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ABSTRACT
Docker containers are widely deployed to provide lightweight vir-
tualization, and they have many desirable features such as ease of
deployment and near bare-metal performance. However, both the
performance and cache e�ciency of containers are still limited by
their storage drivers due to the coarse-grained copy-on-write oper-
ations, and the large amount of redundancy in both I/O requests
and page cache. To improve I/O performance and cache e�ciency
of containers, we develop HP-Mapper, a high performance stor-
age driver for Docker containers. HP-Mapper provides a two-level
mapping strategy to support �ne-grained copy-on-write with low
overhead, and an e�cient interception method to reduce redundant
I/Os. Furthermore, it uses a novel cache management mechanis-
m to reduce duplicate cached data. Experiment results with our
prototype system show that HP-Mapper signi�cantly reduces copy-
on-write latency due to its �ner-grained copy-on-write scheme.
Moreover, HP-Mapper can also reduce 65.4% cache usage on aver-
age due to elimination of duplicated data. As a result, HP-Mapper
improves the throughput of real-world workloads by up to 39.4%,
and improves the startup speed of containers by 2.0⇥.
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1 INTRODUCTION
Virtualization technologies have become increasingly popular in
recent years [45]. However, traditional virtual machine (VM) based
virtualization solutions [38] need to emulate an entire set of hard-
ware components, and run an individual operating system (OS)
for each VM, so they introduce numerous overheads and signif-
icantly degrade the performance of applications running in VM
[30]. To reduce the virtulization overhead, container-based virtu-
alization has been proposed recently [35]. Speci�cally, containers
run directly on the host operating system and perform as host
processes without emulating hardware, so containers can achieve
near bare-metal performance [33]. Moreover, containers use OS-
level virtualization mechanisms (e.g., namespaces [12] and cgroups
[5]) to provide isolation between containers, which introduce mild
impact on containers’ performance.

Docker [35] is the most popular container engine and is widely
deployed in many cloud platforms (e.g., Google Cloud [6], Microsoft
Azure [3], and AWS [2]). Speci�cally, Docker containers use im-
ages to hold their data and state, including binaries, input �les and
con�guration parameters to run applications within the containers
[10]. To improve storage e�ciency and deployment speed of con-
tainers, Docker stores images in many layers, and enable each layer
to be read-only and sharable between multiple containers. Thus,
the storage driver of Docker containers, which is used to provide a
uni�ed view for multiple image layers and support copy-on-write
for read-only �les, plays a critical role in the performance of Dock-
er container, and has also been the focus of some recent studies
[21, 27, 28, 40, 44].

Existing storage drivers include Overlay2, AUFS, DeviceMapper,
BtrFS and so on [10], and they work in di�erent storage levels with
di�erent mechanisms. Speci�cally, Overlay2 and AUFS use the �le-
based mechanism, which puts multiple directories (i.e., images) on
a single mount point and presents them as a single directory, so
di�erent containers have a uni�ed view of the �le system and they
can share cached �les easily. On the other hand, DeviceMapper and
BtrFS employ the block-based mechanism, which stores images as
logical volumes and manages them at the block level. As a result,
they can perform copy-on-write at a �ner granularity of blocks
instead of the entire �le, so the copy-on-write overhead can be
greatly reduced.

We observe that I/O performance and cache e�ciency of existing
storage drivers are still limited for both �le-based and block-based
mechanisms. First, the �le-based copy-on-write needs to copy the
entire �le before update. As a result, this kind of coarse-grained
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copy-on-write operations incur a large write overhead and degrade
I/O performance. Second, for block-based drivers, when multiple
containers read data from a shared �le, a large number of redun-
dant I/O requests may be introduced. This is because when using
block-based drivers, each container has an individual �le system
and page cache. Last but not least, both �le-based and block-based
drivers introduce large amount of redundancy in page cache, and
thus signi�cantly degrades cache e�ciency. Speci�cally, when con-
tainers read the same block, block-based drives may generate many
copies of the block in page cache due to its ine�ciency in sharing
cached data. Although �le-based drivers support sharing cached
data when reading shared �les, it also causes many duplicate data
after performing copy-on-write on shared �les.

Our experiment results validate the above problems. In particular,
using current storage drivers, they generate up to 93.8% duplicated
data in page cache, and cause up to 99.0% redundant read requests
(see Section 2.2). Furthermore, current storage drivers may also
bring as much as 616⇥ extra overhead when performing copy-on-
write operations. All these problems not only waste memory space
and I/O bandwidth, but also cause a signi�cant slowdown on the
performance of containers. Therefore, it is important to provide an
e�cient mechanism to detect and reduce redundant I/O requests and
duplicate cached data, as well as enable a �ner-grained copy-on-
write so as to improve I/O performance and cache e�ciency of Docker
containers.

However, it is non-trival to achieve the above goals for several
challenges exist. First, current storage drivers and previous studies
do not provide any method to timely detect redundant I/O requests,
and it is challenging to develop such a method with low overhead.
Second, it is also challenging to e�ciently detect duplicate cached
pages and evict appropriate cached copies. Finally, simply reducing
data block size (i.e., copy-on-write unit) will incur a lot of metadata
space and lookup overhead. Thus, how to support a �ne-grained
copy-on-write method with small overhead is also challenging. To
address the above issues, we design and implement an e�cient
storage driver for Docker containers, and call it HP-Mapper. HP-
Mapper can accurately intercept redundant I/O requests with low
overhead, and signi�cantly reduces duplicate data in page cache to
improve cache e�ciency, as well as supports a �ner-grained copy-
on-write method. Our contributions are summarized as follows.

• We propose a two-level mapping strategy to support writing
data in di�erent block sizes so as to enable “�ner-grained”
copy-on-write. Speci�cally, copying data is performed at the
granularity of small blocks (i.e., 4KB blocks), and new writes
are performed at the granularity of large blocks (i.e., 512K-
B blocks). Experiment results show that our �ner-grained
approach reduces the copy-on-write latency by up to 99.8%
compared with �le-based drivers.

