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Jointly Optimizing Throughput and Content
Delivery Cost Over Lossy Cache Networks
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Abstract— Cache optimization, i.e., determining the optimal
content placement and routing paths, is essential for obtaining
high performance of cache-enabled networks. This paper stud-
ies the problem of optimizing system throughput and content
delivery cost over cache networks with lossy links (i.e., ICN-
based wireless IoT systems), where content is divided into
packet-level chunks, and packets may be lost in transmission.
We first propose a new performance metric – the expected
overall content routing cost for satisfied requests (RCS), for better
characterizing content delivery cost under packet losses. RCS at
the same time possesses the attractive mathematical property of
super-modularity. We then formulate an optimization problem
for the task through jointly optimizing content caching and
request routing, and analyze it under fixed-routing scenario. The
formulated problem is NP-hard and we prove it is reducible
to the one of minimizing content routing cost without packet
losses. We establish rules for the reduction, and leverage existing
efficient algorithm to solve the problem. We also propose a
potential-based online algorithm that is simple and adaptive
to traffic changes and packet losses. The effectiveness of our
mechanism is validated through extensive simulations over a wide
array of network topologies.

Index Terms— Cache optimization, throughput, routing cost,
adaptive algorithm.

I. INTRODUCTION

DRIVEN by the ever-increasing network traffic [3]
and the promotion/advancement of new technologies

such as 5G [43] and edge computing [39], [42], cache-
enabled networks have attracted a lot of attention in recent
years. Micro/femtocell networks, content delivery networks
(CDNs), peer-to-peer networks and Information-Centric Net-
works (ICNs) [5], [26], are some examples of cache-enabled
networks. A common feature of these networks is that in
addition to routing capability, network nodes are augmented

Manuscript received May 6, 2020; revised October 18, 2020 and January 2,
2021; accepted February 16, 2021. Date of publication February 24, 2021;
date of current version June 16, 2021. This work was supported in part by
the National Science Fund for Distinguished Young Scholars (61725205),
the National Key R&D Program of China (2019YFB2102200), and the
National Natural Science Foundation of China (61960206008). The work of
John C. S. Lui was supported in part by the GRF 14200117. The associate
editor coordinating the review of this article and approving it for publication
was T. He. (Corresponding author: Weibo Chu.)

Weibo Chu, Zhiwen Yu, and Yi Lin are with the School of Computer
Science, Northwestern Polytechnical University, Xi’an 710072, China (e-mail:
wbchu@nwpu.edu.cn; zhiwenyu@nwpu.edu.cn; ly_cs@nwpu.edu.cn).

John C. S. Lui is with the Department of Computer Science and Engi-
neering, The Chinese University of Hong Kong, Hong Kong (e-mail:
cslui@cse.cuhk.edu.hk).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCOMM.2021.3061685.

Digital Object Identifier 10.1109/TCOMM.2021.3061685

with additional storage resources so that they can provide data
and act as content sources as well. This brings significant
performance benefits such as shorter delays, less congestion
and better mobility.

A fundamental research problem in this area is how to place
content items in cache nodes and how to route requests towards
them in order to maximize the network performance. This
problem, sometimes referred to as cache optimization [37], has
attracted a lot of recent studies. Examples include modeling
and characterizing caching dynamics [36], [46], design and
performance evaluation of caching mechanisms [10], [19],
to name a few. Among them, some treat content placement
and request routing separately, whereas others consider them
jointly.

A major issue with the prior work on cache optimization
is that they generally assumed perfect links (content delivery)
between nodes and ignored packet losses, i.e., a request for
content will always be routed to content sources and the corre-
sponding data will always be delivered back to the user/client,
which is not a realistic setting (see e.g., [24], [18]). In fact, it is
constantly reported that network failures and packet losses are
common events in real networks such as the Internet [35]. This
implies overestimated performance of existing mechanisms if
they were developed without considering these factors.

Another issue is that prior work generally focused on
optimizing network-side performance metrics such as overall
traffic routing cost, total network energy consumption. While
these are critical performance metrics of interest, we argue that
in some applications such as IoT systems [22], [30], mobile
computing [40], device-to-device (D2D) communications [27],
[28], client-side metrics are equally or even more important
due to the limited resources at the client-end. For example,
in a cache-enabled C-RAN architecture for IoT sensing ser-
vices [45], caching content at the edge not only alleviates the
network traffic, but also improves client-side performance as it
avoids activating sensors too frequently, which results in a low
energy consumption for transmitting sensed data. Obviously,
for these systems optimizing client-side performance is far
more important as system lifetime is usually determined by
client energy consumptions.

Motivated by the above limitations, in this paper we study
the problem of optimizing content delivery over a lossy
cache network, taking both user/client and network operator’s
interests into account. We consider a setting where content is
divided into packet-level chunks (e.g., NDN-like data [2] [47]),
and packets (request or data) may be lost in transmission
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between nodes due to congestion, node mobility, media errors.
We take system throughput as a key performance metric to
capture client-side interest, for the fact that a high throughput
usually implies less packet transmissions and low energy
consumption. Note that an interesting problem lies here as
it remains unclear how to maximize throughput in a cache
network. This paper provides theoretical analysis and an
algorithmic solution to this interesting problem.

Furthermore, we take overall routing cost to capture network
operator’s interest. Our simple analysis shows that optimizing
this performance metric in a lossy environment is challenging,
since it brings two new problems: 1) it would drive the network
to forward requests over links with high packet loss rate, which
is not acceptable in real network, and 2) it does not necessarily
guarantee attractive mathematical properties that facilitate us
to design efficient solution mechanisms.

In this paper, we study the problem of optimizing through-
put and content routing cost over a lossy cache network such
as ICN-based wireless IoT system [7]. We propose a new
performance metric that tackles the problem we observed in
our analysis, and formulate an optimization problem with the
two performance metrics taken into account, through jointly
optimizing content caching and request routing. We theoret-
ically analyze the problem under fixed-routing scenario, and
propose online algorithmic solutions to the problem.

More specifically, we make the following contributions:
1) We analyze the metric of content routing cost in a lossy

cache network, and find that directly optimizing this perfor-
mance metric without explicitly considering packet losses in
network will result in a low throughput as it would drive the
network to forward content items along paths with high loss
rate, which is not acceptable.

2) We propose a new performance metric – the expected
overall content routing cost for satisfied requests (RCS), that
reflects both the heterogeneous routing cost and packet loss
rates over links. We prove that RCS possesses the attractive
mathematical property of supermodularity. This allows us to
obtain solutions with provable performance guarantees by
leveraging existing efficient algorithms, i.e., within (1− 1/e)
from the optimum [4].

3) We formulate a problem for maximizing a weighted sum
of throughput and routing cost gain (using RCS) in a lossy
cache network, through jointly optimizing request routing and
content caching. We prove that the problem is NP-hard in
general, and analyze it under fixed-routing scenario, i.e., when
the path to deliver each request/item is fixed. We then prove
this problem can be reduced to the original problem of
minimizing content routing cost alone in a network without
packet losses, by adopting the concept of “virtual weight”.
We present rules for the reduction, and further demonstrate
how the existing projected sub-gradient ascend algorithm can
be adapted to solve our problem with provable performance
guarantees.

4) We observe that the existing distributed online algorithm
has some drawbacks, i.e., additional traffic routing cost is
incurred in cache reshuffling, and then propose a new poten-
tial-based online algorithm that is simple and adaptive to
changes and packet losses. This algorithm is fairly general as

Fig. 1. A general cache network.

it allows us to optimize other performance metrics in content
delivery as well, through properly defining potentials.

5) We evaluate our proposed algorithm as well as the
adapted sub-gradient based algorithm through extensive sim-
ulations. Results indicate that they are effective under a wide
array of network topologies and system settings, with different
cache replacement policies and path replication strategies.
For example, as compared to traditional caching algorithms
such as LRU, our potential-based algorithm improves system
throughput by up to 18%, and reduces content routing cost by
as much as 50%, under the single-path routing scenario with
severe packet losses.

The remainder of this paper is organized as follows.
In Section II we introduce our model and present analysis and
insights of the two performance metrics. We then formulate
the joint throughput and content delivery cost optimization
problem. In Section III we prove fundamental properties of the
formulated problem under the fixed-path routing scenario, give
rules for problem reduction and also elaborate the algorithmic
solutions. In Section IV we present numerical results via
simulations. Section V reviews related work and we conclude
the paper in Section VI.

