at last arriving at S will have length at least 2. So h(u, S) =∑

j ∈N (u)/v cpujh(j, S) + cpuvh(v, S). Due to v " S , h(v, S) < 1. Thus h(u, S) < c , which contradicts.
Therefore S is a vertex cover. !

To solve the centrality maximization problem CMP, we develop greedy-based approximation
algorithms by exploiting the submodularity property of I (S). Speci#cally, we #rst show the
submodularity property and present a baseline greedy algorithm to maximize I (S), and then
develop two novel optimization techniques to accelerate the greedy algorithm.

5.1 Baseline Greedy Algorithm
Before presenting the greedy-based approximation algorithm for maximizing I (S), we #rst show
that I (S) is a non-decreasing submodular function, and the result is stated in the following theorem.

Theorem 4. I (S) is a non-decreasing submodular function.

Proof. We #rst show the non-decreasing property. Note that since h(j, S) = 1 if j ∈ S , so we
rewrite I (S) as follows.

I (S) = |S | +
∑

j ∈(V−S)
h(j, S).

Now suppose that a useru " S is added into the set S , then the marginal increment of the in!uence
centrality ∆(u) = I (S ∪ {u}) − I (S) can be derived as

∆(u) =
∑

j ∈V
h(j, S ∪ {u}) −

∑

j ∈V
h(j, S),

= 1 +
∑

j ∈(V−S∪{u })
h(j, S ∪ {u}) −

∑

j ∈(V−S)

h(j, S),

= 1 − h(u, S) +
∑

j ∈(V−S∪{u })

[
h(j, S ∪ {u}) − h(j, S)

]
.

According to the de#nition of h(j, S) in Equation (5) and the random walk interpretation, we
rewrite h(j, S) as

h(j, S) =
∞∑

h=1
chP (j, S,h), for j " S,

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 6, Article 108. Publication date: May 2021.

108:12 R. Wang et al.

ALGORITHM 2: Baseline Greedy Alg. for Maximizing I (S)

Inputs: A hypergraph, and a parameter k ;
Output: A set S of k nodes for maximizing I (S);

1: S ← ∅, I (S) ← 0;
2: for s = 1 to k do
3: for u ∈ (V − S) do
4: I (S ∪ {u}) ← 0;
5: for j ∈ (V − S ∪ {u}) do
6: I (S ∪ {u}) ← I (S ∪ {u}) + h(j, S ∪ {u});
7: v ← arg maxu ∈(V−S) I (S ∪ {u}) − I (S);
8: S ← S ∪ {v};

where P (j, S,h) denotes the probability that a random walk starting from j hits a node in S at the
h-th step for the #rst time. Now we can rewrite h(j, S ∪ {u}) − h(j, S) as

h(j, S ∪ {u}) − h(j, S)

=

∞∑

h=1
chP (j, S ∪ {u},h) −

∞∑

h=1
chP (j, S,h)

=

∞∑

h=1
ch

[
P {u } (j, S,h) + PS (j, {u},h)

]
−
∞∑

h=1
ch

[
P {u } (j, S,h) + PS (j, {u},h)P (u, S,h)

]

=

∞∑

h=1
chPS (j, {u},h)

[
1 −

∞∑

h=1
chP (u, S,h)

]

=

∞∑

h=1
chPS (j, {u},h)

[
1 − p (u, S,h)

]
,

where PT (j, S,h) represents the probability that a random walk starting from j hits a node in S at
the h-th step for the #rst time without passing any node in T . Therefore, ∆(u) can be derived as
follows.

∆(u) = I (S ∪ {u}) − I (S)

= (1−h(u, S))
[
1+
∑

j ∈V−S∪{u }

∞∑

h=1
chPS (j, {u},h)

]
. (12)

Note that 0 < c < 1 and ∑∞h=1 P (u, S,h) ≤ 1, so we have h(u, S) ≤ 1 and 1 − h(u, S) ≥ 0. That
is, ∆(u) ≥ 0, and I (S) is a non-decreasing function. We now show that I (S) is a submodular
function. Mathematically, we only need to prove that the inequality I (S ∪ {u}) − I (S) ≥ I (T ∪
{u}) − I (T), for S ⊆ T , holds. Note that PS (j, {u},h) ≥ PT (j, {u},h) if S ⊆ T . Besides, according to
the non-decreasing feature of I (S), we have h(u, S) ≤ h(u,T). Based on these inequalities and
Equation (12), we can obtain I (S ∪ {u}) − I (S) ≥ I (T ∪ {u}) − I (T) if S ⊆ T . Therefore, I (S) is a
submodular function. !

Based on the submodularity property, we develop a greedy algorithm for approximation when
maximizing I (S), and we call it the baseline greedy algorithm. Algorithm 2 describes this procedure.
To #nd a set of k nodes to maximize I (S), the algorithm works for k iterations. In each iteration, it
selects the node which maximizes the increment of I (S).

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 6, Article 108. Publication date: May 2021.

On Modeling Influence Maximization in Social Activity Networks under General Se!ings 108:13

Recall that the time complexity for estimating the in!uence of a set S to a particular node j "
S , i.e., h(j, S), is O (RL) (see Section 4.2). Thus, the total time complexity for the baseline greedy
algorithm is O (kn2RL) where n denotes the total number of users in the SAN, because estimating
the in!uence of a set S ∪ {u} requires us to sum up its in!uence to all nodes, and we need to
check every node u so as to select the one which maximizes the increment of I (S). Although the
baseline greedy algorithm gives a polynomial time complexity, it is ine$cient when the number
of users becomes large. To further speed up the computation, we present two novel optimization
techniques in the next subsection.