• We develop a lightweight method to detect redundant I/O
requests and intercept them by reading data from page cache
to reduce I/Os. In particular, we use a memory-e�cient hash
table to record information of recent I/O requests, and so
detecting redundant I/O requests can be achieved by looking
up physical block number of each new I/O request from
the hash table in memory. Experiment results show that

our intercepting scheme can detect and intercept more than
92.6% redundant read requests.

• We further develop an adaptive page cache management
scheme to improve cache e�ciency. We take into account
the memory utilization, the number of cache copies, as well
as the access frequency of pages, in the design of page e-
viction scheme so as to better utilize memory and improve
container performance. Experiment results show that our
cache management mechanism can reduce 65.4% - 75.5%
cache usage.

• We implement a prototype and conduct extensive experi-
ments to show the overall e�ciency of HP-Mapper. Experi-
ment results show that compared with both �le-based and
block-based drivers,HP-Mapper improves the throughput of
�lebench workloads by up to 39.4% and improves the startup
speed of containers by 2.0⇥. Moreover,HP-Mapper performs
much better than current storage drivers when memory is
scarce.

The rest of the paper is organized as follows. In Section 2, we �rst
introduce the background of containers and their storage drivers,
then analyze their limitations, �nally we motivate the design of HP-
Mapper. In Section 3, we present the design details of HP-Mapper.
In Section 4, we describe the experiment setup and present the
evaluation results of HP-Mapper. Section 5 reviews related work
and Section 6 concludes the paper.

2 BACKGROUND AND MOTIVATION
2.1 Docker Storage Drivers
Docker provides lightweight virtualization by running containers
directly on host operating system. It provides resource isolation
between containers with a number of lightweight techniques that
are present in the Linux kernel [35], such as namespaces, cgroup,
and storage drivers. In particular, Docker uses images to store all
requirements for running containers, and uses its own storage
drivers to manage images. As shown in Fig. 1, container images
are organized into many layers, and image layers are read-only so
to enable sharing between di�erent containers to improve storage
e�ciency of the images. As a result, any changes to container
images need to be performed with copy-on-write operations by
copying data to a writable layer. Besides supporting copy-on-write
operations, Docker also uses its storage drivers to support data
lookup across image layers. All existing storage drivers can be
classi�ed as either �le-based drivers or block-based drivers. Next, we
brie�y describe these storage drivers and their key features.

File-based Drivers. AUFS [1] and Overlay2 [13] are both �le-
based drivers, which stack image layers to provide a single uni�ed
view at a single mount point. As a result, di�erent containers can
share data in page cache due to their use of the same �le system.
That is, when multiple containers read the same �le, �le-based
drivers only generate one copy in page cache and share it among
di�erent containers, and this improves cache e�ciency. However,
when containers update a read-only �le, �le-based drivers need to
create a copy of the entire �le in the top writable layer, and then
perform updates to the newly copied �le. Such �le-level copy-on-
write method not only introduces a lot of I/O overheads by reading
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Figure 1: Layered structure of Docker storage driver

and writing unchanged data blocks, but also causes many duplicate
data in both page cache and disk.

Block-based Drivers. Unlike �le-based drivers, block-based
drivers (e.g., DeviceMapper [7], BtrFS [37] and ZFS [15]) manage
container images at the granularity of blocks. For example, De-
viceMapper stores base level of an image as a logical volume and
stores upper levels and containers as snapshots of the lower level.
This way enables copy-on-write operations to be performed at the
granularity of blocks, which only need to copy the changed blocks
rather than the entire �le. As a result, such a block-level copy-on-
write method not only signi�cantly reduces writing overhead, but
also reduces duplicate data brought by copy-on-write operations.
However, block-based mechanism also introduces other problems,
and the most serious one is that cached data cannot be shared be-
tween di�erent containers. This is because when using block-based
mechanism, each container has an individual �le system and page
cache, and it cannot read data from other containers’ page cache.
Thus, block-based drivers usually generate a lot of redundant I/O
requests and duplicate cached pages when they read data from the
same �le, which further degrade both I/O performance and cache
e�ciency.

In conclusion, current storage drivers possess design tradeo�s
and they su�er from various problems in I/O performance and
cache e�ciency. Speci�cally, compared with block-based drivers,
�le-based drivers provide better I/O performance due to the ease
of cache sharing when reading data from the same �les, but their
copy-on-write methods introduce larger overhead. Even worse,
both the block-based drivers and �le-based drivers generate a lot
of duplicate data in page cache, and thus reduce cache hit ratio
and degrade both I/O performance and cache e�ciency when host
memory becomes scarce.

2.2 Ine�ciency of Docker Storage Drivers
To validate the performance degradation and cache ine�ciency
problem with current storage drivers, we conduct experiments with
many container images and various storage workloads. Here, we
like to point out that as demonstrated by many previous researches
[40, 44], Overlay2, DeviceMapper and BtrFS always have the best
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overall performance and stability inmost use scenarios, and they are
also highly recommended by Docker Inc [14]. Thus, we take them
as representatives of two kinds of storage drivers to demonstrate
the issues.

First, to validate sharing ine�ciency of blocked-based drivers,
i.e., DeviceMapper and BtrFS, we compare them with Overlay2,
which supports �le sharing. Speci�cally, we concurrently launch 64
containers from a single image (see Section 4.1 for more detailed de-
scription about the system setup), and evaluate the total amount of
data read during the startup of containers. The results are shown in
Fig. 2, and we can see that compared with Overlay2, DeviceMapper
and BtrFS need to read up to 76.3⇥ and 104.1⇥ more data during
the startup of containers, respectively. As a result, they prolong the
startup time of containers by up to 3.7⇥ compared with Overlay2
(see Section 4.3). This is because block-based drivers usually gener-
ate a lot of redundant I/O requests due to the unshareable nature
of cached data.

Next, we demonstrate the redundancy problem in page cache for
both �le-based and block-based drivers. In particular, we launch 64
containers from the same image and scan the cache to count the
amount of duplicate pages and non-duplicated pages. The results
are shown in Fig. 3. From the �gure, we �nd that both �le-based
and block-based drivers generate a large amount of duplicate data
in page cache, and the proportion of duplicate data reaches up to
88.6% when using DeviceMapper, 93.8% when using BtrFS, and
92.2% when using Overlay2. We point out that the duplicate data of
DeviceMapper and BtrFS are mainly generated by their redundant
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File Size 4KB 64KB 1MB 16MB
DM 0.12 0.74 0.96 1.39
BtrFS 0.09 0.09 0.09 0.10

Overlay2 1.99 2.49 7.14 61.7
Table 1: Copy-on-write latency (ms) of DeviceMapper (DM)
and Overlay2 (test on SSD). File-based driver (Overlay2) in-
troduces a large copy-on-write overhead.

read requests, and the duplicate data of Overlay2 aremainly brought
by its �le-level copy-on-write operations.