II. MODEL AND PROBLEM DESCRIPTION

A. Model

We consider a cache network represented by a graph
G(V, E) as shown in Fig 1, where V denotes the set of nodes
and E is the set of edges between nodes.1 Each node v ∈ V
is equipped with some cache resource of size Cv. The set of
content items distributed over the network is denoted by C.

The network serves user requests by forwarding them to
content servers. For each content item i ∈ C, let Si be the set
of nodes (content servers) that permanently store i. The set of
all content servers is denoted as S =

⋃
i∈C Si.

A request is forwarded until either it reaches a content
server, or an intermediate node with the requested item in
cache. Once this happens, the requested item is then sent
back to the user along the same path in reverse direction.
We characterize each request by a tuple (i, s), where i ∈ C
is the item requested, and s ∈ V is the source node where
the request originates. The set of all requests is denoted by
R ⊆ C × V . We assume requests for item i at source node
s arrive independently and that they follow a Poisson process
with rate λ(i,s).

1We use node, router and cache interchangeably throughout this paper.
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In this work, we consider content items are of equal packet-
level sizes (i.e., as NDN-like [2] [47] data), which implies that
each node v can hold at most Cv items. We associate each
node v ∈ V with a vector Xv = [xvi] ∈ {0, 1}|C|, where xvi

denotes whether node v caches item i. These variables satisfy
the following cache capacity constraint:

∑

i∈C
xvi ≤ Cv, for all v ∈ V \ S. (1)

Note that for each request (i, s), there are potentially
multiple paths that direct it to content servers. Let P(i,s) be
the set of routing paths for (i, s). Each path p ∈ P(i,s) is
comprised of a sequence of nodes (p1, p2, . . . , pK) of length
|p| = K − 1, where p1 = s, pK ∈ Si, and (pk, pk+1) ∈ E
for k = 1, 2, . . . , K − 1. We further assume that (i, s) is
well-routed, that is: 1) p is loop-free, and 2) pk /∈ Si for
k = 1, 2, . . . , K − 1, i.e., only the last node in p is a content
server for i.

Let r(i,s) = [r(i,s),p] ∈ {0, 1}|P(i,s)| be a routing vector
for each request (i, s), where r(i,s),p denotes whether path
p ∈ P(i,s) is selected to forward (i, s), i.e., r(i,s),p = 1 when
p is selected. To ensure that every user request is forwarded,
these routing variables should satisfy:

∑

p∈P(i,s)

r(i,s),p = 1, for all (i, s) ∈ R. (2)

To make our model more realistic, we consider networks
with lossy links, where packets (either request or data) may
be lost in transmission. While a number of factors (e.g.,
congestion, media errors, or node mobility) can cause packet
losses and precisely predicting packet loss event is out of the
scope of this work, we assume packet loss events over a link
and across links are independent, and simply adopt fij ∈ [0, 1]
– the packet loss rate over link (i, j) ∈ E, to characterize the
probability that a packet will not be successfully delivered over
(i, j) in transmission.

A consequence of lossy links is that requests for items may
not be satisfied2 and users will then have to re-issue them
to fetch the content, which incurs extra network cost. From
users’ point of view, more requests for the same content item
also implies higher energy consumption and longer delays.
As a result, the rate of requests satisfied by network given
user demand, also referred to as system throughput, becomes
a key performance metric to optimize. Note that as compared
to traditional networks, a cache network should provide more
opportunities for requests to be satisfied and hence more
throughput. But questions such as what is its performance
under a lossy environment, how much improvement a lossy
cache network can provide and how to maximize the through-
put, remain unsolved.

In addition to system throughput, we also consider network-
side metric, i.e., content routing cost. Optimizing this perfor-
mance metric in a cache network has been well studied (see,
e.g., [24], [25], [34]), and both centralized and distributed solu-
tions have been proposed. However, we observe that in a lossy

2By being satisfied we mean that a request is responded by some node and
its corresponding data is received at the source node.

TABLE I

MAIN NOTATIONS

environment the problem becomes very different and challeng-
ing to solve. In particular, the very property of sub-modularity
of the objective function in formulated optimization models,
which is the key to derive efficient solution mechanisms [25],
[41], no longer exists. Furthermore, as we show in the later
section, directly adopting existing performance metric would
drive the network to forward requests over those links with
high packet loss rates, which is obviously unacceptable in
practice.

In this paper, we seek to answer the aforementioned ques-
tions by formally addressing the problem of optimizing content
delivery over a cache network with lossy links. Specifically,
we propose a new network-side performance metric, which
not only can reflect the heterogeneous content routing cost
and packet loss rates over links, but also possess attractive
mathematical properties that facilitates us to design efficient
solution mechanisms. We take the system throughput and con-
tent routing cost for satisfied requests as two key metrics for
the design and optimization. Our goal is to maximize system
throughput over a lossy cache network while at the same
time, keep the overall content routing cost for the satisfied
requests as low as possible, by jointly optimizing content
caching and request routing. We consider both centralized and
distributed/adaptive solutions with optimality guarantees.

B. Problem Formulation

Let X = [xvi]v∈V, i∈C and r = [r(i,s),p](i,s)∈R,p∈P(i,s) be
the global caching strategy and routing strategy, respectively.
To calculate system throughput, we first focus on an arbitrary
request (i, s) ∈ R routed over a path p ∈ P(i,s), as shown
in Fig. 2. Since p is well-routed, a node pk in p can serve (i, s)
if and only if the following conditions hold: 1) the request
(i, s) is successively delivered to node pk; 2) all cache nodes
preceding pk, i.e., p1, p2, . . ., pk−1, do not hold item i, and
3) node pk has i in its cache. The probability that (i, s) is
delivered to pk is

∏k−1
l=1 (1− fplpl+1). Once node pk serves

(i, s), a data packet is generated. The probability that this
data packet will be delivered back to s is

∏k−1
l=1 (1 − fpl+1pl).

As a result, the probability that (i, s) is satisfied by pk can be
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Fig. 2. A request (i, s) is forwarded over path p = (p1, p2, . . . , pK) and
responded by node pk .

Fig. 3. A path network. Source node 1 generates request for one item to
end server 5. Node 2, 3, and 4 are cache nodes that can only accommodate
1 item.

expressed as follows:

PR(i,s),p,k(X) =
k−1∏

l=1

(1− fplpl+1)(1 − fpl+1pl)

× (1− xpli)xpki. (3)

The probability for (i, s) being satisfied over path p can be
given by summing over all nodes in p:

PR(i,s),p(X) =
|p|∑

k=1

PR(i,s),p,k(X), (4)

and the probability for (i, s) being satisfied by network is
therefore:

PR(i,s)(r, X) =
∑

p∈P(i,s)

r(i,s),p

|p|∑

k=1

PR(i,s),p,k(X). (5)

System throughput TP (r, X) then can be derived as:

TP (r, X) =
∑

(i,s)∈R

λ(i,s) × PR(i,s)(r, X). (6)

Let

A(p,k) =
k−1∏

l=1

(1 − fplpl+1)(1 − fpl+1pl) (7)

be the probability that a request responded by node pk in path
p gets satisfied, and I0 be a constant defined below:

I0 =
∑

(i,s)∈R

λ(i,s)

∑

p∈P(i,s)

(1−A(p,|p|)), (8)

then

I0 −




∑

(i,s)∈R

λ(i,s) − TP (r, X)





=
∑

(i,s)∈R

λ(i,s)




∑

p∈P(i,s)

(1−A(p,|p|))

− (1−
∑

p∈P(i,s)

r(i,s),p × PR(i,s),p(X))



 . (9)

It is not hard to see that I0 is an upper bound of∑
(i,s)∈R λ(i,s) − TP (r, X), and maximizing TP (r, X) is

equivalent to maximizing I0 − (
∑

(i,s)∈R λ(i,s) − TP (r, X)).
For this reason, we define I0 − (

∑
(i,s)∈R λ(i,s) − TP (r, X))

as the throughput gain due to in-network caching and path
selection.