5.2 Optimizations
—Parallel Computation: The key component in the greedy algorithm is to measure the marginal
increment of the in!uence after adding nodeu, i.e., ∆(u) = I (S ∪ {u}) − I (S), which can be derived
as follows.

∆(u) =
1 −

∞∑

h=1
chP (u, S,h)


×

1 +

∑

j ∈(V−S∪{u })

∞∑

h=1
chPS (j, {u},h)


.

In the baseline greedy algorithm, ∆(u)’s are computed sequentially, which as a result incurs a large
time overhead. Our main idea to speed up the computation is to estimate the marginal increment
of all nodes, i.e., ∆(u) for every u, in parallel. Speci#cally, when performing R random walks from
a particular node j, we measure the contribution of j to the marginal increment of every node. In
other words, we obtain PS (j,u,h) for every u by using only the R random walks starting from j.
As a result, we need only O (nR) random walks to derive the marginal increment of all nodes, i.e.,
∆(u) for every u, instead of O (n2R) random walks as in the baseline greedy algorithm.

—Walk Reuse: The core idea is that in each iteration of choosing one node to maximize the
marginal increment, we record the total O (nR) random walks in memory, and apply the updates
accordingly after one node is added into the result set. By doing this, we can reuse the O (nR)
random walks to derive the marginal increment in the next iteration instead of starting new
random walks from each node again.

By incorporating the above optimization techniques, we can reduce the time complexity to
O (nRL), where L denotes the maximum walk length. In other words, we can use the L leading
terms to estimate∑∞h=1 c

hPS (j, {u},h) and∑∞h=1 c
hP (u, S,h) as described in Section 4. Thus, we let

each walk runs for L steps at most. Algorithm 3 states the procedure. We use score[u] and P[u]
to record ∑j ∈V−S∪{u }

∑∞
h=1 c

hPS (j, {u},h) and ∑∞h=1 c
hP (u, S,h) for computing ∆(u), respectively.

Algorithm 3 runs in two phases. The #rst phase (lines 1–13) is to select the #rst seed node by
running random walks and also record all the walking information for reuse. The second phase
(lines 14–18) is to select the remaining k − 1 nodes based on the stored information which requires
to be updated after selecting each node. We give the update function in Algorithm 4.

The update function is to update the walk information stored in score and P . Every time after we
selecting a node v , the random walk in the following iterations should stop when it encounters v ,
and the values stored in score and P should change accordingly. To achieve this, for each random
walk that hitsv (line 2), we #rst check if it has visited any node in S (lines 4–7). If not, we increase
P[w .j] after adding v in S (lines 8 and 9). Since the following walks should stop when hitting v ,
we update score[u] if node u is visited after v (lines 10–12).

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 6, Article 108. Publication date: May 2021.

108:14 R. Wang et al.

ALGORITHM 3: Optimized Greedy Algorithm
Inputs: A hypergraph and a parameter k ;
Output: A set S of k nodes for maximizing I (S);

1: S ← ∅, score[1...n]← 0, P[1...n]← 0;
2: for j ∈ V do
3: for r = 1 to R do
4: i ← j, visited ← ∅;
5: for t = 1 to L do
6: visited ← visited ∪ {i};
7: i ← Select a user according to the transition prob.;
8: RW [j][r][t]← i;
9: if i " visited then

10: index[i].add (item(j, r , t));
11: score[i]← score[i] + c t

R ;
12: v ← arg maxu ∈V score[u];
13: for s = 2 to k do
14: Update (RW , index , P , score, S,v,L), S ← S ∪ {v};
15: v ← arg maxu ∈(V−S) (1 − P[u]) (1 + score[u]);
16: S ← S ∪ {v};

ALGORITHM 4: Update Function
1: function Update (RW , index , P , score, S,v,L)
2: for w ∈ index[v] do
3: k ← L;
4: for t = 1 to L do
5: if RW [w .j][w .r][t] ∈ S then
6: k ← t ;
7: break;
8: if k == L then
9: P[w .j]← P[w .j] + ct/R

10: for i = w .t + 1 to k do
11: u ← RW [w .j][w .r][i], score[u]← score[u] − ct/R;
12: end function

5.3 Optimizations On Weighted Graphs
Considering that weighted graph also have a wide use in OSNs, for example, we often have
preference on some special neighbors in real-world OSNs, we also optimize our solution to support
addressing the (IMP(SAN)) problem in weighted networks.

We use the random walk-based approach to measure and maximize the in!uence di"usion over
a weighted network. Recall that in unweighted graphs, the walker moves to each neighbor of the
current node with equal probability. While in weighted graphs, walker moves to each neighbor
of the current node with a probability proportional to the weights of the edge. Formally, suppose
the current node is i , the walker moves to neighbor j with probability pi j =

Ci j∑
k∈N (i) Cik

, where Ci j

denotes the weight of edge ei j . To compute the transition probability pi j , one needs to search all
neighbors of the current node to get their weights.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 6, Article 108. Publication date: May 2021.

On Modeling Influence Maximization in Social Activity Networks under General Se!ings 108:15

We use a typical approach [40] to simulate the random walk. We summarize its key idea as
follows:

—Step one: Generate p uniformly at random from [0, 1].
—Step two: Select j uniformly at random from the neighbors of the current node i denoted

by N (i). The walker moves to node j if pi j >= p, otherwise, delete node j from N (i), and
set p = p − pi j .

