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Abstract—In this paper, we propose a highly efficient scheme,
SLICE (a scalable and low stretch routing scheme), enabling
greedy routing for wireless sensor networks (WSNs) deployed
in complex-connected 3-D settings, whose topologies are often
theoretically modeled as high genus 3-D WSNs. Compared to
previous 3-D greedy embedding techniques, SLICE improves both
the robustness and applicability. 1) It achieves a smaller distance
distortion and a lower routing stretch with guaranteed delivery.
While it follows the basic idea to embed the surface network to a
planar topology to enable greedy routing, the embedding method
proposed in SLICE is novel. We first slice the surface network to a
genus-0 open surface with exactly one boundary. Then, to achieve
a lower distance distortion, we purposely propose a variation of
the Ricci flow algorithm, by which this open surface is flattened
not to a planar annulus, but to a planar convex polygon, resulting
in a lower routing stretch. 2) This is the first work, to the best
of our knowledge, that enables greedy routing in high genus 3-D
WSNs with general topologies. SLICE not only works for high
genus 3-D surface WSNs, but also can be easily adapted to more
general cases: high genus 3-D surface networks with holes, and
high genus 3-D volume networks. For a high genus 3-D surface
network with holes, SLICE embeds it to a planar convex polygon
with circular holes, where our proposed greedy routing variation
can be applied. For a high genus 3-D volume network, SLICE
embeds the inner nodes to a height structure attached to the
convex polygon, and a variation of greedy routing scheme with
guaranteed delivery is proposed in this structure. The effectiveness
of SLICE is validated by extensive simulations.

Index Terms—Greedy routing, embedding techniques, WSNs,
high genus, complex-connected 3-D settings.
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I. INTRODUCTION

A S THEIR scales dramatically increase and their topolo-
gies become much more complex [2], [3], wireless sensor

networks (WSNs) with complex shapes are in an urgent need
for scalable greedy routing as a critical enabling component.
Examples of such networks include: 1) high genus 3-D closed
surface WSNs [4], e.g., corridors of buildings as shown in
Fig. 1(a) and (b); 2) high genus 3-D surface WSNs with holes,
e.g., coal mine tunnels as shown in Fig. 1(d) and (e); 3) high
genus 3-D volume WSNs, e.g., underwater networks as shown
in Fig. 1(g) and (h). The WSNs deployed in these scenarios
are often of complex-connected 3-D settings with nontrivial
topologies (i.e., multiple handles) and can be collectively called
high genus 3-D WSNs.
In this paper, we focus on schemes enabling greedy routing

in high genus 3-D WSNs with general topologies. While there
exist a series of previous studies exploring greedy routing for
2-D networks [5]–[7] and simple 3-D volume networks (with at
most one inner boundary) [3], few of them can work for high
genus 3-D WSNs. In the following, we first review previous
work on greedy routing in 2-D/3-D scenarios before we present
our ideas.

A. Related Work

Greedy routing forwards packets by selecting next hops that
are progressively closer to the destination. It is appealing for its
simplicity and scalability, as its routing decision is made with
only local knowledge. However, a packet may get stuck in a
local minima, where greedy forwarding cannot proceed. To deal
with this, face routing [5], [8] exploits the fact that a concave
void in a 2-D planar network is a face with a simple perimeter.
When a local minima is encountered, the packet employs face
routing to traverse along the perimeter, until greedy forwarding
is achievable. In contrast to a 2-D planar network, the void in
3-D is not a 2-D face, and its perimeter becomes a surface, so
there does not exist a deterministic localized algorithm that
guarantees delivery in 3-D networks [3], [9], rendering face
routing infeasible for 3-D WSNs due to an arbitrarily large
number of possible paths to be explored. To tackle this issue,
several approaches [10]–[12] are proposed to enable greedy
routing with structure-based routing. For example, a recent
proposal, multihop Delaunay triangulation (MDT) routing [12],
utilizes a virtual Delaunay triangulation to aid greedy routing.
When it is stuck at a local minima, a packet is forwarded via
a virtual link to a multihop Delaunay triangulation neighbor
closest to the destination. However, the construction and main-
tenance of MDT are not purely localized and require centralized
operations.
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Fig. 1. Networks of (a), (b) corridors of buildings, homotopically equivalent
to (c) a genus-2 3-D closed-surface network. (d), (e) Coal mine tunnels,
homotopically equivalent to (f) a genus-2 3-D surface network with holes.
(g), (h) Underwater aquariums, homotopically equivalent to (i) a genus-2 3-D
volume network.

A theoretically sound solution to ensure the success of greedy
routing in 3-D networks is greedy embedding [3], [13], which
maps the original 3-D topology to a planar surface or to a vir-
tual sphere where greedy routing can be applied. For instance,
bubble routing algorithm proposed in [13] first decomposes
a 3-D network into a set of hollow spherical cells (HSCs).
While routing across HSCs is guided by a global routing table,
greedy routing in an HSC is guaranteed by a continuous and
one-to-one spherical mapping as well as a virtual tree structure
established inside each HSC. Nevertheless, none of these
greedy embedding algorithms can be extended to high genus
3-D surface WSNs [4]. The reason is that the surface of the
embedded topology should be continuously deformed to the
surface of the embedding topology, i.e., and should be
in the same homotopy class. A high genus 3-D surface WSN [as
shown in Fig. 1(c)], however, is apparently not homotopically
equivalent to a 2-D planar surface or a 3-D sphere [14], and
thus greedy embedding is not directly applicable for high genus
3-D surface WSNs.
Yu et al. [4] conducted a pioneer work on scalable routing in