Next, we consider content routing cost. Following the
common practice, we ignore the routing cost for each request
and only consider that for response/data packets. Let wij > 0
be the weight of link (i, j), which denotes the cost (e.g., delay,
energy) of delivering a data packet over (i, j). Once the data
to request (i, s) is generated by node pk, the expected routing
cost for delivering it back to the source node over path p can
be calculated as:

RC(i,s),p,k(X) =

(
k∑

m=2

wpmpm−1

k∏

n=m+1

(1 − fpnpn−1)

)

(
k−1∏

l=1

(1− xpli)xpki

)
, (10)

Incorporating the probability that (i, s) is delivered to pk,
we have the expected routing cost incurred by (i, s) over p
as:

RC(i,s),p(X) =
|p|−1∑

k=1

[
RC(i,s),p,k(X)×

k−1∏

l=1

(1− fplpl+1)

]
,

(11)

We want to note that the above definition of routing cost
brings significant challenges for us to optimize as it does
not necessarily guarantee good mathematical property which
helps devise efficient solution mechanisms. More specifically,
depending on the values of packet loss rates and weights
over links, the attractive property of sub-modularity or super-
modularity, which is the basis of existing solution mechanisms,
may not exist.

To illustrate, consider the example in Fig. 3 where node 1 is
the source node generating requests for an item hosted at node
5 (content server). Node 2, 3 and 4 are cache nodes that can
hold only one item. Let X = {0, 1}1×3 be the item placement
over the 3 cache nodes. We have RC(i,s),p([0, 0, 0]) = (1 −
f12)(1 − f23)(1 − f34)(w54 + w43 + w32 + w21) = 0.18,
RC(i,s),p([1, 1, 0]) = RC(i,s),p([1, 0, 0]) = (1 − f12)× w21 =
0.9, RC(i,s),p([0, 1, 1]) = RC(i,s),p([0, 1, 0]) = (1 − f12)(1 −
f23)(w32 + w21) = 0.18, RC(i,s),p([0, 0, 1]) = (1 − f12)(1 −
f23)(1− f34)(w43 + w32 + w21) = 0.135.
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Note that RC(i,s),p(X) can also be expressed as a set func-
tion RC(i,s),p(UX) with the support of the binary vector X
being the set UX , i.e., RC(i,s),p({2, 3}) = RC(i,s),p([0, 1, 1]).
The above example indicates that RC(i,s),p(UX) is nei-
ther a sub-modular set function nor a super-modular
set function since RC(i,s),p({2, 4}) − RC(i,s),p({4}) >
RC(i,s),p({2, 3, 4}) − RC(i,s),p({3, 4}), RC(i,s),p({2}) −
RC(i,s),p(φ) < RC(i,s),p({2, 4})−RC(i,s),p({4}).

Another problem when we use RC(i,s),p(X) is that it would
drive the network to forward requests over links with high
packet loss rates. For the above example, the optimal solution
is that node 4 caches the item. This solution, however, implies
that only 4.5% requests can be satisfied, whereas caching the
item at node 2 would satisfy 90%.

To overcome the above limitations, in this paper, we propose
a new network-side performance metric, the expected overall
routing cost for satisfied requests (RCS for short hereafter),
that captures both the content routing cost and user requests
satisfaction. Assume that users will re-issue requests whenever
a request or a data packet is lost in transmission. Then
the quantity

∑k−1
m=1

wpk−m+1pk−m
k−m−1
n=1 (1−fpn+1pn)

, which characterizes

content routing cost when (i, s) is responded by node pk,
corresponds to the expected content routing cost incurred for
(i, s) until the request gets satisfied. We define RCS as the
expected overall content routing cost when all user demands
are satisfied, which can be expressed as:

RCS(r, X) =
∑

(i,s)∈R

λ(i,s)

∑

p∈P(i,s)

r(i,s),p

|p|∑

k=1

×
(

k−1∑

m=1

wpk−m+1pk−m∏k−m−1
n=1 (1− fpn+1pn)

)

×
(

k−1∏

l=1

(1 − xpli)xpki

)
. (12)

The mathematical derivation of RCS is as follows. Let
us again consider the request (i, s) routed over path p and
responded by node pk. Recall that the expected routing
cost for delivering the data back to the source node is∑k

m=2 wpmpm−1

∏k
n=m+1(1− fpnpn−1). We divide it by the

probability that this request gets satisfied when the response is
generated by node pk, that is

∏k−1
n=1 (1− fpn+1pn), and denote

this quantity by RCS(i,s),p,k(X):

RCS(i,s),p,k(X) =
∑k

m=2 wpmpm−1

∏k
n=m+1(1− fpnpn−1)∏k−1

n=1 (1− fpn+1pn)

×
(

k−1∏

l=1

(1− xpli)xpki

)

=

(
k−1∑

m=1

wpk−m+1pk−m∏k−m−1
n=1 (1− fpn+1pn)

)

×
(

k−1∏

l=1

(1− xpli)xpki

)
. (13)

RCS for (i, s) being satisfied by path p is defined as:

RCS(i,s),p(X) =
|p|∑

k=1

RCS(i,s),p,k(X), (14)

and that for (i, s) being satisfied by network is then:

RCS(i,s)(r, X) =
∑

p∈P(i,s)

r(i,s),p ×RCS(i,s),p(X), (15)

RCS for all requests in network is therefore:

RCS(r, X) =
∑

(i,s)∈R

λ(i,s) ×RCS(i,s)(r, X), (16)

which turns out to be Eq. (12).
Lemma 1: RCS(r, X) is supermodular.

Proof: Since RCS(r, X) is defined as the summation
over all request packets and all delivery paths, it suffices to
prove that RCS is supermodular for each request that delivered
over a path. Let S1 and S2 be the set of nodes in path p
holding item i, S1 ⊂ S2, and NS1 (NS2) be the node in
S1 (S2) which is closest to the source node s. We denote
NS2 ' NS1 to refer to the fact that NS2 is not farther
away than NS1 from the source node. Due to the caching
effect, we have RCS(i,s),p,k(S1) = RCS(i,s),p,k({NS1}),
RCS(i,s),p,k(S2) = RCS(i,s),p,k({NS2}). Meanwhile, since
RCS is monotone (see Eq. (13)) in terms of caching positions
of the delivery path, NS2 ' NS1 ⇒ RCS(i,s),p,k(S2) ≤
RCS(i,s),p,k(S1).

Let v be a node in path p and v /∈ S2. If N{v} ' NS2 '
NS1 , then NS1∪{v} = NS2∪{v}, and RCS(i,s),p,k(S1∪{v}) =
RCS(i,s),p,k(S2 ∪ {v}), then we have RCS(i,s),p,k(S1 ∪
{v}) − RCS(i,s),p,k(S1) ≤ RCS(i,s),p,k(S2 ∪ {v}) −
RCS(i,s),p,k(S2). If NS2 ' N{v} ' NS1 , then
RCS(i,s),p,k(S1 ∪ {v}) − RCS(i,s),p,k(S1) ≤ 0 =
RCS(i,s),p,k(S2 ∪ {v})− RCS(i,s),p,k(S2). If NS2 ' NS1 '
N{v}, then RCS(i,s),p,k(S1 ∪ {v}) − RCS(i,s),p,k(S1) =
RCS(i,s),p,k(S2 ∪ {v}) − RCS(i,s),p,k(S2) = 0. Summariz-
ing all the above three cases, we have RCS(i,s),p,k(S1 ∪
{v}) − RCS(i,s),p,k(S1) ≤ RCS(i,s),p,k(S2 ∪ {v}) −
RCS(i,s),p,k(S2), which implies supermodularity.

Let C(i,s),p be the expected content routing cost when
request (i, s) is responded by the content server at the end
of path p, i.e.,

C(i,s),p =
|p|−1∑

m=1

wp|p|−m+1p|p|−m

∏|p|−m−1
n=1 (1− fpn+1pn)

, (17)

and C0 be a constant given as follows:

C0 =
∑

(i,s)∈R

λ(i,s)

∑

p∈P(i,s)

C(i,s),p. (18)

Similarly, we can see that C0 is an upper bound of RCS(r, X),
and C0 − RCS(r, X) is the routing cost gain due to in-
network caching and path selection.

Lemma 2: Minimizing RCS in a lossy cache network can
be sub-optimal when the goal is to maximize throughput.