The above two steps are repeated until a node is selected, to which the walker moves.
Recall that, the optimized greedy algorithm (i.e., Algorithm 3) has a time complexity of O (nRL)

in addressing the (IMP(SAN)) problem in unweighted network. Applying Algorithm 3 to the
weighted graph, the time complexity isO (ndRL), where d denote the average degree of the graph.
Generally d ≈ O (lд(n)) in a common social networks. To further reduce the time complexity, we
optimize simulation of the random walk over weighted graphs using binary search. Speci#cally,
we #rst construct an incremental array Ai for each node i , representing the cumulative transition
probabilities of its neighbors. For example, if node i has three neighbors u,v,w , with transition
probabilities piu , piv , piw , then Ai = {0,piu , (piu + piv), (piu + piv + piw)}. Then we optimize the
simulation of the random walk as follows:

—Step one: Generate p uniformly at random form [0, 1].
—Step two: Using binary search to #nd the location of p in Ai .

The total time complexity of the above two steps is O (lд(d)). Thus, we reduce the total time
complexity of our optimized greedy algorithm in weighted graphs to O (nlд(d)RL).

6 EXPERIMENTS
To show the e$ciency and e"ectiveness of our approach, we conduct experiments on real-world
datasets. In particular, we #rst show that incorporating online activities in seed selection can lead
to a signi#cant improvement on the in!uence spread, i.e., in!uence more users with the same seed
size. Then we show that our IM-RW algorithm takes much less running time than the most popular
in!uence maximization algorithm, while achieves almost the same in!uence spread. Lastly, we
show the generality of our IM-RW algorithm, i.e., it applies to bot LT and IC in!uence di"usion
model, as well as multiple types of users and multiple types of online activities. All experiments
are conducted in both unweighted graphs and weighted graphs.

6.1 Datasets
We consider six datasets from social rating systems: Ciao [39], Epinions [1], Slashdot [2], Yelp
[27] , Youtube [2], and Flixster [26]. Such social rating networks are composed of a social network,
where the links can be interpreted as either friendships (undirected link) or a following relationship
(directed link), and a rating network, where a link represents that a user assigns a rating (or writes
a review) to a product. Assigning a rating corresponds to an online activity, and multiple users
assigning ratings to the same product means that they participate in the same online activity. In
the rating network, we remove rating edges if the associated rating is less than 3 so as to #lter
out the users who dislike a product. Through this we guarantee that all the remaining users who
give ratings to the same product have similar interests, e.g., they all like the product. Since the
original Flixster dataset is too large to run the most popular in!uence maximization algorithms,
we extract only a subset of the Flixster dataset for comparison studies. In particular, since the OSN
of Flixster is almost a connected component, we randomly select a user, and run the breadth-#rst
search algorithm until we get 300,000 users. In the Youtube dataset, a very small fraction (i.e., 2%)
of users participates in activities. This small fraction makes it inadequate to validate the impact

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 6, Article 108. Publication date: May 2021.

108:16 R. Wang et al.

Table 2. Datasets Statistics

Dataset Users Links in OSN Products Ratings OSN Type
Ciao 2,342 57,544 15,783 32,783 directed

Epinions 18,089 355,813 241,576 662,870 directed
Slashdot 82,168 870,161 35,065 3,357,879 directed

Yelp 174,100 2,576,179 56,951 958,415 directed
Flixtser 300,000 6,394,798 28,262 2,195,134 undirected
Youtube 199,957 1,214,943 29,677 292,497 undirected

of user activities. Thus, we randomly delete some users who do not participate in any activities
to increase the fraction of users participating in activities to around 20%. We state the statistics of
the six datasets in Table 2.

All the above datasets are unweighted graphs. To enable experiments on weighted graphs, we
transform them to weighted ones. Two users have a closer friendship if there are more common
neighbors between two them. We therefore set the weight of the edge between user i and j, sayCi j ,
to be proportional to the number of common neighbors of user i and j. Let Si j denote the number
of common neighbors of user i and j. Then, we setCi j = Si j + k . As Si j may equals 0, we set k > 0
to guaranteeCi j being positive for all ei j ∈ E. For simplicity, we let k = 1, so we haveCi j = Si j + 1.
All algorithms are run on a server with two Intel Xeon E5-2650 2.60 GHz CPU and 64 GB memory.

6.2 The Benefit of Incorporating Activities
We #rst show that incorporating online activities in seed selection can lead to a signi#cant
improvement on the in!uence spread. We #x the seed size k as 50. To show the impact of activities,
we use the most popular in!uence maximization algorithm IMM [40] to select the seed set on
OSNs and use our IM-RW algorithm to select the seed set on SANs which take online activities
into account. Then we use simulations to estimate the expected in!uence spread of the selected k
users on SANs and denote the results as σ (OSN) and σ (SAN), respectively. Finally, we de#ne the
improvement ratio on the expected in!uence spread as [σ (SAN) − σ (OSN)]/σ (OSN).

To present the key insights, we consider the simple case in which there is only one type of
users and online activities. Namely, all users have a same value of α which indicates the weight of
activities. We emphasize that our model also works in the general case of multiple types of users
and online activities, which are shown in Section 6.4. By default, we consider the IC model of
in!uence di"usion. We also consider the LT model of in!uence di"usion in a group of experiments
in Section 6.4.

We show the improvement of incorporating online activities by varying the weight of activities
α from 0 to 1. Figures 2 and 3 respectively show the results under unweighted and weighted
graphs. The horizontal axis shows the value of α , and the vertical axis presents the corresponding
improvement ratio. From Figures 2 and 3, one can observe that the improvement ratio is 0 when
α = 0. This is because users are not a"ected by other users through online activities when α = 0.
As α increases, the improvement ratio also increases. This shows that as users are more prone to
be a"ected by other users through online activities, incorporating online activities bring larger
bene#t. When α = 0.5, the improvement ratio is around 25% for unweighted Ciao graph. That is,
we can in!uence 25% more users when incorporating online activities in the seed selection. Similar
conclusions can also be observed for the other graphs, in both unweighted and weighted settings.
It is interesting to observe that as α approaches to one, the improvement ratio reaches up to 16 for
unweighted Flixster graph, and even 36 for weighted Flixster graph. which implies a more than an

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 6, Article 108. Publication date: May 2021.