high genus 3-D surfaces. They first utilized graph embedding to
decompose the network into genus-0 components (called pants
in the original paper), and then enabled greedy routing following
a two-level paradigm similar to that in [15]. However, one major
concern of this approach is its centralized operations of finding
the genus and decomposing the network, which makes the al-
gorithm impractical for distributed sensor networks. Besides,
the compact routing among components requires every node to
maintain a routing table to all other components [4], possibly re-
sulting in high storage overhead on individual nodes when the
network grows large and becomes more complex.
The only distributed and scalable solution for routing in high

genus 3-D surfaces was proposed in our previous work [1],
where we proposed a distributed algorithm, SINUS, to slice the
high genus surface to form one single genus-0 surface with two
boundaries, which was then mapped to a planar annulus via the
Ricci flow for delivery guaranteed greedy routing. Though it

Fig. 2. (a) SINUS converted texture. (b) SLICE converted texture. Even dis-
tribution of the black and white rectangles indicates a small distance distortion.

guarantees the packet delivery, this method may introduce a
large distortion in distance metric ]see Fig. 2(a)], when map-
ping the generated genus-0 surface to a planar annulus, as the
planar annulus is not a good approximation in shape to preserve
the distance metric on the genus-0 surface, as to be discussed in
Section II-C.
In addition, both algorithms [1], [4] provide no solution for

high genus 3-D surfaces with holes [e.g., Fig. 1(f)] or high
genus 3-D volume WSNs [e.g., Fig. 1(i)], which are nontrivial
topologies for complex-connected 3-D WSNs deployed in real
settings.

B. Our Contributions
In this paper, we propose SLICE, a scalable and distributed

routing algorithm with guaranteed delivery and low stretch for
high genus 3-DWSNs. As a follow-up of our previous work [1],
SLICE provides two more salient features: 1) It achieves a
smaller distance distortion and thus a lower routing stretch
while still guaranteeing a 100% packet delivery [see Fig. 2(b)].
2) It is the first scheme, to the best of our knowledge, that
enables greedy routing in high genus 3-D WSNs with general
topologies: SLICE not only works for high genus 3-D surface
WSNs, but also can be easily adapted to high genus 3-D surface
networks with holes and high genus 3-D volume networks.
More specifically, we start with a genus- surface network

without holes by first extracting a maximum cut set ( cuts)
based on the Reeb graph. Then, those cuts are connected
leveraging the idea of Depth-First-Search (DFS). By doing so,
a genus-0 open surface with exactly one boundary emerges.
To achieve a low distance distortion, we purposely propose a
variation of the Ricci flow algorithm, by which we flatten this
genus-0 open surface into a planar convex polygon. Finally,
greedy routing is allowed on the planar convex polygon via
assigning nodes virtual coordinates.
SLICE can be further extended to more general cases: high

genus 3-D surface networks with holes and high genus 3-D
volume networks. For a high genus 3-D surface network with
holes, SLICE embeds it to a planar convex polygon with cir-
cular holes, where our proposed greedy routing variation can
be applied. For a high genus 3-D volume network, SLICE em-
beds the inner nodes to a height structure attached to the convex
polygon, and a variation of the greedy routing schemewith guar-
anteed delivery is proposed based upon this structure. In sum-
mary, SLICE has the ability to improve the robustness and ap-
plicability as compared to previous studies.
The rest of the paper is organized as follows. We describe the

theoretical foundation of our proposed algorithm in Section II.
In Section III, we introduce our SLICE algorithm for WSNs on
high genus 3-D surfaces. In Section IV, we extend SLICE to
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Fig. 3. (a) Genus-1 torus with contour lines. (b) Reeb graph of the genus-1
torus in (a).

more general topologies including high genus 3-D surfaces with
holes and high genus 3-D volumes. In Section V, we discuss
the time complexity, the message complexity, and the storage
cost of SLICE. Simulation results are illustrated in Section VI.
Finally, Section VII concludes the paper.

II. PRELIMINARY

A. Cut and Genus
In the content of algebraic topology [16], a cut is referred

to as a nonintersecting closed simple curve on a connected and
orientable surface . One notable property of a cut is its ability
to locally disconnect the topology of . We call a cut set of

amaximum cut set, if and only if:
1) every two cuts in belong to different homotopy classes,
i.e., one cut cannot be smoothly deformed to another without
leaving the surface; 2) is connected;
3) is disconnected. Accordingly, the
genus [16] of is given by the cardinality of maximum cut set

, representing the maximum number of cuts on without
disconnecting . For example, Fig. 3(a) shows a genus-1 torus,
while Fig. 1(c) shows a genus-2 surface. Generally, one cut
is able to slice a genus- surface to genus- .
Following [1] where the surface is decomposed to a simple

genus-0 topology using cuts, our idea is to exploit a similar
method to achieve the sliced surface based on the Reeb graph
of , and we hereby put forward a variation of the Ricci flow
algorithm to embed it to a planar convex polygon, aiming at
achieving a lower distance distortion.