Finally, we demonstrate the ine�ciency of coarse-grained copy-
on-write operations by using �lebench [41] to evaluate the latency.
Speci�cally, we �rst generate a number of read-only �les with the
same size, then write 4KB data to each �le. We also vary the size
of �les from 4KB to 16MB to measure the impact of �le size on
copy-on-write latency. As shown in Table 1, we can �nd that the
copy-on-write latency of �le-based driver Overlay2 increases signif-
icantly with the �le size, and it reaches up to 61.7ms on 16MB �les,
which is up to 617⇥ latency compared with the block-based BtrFS.
Moreover, the copy-on-write latency of DeviceMapper is also up to
13.9⇥ compared with BtrFS. The main reason why Overlay2 and
DeviceMapper perform much worse than BtrFS is that Overlay2
needs to copy the entire �le when performing copy-on-write oper-
ations, and DeviceMapper needs to copy the changed data at the
granularity of large blocks (� 64KB), while BtrFS only copies the
changed small blocks (4KB).

In summary, from the above results, we �nd that there is no
single storage driver which can achieve both high I/O performance
and high cache e�ciency. There is also a tradeo� between copy-on-
write performance and �le sharing e�ciency. Even worse, both the
�le-based and block-based drivers su�er from poor cache e�ciency.
Thus, there is still a large room to further improve the performance
of storage drivers for Docker containers.

2.3 Challenges of HP-Mapper
To further improve the I/O performance and cache e�ciency of
Docker containers, we developHP-Mapper, which is a high-performance
and cache e�cient storage driver by supporting �ner-grained copy-
on-write operations and intercepting redundant I/Os, as well as
e�ciently managing duplicate cached data. However, various chal-
lenges exist to provide these features and they are summarized as
follows.
Finer-grained copy-on-write operations. HP-Mapper provides
�ne-grained copy-on-write to improve I/O performance, but how to
support this feature without introducing extra overhead is challeng-
ing. Note that simply decreasing block size (i.e., unit of copy-on-
write) will introduce a lot of overhead, such as memory overhead
and lookup overhead of metadata . To address this challenge, we
design a two-level mapping strategy in HP-Mapper with a careful
design to reduce the memory overhead and disk fragments.
Intercepting redundant I/Os. HP-Mapper intercepts redundant
I/O requests so as to retrieve data from memory instead of disks as
much as possible. However, current storage drivers do not provide
a mechanism to detect and intercept redundant I/O requests, and

there are two challenges. The �rst challenge is how to accurately
detect redundant I/O requests with low overhead, e.g., traditional
content-based comparison methods must introduce a large over-
head. The second one is how to locate the needed data from page
cache requested by redundant I/Os. Note that cached pages are
often moved and modi�ed by the host kernel and containers, so
how to obtain correct data from memory is non-trivial.
Managing duplicate cached data. Current storage drivers usual-
ly introduce a lot of duplicate data in page cache and thus reduce
the cache e�ectiveness, and two challenges exist to e�ciently man-
age duplicate cached data. First, how to �nd duplicate pages in page
cache is di�cult, because traditional memory deduplication meth-
ods (e.g., KSM [17]) do not support deduplication in page cache, and
they will introduce a large overhead by comparing pages’ content.
Second, how to determine which cached pages need to be evicted is
also challenging, because we need to consider not only the access
frequency of cached pages, but also the amount of duplicate data
and the memory utilization of the host.

3 DESIGN OF HP-MAPPER
HP-Mapper is an e�cient storage driver for Docker containers. In
this section, we �rst introduce the overall design of HP-Mapper,
then present the details of its key components.

3.1 Overview of HP-Mapper
HP-Mapper works at the block level and follows block-based mech-
anisms to store and manage images. It provides �ne-grained copy-
on-write and high cache e�ciency. As shown in Fig. 4, HP-Mapper
consists of three modules to realize its key features: Address mapper,
I/O interceptor and cache manager. First, to support �ne-grained
copy-on-write with low memory overhead, the address mapper em-
ploys a two-level mapping strategy to support two di�erent block
sizes in logical volumes, and adopts an on-demand block allocation
mechanism for di�erent write requests to achieve both high copy-
on-write performance and low overhead. Next, to e�ciently reduce
redundant I/O requests, the I/O interceptor provides a lightweight
intercepting mechanism, which can accurately detect redundant
I/O requests so to read data from page cache instead of disks. Finally,
the cache manager is used to reduce redundant cached data based
on an e�cient monitoring method and eviction policy.

The work �ow of HP-Mapper is also illustrated in Fig. 4. When
containers read/wirte a data block with its virtual block number
(VBN), the address mapper �rst translates it into physical block
number (PBN) by using its mapping trees. Then the address mapper
uses an on-demandmechanism to allocate new blocks with di�erent
sizes for both copy-on-write operations and new writes. Finally,
the I/O interceptor checks the I/O request and intercepts it if it
is redundant. The cache manager is created as a daemon thread,
which periodically scans all cached pages and decides which pages
need to be evicted. We introduce the three modules in details in the
following subsections.

3.2 The Address Mapper
To obtain low copy-on-write latency of small blocks and low lookup
overhead of large blocks at the same time, HP-Mapper develops
a two-level mapping tree to support two kinds of block sizes (i.e.,
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large blocks and small blocks), and it also provides an on-demand
allocation mechanism to selectively allocate large blocks or small
blocks for di�erent I/O requests. In particular, HP-Mapper perform-
s copy-on-write at the granularity of small blocks to reduce the
update overhead, and allocates large blocks for new writes to lower
the lookup overhead and space overhead of the mapping tree. How-
ever, several key technical issues need to be addressed: (1) How to
design the two-level mapping tree to avoid high memory overhead
and high lookup overhead? (2) How to design a selective block
allocation policy for di�erent write requests to achieve both high
storage e�ciency and high I/O performance? (3) How to reduce
fragmentation brought by the two-level mapping strategy?