On Modeling Influence Maximization in Social Activity Networks under General Se!ings 108:17

(a) Ciao (b) Epinions (c) Slashdot

(d) Yelp (e) Flixster () Youtube

Fig. 2. Impact of online activities on influence spread (unweighted graph).

(a) Ciao (b) Epinions (c) Slashdot

(d) Yelp (e) Flixster () Youtube

Fig. 3. Impact of online activities on influence spread (weighted graph).

order of magnitude improvement. In summary, incorporating online activities in the seed selection
by using IM-RW signi#cantly improves the selection accuracy.

6.3 Performance Evaluation of IM-RW
In this subsection, we validate the e$ciency and e"ectiveness of IM-RW by comparing it with IMM,
which is the most used algorithm for solving in!uence maximization problem in OSNs, from two
aspects, the running time and the in!uence spread.

Note that IMM was originally developed for OSNs, which did not take into account user
activities. For fair comparison, we enable IMM to process SANs by transferring the SAN to a

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 6, Article 108. Publication date: May 2021.

108:18 R. Wang et al.

Table 3. Preprocess Time

(a) Ciao (b) Epinions (c) Slashdot

(d) Yelp (e) Flixster () Youtube

Fig. 4. Running time of IM-RW and IMM with di"erent activity weights (unweighted graph).

weighted OSN, where we convert the online activities into edge weights. We call this converting
process as preprocess. Table 3 shows the time cost of converting activities into edge weights for
Ciao, Epinions, and Youtube datasets under di"erent settings of α . We #nd that it needs more than
10 minutes to convert the Youtube dataset, which is around 10× of the time cost of IMM in #nding
the seed set. For fair comparison, we ignore the cost of this converting process for IMM in the
following results.

We #rst compare the running time of IM-RW and IMM by varying the weight of activities α
and the seed size k under unweighted graph, and the results are presented in Figures 4 and 5.
Speci#cally, Figure 4 shows that IMM takes much longer time than IM-RW, especially when the
network is large and online activities become more important (i.e., with larger α). This is because
as α increases, the time cost of IMM depends more on user–activity–user links than user–user
links. Thus, as the amount of user–activity–user links is much more than that of user–user links

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 6, Article 108. Publication date: May 2021.

On Modeling Influence Maximization in Social Activity Networks under General Se!ings 108:19

(a) Ciao (b) Epinions (c) Slashdot

(d) Yelp (e) Flixster () Youtube

Fig. 5. Running time of IM-RW and IMM with di"erent seed sizes (unweighted graph).

(a) Ciao (b) Epinions (c) Slashdot

(d) Yelp (e) Flixster () Youtube

Fig. 6. Running time of IM-RW and IMM with di"erent activity weights (weighted graph).

in SANs, the time cost of IMM will increase. On the other hand, when we #x α as 0.8 and vary the
seed size k , Figure 5 also shows that IMM takes much longer time than IM-RW under all settings
in unweighted graphs. Figures 6 and 7 show the results in weighted graphs with the same settings
as above. Similar to unweighted graphs, IM-RW always takes much less time than IMM when
incorporating online activities and growing the seed size. Therefore, we can conclude that our
IM-RW algorithm really improves the e$ciency of solving the in!uence maximization problem in
SANs with online activities being considered.

We further show the in!uence spread of the most in!uential users selected by the above two
algorithms in Figure 8 for unweighted graphs and Figure 9 for weighted graphs. The x-axis shows
the values of α , and the y-axis represents the corresponding in!uence spread. We see that by

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 6, Article 108. Publication date: May 2021.

108:20 R. Wang et al.

(a) Ciao (b) Epinions (c) Slashdot

(d) Yelp (e) Flixster () Youtube

Fig. 7. Running time of IM-RW and IMM with di"erent seed sizes (weighted graph).

(a) Ciao (b) Epinions (c) Slashdot

(d) Yelp (e) Flixster () Youtube

Fig. 8. Influence spread of IM-RW and IMM (unweighted graph).

taking online activities into consideration, both IMM and IM-RW can achieve almost the same
performance. Because IMM is an in!uence maximization algorithm with theoretical performance
guarantees, we can conclude that our IM-RW approach also has a good performance to maximize
the in!uence spread. By combining with the running time experiments above, we like to point
out that IM-RW can realize a similar in!uence spread, while it requires much less running time
compared with IMM.

6.4 Model Generality
We show the generality of our algorithm (IM-RW) in two aspects: (1) it is applicable to di"erent
in!uence di"usion models, e.g., the LT model; and (2) it is applicable to heterogeneous system
settings, e.g., multiple types of users and online activities.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 6, Article 108. Publication date: May 2021.

On Modeling Influence Maximization in Social Activity Networks under General Se!ings 108:21

(a) Ciao (b) Epinions (c) Slashdot

(d) Yelp (e) Flixster () Youtube

Fig. 9. Influence spread of IM-RW and IMM (weighted graph).

(a) Ciao (b) Epinions (c) Slashdot

(d) Yelp (e) Flixster () Youtube

Fig. 10. Improvement ratio under the LT model (unweighted graph).