B. Morse Function and Reeb Graph
A Morse function [17] is defined as a mapping ,

from a manifold to a real number set . A typical Morse
function on sensor networks is a mapping from a succes-
sive of contour lines to a real set of the height
value [1], [18]. Specially, is called an -level set of the
Morse function. The structure of an arbitrary sensor network
surface (without holes) can be explicitly represented by the
Reeb graph that tracks the evolution of the connected compo-
nents of the level sets .
The Reeb graph [19] has a mathematical foundation in the

Morse theory. It can be obtained by contracting the connected
components of the level sets into points, based on the
topological changes of the level sets. Specifically, a point of the
Reeb graph corresponds to a connected component.Nodes of the
Reeb graph are formed by the points that pass through critical
points (namely, the minima, saddle, and maxima) of , where
the gradient of will vanish when the number of the con-
nected components of increases or decreases. Its arcs

are formed by the rest of the points, i.e., by the family of con-
nected components that do not change the topology. Therefore,
a Reeb graph is determined by the changes in the numbers of the
connected components of the level sets (see Fig. 3 for instance).
Based on the Reeb graph, we turn to extracting a maximum

cut set from . Our approach is motivated by the fol-
lowing theorem.
Theorem 1: The Reeb graph of a closed orientable genus-

2-manifold has exactly loops [20].
Theorem 1 implies that we can first identify all loops of the

Reeb graph, thereby finding a cut for each loop. Specifically, a
loop in a Reeb graph is associated with a node that ends the loop.
Definition 1: A region (arc of the Reeb graph) of is a

loop-end region if it is merged from two different regions by
a loop-end node of the Reeb graph.
Another observation is that the Reeb graph is a connected

graph and starts from exactly one node. That is, we have the
following corollary.
Corollary 2: Each loop in the Reeb graph of corresponds

to one loop-end arc.
As such, in order to identify a cut for one loop, our method

is to find the bisection in the loop-end region that disconnects
this loop, and further achieving the sliced surface before it is
embedded to a planar convex polygon.

C. Surface Ricci Flow and Its Variation

Ricci flow is an intrinsic geometric flow that deforms the
metric of a Riemannian manifold. It was introduced by Richard
Hamilton for general Riemannian manifolds in his seminal
work [21] and has been utilized to prove the Poincare conjec-
ture on 3-D manifolds [22]–[24].
1) Physical Intuition: Given a surface with a Riemannian

metric, the metric induces the Gaussian curvature. When the
metric is changed, the Gaussian curvature will be changed ac-
cordingly. Consider a deformation of the metric in the following
way: At each point, the metric is locally scaled such that the
scaling factor is proportional to the curvature at the point. After
the deformation, the curvature will be changed. As the deforma-
tion process is repeated, both the metric and the curvature will
evolve such that the curvature evolution is like a heat diffusion
process. In the end, the Gaussian curvature is constant every-
where, and the limiting metric is conformal to the original one.
2) Surface Ricci Flow: Surface Ricci flow is a powerful tool

to construct conformal Riemannian metrics, such that the met-
rics induce the user-defined Gaussian curvatures on the surface.
Let be a surface in , with a Riemannian metric induced
from the Euclidean metric of . The Gaussian curvature and
the geodesic curvature of are determined by the Riemannian
metric, while the total curvature is a topological invariant.
Theorem 3: (Gauss–Bonnet) Suppose is a compact 2-man-

ifold with its boundary . Then, the total curvature is given
by , where is the Gaussian
curvature on interior points, is the geodesic curvature on

is the area element under the metric , and is the Euler
characteristic number of .
The surface Ricci flow [25] deforms the metric of a Rie-

mannian manifold in the manner analogous to the heat diffu-
sion, by which the irregularities of the metric (see Fig. 4) can be
smoothed out. In particular, the curvature evolution is the same
as the heat diffusion on the surface: , where
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Fig. 4. Unevenly distributed curvature on 3-D surfaces depicted by color:
(a) genus-1 corridor network; (b) genus-3 smile network.

is the Gaussian curvature of the metric is the
Laplace–Beltrami operator induced by , and is the time
parameter. Let , then the surface Ricci flow can
be simplified as . It has been proved that for a
closed surface, if the total area of the surface is preserved during
the flow, the Ricci flow will converge to a metric such that the
Gaussian curvature is constant everywhere [21], [26].
3) Variation of Surface Ricci Flow: When directly applying

the surface Ricci flow to the genus-0 3-D surface , the total
curvature of , equal to , is evenly distributed on the
boundary . As a consequence, is mapped to a disk , as
is commonly used in [7] and [27]. Even though it guarantees
the packet delivery for greedy routing in such disk , this plain
method can introduce a large distortion in the distance metric
when mapping to a planar disk , especially when is a
3-D surface generated by slicing a high-genus surface . The
reason is that the plain methodmaps a 3-D open surface of any
shape to a disk , while for obtained by slicing high-genus
surface , the disk is not a good approximation in shape
of .
To better characterize the distance metric distortion, we have

the following definition.
Definition 2: Suppose and are two nodes on the surface

is the distance metric of and in , and
is the image distance metric of in the disk , then the
distance distortion in is defined as

(1)

where is the straight-line (or shortest) distance, and
is the distance stretch in .

Since the deformation process of Ricci flow is conformal
(angle-preserving) [28], [29], the value of the distance stretch
is closely related to the shape changes from to : the more
shape changes, the larger distance stretch will be. Therefore, a
larger distance stretch will induce a larger distance distortion.
The above point is further illustrated by the following ex-

ample: In Fig. 5(a), a genus-1 torus is sliced open by a cut
line in green and a slice line in blue. and are four
corner angles generated by the intersection of the cut line and
the slice line. Unfolding this sliced torus yields a 3-D open
surface that is close in shape to a rectangle in Fig. 5(b),
with two distance metric and parallel to direction

and , respectively, and equal to .
Fig. 5(c) presents the case when is mapped to a disk .
Obviously, becomes much shorter than due to the
distortion introduced by mapping to . It is also observed

Fig. 5. (a) Genus-1 torus. (b) General shape of the sliced torus . (c) Embed-
ding to a planar disk . (d) Embedding to a convex planar polygon .