The two-level mapping tree. The one-level B-tree [24] adopted
by DeviceMapper uses a �xed-length part of the VBN to index a
physical block. As a result, DeviceMapper only supports one kind
of block size. As shown in Fig. 5, we develop a two-level B-tree in
HP-Mapper to support indexing two kinds of blocks: large blocks
and small blocks. Speci�cally, we use values of the leaf nodes at the
�rst level to di�erentiate the mappings. If the �rst bit of the value
is set as 1, then the remaining bits of the value store the PBN of a
large block. Otherwise, i.e., the �rst bit is set as 0, then we use the
value to store the root of a second-level B-tree so as to index small
blocks.

To perform the two-level mapping, the VBN of an I/O request is
divided into three parts. The �rst part is used as an index to look up
in the �rst level of the mapping tree. If the value in the �rst level
points to a large block, then both the second and third parts are
used as the o�set in a large block. Otherwise, the second part of
the VBN acts as the index of the second-level tree, and the third
part is used as the o�set in a small block. Moreover, HP-Mapper
can make �exible conversion from large blocks to small blocks
by simply adding a second-level mapping tree. Note that we set
the block sizes of large blocks and small blocks as 512KB and 4KB
respectively. By using these two block sizes, we can ensure that all
information of a second-level tree can be exactly accommodated by
one physical block, which reduces the storage overhead and lookup
overhead of the mapping tree.

key … key
… …

key …
1xx
(PBN) … …

... …

… … …

key …

… 0xx
(root) …

… …

key … key
… …

key …
PBN … …

... …
… … …

key …

PBN … …… …

…

…

Root of Level-1

Root of Level-2

Figure 5: Structure of the two-level mapping tree

To support fast lookup of the mapping tree, HP-Mapper also
splits I/Os to align with the block size, and the work �ow of the
address mapper is as follow. First, HP-Mapper splits large I/O re-
quests to make sure that each split I/O can �t in one large block.
That is, both the start and the end addresses of each split I/O could
be located at the same large block. Then, HP-Mapper searches the
VBN of the split request and translates it to PBN if it targets a large
block. Otherwise, HP-Mapper further splits the I/O to �t in small
blocks. After splitting, HP-Mapper ensures that the target sectors
of each I/O are continuous on the physical devices.

The on-demand allocation mechanism. Next, we propose an
on-demand allocation mechanism to allocate new blocks for I/O
requests which target new virtual blocks, such as copy-on-write op-
erations and new writes. Speci�cally, for copy-on-write operations,
the goal is to avoid copying unnecessary data, soHP-Mapper choos-
es the appropriate block size based on the request size. For example,
HP-Mapper allocates small blocks if the request size is less than half
of the large block size. Otherwise, it allocates large blocks. With
this policy, HP-Mapper can perform �ne-grained copy-on-write
operations to achieve high I/O performance. On the other hand, to
reduce the frequency of triggering block allocation and lower the
overhead of the mapping tree, HP-Mapper allocates large blocks
immediately for new writes to improve the I/O performance. We
note that new writes usually perform writing on contiguous virtual
blocks, so they can make full use of the allocated large blocks. More
importantly, most image �les are written to disk with new writes.
Hence, such an allocation mechanism can ensure that most blocks
are allocated as large blocks, which signi�cantly reduces the lookup
overhead and the memory overhead of the mapping tree. Addition-
ally, after the allocation of new blocks, HP-Mapper needs to update
the mappings in the mapping tree to point to the newly allocated
blocks. Speci�cally, when performing a �ne-grained copy-on-write
operation on a large block, HP-Mapper needs to split the block and
remap it into several small blocks.

Reduction of disk fragments. By adopting two block sizes, HP-
Mapper may generate a lot of fragments on disk, which further
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leads to the under-utilization of disk space. To alleviate this prob-
lem, we develop a new block placement policy for HP-Mapper.
To be speci�c, HP-Mapper divides the storage space of a physical
device into two partitions. The �rst partition is allocated and used
at the granularity of large blocks, and the second partition is allo-
cated and used at the granularity of small blocks. Such a separated
placement of blocks with di�erent sizes can signi�cantly reduce
the fragments and improve the storage e�ciency. Furthermore, we
also propose a defragmentation policy to avoid the second partition
to be depleted. In particular, HP-Mapper triggers defragmentation
when the physical device is at idle, and it copies the scattered small
blocks which once belonged to a same large block, combines them
as large blocks, and places them to a contiguous physical space in
the �rst region.

3.3 The I/O Interceptor
The I/O interceptor is responsible for detecting redundant read
requests and intercepting them to read from the page cache so as
to improve read performance on shared data. To achieve this goal,
three key problems need to be addressed: (1) How to accurately
detect redundant I/O requests and obtain the needed data from page
cache with an accuracy guarantee? (2) How to manage the metadata
to achieve high lookup performance with low memory overhead?
(3) How to design the work�ow to accelerate the interception of
redundant I/O requests?

Detecting redundant I/Os and obtaining data. First,HP-Mapper
provides a lightweight method to detect redundant I/O requests. If
two or more I/O requests read data from the same data blocks, we
treat them as redundant I/Os. To achieve this, we �rst record the
PBN of the recent read requests in a hash table, then check each
new read request by looking up their PBN in the hash table. If an
I/O request is found in the hash table, we treat it as a redundant I/O
and then intercept it by reading from the page cache immediately.

However, accurately retrieving the needed data of a redundant
I/O from cache is di�cult, because the cached pages are changeable
and moveable in memory. To handle this problem, HP-Mapper
records the metadata of the �le system and �les which can be used
to locate the cached pages, such as super block of the �le system,
inode ID of �les, and the o�set in �les. After �nding the needed

Containers
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Figure 7: Work�ow of the I/O interceptor

cached pages, HP-Mapper checks �ags of these pages and copies
data from them only if they are clean and up-to-date.