6.4.1 Results under LT Model. We now show that in addition to the IC model, our IM-RW
algorithm also applies to the LT in!uence di"usion model. Similar to Section 6.2, we still consider
one type of users and one type of online activities under both unweighed and weighted graphs by
default. We show the improvement ratio (in terms of the expected in!uence spread) of the IM-RW
algorithm over the IMM algorithm in Figures 10 and 11. We #nd the similar results as that under
IC model. Under LT in!uence di"usion model, we also have high improvement when incorporate
the users’ online activities in both unweighed and weighted graphs. This implies that our IM-
RW algorithm maintains the bene#ts of incorporating online activities under di"erent in!uence
di"usion settings.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 6, Article 108. Publication date: May 2021.

108:22 R. Wang et al.

Fig. 11. Improvement ratio under the LT model (weighted graph).

Table 4. Running Time of IM-RW Under the LT Model (Unweighted Graph)

Dataset
Running time (s)

α = 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Ciao 0.105 0.114 0.100 0.103 0.115 0.097 0.102 0.118 0.117 0.100 0.104
Epinions 0.618 0.710 1.085 1.049 1.174 1.190 0.881 0.902 0.932 0.925 1.256
slashdot 3.587 3.975 4.188 4.253 4.370 4.619 4.662 4.765 4.770 4.734 4.387
Yelp 8.396 9.838 10.655 11.267 11.940 12.321 12.828 13.362 13.382 13.639 14.147
Flixster 18.169 18.233 17.448 21.350 15.352 14.618 12.965 11.833 10.717 8.575 6.121
Youtube 8.19605 8.60072 8.65797 8.33353 8.494 8.55115 8.124 7.73262 7.30208 6.88423 5.97629

Table 5. Running Time of IM-RW Under the LT Model (Weighted Graph)

Dataset
Running time (s)

α = 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Ciao 0.118 0.115 0.109 0.105 0.100 0.095 0.089 0.083 0.077 0.070 0.061
Epinions 0.981 1.056 1.076 1.127 1.256 1.157 1.074 1.106 1.034 1.085 0.960
Slashdot 5.324 5.598 5.674 5.721 5.728 5.701 5.579 5.514 5.282 5.060 4.471
Yelp 12.750 14.051 14.837 15.214 15.695 15.643 15.884 15.502 15.403 14.952 13.571
Flixster 28.552 26.474 25.022 26.848 21.304 19.698 17.211 15.226 12.785 9.995 6.114
Youtube 11.6643 11.7657 11.4863 11.059 10.6567 10.0913 9.60594 9.08515 8.3635 7.47677 5.94343

Tables 4 and 5 show the time cost of IM-RW under LT model in both unweighted graphs
and weighed graphs, respectively. We can observe that IM-RW cost at most 0.12 second for the
Ciao dataset, and at most 1.3 seconds, 5.8 seconds, 15.9 seconds, 28.6 seconds, and 8.7 seconds
respectively for the Epinions, Slashdot, Yelp, Flixster, and Youtube dataset. This implies that IM-
RW is still highly e$cient under the LT model.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 6, Article 108. Publication date: May 2021.

On Modeling Influence Maximization in Social Activity Networks under General Se!ings 108:23

(a) Epinions (b) Slashdot (c) Youtube

Fig. 12. Influence spread of IM-RW and IMM under LT model (unweighted graph).

(a) Ciao (b) Epinions (c) Slashdot

(d) Yelp (e) Flixster () Youtube

Fig. 13. Influence spread of IM-RW and IMM under LT model (weighted graph).

We also show in!uence spread under the LT model by using IM-RW algorithm and IMM
algorithm for both unweighted graphs and weighed graphs. The results are shown in Figures 12
and 13, respectively. We can see that IM-RW can in!uence almost the same number of nodes
comparing with IMM. Here we like to emphasize that both IMM and IM-RW take online activities
into consideration in this experiment, and IMM is an in!uence maximization algorithm with
theoretical performance guarantee, so these results indicate that our IM-RW approach also has
a good performance to maximize the in!uence spread under the LT model. However, even though
IMM and IM-RW have similar performance in terms of in!uence spread, IM-RW incurs much less
time cost compared with IMM as studied above.

6.4.2 Multiple User Types and Activity Types. To study the generality of our IM-RW algorithm,
we consider three heterogeneous settings: (1) user heterogeneity: two types of users and one type
of online activities; (2) activity heterogeneity: one type of users and two types of online activities;
and (3) full heterogeneity: two types of users and online activities.

Note that in the datasets there is no information on user types and activity types, so we
synthesize user and activity types by following the 80–20 rule [28], which is widely adopted
in the #elds of economics and computer science. In particular, in the user heterogeneity case,
we randomly divide users into two types where the #rst type accounts for 80% of population.
Considering that users are usually easy to be in!uenced by online activities in real life, we set the

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 6, Article 108. Publication date: May 2021.

108:24 R. Wang et al.

(a) Unweighted graph (b) Weighted graph

Fig. 14. Improvement ratio under heterogeneous se!ings.

Table 6. Running Time of IM-RW Under Heterogeneous Se!ings (Unweighted Graph)

Dataset Running time (s)
User heterogeneity Activity heterogeneity Full heterogeneity

Ciao 0.078 0.059 0.060
Epinions 0.900 0.938 0.972
Slashdot 4.625 4.646 4.654

Yelp 13.254 8.615 9.018
Flixster 11.870 8.993 10.180
Youtube 9.342 7.7652 9.173

Table 7. Running Time of IM-RW Under Heterogeneous Se!ings (Weighted Graph)

Dataset Running time (s)
User heterogeneity Activity heterogeneity Full heterogeneity

Ciao 0.082 0.218 0.141
Epinions 1.088 1.087 1.157
Slashdot 5.506 5.344 5.663

Yelp 15.064 13.996 14.741
Flixster 17.265 12.523 14.938
Youtube 12.5123 9.534 10.92348

weight of activities α for the #rst type as 0.8, and set it as 0.2 for the second type of users. In the
activity heterogeneity case, we also divide online activities into two types by following the 80–20
rule and #x the total weight of activities as 0.8. Precisely, the weight of the #rst type of online
activities is set as 0.8 × 0.2 = 0.16 and that of the second type is set as 0.8 × 0.8 = 0.64. Similarly,
in the full heterogeneity case, we divide both users and online activities into two types by using
the parameters in the #rst two cases.