that, if the corner angles , and are properly preserved
in the mapping process, the distance metric distortion can be
effectively relieved, as shown in Fig. 5(d), where and

remains close in length.
Motivated by this observation, we proposed a variation of

the Ricci flow, aiming at providing a mapping from a surface
to a convex planar polygon , so as to enable greedy routing

on , as well as to preserve the distance metric on as much
as possible. As is observed, the sliced surface is more like
a polygon shape, which is a flexible shape that can serve as a
better approximation of the genus-0 open surface . Also, the
intersection angles at the corner points (angle , and
in Fig. 5) are critical in preserving the shape of in the mapping
process. Therefore, in SLICEwe propose a variation of the Ricci
flow, by setting proper target curvatures for nodes, to map
to a polygon with its corner points' curvatures preserved to the
greatest extent. We present the detail in Section III.

III. SLICE ALGORITHM

This section presents the SLICE algorithm that deals with a
fundamental problem: embedding a network on a high genus
3-D surface into a planar surface as a whole to enable greedy
routing, while preserving the distance metric of the original net-
work to the greatest extent in order to reduce the distance dis-
tortion. The basic idea behind SLICE is as follows: Slice the
genus- surface to a simpler open surface for embedding,
and leverage a variation of the Ricci flow to flatten to a planar
convex polygon . The preprocess of SLICE is to compute a
triangulation from the original network via a simple distributed
algorithm as in [30] and [31]. The triangulated structure, ormesh
for short, forms a shape representation of the high genus 3-D
surface, as shown in Fig. 1(c). For the ease of presentation, we
still call the triangulated mesh as the high genus surface, de-
noted by henceforth. Overall SLICE mainly consists of four
steps.
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Fig. 6. (a) Cut pairs (green edges) identified on the genus-2 surface . (b) Disconnecting the cut pairs yields two curves that can be selected as the cut in each
loop-end region. (c) Genus-0 surface with cuts; each loop-end region selects one cut. (d) Connecting the cuts and slicing to , a genus-0 surface with
exactly one boundary. (e) Convex polygon with virtual coordinates. (f) SLICE realizes a variation of greedy routing.

Step 1:Wefirst identify amaximum cut set of , which
is used to slice to a genus-0 surface with cuts. To this
end, a flooding across is initiated by an arbitrary node ,
which implicitly constructs a Morse function by assigning each
node a level index. Based on the Morse function, a Reeb graph

that starts at node is also constructed in this process, by
assigning each node a region ID. Thereafter, all the loop-end
regions are identified, and next a bisection
operation is performed to extract a cut within each . All
the cuts form a maximum cut set ,
slicing the genus- surface to a genus-0 surface with
cuts, as illustrated in Fig. 6(c).
Step 2: We further slice to an open surface —a genus-0

surface with exactly one boundary. To do so, we propose to per-
form a DFS analog that slices open by connecting cuts with

slice lines, as illustrated in Fig. 6(d). In this process, if
a cut and a slice intersects at a node then identifies itself
to be an intersection node, as shown in Fig. 5(a) and (d).
Step 3: By applying a proposed variation of the Ricci flow,
is flattened into a convex polygon , with the vertices of

the polygon being the intersection nodes and the edges of the
polygon being the cuts and the slice lines [see Fig. 6(e)]. The
packet delivery of greedy routing is guaranteed on such convex
polygon . Moreover, the convex polygon can well preserve
the distance metric in the original high genus 3-D surface ,
enabling a low-stretch routing on . Every node in the network
is then given a virtual coordinate in , as illustrated in Fig. 6(e).
Step 4: In the virtual coordinate system, it is observed that a

source node can route to a destination node via two kinds
of paths: 1) traversing only the interior nodes; 2) across the
boundary [see Fig. 6(f)]. In SLICE, the source node
first estimates the distance of the two paths and then chooses
a shorter one for routing, thereby achieving a low stretch and
load balance greedy routing.
The whole process of SLICE, as an example, is shown in

Fig. 6.

A. Extracting a Maximum Cut Set

For a genus- surface , the first step is to find a maximum
cut set , aiming at slicing to a genus-0 surface based
on the Morse theory and Reeb graph. To this end, we exploit the
discrete geometry characteristics of .
In order to set up the Morse function of , an arbitrary root

node initiates a flooding across the whole network. By doing
so, every node learns its hop distance to and records its level
index as . All the nodes with a level index of belong to level-
of . A Morse function in discrete settings thus can be defined
as a mapping , where is a node in level- , and all the
nodes in level- are denoted by . We denote the max hop
count of nodes from as , that is, . Also, after a message
flooded from reaches a node records its parent fromwhich
it receives the message.
To construct a Reeb graph from the defined Morse function, a

distributed algorithm similar to that in [18] is carried out, which
involves two major steps.
First, the algorithm identifies the nodes in each connected

component in (level- ) with a component ID. To this end,
a randomly selected node in claims itself as a landmark
and floods within a message containing the node ID of
and its level index . Then, by a landmark selection process

similar to that in [32], each component selects a dominating
landmark, denoted by , with the smallest ID. As such,
the nodes in each component in are notified a component
ID.
Second, all components should be transformed to regions

(arcs) of the Reeb graph. This process starts from to
. We say a component in is connected with

a component in if there exists in the compo-
nent a node that has a neighbor in the component .
Then, the nodes and will notify the dominating landmarks

and in the components and , re-
spectively, of this connectivity. According to the Morse theory,
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Fig. 7. are in level- are in level- . (a) is con-
nected with and . (b) corresponds to component only.
(c) is connected with and .