Management of metadata. To support fast lookup, HP-Mapper
maintains the above mentioned metadata in a hash table, and uses
the PBN of I/O requests as the key to �nd the corresponding entries
in the hash table as shown in Fig. 6. The entries in the same bucket,
which have the same hash value, are linked in a two-dimensional
list. In particular, HP-Mapper uses two kinds of entries to store
the metadata of cached pages: head entries and tail entries. A data
block only has a single head entry to store the metadate of its latest
cached copy, and the metadata of other copies are maintained in
tail entries. HP-Mapper links all entries of the same block with
“tail” pointers, and links head entries of di�erent blocks with “next”
pointers. Moreover, some other metadata are stored as value of the
entries, such as super block, inode ID and so on. Here, we emphasize
that HP-Mapper does not store o�set of blocks in the hash table,
because the o�set of a shared block is �xed for di�erent I/Os, and
it can be obtained from the current I/O request. Our experiment
results (see Section 4.3) show that HP-Mapper can quickly and
accurately intercept redundant I/Os by using our hash table based
design with a little memory overhead.

Work�owof the I/O interceptor.Note that blocks in the writable
layer cannot be shared, so requests accessing these blocks are clear-
ly non-redundant. To accelerate the interception of redundant I/O
requests, we carefully design work�ow of the I/O interceptor. As
shown in Fig. 7, for each I/O, the I/O interceptor �rst checks whether
target block of the request is read-only and sharable. By taking this
step, HP-Mapper quickly excludes some non-redundant I/O re-
quests without searching them in the hash table. Then, HP-Mapper
checks whether the remaining I/O requests are redundant by look-
ing up their PBNs in the hash table. If target blocks of a request
cannot be found in the hash table, we treat it as a non-redundant
I/O, and read data from disks. Otherwise, we treat it as a redundant
I/O. Finally, HP-Mapper locates the needed data from other con-
tainers’ page cache, and read data from page cache if they exist and
are clean. Here we note that if an I/O request is redundant to mul-
tiple previous requests, HP-Mapper will check all corresponding
cached pages until we �nd a clean one. If the corresponding cached
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Figure 8: Work�ow of the cache manager

pages have been evicted or modi�ed, then HP-Mapper removes the
entries from the hash table. Additionally, after the completion of
I/O requests, HP-Mapper adds new entries for read requests and
removes old entries of write requests to guarantee the correctness
of the hash table.

We point out that several important issues are also addressed
to guarantee the accuracy of the work�ow. First, HP-Mapper uses
a variable (i.e., read_block) in the hash table to avoid a disk block
being read by multiple I/Os at the same time. Speci�cally, when a
read request is not found in the hash table, HP-Mapper inserts a
head entry into the hash table and sets read_block before reading
from disk, and unsets it after completion of the I/O. If a read request
hits in the hash table but the read_block is one, it will wait for
the completion of previous request on the same block. Second, if
some blocks of an I/O request hit in the hash table but others do
not, HP-Mapper will split the I/O request into multiple small I/O
requests and read data separately from memory and disk. Finally,
HP-Mapper uses a read-write semaphore to control read-write
permission of the hash table, which can avoid con�icts between
read and write operations, and it only causes a little impact on I/O
performance.

3.4 The Cache Manager
To e�ciently remove redundant data in page cache and also im-
prove the cache hit ratio, HP-Mapper takes into consideration of
both pages’ redundancy and pages’ hotness in cache manager. As
illustrated in Fig. 8, it �rst monitors all pages’ characteristics, in-
cluding the hotness information and the number of copies for each
block, then chooses candidate pages for eviction based on their
characteristics. The cache manager also provides a mechanism to
adaptively adjust the eviction strategy so as to balance cache redun-
dance and cache hit ratio. Several key issues must be addressed in
cache management: (1) How to monitor pages’ characteristics with
low overhead? (2) How to develop a good eviction policy to achieve
both low cache redundancy and high cache hit ratio? (3) How to
adaptively adjust the eviction strategy based on the utilization of
host memory?

Monitoring cached pages. Tomonitor real-time characteristics of
cached pages with low overhead, the cache manager is implemented
as a daemon thread, and scans all the cached pages periodically.
That is, the cache manager scans num_to_scan pages in each scan

period, and sleeps scan_inter�al between two contiguous periods.
Besides, the cache manager uses metadata in the hash table to
scan pages, and it scans all entries of the hash table and locates
the corresponding pages of each entry in order. After locating all
cached copies of a block, the cache manager can obtain the number
of clean copies of the scanning block, as well as the hotness of each
cached copy, which can be obtained by calling page_referenced()
provided by Linux kernel. Thus, the cache manager can use very
little overhead to monitor all pages’ characteristics in real time (see
Section 4.2). An example of the monitored information is shown in
Fig. 8.

Page eviction. After scanning all cached copies of a data block,
the cache manager will choose candidate pages for eviction based
on their hotness and the total number of copies. To remove unnec-
essary redundancy, HP-Mapper limits the maximum number of
cached copies for each block de�ned by copies_limit. Meanwhile, to
improve cache hit ratio, HP-Mapper also takes hotness into consid-
eration in the eviction. Fig. 8 also shows the eviction policy, if the
number of copies is not greater than copies_limit, then HP-Mapper
only evicts cold pages which has low access frequency. Otherwise,
HP-Mapper �rst evicts cold pages, then evicts hot pages from tail
of the list. The rationale is that tail page in the list is always the
earliest one to be cached and has the longest lifetime. Thus, evicting
tail page can improve the cache e�ciency. Note that our eviction
strategy only causes a negligible slowdown when containers read
the evicted pages again, because the I/O interceptor of HP-Mapper
enable the data to be read from other cached copies. Moreover, we
emphasize that our eviction strategy only works on clean pages
which are not locked or mapped into the page table, because locked
and mapped pages are being used by other processes and cannot
be evicted. Additionally, HP-Mapper will remove all invalid entries
after the completion of cache eviction, and this also reduces lookup
overhead of the hash table.