Proof: We prove the lemma by giving a simple example
as shown in Fig. 4. The example is about two source nodes
generating requests at the same rate to two end-servers through
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Fig. 4. A simple cache network. Source node s1 (s2) generates request for
one item to end servers t1 (t2). Intermediate node u can only accommodate
1 item. wt1u = 1, wt2u = 5, ft1u = 0.3, ft2u = 0.1.

a common cache node u which is able to accommodate
1 content item. Source node u1 (u2) continually issues requests
to item c1 (c2) hosted at end-server t1 (t2). Denote by wt1u

(wt2u) the content routing cost of delivering an item over link
(t1, u) ((t2, u)), and ft1u (ft2u) the corresponding packet loss
rate over links. Set wt1u = 1, wt2u = 5, ft1u = 0.3, ft2u =
0.1, and assume content routing cost and packet loss rates
over other links are identical. It can be easily verified that
to minimize RCS we should have node u cache the item c2.
However, c1 should be stored at u if our goal is to optimize
throughput.

The above example shows that optimizing throughput and
minimizing RCS are two different goals, and sometimes they
can even be in conflict. A natural question then arises as how
to optimize content delivery over a lossy cache network with
both metrics taken into consideration, i.e., maximizing system
throughput while at the same time, keeping the overall routing
cost as low as possible, and balance them whenever required.
Formally, we can formulate the MAX-TP-RCS as the follow-
ing optimization problem with the objective function being the
weighted sum of the throughput gain (I0 −

∑
(i,s)∈R λ(i,s) +

TP (r, X)) and routing cost gain (C0 − RCS(r, X)), which
is:

Max: α× [I0 −
∑

(i,s)∈R

λ(i,s) + TP (r, X)]

+ (1− α)× [C0 −RCS(r, X)] (19a)

subj. to: (r, X) ∈ D (19b)

where D is the set of (r, X) satisfying the following routing,
capacity and integrality constraints:

∑

i∈C
xvi ≤ Cv, for all v ∈ V \ S, (20a)

∑

p∈P(i,s)

r(i,s),p = 1, for all (i, s) ∈ R, (20b)

xvi ∈ {0, 1}, for all i ∈ C and v ∈ V, (20c)

xvi = 1, for all i ∈ C and v ∈ Si, (20d)

r(i,s),p ∈ {0, 1}, for all (i, s) ∈ R and p ∈ P(i,s).

(20e)

and α ∈ [0, 1] is a constant denoting the relative weight
between the throughput gain and the routing cost gain. When
α = 0, the problem becomes that of minimizing the expected
overall routing cost, while α = 1 means the goal is to
maximize throughput.

Problem (19) is combinatorial in nature and is NP-hard
as we can prove it later. In a network with a large set of
nodes and content items, it is prohibitively costly to obtain
exact solutions. Furthermore, centralized mechanisms only
work when all parameters are given a prior, which may not be
possible in real networks (i.e., network topology may change
and demand variation frequently occurs). Therefore, we seek
distributed algorithms that adapt to these changes and at the
same time, provide theoretical performance guarantees.

III. SOLUTION

In this section, we analyze problem MAX-TP-RCS under
fixed-routing scenario, i.e., when request routing is both fixed
and deterministic, and derive its algorithmic solutions.

A. Analysis

Without loss of generality, under fixed-routing scenario we
assume each request (i, s) is forwarded solely over a path
p = p(i,s). The problem MAX-TP-RCS then reduces to MAX-
TP-RCS-FR3 as follows:

Max: α
∑

(i,s)∈R

λ(i,s)[PR(i,s),p(X)− A(p,|p|)]

+ (1−α)
∑

(i,s)∈R

λ(i,s)

(
C(i,s),p−RCS(i,s),p(X)

)

(21a)

subj. to: (20a), (20c), (20d) (21b)

where A(p,|p|) is given by Eq. (7).
Theorem 1: Problem MAX-TP-RCS-FR is

equivalent to Problem: maxF (X) with the same
constraints (20a), (20c), (20d), where:

F (X) =
∑

(i,s)∈R

λ(i,s)

|p|−1∑

k=1

B(p,k)(1−
k∏

l=1

(1− xpli)) (22)

and

B(p,k) = α× (A(p,k) −A(p,k+1)) +
(1− α)× wpk+1pk∏k−1

l=1 (1− fpl+1pl)
(23)

Proof: Let D′ be the feasible solution set given by
constraints (20a), (20c), (20d), and G(X) be the objective
function of Problem MAX-TP-RCS-FR. Since the two prob-
lems have the same constraints, the theorem holds if G(X) =
F (X), ∀X ∈ D′. We next show that this is indeed the case.
Denote by G(i,s),k(X) and F(i,s),k(X) be the contribution to
F (X) and G(X) respectively when (i, s) is served by node
pk in path p, i.e., when xp1i = . . . = xpk−1i = 0, xpki = 1.
Then it can be easily verified that G(i,s),k(X) = F(i,s),k(X),

3Here FR stands for fixed routing.
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k = 1, 2, . . . , |p|. The proof completes since both G(X) and
F (X) are separable in terms of requests.

With the new objective function F (X), we now compare
MAX-TP-RCS-FR to existing optimization problems in cache
networks that deal with optimizing some performance metrics
with demand distributed across the network, i.e., the one that
minimizes the overall routing cost. Recall that the task of
minimizing routing cost in a cache network (but with no packet
losses) given fixed routing paths can be cast as the following
problem of maximizing the caching gain (MAX-CG) [24]:

Max:
∑

(i,s)∈R

λ(i,s)

|p|−1∑

k=1

w′
pk+1pk

(1−
k∏

k′=1

(1−xpk′ i)) (24a)

subj. to: (20a), (20c), (20d) (24b)

where w′
pk+1pk

is the weight4 of link (pk+1, pk) ∈ E.
The following theorem shows that by allowing weights to

be set w.r.t each request and as a function of packet loss rates
and actual weights over links, there exists a polynomial-time
reduction from Problem MAX-TP-RCS-FR to MAX-CG.

Theorem 2: Problem MAX-TP-RCS-FR and MAX-CG can
be transformed to each other at polynomial time complexity.

Proof: We prove by first showing that through properly
assigning weights to edges w.r.t each request in problem
MAX-CG, we can transform MAX-TP-RCS-FR to MAX-CG.
Note that the objective functions of the two problems have
the same form. Furthermore, constraints of the two problems
are also the same. As a result, transformation from MAX-TP-
RCS-FR to MAX-CG, if possible, can be derived by enforcing
the following equations for each request (i, s) ∈ R:

w
′(i,s)
pk+1pk

= B(p,k), k = 1, 2, · · · , |p|− 1 (25)

Since B(p,k) > 0, we can see that for each path p, there
exists {w

′(i,s)
pk+1kl

} > 0 that can be efficiently computed at
time complexity O(|p|). As a result, MAX-TP-RCS-FR can
be transformed to MAX-CG, and it takes O(|R| × |p|) for
transformation. Note that the weights are w.r.t each request
while they are the same for all requests in the original MAX-
CG problem.

Next consider the reverse direction, that is, to transform
MAX-CG to MAX-TP-RCS-FR. We look at the following
equation:

B(p,k) = w′
pk+1pk

, k = 1, 2, · · · , |p|− 1 (26)

It is clear that this equation always hold by setting in B(p,k)

α = 0, fpk+1pk = 0 and wpk+1pk = w′
pk+1pk

for each
(pk+1, pk) ∈ E. As a result, MAX-CG can also be trans-
formed to MAX-TP-RCS-FR, and it takes time O(|E|) for
transformation. The proof completes.

Remark: The proof of Theorem 2 is in fact based on the
concept of “virtual weight”. Together with Theorem 1 we can
always define and obtain such non-negative virtual weights as
long as the per-path metric (i.e., RCS, throughput) is defined in
a way that it is monotone along the path. The non-negativeness

4We use w′ and w to denote weight of edges in problem MAX-CG and
MAX-TP-RCS, respectively.

of the virtual weight also helps approximate the optimization
problem and further develop distributed/adaptive algorithms
as we show later.

Based on Theorem (2), we immediately have the following
results:

Theorem 3: Problem MAX-TP-RCS-FR is NP-hard, and so
is MAX-TP-RCS.

Proof: This is due to the fact that MAX-CG is NP-
hard [24], and MAX-TP-RCS-FR is a special case of MAX-
TP-RCS.