there only exist three cases related to this connection, as shown
in Fig. 7. The dominating landmarks will notify the nodes in
the component if only corresponds to the component
. In this case, the nodes in are assigned the same region

ID as the nodes in component ; otherwise, the nodes in com-
ponent are assigned a new region ID. After this process,
every node is notified with a region ID.
Having the Morse function and Reeb graph, all the loop-end

regions can be identified directly: If the dominating landmark
in is notified that is connected with

and in level- [as shown in Fig. 7(c)], then and all other
components in the same region are notified to be in a loop-end
region.
Then, to extract the maximum cut set , each loop-end

region performs a bisection operation to extract a cut
as follows. Suppose a loop-end region consists of a set of
components where , then the bisection
operation in is initiated from to . The nodes in
reset its region ID to its parent's region ID. Since is the
first component of , it is the neighbor of two components
and [see Fig. 7(c)], and component and belongs to
region and , respectively. The nodes in change their
region ID to the region ID of or , respectively. Therefore,

is bisected and assigned to region or . This process is
carried out from to . Consequently, loop-end region

is bisected and two newly merged regions and are
generated.
Finally, we can obtain a simple cut curve constituted by a set

of connected edges. In a continuous domain, disconnecting
and will generate a simple curve, which is exactly a cut of
. Distinctively, in discrete settings, disconnecting and

will generate a pair of curves, as illustrated in Fig. 6(b). Either
one of them is a cut for . So the cut is obtained by discon-
necting and as follows. 1) Each node in loop-end region

will send a message to its neighbor in ; if has a dif-
ferent region ID with is notified to be a cut pair. 2) By
disconnecting all the cut pairs in loop-end region , two cuts

and are identified, as shown in Fig. 6(b). Either one of
them is selected to be the cut that disconnects and . Since
there are loop-end regions in , there are cuts identified
correspondingly in .

B. Slicing the Topology Open
Given a genus-0 surface with cuts, which is still com-

plex: It is not homotopically equivalent to any simple planar
topology [33]; we propose to further slice to —a genus-0
surface with exactly one boundary, which is homotopically
equivalent to a planar convex polygon.
To this end, we propose to perform a DFS analog that slices

open by connecting cuts with slice lines, as illus-
trated in Fig. 6(d). The pipeline of this slicing process is given

Fig. 8. (a) Connection graph of the Reeb components. (b) Tree structure .
(c) Slicing process by the DFS analog. (d) Slicing result.

in Fig. 8. After the bisection operation, the Reeb graph of in
Fig. 8(d) can be depicted in Fig. 8(a), where an aforementioned
region is represented by a node and the links displays the con-
nections between the regions. In each region, one dominating
landmark is selected (the process is quite similar to that of se-
lecting a dominating landmark in a component as mentioned
before). In Fig. 8(a), there are two loops—Loop 1 and Loop 2.
Once a maximum cut set with two cuts is
identified, and are disconnected by cut , while and are
disconnected by cut . As a consequence, Loop 1 and Loop 2
are disconnected, and the Reeb graph of is transformed to
a tree structure , as illustrated in Fig. 8(b). It is well known
that, given such a tree structure that contains many nodes (re-
gions), it can be traversed in a manner analogous to a DFS as
shown by the dashed line with arrow in Fig. 8(b). The arrow in
Fig. 8(b) illustrates the search order: .
Before the DFS connecting process, a nodewith theminimum

level index and a node with the maximum level index are iden-
tified in each cut in a spontaneous manner: Every node in
floods a massage containing its own level index; when a node

receives a message with level index , it compares
to its recorded maximum and minimum level index and

; if or , node floods
the massage and updates its recorded maximum and minimum
level index, otherwise the massage is dropped. For example, in
Fig. 8(c), minimum-level node and maximum-level node

are identified in cut , and minimum-level node
and maximum-level node are identified in cut .
In practice, the DFS connecting process is initiated by the

minimum-level node in the lowest cut in the tree structure .
For example, in Fig. 8(c), it is node in that initiates the
clustering procedure. Then, notifies the dominating land-
mark in the region to start to traverse . In the process

is connected with , the transverse is finished,
and Slice Line 1 in Fig. 8(d) is notified. Hence, the dominating
landmark in continues to traverse . Then, Slice Line 2 started
from slices along the route , eventually
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reaching again. Finally, Slice Line 3 from to is
generated in transverse . The local topology is then sliced
open according to the slice lines, and a genus-0 surface with
exactly one boundary is extracted. The slice lines are depicted
in blue in Fig. 8(d), and the result of is given in Fig. 6(d).

C. Variation of Ricci Flow in Discrete Surface
Given a genus-0 surface (where rep-

resent the vertices, edges, and face) with exactly one boundary, a
variation of the discrete surface Ricci flow is proposed to embed
to a convex polygon .
In discrete settings, the Riemannian metric on can be

simply defined by the edge lengths on : ,
such that on each face , the edge lengths satisfy the
triangle inequality: . The discrete metric de-
termines the corner angles on each face by the cosine law

. Then, the discrete Gaussian
curvature is defined as the angle deficient [29].
Definition 3: The discrete Gaussian curvature is defined

as the angle deficit on a mesh, where on a vertex satisfies

(2)

where represents the corner angle attached to in face
, and is the boundary of .

The total Gaussian curvature is controlled by the topology
of , following the Gauss–Bonnet theorem (Theorem 3) in the
discrete setting as .