Adaptive adjustment of copies_limit. HP-Mapper also enables
to adaptively adjust the value of copies_limit based on the utilization
of host memory so as to balance the cache redundancy and cache hit
ratio. Meanwhile, to avoid frequent adjustment, HP-Mapper classi-
�es memory utilization into three states (low, normal and high) by
using two thresholds (i.e., Threshlow and Threshhi�h ), and adjusts
the number of copies accordingly. Speci�cally, if memory utilization
is low (i.e., lower than Threshlow ), the cache manager will double
the value of copies_limit to cache more copies for each block so as to
improve the cache hit ratio for each block. If memory utilization is
high (i.e., higher thanThreshhi�h ), the value of copies_limit will be
halved so as to reduce duplicate cached data and enable more blocks
to have pages being cached. If memory utilization is at the normal
state (i.e., between Threshlow and Threshhi�h ), then copies_limit
will keep unchanged so as to avoid ping-pong e�ect. With this
adaptive scheme, HP-Mapper achieves a consistent improvement
on cache e�ciency and I/O performance under di�erent levels of
memory utilization.

4 EVALUATION
To evaluate HP-Mapper, we implement a prototype in Linux ker-
nel 3.10.0 to act as a plug-in module. In particular, we emphasize
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Average Num. of Execution Preallocated I/O size Proportion
File Size Files Time Files read new-write append update read new-write append update

Seqread 4GB 1 60s 100% 1MB – – – 100% – – –
Seqwrite 4GB 1 60s 0% – 1MB – – – 100% – –
Randread 4GB 1 60s 100% 4KB – – – 100% – – –
Randwrite 4GB 1 60s 100% – – – 4KB – – – 100%
Mongo 16KB 250000 60s 100% WF – 16KB – 14.3% – 14.3% –
Varmail 16KB 250000 60s 80% WF 16KB 16KB – 15.4% 7.7% 7.7% –
OLTP 10MB 440 60s 100% 2KB – – 2KB 50.5% – – 49.0%

Table 2: Con�guration of Filebench workloads. WF stands for reading or writing the entire �le.

that HP-Mapper works transparently to containers. We then con-
duct experiments on CentOS 7.5, and compare HP-Mapper with
DeviceMapper (abbr. DM), BtrFS and Overlay2, which are state-of-
the-art storage drivers for Docker containers. Here, we set the block
size of DeviceMapper as 64KB, which is the minimal and default
block size supported by DeviceMapper. We emphasize that using
this block size can have a better copy-on-write performance, but
incurs larger metadata overhead. Moreover, we set the backing �le
system of these storage drivers as Ext4 (except BtrFS) to avoid its
impact on our experiment results. In the evaluation, we address the
following questions.

• How large is the overhead of CPU cycles and memory intro-
duced by HP-Mapper (Section 4.2)?

• How much improvement can HP-Mapper achieve in reduc-
ing redundant I/O requests and reducing start-up time of
containers (Section 4.3)?

• How much improvement can HP-Mapper achieve for the
I/O performance of containers? (Section 4.4)?

• How much memory can be saved with HP-Mapper and how
does HP-Mapper perform in memory-scarce systems (Sec-
tion 4.5)?

4.1 Setup
We conduct experiments on a server with an Intel Xeon E5-2650 v4
2.20GHz processor, 64GB memory, a 1TB hard disk (WD10EZEX),
and a 512GB SSD (Intel 545s). We conduct our experiments by using
a wide range of images and workloads. In particular, we �rst test
containers’ I/O performance with multiple workloads in Filebench
[41], which is a popular storage benchmark and has been widely
used in previous works [16, 22, 31, 43]. We list the con�guration of
these test workloads in Table 2. Note that in this table, we classify
the write operations into three categories: “append”, “new write”
and “update”. The append operations add some new data at the
end of existing �les, the new write operations write data to newly
created �les, and the update operations perform updating on exist-
ing data blocks. We note that most of the con�gurations are set as
default values in Filebench, except for the number of �les and the
running time. Next, we use three di�erent container images (i.e.,
Tomcat, Nextcloud and Vault) to evaluate HP-Mapper’s e�ect on
reducing redundant I/O requests (Section 4.3), reducing start-up
time (Section 4.3), and improving cache e�ciency (Section 4.5). We
emphasize that these images are selected from the most popular
ones in Docker Hub [8].

For the parameters of HP-Mapper, we choose the settings which
achieve high performance and low overhead. Speci�cally, we set
scan_inter�al of the cache manager as 20ms, and set num_to_scan
as 214. These settings can achieve both high scanning speed and low
scanning overhead. For copies_limit , we set its initial value as half
of the total number of containers. Finally, we set Threshlow as 60%
and set Threshhi�h as 80% to achieve a consistent improvement on
cache e�ciency.

4.2 Overhead of HP-Mapper
We �rst evaluate the overhead of HP-Mapperwhen simultaneously
launching 64 “Vault” containers, including CPU overhead, memory
overhead of metadata, and lookup overhead of the mapping tree
and hash table.
CPU Overhead. We �rst evaluate the overhead of CPU cycles,
which is mainly caused by the cache manager of HP-Mapper. Ta-
ble 3 shows the results. We see thatHP-Mapper only uses 4.1% CPU
cycles to monitor all cached pages and perform eviction. This result
demonstrates the lightweight nature of our cache management
mechanism. This is achieved mainly because HP-Mapper locates
all duplicate pages by only scanning metadata maintained in the
hash table, and obtains their characteristics directly from pages’
�ags maintained by Linux kernel. As a result, the cache manager
only introduces a little CPU overhead.

CPU Mem. overhead Lookup overhead
Overhead MT HT MT HT

4.1% 3.3MB 10.6MB 1.1 us < 0.1 us
Table 3: Overhead of HP-Mapper (MT represents Mapping
Tree, HT represents Hash Table)

Memory Overhead.We now evaluate memory overhead caused
by the metadata of HP-Mapper, including the mapping tree (MT)
and the hash table (HT). From Table 3, we �nd thatHP-Mapper only
uses 3.3MB memory to store the mapping tree, this is because most
of the data blocks are mapped into large blocks (i.e., 512KB). Thus,
HP-Mapper requires very little memory space to store the mapping
tree. Moreover, we also see that HP-Mapper only uses 10.6MB
memory space to store the hash table. In summary, the memory
overhead brought by HP-Mapper only accounts for less than 1% of
the total memory usage of containers, so it has a negligible impact
on containers’ performance.
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Figure 9: Total amount of reading/writing datawhen launch-
ing 64 containers from a single image

Lookup Overhead. Finally, we evaluate the overhead of looking
up the mapping trees and hash table. Table 3 shows that the average
cost of looking up the hash table and mapping tree are within
0.1us and 1.1us respectively. Note that these lookup costs are far
less than the latency of an I/O request, so they have a negligible
impact on containers’ I/O performance (see Section 4.4 for the I/O
performance).