Theorem 4: There exists approximate algorithm with factor
(1− 1/e) to MAX-TP-RCS-FR.

Proof: This is because MAX-CG can be solved in
polynomial time within (1 − 1/e) approximation [24], and
MAX-TP-RCS-FR is reducible to MAX-CG.
Sub-gradient based Algorithm: S. Ioannidis and E. Yeh [24]
propose a distributed and adaptive algorithm for solving MAX-
CG that converges to caching gain within (1 − 1/e) factor
from the optimal. The key idea of their algorithm is to first
approximate MAX-CG with a convex optimization problem,
as follows:

Max:
∑

(i,s)∈R

λ(i,s)

|p|−1∑

k=1

w′
pk+1pk

min{1,
k∑

k′=1

ypk′ i} (27a)

subj. to: Y ∈ D1 (27b)

where D1 represents the following constraints:
∑

i∈C
yvi ≤ Cv, for all v ∈ V \ S, (28a)

yvi ∈ [0, 1], for all i ∈ C and v ∈ V, (28b)

yvi = 1, for all i ∈ C and v ∈ Si (28c)

They then approach the optimal solution by performing
projected gradient ascend. As the objective function is not
differentiable, a sub-gradient is used instead and estimated
online. The desired content placement is obtained through
state smoothening followed by a cache reshuffling step. Since
MAX-TP-RCS-FR is reducible to MAX-CG, the same algo-
rithm, under appropriate adaptations, can be used to solve
MAX-TP-RCS-FR in a distributed and adaptive manner with
the same optimality guarantees.

Recall that to transform MAX-TP-RCS-FR to MAX-CG,
the weights of edges in MAX-CG needs to be properly
configured according to Eqs. (25), while in the original MAX-
CG problem they are fixed and are given a priori. Also observe
that the network topology, routing paths and demands remain
unchanged. This implies that the only challenge we need
to address is how to correctly configure (virtual) weights of
edges in a distributed and on-the-fly way, and make necessary
adaptations in all computations involving weights (Luckily,
as we can see later, the only adaptation lies in estimating
sub-gradient as a function of packet loss rates and actual link
weights). We elaborate the details below.

(1) As usual, each node v keeps as its state the probability
that each content item i ∈ C is stored in cache, denoted
by yvi ∈ [0, 1]. Also denote by kp(v) the position of
node v in path p, i.e., pl = v if kp(v) = l.
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(2) Each request and data packet are associated with a con-
trol message (we call them request-control-message and
data-control-message respectively, as depicted in Fig. 5),
which is used to record packet loss rate over links
that the message traverses. Data-control-message also
includes weights of links as it flows.

(3) A request-control-message is generated whenever a
request (i, s) is fed into the network and it flows in the
same direction as the request. Once a request-control-
message arrives at node v by traversing the link (u, v),
the link loss rate fvu and fuv will be added by u or v
in the message (we assume that these information is
local to each node, i.e., each node maintains all its
link states). The request-control-message is propagated
over path p = p(i,s) until it passes a node u such
that

∑kp(u)
l=1 ypli > 1, or u is a content server. Once

this happens, a data-control-message is generated by u
and all information (packet loss rates) recorded in the
request-control-message are copied into the data-control-
message.

(4) The data-control-message flows in reverse over the path.
Once a data-control-message arrives at node v by tra-
versing the link (b, v) ∈ E, the link weight wbv is added
in the message.

(5) Time is divided into intervals of length t. In every
interval each node v on path p learns a quantity tvi

based on all the data-control-messages it receives:

tvi =

∑|p|−1
k′=kp(v) w

′(i,s)
pk′+1pk′ 1 k′

l=1 ypli≤1

Np(u, v)
(29)

where

Np(u, v) =
kp(u)−1∏

l=1

(1− fplpl+1)
kp(o)−1∏

l=kp(v)

(1 − fpl+1pl)

(30)

and u is the node generating the data-control-message.
Note that with the information (packet loss rates and
weights) contained in each data-control-message, tvi can
be computed online according to Eqs. (29) (30) (25).

(6) At the end of each interval of length t, each node v
computes the following estimate for each content i ∈ C:

zvi =
1
t

∑

t∈Tvi

t (31)

where Tvi is the set of tvi’s collected in a time interval.
Node v then updates caching probability as follows:

yk+1
vi ← PD1(y

k
vi + ηkzvi) (32)

where ηk > 0 is the step size and PD1 is the projection
to domain D1.

Theorem 5: Let zv = [zvi]i∈C , L(Y ) =∑
(i,s)∈R λ(i, s)

∑|p|−1
k=1 w

′(i,s)
pk+1pk min{1,

∑k
k′=1 ypk′ i}, then

we have E[zv(Y )] ∈ ∂yvL(Y ), i.e., E[zv(Y )] belongs to the
sub-gradient set of L(Y ).

Proof: It has been shown in [24] that in problem
MAX-CG we have E[zv(Y )] ∈ ∂yvL(Y ) when tvi =

Fig. 5. A request-control-message and its corresponding data-control-
message.

∑|p|−1
k′=kp(v) w

′(i,s)
pk′+1pk′ 1 k′

l=1 ypli≤1. The theorem follows by
considering packet losses of control-messages. More specif-
ically, note that when each request (i, s) from user is fed
into the network, a request-control-message is generated. The
probability that a corresponding data packet arrives at node v,
denoted by Np(u, v), is then given as Eq. (30). Dividing each
measurement tvi by this probability thus gives an unbiased
estimator for a sub-gradient.

Similarly, we can prove this algorithm converges. All the
other steps are keep unchanged and we therefore suggest
readers refer to [24] for more details.

B. Potential-Based Adaptive Algorithm

The algorithm presented above has some drawbacks as
caches are only updated at the end of each time interval.
Moreover, cache reshuffling incurs additional routing cost for
uncached items if they are to be cached. In this subsection,
we propose a potential-based online algorithm that each node
in network makes caching-decisions locally upon the arrival
of individual content items.
Algorithm Overview: In the proposed algorithm, each node
v maintains a quantity Qvi for each item i, which we call
potential. Qvi is initialized as zero and is updated whenever
a new request for item i or the corresponding data packet
arrives, according to Rule 1 and Rule 2 given below. Node v
then calculates caching probability for item i when it is to be
cached and evicts items based on their potentials, according
to Rule 3.
Rule 1: When a request (i, s) along path p arrives at node v,
Qvi is updated as follows:

Qvi = Qvi + α

kp(v)−1∏

l=1

(1− fplpl+1)(1− fpl+1pl) (33)

Rule 2: When a data packet i is generated by or arrives at
node v along path p (in the reverse direction), Qvi is updated
accordingly:

Qvi = Qvi + (1− α)(max
u∈p

RT_COST(u)− RT_COST(v))

(34)

where RT_COST(u) is defined as the actual routing cost if i
is cached at u:

RT_COST(u) =
kp(u)−1∑

m=1

wpm+1pm

kp(u)−1∏

l=m+1

(1− fpl+1pl) (35)
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Fig. 6. DSR and ADC for different topologies and caching algorithms under single-path routing scenario, with skewness parameter γ = 0.8.
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Fig. 7. DSR and ADC for different topologies and caching algorithms under single-path routing scenario, with skewness parameter γ = 1.2.
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Rule 3: Whenever a new content item i arrives at node v and
there’s no room for it, v calculates the caching probability yvi

for i based on Qvi’s:

yvi =
Qvi

Qvi +
∑

j∈Cv
Qvj

(36)

where Cv is the set of items cached in v. If the decision is
to cache i, then the item j with the least potential in node v,
i.e., j = argmini∈Cv

Qvi, is evicted.
Remark (key insights behind potential-based algorithm): 1)

As each node updates potentials for each item whenever a
request or a data packet flows, the more popular an item,
the larger potential of it, and hence the larger caching
probability. 2) Eq. (33) captures the throughput gain if item i
is cached at node v. As a result, it is preferable to cache items
with large throughput. 3) Eq. (34) captures the actual routing
cost gain5 if i is cached at v. Therefore, the larger routing
cost gain of an item, the larger caching probability for it.