To approximate the conformal deformation of metrics in
discrete settings, circle packing metric was introduced in [34]
and [35]. For a vertex , a circle with radius is as-
signed. A function that assigns a radius to each vertex is
denoted as: . A weight function is also defined as

by assigning a positive weight to each edge
. The pair of the vertex radius and the edge weight function

on , is called a circle packing metric of .
Suppose and are the two vertices of edge , and

the two circles at with radius intersect with an acute
. Then, the length of is computed as

.
Definition 4: Suppose for vertex , then the

discrete Ricci flow is defined as

(3)

where and are the current and target Gaussian curvatures
at , and is the evolving time [28].
To deform the initial circle packing metric to flatten

the surface to a convex polygon , a variation of the discrete
surface Ricci flow is proposed to preserve the angles at intersec-
tion points to the greatest extent by setting the target curvature

as

(4)

where is the set of intersection points, is the intersection an-
gles at , is the sum of all intersection angles, is the length

Fig. 9. (a) Greedy routing path in original topology. (b) Greedy routing path in
the virtual coordinate system. (c) SLICE routing path in original topology. (d)
SLICE routing path in the virtual coordinate system.

of the boundary, and is the length sum of all the boundary
edges connected to the intersection points.
In this target curvature setting, the sum of boundary curva-

tures equals to . Since the cur-
vature sum of the inner nodes is 0, the discrete Gauss–Bonnet
theorem holds.
Finally, every node is assigned a virtual coordinate in the

convex polygon, as shown in Fig. 6(e).

D. Routing Scheme
With the virtual coordinates, intuitively greedy routing can be

applied directly on the convex polygon with guaranteed de-
livery. However, there are still two problems. First, a number
of local connections are disconnected by the cuts in the em-
bedding process, possibly resulting in long paths between those
nodes that are close to each other, as shown in Fig. 9(a); second,
packets are more likely to travel through the central part of ,
potentially overloading the central nodes.
To solve the above problems, we propose a variation of

greedy routing based on the following observation. In the
embedding process, a line segment belonging to a cut or a
slice line is sliced and embedded into two line segments, as
illustrated in Fig. 6(d) and (e). Hence, a real node on a cut or
a slice line is assigned with multiple virtual coordinates1 in .
Suppose a real node on a cut or a slice line corresponds to
two virtual coordinate in , as illustrated in Fig. 6(f),
and the closest boundary node to the source node in is ,
then there are only two possible shortest routing paths between
the source node and the destination node : 1) routes the
packet to all by interior nodes; and 2) first routes the packet
to the node on the boundary, and then to from , as shown
in Fig. 6(f). Based on this observation, our routing scheme
includes the following steps.

1An intersection node is associated with more than one cuts or slice lines.
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First, the boundary nodes of , denoted by , initiate
flooding. In the process, every node in records a root node
, the closest node to among all nodes on . Also, the

node records an arbitrary such that and are the virtual
coordinates for the same real node . It is worth noting that
every node requires only maintaining a 2-tuple . That
is, the storage overhead for local routing decisions is trivial.
Second, if we denote the Euclidean distance between two

nodes by the virtual coordinate as , the routing path
is then determined as follows: In the virtual coordinate system,
the length of the routing path is estimated by

; the length of the routing path
is estimated by . Therefore,
by finding the minimum value in the set , the source
node chooses the corresponding route to deliver the packet.
Fig. 9 demonstrates an example of routing by SLICE.

IV. ADAPTING SLICE TO HIGH GENUS 3-D SURFACES WITH
HOLES AND HIGH GENUS 3-D VOLUMES

In Section III, SLICE provides a low-stretch delivery-guaran-
teed routing solution for WSNs on high genus 3-D closed sur-
face (compact and without boundaries). However, in many real
tunnel-shape WSNs scenarios, the sensors are not deployed on
an ideal 3-D closed surfaces. First, the sensor network topology
can be a complex 3-D surface with holes on it: There can be
entrances or exits on the surface [Fig. 1(d) and (e)]; the sensors
may be deployed only in part of the tunnel surface, rendering
holes on the surface. Second, the sensor network topology can
be a complex 3-D high genus volume:many applications require
the sensors be deployed not only on the surface of the tunnel, but
also in its volume, especially for WSN deployed under water or
in the air to monitor water (salinity, flow, pressure) or atmos-
phere (CO , wind, humidity) conditions. To deal with the chal-
lenges in the above two WSNs scenarios, in this section, we
extend SLICE to apply on a wider range of high genus WSNs
deployed on surfaces with holes and in 3-D volumes.

A. Adapting SLICE to Surface Networks With Holes
In SLICE, the maximum cut set is generated by identifying

the loop-end regions, which requires the network topology be
a closed surface . In other words, should be compact and
without boundaries. However, as is demonstrated in Fig. 1(f),
the network topology may be deployed on a 3-D high genus sur-
face with holes, denoted as . In this case, it is more complex
and difficult to slice and embed the network because the holes
may change the Reeb graph identified in , and the method
in Section III is no longer valid. For example, the Reeb graph of
a common genus-1 torus is given in Fig. 3(b), with 4 Reeb com-
ponents constituting one loop; the corresponding Reeb compo-
nents are depicted by color in Fig. 3(a). When there are holes on
this torus [see Fig. 10(a)], however, the Reeb graph changes to
Fig. 10(b), where the number of Reeb components changes to
7, while the loop number changes to 2. In this case, with holes,
the loop number of the Reeb graph is not equal to the number
of its genus. Therefore, these holes will hinder the process of
generating the maximum cut set for .
We tackle this problem on the premise condition that the

hole is detected by some boundary detection algorithms, e.g.,
[36]–[38]. It is observed that the holes change the Reeb graph
because the holes on a surface render to change from

Fig. 10. (a) Color components for the Reeb graph in (b). (b) Reeb graph of a
genus-1 torus with holes.