4.3 Reduction of I/O Redundancy
One major bene�t of HP-Mapper is in reducing unnecessary I/O
requests during the startup of containers, which further reduces
containers’ startup time. Here, we note that startup time is an
important metric in many short-life containers [28]. In particular,
we evaluate the improvement of HP-Mapper in reducing container’
startup time by launching multiple containers simultaneously from
a single image. We note that we use this setup because starting
multiple containers from the same image is quite common in high-
density use cases such as CaaS [4]. We use iostat [11] to monitor the
total amount of data which is read from (or wrote to) disk during
the startup of containers.

The results are shown in Figure 9. From Figure 9(a), we �nd that
compared with DeviceMapper and BtrFS, HP-Mapper can reduce
92.6% - 98.7% of data which need to be read from disk during the
startup of containers. This is because HP-Mapper can intercept
redundant I/O requests when multiple containers read the same
data block. On the other hand, for the total amount of writing da-
ta shown in Figure 9(b), we can see that HP-Mapper can reduce
53.6% and 85.3% writing data on average when comparing with
DeviceMapper and Overlay2, respectively. We note that the reduc-
tion of writing data comes from our �ner-grained copy-on-write
method. Additionally, HP-Mapper reduces 59.5% writing data on
average compared with BtrFS, and this improvement mainly comes
from the reduction of unnecessary copy-on-write operations on
the �les in writable layers.

Finally, we test total startup time of 64 containers when launch-
ing them from a single image on SSD or HDD, and show the results
in Figure 10. From Figure 10(a) we see thatHP-Mapper achieves the
fastest startup speed in most test cases. In particular, HP-Mapper
reduces the average startup time of containers by 25.6% - 54.6% com-
pared with the other three storage drivers. These improvements are
mainly due to the reduction of unnecessary I/O requests. Moreover,

0

20

40

60

80

To
ta

l s
ta

rt
up

 ti
m

e 
(s

)

DM BtrFS Overlay2 HP-Mapper

(a) Test on SSD

0
100
200
300
400
500
600

To
ta

l s
ta

rt
up

 ti
m

e 
(s

)

DM BtrFS Overlay2 HP-Mapper

(b) Test on HDD

Figure 10: Total startup time when launching 64 containers
from a single image on SSD/HDD
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Figure 11: Total startup time when launching a container
from a image on SSD/HDD

we also test startup time of containers when launching from HDD.
The results in Figure 10(b) show that HP-Mapper can improve the
startup speed of containers by 2.0⇥ - 7.2⇥ compared with the other
three storage drivers. This is because I/Os become more expensive
on HDD, so the reduction of unnecessary I/Os can save more time.

Moreover, we also test startup time of a single container, and
show the results in Figure 11. From Figure 11(a) we see that startup
speed of containers when using HP-Mapper is faster than using
DeviceMapper or BtrFS, but it is a little slower than using Overlay2.
This is because HP-Mapper spends more time on the initialization
of storage, such as creating virtual devices and mounting them
for the launching container. However, when launching a container
fromHDD,HP-Mapper can always achieve the fastest startup speed
due to its better I/O performance. Overall, HP-Mapper also can
perform well in low density scenarios.

4.4 Improvement of I/O Performance
Another major bene�t of HP-Mapper is improving containers’ I/O
performance by using two-level mapping strategy and on-demand
allocation mechanism. To validate this, we evaluate the I/O per-
formance of HP-Mapper. Speci�cally, we �rst evaluate the perfor-
mance of basic I/O operations and then evaluate I/O performance
of real-world workloads.

First, we evaluate the copy-on-write latency of di�erent storage
drivers. We emphasize that copy-on-write latency is one of the
most important metrics to measure containers’ I/O performance.

333



SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA Fan Guo, Yongkun Li, Min Lv, Yinlong Xu, and John C. S. Lui

For example, the process of starting up containers introduces a
lot of copy-on-write operations. To evaluate copy-on-write perfor-
mance, we perform copy-on-write operations by writing 4KB data
to each read-only �le, whose size varies from 4KB to 16MB. The
results are shown in Table 4, and we �nd that HP-Mapper always
achieve optimal or near-optimal copy-on-write performance on all
test cases. In particular, HP-Mapper reduces up to 90.6% and 99.8%
copy-on-write latency comparing with DeviceMapper and Over-
lay2, respectively. This is because that HP-Mapper can perform
copy-on-write operations at the granularity of 4KB blocks, which
is usually the smallest unit of I/O length, so it does not need to read
or write unnecessary data.

File Size 4KB 64KB 1MB 16MB
DM 0.13 0.74 0.96 1.39
BtrFS 0.09 0.09 0.09 0.10

Overlay2 1.99 2.49 7.14 61.7
HP-Mapper 0.07 0.08 0.10 0.13
Table 4: Copy-on-write latency (ms)

0

100

200

300

400

500

Seqread Seqwrite

Ba
nd

w
id

th
 (M

B/
s)

DM BtrFS Overlay2 HP-Mapper

0

20

40

60

80

Randread Randwrite

IO
PS

 (K
)

DM BtrFS Overlay2 HP-Mapper

Figure 12: Performance of basic I/O operations (on SSD)

Next, we also evaluate the performance of basic I/O operations
(i.e., sequential read, random read, sequential write and random
write) by using the micro workloads in Filebench as listed in Table 2.
We point out that to avoid the impact of copy-on-write operations,
we issue random write to writable �les. The results are shown in
Figure 12. We can see that HP-Mapper always achieve the optimal
or near-optimal performance on all basic I/O operations, so improv-
ing copy-on-write performance in HP-Mapper does not sacri�ce
the performance of other basic I/Os. In particular, HP-Mapper even
improves sequential write bandwidth by 10.1% comparing with
DeviceMapper. This is because HP-Mapper always allocates large
blocks (512KB) for sequential writes, which can reduce the allo-
cation frequency and thus improves I/O performance. Moreover,
BtrFS performs much worse than other storage drivers for random
write, and this slowdown mainly comes from its copy-on-write
strategy, which performs copy-on-write on all existing data in both
writable and read-only layers [44], and thus causes a large overhead
on the update of metadata.