IV. NUMERICAL EVALUATION

In this section, we show the effectiveness of our proposed
algorithm on improving system throughput and reducing net-
work routing cost, and evaluate its performance by performing
numerical simulations over a wide array of network topologies.

A. Evaluation Setup

We implement our potential-based online algorithm as well
as the adapted projected gradient ascend algorithm on an open-
source cache network simulator — CacheNetwork [1],
and compare their performance with three traditional caching
algorithms (LRU, FIFO and Random) and two recent pro-
posals (MBP [44] and MAGIC [38]). We adopt three path
replication policies — LCE (leave copy everywhere), LCD
(leave copy down), and probabilistic caching (ProbCache,
with caching probability 0.1). Both single-path and multi-path
routing strategies are investigated. We consider the following
two performance indexes.
(1) Demand Satisfaction Ratio (DSR): This is the proportion
of users’ requests satisfied by network. Given demand and
network topology, the larger DSR, the higher throughput, and
vice versa.
(2) Average Delivery Cost (ADC): This is the average content
routing cost per request. Since RCS is hard to capture in
network, we use this performance index to reflect the overall
content routing cost in simulation.

Network Topologies: We use a wide array of net-
work topologies for evaluation. Among them, cycle,
balanced_tree, barabasi_albert, erdos_renyi,
watts_strogatz are synthetic ones whereas abilene,
dtelekom, geant represent real ones. The parameters of
these graphs are chosen according to [25] (see section 7), and
the weight of each edge is u.a.r (uniformly and randomly)
selected from [1, 2]. Furthermore, each edge is configured as
a high-loss-rate link with probability 30%, and low-loss-rate

5We define the routing cost gain as in Eq. (34) since routing cost under
packet losses is no longer a monotone function of the node position along
delivery path.

link with probability 70%. The packet loss rate of each low-
loss-rate link and high-loss-rate link are u.a.r selected from
[1%, 5%] and [25%, 30%], respectively [13]. Note that these
settings represent networks with sever packet losses.

Workload Model: For each topology represented by graph
G(V, E), we associate a catalog of content items with size
|C| and assume they are hosted by nodes randomly picked
in V . We then randomly select a set Q of nodes from V
as source nodes that generate a set R of requests with a
Zipf distribution with skewness parameter γ. For single-path
routing scenario, each request for a content item is routed over
the shortest path to a content server. For multi-path routing
scenario, we configure that there are 3 paths for each pair
(source node, content server), and each request from source
node to content server is randomly routed using one of these
paths. The rate of each request is set as λ(i,s) = 1 req/sec.
Moreover, the sampling time for the projected gradient ascend
algorithm is chosen as T = 30 sec, and the simulation time
is 5000 sec. For fair comparison, all parameters of network
topologies, cache sizes and simulation are set according to
Table 2 in [25].

B. Simulation Results

We first evaluate our proposed algorithm under single-path
(shortest path) routing scenario against the three traditional
caching algorithms. Figure 6 and Figure 7 show the two perfor-
mance indexes for different topologies and caching algorithms,
with different combination of path replication policies and
Zipf skewness parameters (γ = 0.8 and γ = 1.2). Here PGA
refers to the adapted projected gradient ascend algorithm. POT-
1 stands for our potential-based online algorithm with α = 1,
i.e., when the goal is to solely maximize throughput, and POT-
0 means α = 0 with the goal being solely to optimize content
routing cost. PGA-1 and PGA-0 can be interpreted in the same
way.

From Figure 6 and Figure 7, we can see that as expected,
our potential-based online algorithm outperforms the three
traditional caching algorithms in DSR and ADC, with different
path replication policies and skewness parameters, i.e., POT-
1 achieves more throughput and POT-0 incurs lower con-
tent routing cost. However, while in most cases this hap-
pens to PGA, we observe that for some network topologies
(balanced_tree, cycle and watts_strogatz), PGA-
0 incurs higher content routing cost than the three traditional
caching algorithms, i.e., it is observed that more than 50% of
ADC is incurred by PGA-0 for topology cycle with γ = 0.8
and ProbCache, as compared to LRU. This indicates that in
practice, our potential-based algorithm is more reliable and
robust than PGA.

To fully understand how much improvement can be
achieved by the two algorithms, we compare their performance
indexes with that of the LRU, and the results are listed
in Table II and Table III. Here for each algorithm and path
replication policy, only the maximum and minimum improve-
ment are listed (among the 8 topologies). From Table II
(γ = 0.8), it can be seen that PGA-1 increases DSR by 4.8%
(dtelekom, ProbCache) to 20.9% (cycle, LCE), and PGA-
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Fig. 8. DSR and ADC for different topologies and caching algorithms under multi-path routing scenario, with LCE path replication policy.

0 reduces ADC by -62.3% (cycle, ProbCache) to 17.1%
(geant, LCD). On the other hand, POT-1 increases DSR
by 1.9% (abilene, ProbCache) to 17.6% (cycle, LCE),
and POT-0 reduces ADC by 11.2% (balanced_tree, Prob-
Cache) to 47.2% (cycle, LCE). Similar results are observed
in Table III with γ = 1.2. These results suggest that whereas
the two algorithms have comparable capability in improving
throughput, our potential-based online algorithm performs far
more better in reducing content routing cost.

We also conduct simulations for multi-path routing sce-
nario. For compactness and to avoid redundancy, only the

performance with LCE and different skewness parameters are
presented, as shown in Figure 8. Obviously, we can draw
similar conclusions as that for the single-path routing scenario,
i.e., both PGA-1 and POT-1 achieve more throughput than the
three traditional caching algorithms, and POT-0 significantly
reduces content routing cost for all network topologies. It fol-
lows that our potential-based algorithm is still effective under
multi-path routing scenario.

Figure 9 shows how performance indexes of the two algo-
rithms vary as the weight α increases. Interestingly, we find
that for POT the performance tradeoff can be well controlled
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Fig. 9. Performance of the two algorithms under different α values.

TABLE II

PERFORMANCE IMPROVEMENT BY PGA AND OUR POTENTIAL-BASED ONLINE ALGORITHM WITH γ = 0.8

by α. However, for PGA it is observed that increasing α
improves both ADC and DSR, which is out of our expectation.
We believe that this is in part due to the high correla-
tion of the two performance indexes (consider for example,
in a line network optimizing throughput will at the same
time reduces content routing cost). Nevertheless, again we

find that our potential-based algorithm is more reliable and
robust.

Figure 10 illustrates how the two algorithms behave as time
goes on, where the path replication stragety is set as LCE and
γ = 1.2. It can be seen that both algorithms converge fast that
it takes approximately 100 sec to converge. Moreover, it can
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TABLE III

PERFORMANCE IMPROVEMENT BY PGA AND OUR POTENTIAL-BASED ONLINE ALGORITHM WITH γ = 1.2

Fig. 10. Convergence time for the two algorithms with LCE and α = 0.8.

be seen that our potential-based algorithm is more stable than
PGA under different network topologies.

C. Comparison With Recent Proposals

Here we compare the performance of our potential-based
online algorithm with MBP [44] and MAGIC [38], which
were proposed in recent years. We adopt LCE path replication
policy as all three algorithms are capable of dynamically
determining the caching positions for each content item along
the delivery path. From Fig. 11 and Fig. 12, we can see
that among the three algorithms, POT-1 achieves the most
throughput while POT-0 incurs the least routing cost, under
both single-path and multi-path routing scenario, and with
different network topologies and workload distributions. For
example, under single-path routing scenario and with γ = 1.2,

POT-1 increases DSR by 1.2% (geant) to 5.8% (cycle),
while POT-0 reduces ADC by 6.4% (dtelekom) to 20.7%
(cycle), as compared to MBP. When compared to MAGIC,
the improvement for DSR is 0.3% (dtelekom) to 7.9%
(cycle), and for ADC 4.8% (erdos_renyi) to 30%
(cycle). Similar results can be observed under multi-path
routing scenario.

D. Summary of Observations

We end this section by summarizing what we find in
simulation. First, as compared to traditional caching algo-
rithms as well as recent proposals, both PGA and POT are
capable of improving network throughput and content routing
cost under a variety of path replication policies and requests
access patterns, for different network topologies. They have
comparable performance of optimizing throughput, but POT
performs far more better in optimizing content routing cost.
Second, POT is more reliable and robust than PGA in that its
performance tradeoff can be well adjusted by the weighting
factor α. Moreover, it converges fast and behaves stable under
different network topologies.