Figure 14(a) and (b) shows the improvement ratio of IM-RW over IMM in terms of the expected
in!uence spread. We observe that the improvement ratio is at least 10% in all cases, as high as
300% for the Flixster dataset. This shows that our IM-RW algorithm signi#cantly outperforms
the IMM algorithm by incorporating online activities even under the heterogeneous setting with
both weighted and unwighted graphs. Tables 6 and 7 show the running time. We can observe that

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 6, Article 108. Publication date: May 2021.

On Modeling Influence Maximization in Social Activity Networks under General Se!ings 108:25

IM-RW only takes not more than 20 seconds. This implies that IM-RW is also e$cient even under
heterogeneous users and activities.
Summary: Our IM-RW algorithm achieves a good performance in both the running time and
the in!uence spread by taking online activities into account in SANs. In particular, comparing to a
variant of the most popular algorithm IMM (adapted to social activities by converting activities into
weights of edges), our IM-RW algorithm achieves almost the same performance in seed selection,
while it only requires much less running time and greatly improves the computation e$ciency.

On the other hand, our IM-RW algorithm is applicable for general situations, i.e., it is !exible to
di"erent in!uence di"usion models like IC model and LT model. It is also scalable to heterogeneous
system setting of multiple types of users or online activities.

7 RELATED WORK
In!uence maximization problem in OSNs was #rst formulated by Kempe et al. [29], and in this
seminal work, the authors proposed the IC model and the LT model. Since then, this problem
receives a lot of interests in academia in the past decade [9–11]. Because of the NP-hardness
under both the IC model [9] and the LT model [11], many of the previous studies focus on
how to reduce the time complexity. Recently, Borgs et al. [7] developed an algorithm which
maintains the performance guarantee while reduces the time complexity signi#cantly, and Tang
et al. [40, 41] further improved the method and proposed the IMM algorithm. Then , two typical
variants of the IMM algorithms were proposed, i.e., Nguyen et al. [35] developed a stop-and-stare
strategy (SSA) and Wang et al. [46] developed a novel bottom-k sketch-based RIS framework
(BKRIS) to further speed up the IMM algorithm. However, SSA and BKRIS still considered only
the OSNs. Namely, they still need a great cost in preprocess to transfer SANs to weighted OSNs.
Besides reducing the computation overhead, a number of works proposed several new in!uence
models, e.g., topic-aware in!uence model [5], competitive in!uence model [34], and opinion-based
in!uence model [15]. Also, variants of the conventional in!uence maximization problems are also
studied in recent years, and the detailed survey of in!uence maximization can be found in [33]. In
particular, Sun et al. [38] proposed a multi-round in!uence maximization problem, which allows
in!uence to propagate in multiple rounds independently from di"erent seed sets so as to select
seeds in each round to maximize the expected number of nodes that are activated at least in
one round. Zhu et al. [52] studied the social in!uence maximization problem in hypergraph by
modeling crowd in!uence as a hyperedge.

A number of works studied di"erent centrality measures, which can also be used for top-k node
recommendation. For example, degree centrality [12, 14, 50] indicates that the importance of a node
is proportional to its degree, so it is reasonable to recommend the top-k nodes with the highest
degree. Closeness centrality [10, 12] based approach chooses to recommend the top-k nodes with
the smallest average distance to other nodes. Commonly used centrality measures also include
betweenness centrality [12, 50], which counts the number of times that a node was visited in the
shortest path between any two nodes, and PageRank centrality [36], which allows the importance
of nodes to spread through edges.

We would like to emphasize that our work di"ers from existing studies which address the
traditional in!uence maximization problem or use classic centrality measures. We de#ned a novel
in!uence centrality to measure the in!uence of each node, and also use a random walk-based
Monte Carlo framework to estimate the in!uence centrality. More importantly, we take online
activities into consideration. When we consider these online activities, only considering user-user
links alone may not trigger the largest in!uence spread. Although we can also transform the user-
activity-user links to user-user links, the underlying graph may become extremely dense so that
traditional methods may not be e$cient.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 6, Article 108. Publication date: May 2021.

108:26 R. Wang et al.

Random walk is a powerful algorithmic tool to analyze large-scale graphs, such as random walk
sampling [44, 45, 51], Personalized PageRank [13, 31, 36], and SimRank [30]. A number of variants
of random walk are also developed, such as random walk with restart [43], common neighbor
aware random walk [49], FolkRank [24], and TrustWalker [25]. There are also some works
focusing on accelerating the computation of random walks from system design perspective, such
as DrunkardMob [31], KnightKing [47], and GraphWalker [37]. Our work is orthogonal to these
studies, and it targets for node recommendation by addressing the in!uence maximization problem
via random walks, while accelerating the random walk process with the above optimizations can
also help improve the e$ciency of our random walk-based approach.

8 CONCLUSIONS
In this article, we take online activities into consideration to formulate the in!uence maximization
problem for SANs, and address the IMP(SAN) with a random walk approach. Speci#cally, we
propose a general framework to measure the in!uence of nodes in SANs via random walks on
hypergraphs, and develop a greedy-based algorithm with two novel optimization techniques to
#nd the top k most in!uential nodes in SANs by using random walks. Experiments with real-
world datasets show that our approach greatly improves the computation e$ciency, while keeps
almost the same performance in seed selection accuracy compared with the most popular in!uence
maximization algorithm.