Fig. 11. (a) Genus-1 corridor with a hole; the hole's boundary edges are
colored in black. (b) Open surface with multiple boundaries, with the cut
(green line) and slice line (blue line). (c) Convex polygon , with the hole
boundary (black line).

a closed surface to an open surface. Accordingly, we propose a
solution by means of “regarding” a hole to be a polygon face of

, so that can still be regarded as a “closed” surface. This
is realized by a local flooding constrained within the boundary
nodes of each hole during the evolution of the components of
the level sets . Consequently, all components in a level set

connected to the same hole will notify each other that
they are connected via multiple boundary edges of . Hence,
the hole does not separate any two components in a level set

. In this way, will still maintain the Reeb graph of
, and a correct maximum cut set can be generated for , as

illustrated in Fig. 11(b). As a result, is sliced to an open sur-
face with a set of holes. Accordingly, hasmultiple bound-
aries: One major boundary is constituted by cuts and slice
lines [green and blue lines in Fig. 11(b)]; other boundaries are
hole boundaries, denoted by [the black line in Fig. 11(b)].
Next, we embed to a convex polygon with multiple

circular holes, where greedy routing is still allowed. In the Ricci
flow and embedding process, the boundary is mapped to
the outer boundary of the convex polygon , and the hole
boundary is mapped to the circular hole in . To this end,
the target curvatures of the inner nodes and the nodes on major
boundary are set according to (4). For a node on a hole
boundary , its target curvature is set as

(5)

where is the length of . Note that a hole boundary
is inside the polygon and is concave for , so the target
curvature should be set as negative.
Through the above process, the high genus 3-D surface

with holes is embedded to a planar convex polygon with mul-
tiple circular holes on it [see Fig. 11(c)], where our proposed



2480 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 4, AUGUST 2016

Fig. 12. (a) High genus 3-D volume ; its surface is depicted by the red tri-
angulated mesh, and its inner nodes are in green. (b) 3-D height structure
attached to the convex polygon; the inner nodes are mapped into four levels in
this case. (c) Variation of greedy routing for 3-D volume.

greedy routing variation can be applied to enable delivery guar-
anteed greedy routing.

B. Adapting SLICE to 3-D Volume Networks
Compared to embedding a surface, embedding a volume di-

rectly to a simple topology is more challenging, which usually
requires tetrahedralization [39] and centralized operations [12].
In Section III, SLICE embeds the high genus 3-D surface to a
convex planar polygon. Noting that the surface of a high genus
3-D volume is accordingly a high genus 3-D surface , the
virtual coordinates of the surface nodes on the convex planar
polygon, generated by SLICE, can serve as a helpful auxil-
iary structure for routing in . Hence, SLICE assigns the inner
nodes of a 3-D volume to a height structure attached to the sur-
face nodes on the convex planar polygon, in order to provide a
variation of greedy routing scheme with guaranteed delivery for
high genus 3-D volume WSNs.
To this end, a scheme associating the inner nodes of with

its surface nodes on is proposed, which attains a mapping
for the inner nodes of to a height structure . Specifically,
a flooding similar to the process of setting up the Morse func-
tion in Section III is initiated from the surface nodes on .
During the flooding process, every inner node of the volume
records a hop-count distance to 's nearest boundary node
on . is denoted as the height of node , while node

on is called the root of node . In this way, every inner node
now corresponds to one surface node. Since the virtual coordi-
nate of node on is on the planar convex polygon (on

plane), if we consider height to be the axis coordinate
for node , then inner nodes of volume is mapped to a 3-D
height structure , as illustrated in Fig. 12(b).
Suppose the source node and the destination node are denoted

as and ; a packet from to is denoted as ; the height of
and are denoted as and ; the roots of and are denoted
as and ; and their virtual coordinates on the polygon
are denoted as and . Then, based on the
height structure , a variation of greedy routing scheme with
guaranteed delivery is provided to adapt SLICE for high genus
3-D volumes, with the following steps
Step 1 (Greedy): Suppose packet has reached an inter-

mediate node with height will then flood a
massage to all its one-hop neighbors (in its one-hop neighbor
set ). Suppose is one of 's neighbors with
height : 1) If is closest to in set , and is closer
to than , i.e., and

, then is selected as the next
node in the routing path, denoted as , while sends
the packet to . 2) If no such is identified, and

, then we turn to Step 2. 3) if no
such is identified, and , then
to Step 3.
Note that the distance here is the Euclidean dis-

tance between and .
Step 2 (Descending Height): decreases its height

by 1, and sends to a node with a coordinate equal to
and a height equal to . Set as

and turn to Step 1.
Step 3 (Reaching Destination): In this case, if ,

then the destination is reached. If , then each
time the height of decreases by 1 until , so
that destination is reached. If , then each time
the height of increases by 1 until , so that
destination is reached.
This process continues until the packet reaches the des-

tination . The height structure and the virtual coordinates
on the convex polygon guarantee the packet delivery in the
routing process, as depicted in Fig. 12(c).

V. DISCUSSIONS

In this section, we discuss the time complexity, the message
complexity, and the storage cost of SLICE, which are important
factors for realizing a scalable and distributed routing algorithm
in WSNs. We also briefly discuss recent methods of how to cut
a high genus surface to a topological disk.

A. Time Complexity and Message Complexity
For the time complexity and themessage complexity, we have

the following theorem.
Theorem 4: For a network with nodes roughly uniformly dis-

tributed over the sensing area, the time complexity and the mes-
sage complexity of SLICE are and , respectively,
where is the network size, and is the genus of the network.