V. RELATED WORK

Performance evaluation and optimization for caching sys-
tems has long been a hot research topic. A significant amount
of early work focused on modeling and analysis of various
caching policies (i.e., LRU, FIFO, Random and more recently
TTL-based [16], [21]). Both exact [8], [9] [20] and approx-
imate models [21], [29] are provided to characterize cache
performance under different workload models [6], [33] [23]
and different network topologies [17], [32].

Both offline [11], [12] and online [14], [15] cache optimiza-
tion problems have been investigated. Among them, online
optimization of general cache networks, i.e., Information-
Centric Networks [24], [31], has attracted particular research
interests in recent years.

Our work belongs to online optimization of cache networks.
The work that most close to our problem is [24], where
authors consider optimizing network routing cost in a cache
network by formulating a joint content placement and request
routing optimization problem. Our work rely and expand upon
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Fig. 11. Performance comparison with two recent proposals (MBP and MAGIC) under single-path routing scenario, with LCE path replication policy.

it by considering packet losses over links and taking network
throughput as a new metric to optimize. The objective of our
work is to maximize system throughput while maintaining the
content routing cost for satisfied requests as low as possible.
The consideration of throughput is novel, and the observation
that throughput can be cast in the same framework as [24] is
a very interesting result, which we believe it deserves to be
reported to the community. The simple and adaptive algorithm
based on “potentials” is also novel and interesting, and we
believe this idea should contribute and inspire development of
future caching algorithms.

VI. CONCLUSION AND FUTURE WORK

A. Conclusion

In this paper, we study the problem of optimizing content
delivery over a lossy cache network, taking both throughput
and content routing cost into account. We propose a new
performance metric – RCS, to reflect the actual routing cost in
content delivery while at the same time attains attractive math-
ematical properties such as super-modularity. We then formu-
late an optimization problem for the task under fixed routing
scenario, and prove it is reducible to the one of minimizing
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Fig. 12. Performance comparison with two recent proposals (MBP and MAGIC) under multi-path routing scenario, with LCE path replication policy.

content routing cost without packet losses. We present neces-
sary rules for the reduction, and leverage existing distributed
and adaptive algorithm to solve the problem. A simple and
adaptive online algorithm is further proposed. Last, we eval-
uate our models and algorithms through simulations over a
wide array of network topologies.

B. Future Work

There are several directions for future research. First,
while in this work we propose RCS to capture both the
heterogeneous routing cost and packet loss rates over links,
an interesting problem is whether there exists alternative

metrics that can better reflect the actual routing cost for
delivered content, which also possess nice mathematical
properties that leads to efficient algorithm design. Second,
the joint optimization problem under dynamic routing
scenario, i.e., when the path to deliver each request is
dynamically selected based on the optimization objective
and system workload, remains unexplored. It is also an open
problem as how to develop efficient online/distributed caching
and routing algorithm for this problem. Finally, in lemma
2.2 we have shown that optimizing RCS and throughput are
two different goals and sometimes they can even conflict.
However, we also observed in simulation that they are
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sometimes highly correlated, i.e., for the algorithm PGA
maximizing throughput at the same time leads to a low RCS.
It remains unclear as why there is such a high correlation,
and under what conditions does the two metrics exhibit such
correlation, and then how to characterize it? These problems
are no doubt important and worthy of further investigation.

REFERENCES

[1] Cachenetwork. Accessed: Jun. 16, 2019. [Online]. Available:
https://github.com/neu-spiral/CacheNetwork

[2] Named Data Networking. Accessed: Sep. 16, 2020. [Online]. Available:
https://named-data.net/

[3] “Cisco visual networking index: Forecast and trends, 2017–2022,”
Cisco, San Francisco, CA, USA, White Paper, 2019. [Online]. Available:
https://www.entersoftware.it/wp-content/uploads/2020/02/Cisco-Visual-
Network-Index_Forecast-2017-22.pdf

[4] A. A. Ageev and M. I. Sviridenko, “Pipage rounding: A new method of
constructing algorithms with proven performance guarantee,” J. Combi-
nat. Optim., vol. 8, no. 3, pp. 307–328, Sep. 2004.

[5] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman,
“A survey of information-centric networking,” IEEE Commun. Mag.,
vol. 50, no. 7, pp. 26–36, Jul. 2012.

[6] S. M. Azimi, O. Simeone, A. Sengupta, and R. Tandon, “Online edge
caching and wireless delivery in fog-aided networks with dynamic
content popularity,” IEEE J. Sel. Areas Commun., vol. 36, no. 6,
pp. 1189–1202, Jun. 2018.

[7] E. Baccelli, C. Mehlis, O. Hahm, T. C. Schmidt, and M. Wählisch,
“Information centric networking in the iot: Experiments with ndn in the
wild,” in Proc. 1st ACM Conf. Inf.-Centric Netw., 2014, pp. 77–86.

[8] D. S. Berger, P. Gland, S. Singla, and F. Ciucu, “Exact analysis of TTL
cache networks,” Perform. Eval., vol. 79, pp. 2–23, Sep. 2014.

[9] D. S. Berger, P. Gland, S. Singla, and F. Ciucu, “Exact analysis of TTL
cache networks: The case of caching policies driven by stopping times,”
ACM SIGMETRICS Perform. Eval. Rev., vol. 42, no. 1, pp. 595–596,
2014.

[10] G. Carofiglio, V. Gehlen, and D. Perino, “Experimental evaluation of
memory management in content-centric networking,” in Proc. IEEE Int.
Conf. Commun. (ICC), Jun. 2011, pp. 1–6.

[11] W. Chu, M. Dehghan, J. C. S. Lui, D. Towsley, and Z.-L. Zhang, “Joint
cache resource allocation and request routing for in-network caching
services,” Comput. Netw., vol. 131, pp. 1–14, Feb. 2018.

[12] W. Chu, M. Dehghan, D. Towsley, and Z.-L. Zhang, “On allocating
cache resources to content providers,” in Proc. 3rd ACM Conf. Inf.-
Centric Netw., Sep. 2016, pp. 154–159.

[13] W. Chu, X. Guan, Z. Cai, and L. Gao, “Real-time volume control,
for interactive network traffic replay,” Comput. Netw., vol. 57, no. 7,
pp. 1611–1629, 2013.

[14] M. Dehghan, W. Chu, P. Nain, D. Towsley, and Z.-L. Zhang, “Sharing
cache resources among content providers: A utility-based approach,”
IEEE/ACM Trans. Netw., vol. 27, no. 2, pp. 477–490, Apr. 2019.

[15] M. Dehghan, L. Massoulie, D. Towsley, D. S. Menasche, and Y. C. Tay,
“A utility optimization approach to network cache design,” IEEE/ACM
Trans. Netw., vol. 27, no. 3, pp. 1013–1027, Jun. 2019.

[16] C. F. N. Eric, N. Philippe, N. Giovanni, and T. Don, “Analysis of
TTL-based cache networks,” in Proc. 6th Int. Conf. Perform. Eval.
Methodologies Tools, 2012, pp. 1–10.

[17] N. C. Fofack, P. Nain, G. Neglia, and D. Towsley, “Performance
evaluation of hierarchical TTL-based cache networks,” Comput. Netw.,
vol. 65, pp. 212–231, Jun. 2014.

[18] C. Fricker, P. Robert, and J. Roberts, “A versatile and accurate approxi-
mation for LRU cache performance,” in Proc. 24th Int. Teletraffic Congr.,
2012, p. 8.

[19] M. Garetto, E. Leonardi, and V. Martina, “A unified approach to the
performance analysis of caching systems,” ACM Trans. Model. Perform.
Eval. Comput. Syst., vol. 1, no. 3, p. 12, 2016.

[20] N. Gast and B. Van Houdt, “Asymptotically exact TTL-approximations
of the cache replacement algorithms LRU (M) and H-LRU,” in Proc.
28th Int. Teletraffic Congr. (ITC), vol. 1, 2016, pp. 157–165.

[21] N. Gast and B. Van Houdt, “TTL approximations of the cache
replacement algorithms LRU(m) and h-LRU,” Perform. Eval., vol. 117,
pp. 33–57, Dec. 2017.