REFERENCES
[1] [n.d.]. http://www.public.asu.edu/ jtang20/datasetcode/truststudy.htm.
[2] [n.d.]. SNAP. Retrieved from https://snap.standford.edu/data/index.html.
[3] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne VanBriesen, and Natalie Glance. 2007.

Cost-e"ective outbreak detection in networks. In Proceedings of the 13th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. 420–429.

[4] Suman Banerjee, Mamata Jenamani, and Dilip Kumar Pratihar. 2020. A survey on in!uence maximization in a social
network. Knowledge and Information Systems 62, 9 (2020), 3417–3455.

[5] Nicola Barbieri, Francesco Bonchi, and Giuseppe Manco. 2012. Topic-aware social in!uence propagation models. In
Proceedings of the 2012 IEEE 12th International Conference on Data Mining.

[6] Song Bian, Qintian Guo, Sibo Wang, and Je"rey Xu Yu. 2020. E$cient algorithms for budgeted in!uence maximization
on massive social networks. Proceedings of the VLDB Endowment 13, 9 (2020), 1498–1510.

[7] Christian Borgs, Michael Brautbar, Jennifer Chayes, and Brendan Lucier. 2014. Maximizing social in!uence in nearly
optimal time. In Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms.

[8] Ceren Budak, Divyakant Agrawal, and Amr El Abbadi. 2011. Limiting the spread of misinformation in social networks.
In Proceedings of the 20th International Conference on World Wide Web. 665–674.

[9] Wei Chen, Chi Wang, and Yajun Wang. 2010. Scalable in!uence maximization for prevalent viral marketing in large-
scale social networks. In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining.

[10] Wei Chen, Yajun Wang, and Siyu Yang. 2009. E$cient in!uence maximization in social networks. In Proceedings of
the 2009 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

[11] Wei Chen, Yifei Yuan, and Li Zhang. 2010. Scalable in!uence maximization in social networks under the linear
threshold model. In Proceedings of the 2010 IEEE International Conference on Data Mining.

[12] Martin G. Everett and Stephen P. Borgatti. 1999. The centrality of groups and classes. The Journal of Mathematical
Sociology 23, 3 (1999), 181–201.

[13] Dániel Fogaras, Balázs Rácz, Károly Csalogány, and Tamás Sarlós. 2005. Towards scaling fully personalized PageRank:
algorithms, lower bounds, and experiments. Internet Mathematics 2, 3 (2005), 333–358.

[14] Linton C. Freeman. 1979. Centrality in social networks conceptual clari#cation. Social Networks 1, 3 (1979), 215–239.
[15] Sainyam Galhotra, Akhil Arora, and Shourya Roy. 2016. Holistic in!uence maximization: Combining scalability and

e$ciency with opinion-aware models. In Proceedings of the 2016 International Conference on Management of Data.
[16] Jianxiong Guo and Weili Wu. 2019. A novel scene of viral marketing for complementary products. IEEE Transactions

on Computational Social Systems 6, 4 (2019), 797–808.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 6, Article 108. Publication date: May 2021.

On Modeling Influence Maximization in Social Activity Networks under General Se!ings 108:27

[17] Jianxiong Guo and Weili Wu. 2020. In!uence maximization: Seeding based on community structure. ACM
Transactions on Knowledge Discovery from Data 14, 6 (2020), 1–22.

[18] Kai Han, Keke Huang, Xiaokui Xiao, Jing Tang, Aixin Sun, and Xueyan Tang. 2018. E$cient algorithms for adaptive
in!uence maximization. Proceedings of the VLDB Endowment 11, 9 (2018), 1029–1040.

[19] F. Hao and D.-S. Park. 2018. cSketch: A novel framework for capturing cliques from big graph. The Journal of
Supercomputing 74, 3 (2018), 1202–1214.

[20] F. Hao, D.-S. Park, and Z. Pei. 2017. Exploiting the formation of maximal cliques in social networks. Symmetry 9, 7
(2017), 100.

[21] F. Hao, D.-S. Park, Z. Pei, H. Lee, and Y.-S. Jeong. 2016. Identifying the social-balanced densest subgraph from signed
social networks. The Journal of Supercomputing 72, 7 (2016), 2782–2795.

[22] Xinran He, Guojie Song, Wei Chen, and Qingye Jiang. 2012. In!uence blocking maximization in social networks under
the competitive linear threshold model. In Proceedings of the 2012 SIAM International Conference on Data Mining.
SIAM, 463–474.

[23] Wassily Hoe"ding. 1963. Probability inequalities for sums of bounded random variables. Journal of The American
Statistical Association 58, 301 (1963), 13–30.

[24] Andreas Hotho, Robert Jäschke, Christoph Schmitz, Gerd Stumme, and Klaus-Dieter Altho". 2006. Folkrank: A
ranking algorithm for folksonomies. In Proceedings of the 2006 LWA.

[25] Mohsen Jamali and Martin Ester. 2009. Trustwalker: A random walk model for combining trust-based and item-based
recommendation. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining.

[26] Mohsen Jamali and Martin Ester. 2010. A matrix factorization technique with trust propagation for recommendation
in social networks. In Proceedings of the 4h ACM Conference on Recommender Systems.

[27] Stoppelman Jeremy and Simmons Russel. 2004. Yelp Dataset. Retrieved from https://www.yelp.com/dataset_
challenge/dataset.