Lastly, we evaluate the overall I/O performance of containers by
running �lebench workloads, “Mongo”, “Varmail”and “OLTP”, and
the workload con�gurations are listed in Table 2. In particular, we
package the pre-allocated data of these workloads into the images
to act as initial data. The results are shown in Figure 13. From
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Figure 13: Performance of �lebench workloads

Figure 13a, we �nd that HP-Mapper performs much better than
Overlay2 when running “Mongo” and “Varmail” on SSD. Because
there are many append operations in these two workloads, and
HP-Mapper can handle append operations by simply adding new
blocks at the end of �les, but Overlay2 needs to copy the entire
�le and append data at the end of the new �le, which is more
expensive than block-based drivers. Furthermore, compared with
DeviceMapper, HP-Mapper improves the throughput by 18.9% and
18.2% for “Mongo” and “Varmail” respectively. We note that the
improvements come from the low allocation overhead of new blocks
and low lookup overhead of the mapping tree. Furthermore, for the
update-intensive workload (i.e., “OLTP”), HP-Mapper improves the
throughput by 39.4% comparing with the other three drivers due to
its low copy-on-write overhead and its in-place update strategy for
writable layers. From Figure 13b, we �nd that HP-Mapper can also
get improvements when running workloads on HDD. In summary,
HP-Mapper can achieve the best I/O performance in most scenarios,
especially for write-intensive workloads.

4.5 Improvement of Cache E�ciency
Now we evaluate the improvement of cache e�ciency with HP-
Mapper. We �rst conduct experiments to evaluate the cache usage
of containers when launching 64 containers from a single image,
and the results are shown in Figure 14. We �nd that HP-Mapper
always achieve the minimal cache usage in all test cases, e.g., HP-
Mapper reduces 65.4% - 75.5% cache usage, when comparing with
the other three storage drivers. This is because DeviceMapper and
BtrFS generate many cached copies when multiple containers read
the same block, and Overlay2 also generates duplicate pages due to
the �le-based copy-on-write. HP-Mapper, on the other hand, moni-
tors all cached pages, and evicts cold copies and unnecessary hot
copies, so it can signi�cantly reduce the cache usage. We emphasize
that the reduction of cache usage does not cause any slowdown on
containers’ performance, as shown in Sec. 4.4 and Sec. 4.3.

We further conduct experiments to evaluate the performance in
a memory-scarce scenario. Speci�cally, we limit the host memory
by running an in-memory �le system (hugetlbfs [9]) to occupy
certain amount of memory space on the host, and pages held by
hugetlbfs cannot be swapped out. This way, we can �exibly adjust
the size of host memory for running containers. In particular, we
�rst gradually reduce the total available memory on the host to
simulate a memory-scarce system, and then evaluate the startup
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Figure 14: Page cache usage when launching 64 containers
from a single image
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Figure 15: Total startup time of launching 64 containers in
memory-scarce systems (test on SSD)

time of containers. The results are shown in Figure 15. We can
see that as the total available memory space decreases, the startup
speed of containers using HP-Mapper drops much slower than that
of using the other two drivers. For example, when reducing the
host memory from 12GB to 4GB, the startup time of “Nextcloud”
containers increases by up to 114.5% when using DeviceMapper, but
it only increases by 5.9% when using HP-Mapper. This is because
HP-Mapper can signi�cantly reduce duplicate data in page cache,
so it increases the hit rate of page cache and reduces the frequency
of page swapping and disk I/Os.

5 RELATEDWORK
Container-based virtualization is an emerging solution that can be
considered as a lightweight alternative to the traditional VM-based
virtualization (e.g., KVM [32] and Xen [20]), and it has many rep-
resentative implementations, such as Docker [35], LXC [29] and
Linux-Vserver [25]. Moreover, many researchers focus on container-
based virtualization and propose various optimization techniques
to improve containers’ performance [36, 42] and security [18, 39].
However, we note that none of the above works focus on contain-
ers’ storage drivers to study the ine�ciency problem in both I/O
performance and memory management.

There are also some works paying attention to the I/O perfor-
mance of containers. For example, Xu et al. [44] conduct extensive
experiments to compare the performance of di�erent Docker s-
torage drivers, and they later propose an e�cient I/O scheduling
mechanism for containers that are concurrently executing [21].
Harter et al. [28] propose a Docker storage driver to enable fast

container deployment by lazily pulling image data from remote
registry so as to reduce network I/O. Du et al. [26] introduce a rapid
container deployment system based on sharing network storage,
which can reduce transferred data during the deployment. Unlike
these works, HP-Mapper focuses on the native I/O performance
of storage drivers, and it improves their native I/O performance
by reducing redundant I/O requests and providing �ner-grained
copy-on-write.

On the other hand, memory e�ciency is also an important issue
in container-based systems, and it also attracts the attentions of
researchers. For instance, Chen et al. [23] propose a resource allo-
cation mechanism for container-based clouds to improve memory
e�ciency, and it is implemented based on a combination of auction
and simulated annealing algorithms. Awada et al. [19] and Mao et
al. [34] focus on the placement of containers in a cluster so as to
improve the e�ciency of both memory and CPU. Di�erent from the
above works, HP-Mapper pays attention to the cache ine�ciency
problem of containers, and it realizes an e�cient cache manage-
ment mechanism to reduce duplicate cached data so as to improve
memory e�ciency.

6 CONCLUSION
In this paper, we propose HP-Mapper, a high performance Dock-
er storage driver, to address the ine�ciency problem of current
storage drivers on I/O performance and cache management. HP-
Mapper supports �ner-grained copy-on-write by using a two-level
mapping strategy. It also signi�cantly reduces redundant I/Os and
duplicate cached data by using a lightweight interception method
and an e�cient cache management mechanism, respectively. Our
experiment results show that both the I/O performance and cache
e�ciency of containers can be greatly improved with HP-Mapper.
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