[22] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things
(IoT): A vision, architectural elements, and future directions,” Future
Gener. Comput. Syst., vol. 29, no. 7, pp. 1645–1660, Sep. 2013.

[23] P. Hassanzadeh, A. M. Tulino, J. Llorca, and E. Erkip, “On coding for
cache-aided delivery of dynamic correlated content,” IEEE J. Sel. Areas
Commun., vol. 36, no. 8, pp. 1666–1681, Aug. 2018.

[24] S. Ioannidis and E. Yeh, “Adaptive caching networks with optimal-
ity guarantees,” ACM SIGMETRICS Perform. Eval. Rev., vol. 44,
pp. 113–124, Jun. 2016.

[25] S. Ioannidis and E. Yeh, “Jointly optimal routing and caching for
arbitrary network topologies,” IEEE J. Sel. Areas Commun., vol. 36,
no. 6, pp. 1258–1275, Jun. 2018.

[26] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proc. 5th Int. Conf.
Emerg. Netw. Exp. Technol., 2009, pp. 1–12.

[27] P. Janis et al., “Device-to-device communication underlaying cellular
communications systems,” Int. J. Commun., Netw. Syst. Sci., vol. 2, no. 3,
p. 169, 2009.

[28] M. Ji, G. Caire, and A. F. Molisch, “The throughput-outage tradeoff of
wireless one-hop caching networks,” IEEE Trans. Inf. Theory, vol. 61,
no. 12, pp. 6833–6859, Dec. 2015.

[29] B. Jiang, P. Nain, and D. Towsley, “On the convergence of the TTL
approximation for an LRU cache under independent stationary request
processes,” ACM Trans. Model. Perform. Eval. Comput. Syst., vol. 3,
no. 4, pp. 1–31, Sep. 2018.

[30] I. Lee and K. Lee, “The Internet of Things (IoT): Applications, invest-
ments, and challenges for enterprises,” Bus. Horizons, vol. 58, no. 4,
pp. 431–440, Jul. 2015.

[31] J. Li et al., “DR-cache: Distributed resilient caching with latency guar-
antees,” in Proc. INFOCOM IEEE Conf. Comput. Commun., Apr. 2018,
pp. 441–449.

[32] K. Li, C. Yang, Z. Chen, and M. Tao, “Optimization and analysis of
probabilistic caching in N -tier heterogeneous networks,” IEEE Trans.
Wireless Commun., vol. 17, no. 2, pp. 1283–1297, Feb. 2018.

[33] Y. Lu, W. Chen, and H. V. Poor, “Coded joint pushing and caching with
asynchronous user requests,” IEEE J. Sel. Areas Commun., vol. 36, no. 8,
pp. 1843–1856, Aug. 2018.

[34] M. Mahdian, A. Moharrer, S. Ioannidis, and E. Yeh, “Kelly cache net-
works,” in Proc. INFOCOM IEEE Conf. Comput. Commun., Apr. 2019,
pp. 217–225.

[35] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah,
Y. Ganjali, and C. Diot, “Characterization of failures in an opera-
tional IP backbone network,” IEEE/ACM Trans. Netw., vol. 16, no. 4,
pp. 749–762, Aug. 2008.

[36] L. Muscariello, G. Carofiglio, and M. Gallo, “Bandwidth and stor-
age sharing performance in information centric networking,” in
Proc. ACM SIGCOMM Workshop Inf.-Centric Netw. (ICN), 2011,
pp. 26–31.

[37] G. S. Paschos, G. Iosifidis, M. Tao, D. Towsley, and G. Caire, “The role
of caching in future communication systems and networks,” IEEE J. Sel.
Areas Commun., vol. 36, no. 6, pp. 1111–1125, Jun. 2018.

[38] J. Ren et al., “MAGIC: A distributed MAx-gain in-network caching
strategy in information-centric networks,” in Proc. IEEE Conf. Comput.
Commun. Workshops (INFOCOM WKSHPS), Apr. 2014, pp. 470–475.

[39] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30–39, Jan. 2017.

[40] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
VM-based cloudlets in mobile computing,” IEEE Pervasive Comput.,
vol. 8, no. 4, pp. 14–23, Oct. 2009.

[41] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and
G. Caire, “FemtoCaching: Wireless content delivery through distrib-
uted caching helpers,” IEEE Trans. Inf. Theory, vol. 59, no. 12,
pp. 8402–8413, Dec. 2013.

[42] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637–646,
Oct. 2016.

[43] C.-X. Wang et al., “Cellular architecture and key technologies for 5G
wireless communication networks,” IEEE Commun. Mag., vol. 52, no. 2,
pp. 122–130, Feb. 2014.

[44] H. Wu, J. Li, and J. Zhi, “MBP: A max-benefit probability-based caching
strategy in information-centric networking,” in Proc. IEEE Int. Conf.
Commun. (ICC), Jun. 2015, pp. 5646–5651.

[45] J. Yao and N. Ansari, “Joint content placement and storage allocation
in C-RANs for IoT sensing service,” IEEE Internet Things J., vol. 6,
no. 1, pp. 1060–1067, Feb. 2019.

[46] G. Zhang, Y. Li, and T. Lin, “Caching in information centric net-
working: A survey,” Comput. Netw., vol. 57, no. 16, pp. 3128–3141,
Nov. 2013.

[47] L. Zhang et al., “Named data networking,” ACM SIGCOMM Comput.
Commun. Rev., vol. 44, no. 3, pp. 66–73, 2014.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 24,2021 at 07:04:14 UTC from IEEE Xplore.  Restrictions apply. 



CHU et al.: JOINTLY OPTIMIZING THROUGHPUT AND CONTENT DELIVERY COST OVER LOSSY CACHE NETWORKS 3863

Weibo Chu received the B.S. degree in software
engineering and the Ph.D. degree in control science
and engineering from Xi’an Jiaotong University,
Xi’an, China, in 2005 and 2013, respectively. From
2011 to 2012, he worked as a Visiting Researcher
with Microsoft Research Asia, Beijing. Since 2013,
he has been with the School of Computer Science
and Technology, Northwestern Polytechnical Univer-
sity, where he is currently an Associate Professor. He
has participated in various research and development
projects on network testing, performance evaluation,

and troubleshooting, and gained extensive experiences in the development
of networked systems for research and engineering purposes. His research
interests include internet measurement and modeling, traffic analysis, and
performance evaluation.

Zhiwen Yu (Senior Member, IEEE) received the
Ph.D. degree in computer science from Northwestern
Polytechnical University, Xi’an, China, in 2005.
He was an Alexander Von Humboldt Fellow with
Mannheim University, Germany, and a Research
Fellow with Kyoto University, Kyoto, Japan. He is
currently a Professor and the Dean of the School
of Computer Science, Northwestern Polytechnical
University. His research interests include ubiquitous
computing and mobile computing.

John C. S. Lui (Fellow, IEEE) received the Ph.D.
degree in computer science from UCLA. He was the
Chairman of the Department of Computer Science
and Engineering from 2005 to 2011. He is currently
a Professor with the Department of Computer Sci-
ence and Engineering, The Chinese University of
Hong Kong. His current research interests include
communication networks, network/system security
(e.g., cloud security and mobile security), network
economics, network sciences (e.g., online social net-
works and information spreading), cloud computing,

large-scale distributed systems, and performance evaluation theory. He is an
Elected Member of the IFIP WG 7.3, a fellow of the ACM, and a Croucher
Senior Research Fellowship. He received various departmental teaching
awards and the CUHK Vice-Chancellor’s Exemplary Teaching Award. He was
also a co-recipient of the IFIP WG 7.3 Performance 2005 and the IEEE/IFIP
NOMS 2006 Best Student Paper Award. He serves on the Editorial Board
for IEEE/ACM TRANSACTIONS ON NETWORKING, IEEE TRANSACTIONS
ON COMPUTERS, IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED
SYSTEMS, Journal of Performance Evaluation, and International Journal of
Network Security.

Yi Lin received the Ph.D. degree in computer
science from Northwestern Polytechnical University,
Xi’an, China, in 2005. He is currently an Associate
Professor with the School of Computer Science,
Northwestern Polytechnical University. His research
interests include data storage and software engineer-
ing.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 24,2021 at 07:04:14 UTC from IEEE Xplore.  Restrictions apply. 