[28] Joseph M. Juran and James F. Riley. 1999. The Quality Improvement Process. McGraw Hill New York, NY.
[29] David Kempe, Jon Kleinberg, and Éva Tardos. 2003. Maximizing the spread of in!uence through a social network. In

Proceedings of the 2003 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
[30] Mitsuru Kusumoto, Takanori Maehara, and Ken-ichi Kawarabayashi. 2014. Scalable similarity search for SimRank. In

Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data.
[31] Aapo Kyrola. 2013. Drunkardmob: Billions of random walks on just a PC. In Proceedings of the 7th ACM Conference

on Recommender Systems.
[32] Lakhotia, Kartik, and Kempe David. 2019. Approximation algorithms for coordinating ad campaigns on social

networks.In Proceedings of the 28th ACM International Conference on Information and Knowledge Management.
339–48.

[33] Yuchen Li, Ju Fan, Yanhao Wang, and Kian-Lee Tan. 2018. In!uence maximization on social graphs: A survey.IEEE
Transactions on Knowledge and Data Engineering 30, 10 (2018), 1852–1872.

[34] Yishi Lin and John C. S. Lui. 2015. Analyzing competitive in!uence maximization problems with partial information:
An approximation algorithmic framework. Performance Evaluation 91 (2015), 187–204.

[35] Hung T. Nguyen, My T. Thai, and Thang N. Dinh. 2016. Stop-and-stare: Optimal sampling algorithms for viral
marketing in billion-scale networks. In Proceedings of the 2016 International Conference on Management of Data. ACM,
695–710.

[36] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The PageRank Citation Ranking: Bringing
Order to the Web. Technical Report.

[37] Wang Rui, Yongkun Li, Hong Xie, Yinlong Xu, and John C. S. Lui. 2020. GraphWalker: An I/O-e$cient and resource-
friendly graph analytic system for fast and scalable random walks. In Proceedings of the Annual Technical Conference.
USENIX.

[38] Lichao Sun, Weiran Huang, Philip S. Yu, and Wei Chen. 2018. Multi-round in!uence maximization.In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2249–2258.

[39] Jiliang Tang, Huiji Gao, and Huan Liu. 2012. mTrust: Discerning multi-faceted trust in a connected world. In
Proceedings of the 5th ACM International Conference on Web Search and Data Mining.

[40] Youze Tang, Yanchen Shi, and Xiaokui Xiao. 2015. In!uence maximization in near-linear time: A martingale approach.
In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data.

[41] Youze Tang, Xiaokui Xiao, and Yanchen Shi. 2014. In!uence maximization: Near-optimal time complexity
meets practical e$ciency. In Proceedings of the 2014 ACM SIGMOD International Conference on Management of
Data.

[42] Guangmo Tong, Wu Weili, Guo Ling, Li Deying, Liu Cong, Liu Bin, and DingZhu Du. 2020. An e$cient randomized
algorithm for rumor blocking in online social networks.IEEE Transactions on Network Science and Engineering 7, 2
(2020), 845–54.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 6, Article 108. Publication date: May 2021.

https://www.yelp.com/dataset_challenge/dataset
https://www.yelp.com/dataset_challenge/dataset

108:28 R. Wang et al.

[43] Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan. 2006. Fast random walk with restart and its applications. In
Proceedings of the 2006 IEEE International Conference on Data Mining. IEEE.

[44] Pinghui Wang, Junzhou Zhao, John C.S. Lui, Don Towsley, and Xiaohong Guan. 2013. Sampling node pairs over large
graphs. In Proceedings of the 2013 IEEE 29th International Conference on Data Engineering. IEEE.

[45] Rui Wang, Min Lv, Zhiyong Wu, Yongkun Li, and Yinlong Xu. 2019. Fast graph centrality computation via sampling: A
case study of in!uence maximisation over OSNs. International Journal of High Performance Computing and Networking
14, 1 (2019), 92–101.

[46] Xiaoyang Wang, Ying Zhang, Wenjie Zhang, Xuemin Lin, and Chen Chen. 2016. Bring order into the samples: A
novel scalable method for in!uence maximization. IEEE Transactions on Knowledge and Data Engineering 29, 2 (2016),
243–256.

[47] Ke Yang, MingXing Zhang, Kang Chen, Xiaosong Ma, Yang Bai, and Yong Jiang. 2019. KnightKing: A fast distributed
graph random walk engine. In Proceedings of the 27th ACM Symposium on Operating Systems Principles. ACM.

[48] Mao Ye, Xingjie Liu, and Wang-Chien Lee. 2012. Exploring social in!uence for recommendation: A generative model
approach. In Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information
Retrieval. 671–680.

[49] Li Yongkun, Zhiyong Wu, Shuai Lin, Hong Xie, Min Lv, Yinlong Xu, and John C. S. Lui. 2019. Walking with perception:
E$cient random walk sampling via common neighbor awareness. In Proceedings of the IEEE 35th International
Conference on Data Engineering.

[50] Junzhou Zhao, John Lui, Don Towsley, and Xiaohong Guan. 2014. Measuring and maximizing group closeness
centrality over disk-resident graphs. In Proceedings of the 23rd International Conference on World Wide Web.

[51] Junzhou Zhao, John Lui, Don Towsley, Pinghui Wang, and Xiaohong Guan. 2015. A tale of three graphs: Sampling
design on hybrid social-a$liation networks. In Proceedings of the 2015 IEEE 31st International Conference on Data
Engineering.

[52] Jianming Zhu, Junlei Zhu, Smita Ghosh, Weili Wu, and Jing Yuan. 2018. Social in!uence maximization in hypergraph
in social networks.IEEE Transactions on Network Science and Engineering 6, 4 (2018), 801–11.

Received September 2020; revised January 2021; accepted February 2021

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 6, Article 108. Publication date: May 2021.