Proof: As the nodes are roughly uniformly distributed in
the network, the diameter of a 2-D network is , while the
diameter of a 3-D volume network is . Hence, the diam-
eter of a 3-D surface network is between and .
SLICE includes the following steps.

Step 1) Generating a maximum cut set. This step includes:
a flooding across 3-D high genus surface initi-
ated by an arbitrary node with time com-
plexity and message complexity; the Morse
function and Reeb graph construction, as well as
all the loop-end regions' identification, with
time complexity and message complexity;
all the bisection operations with time
complexity and message complexity.

Step 2) Slicing to a genus-0 open surface . As the DFS
analog takes no more than times, both the
time and message complexity are .

Step 3) Embedding the surface to a convex polygon by the
Ricci flow. Both the time and message complexity
of this process are , where is the iteration
times determined by the convergence time of the
Ricci flow. Since the Ricci flow converges with an
exponential speed [7], is a small constant. To sum
up, the time and message complexity of SLICE is

and , respectively.
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TABLE I
STORAGE COST COMPARISON

B. Storage Cost

Storage cost is another aspect that is important for scalable
and distributed routing algorithms in WSNs. The storage of a
sensor should be small and of constant size to avoid dynamic
memory allocation. For instance, TinyOS, an operating system
running on many types of sensor nodes, does not provide dy-
namic memory allocation. Consequently, the number of mes-
sages for which a node may store the state needs to be deter-
mined at the compile time.
For the storage cost of SLICE, as any sensor delivering a

packet only needs to store a 2-tuple root coordinate 1, root
coordinate 2 , it guarantees a small and constant size storage.
The following is a comparison of the storage cost of the High-
Genus algorithm [4] and our proposed SLICE.
In the High-Genus, a node needs to store its pant piece ID

(1 bit), its virtual coordinate (x, y, z, 3 bits), 6 boundaries be-
tween its own and the adjacent pieces (6 bits), the hyperbolic
distances from itself to the 6 boundaries (6 bits), and the most
costly, the global adjacency graph of pant pieces, which includes
at least connections ( bits) for a genus- net-
work. For example, the High-Genus generates 4 components for
a genus-2 torus, and the global adjacency graph includes 4 con-
nections (4 bits).
On the contrary, SLICE only requires a node ID (1 bit), a

virtual coordinate (x, y, z, 3 bits), the root coordinate 1, and root
coordinate 2 (12 bits). The results of their storage comparisons
are given in Table I.

C. Alternative Cutting Methods

In computational geometry and algebra topology communi-
ties, a basic tool to deal with high genus topological surfaces is
the notion of decomposition. The most useful type of decompo-
sition is the so called cut graph [40], whose removal transforms
the high genus surface into a topological disk. The combination
of the cut line and slice line of our cutting method to slice the
surface network open is actually a cut graph of the network.
We also notice that there is an alternative cutting method

in a recent proposal [41], which is distributed and connec-
tivity-based. However, as [41] focuses on applying the cut
graph for in-network information processing, storage, and re-
trieval, the performance as well as the theoretical foundation of
the cut graph computing are not its concentrations. In addition,
the output of the cut graph based cutting method in [41] is a
cut graph along which the surface is cut open to a topological
disk, so this method can not be used to identify the genus. For
SLICE, there are two steps to cut open the surface: The first step
is to find the cuts to obtain a genus-0 surface, and the second
step is to connect the cuts to obtain the cut graph. During the
first step, genus can be identified where it is, and this may be
useful for the follow-up studies on high genus 3-D networks,
e.g., a recent study [42].

VI. PERFORMANCE EVALUATIONS

We have implemented a simulator and conducted a series of
simulations on various 3-D topologies. In the simulations, we
presume a perfect link between a pair of nodes, as many recent
connectivity-based algorithms [13], [18], [36]–[39] in WSNs
did. In fact, when taking into account the unreliable link, SLICE
can be robust against the packet loss by simply using an Auto-
matic Repeat Query (ARQ) mechanism to achieve reliable data
transmission: A node will (re)transmit a message by means of
either unicast or broadcast to its neighbor until it receives an ac-
knowledgment from its neighbor before the timeout. By doing
so, there is minor impact on the routing performance, e.g., path
selection and routing stretch, of SLICE, though unavoidable
extra message cost due to retransmissions will be induced to
compensate the unreliable communication.
Simulation results presented in Fig. 13 depict four 3-D

topologies—a genus-1 corridor with 710 nodes, a genus-2
bowknot with 837 nodes, a genus-3 smile with 1102 nodes, and
a genus-4 window with 5429 nodes, with an average degree
from 8.92 to 10.01. It is observed that despite the variation
in the scale and complexity of the networks, SLICE extracts
appropriate maximum cut sets for the networks by which it
embeds them to the planar convex polygons, which guarantees
packet delivery between any pair of nodes. What is more,
SLICE generates more perceptible “cuts” for large-scale sensor
networks [see Fig. 13(g) and (h)], as they are closer to smooth
surfaces.
The delivery rate of Greedy routing is 65% for Corridor,

76% for Bowknot, 70% for Smile, and 81% for Window, while
SLICE constantly produces a delivery rate of 100%. Therefore,
we focus on the following three factors for routing performance
evaluation: distance distortion, routing stretch, and load bal-
ance. For comparisons, we also implemented two other routing
algorithms for high genus 3-D surfaces—High-Genus in [4]
and Random-Walk in [43], except for our previous algorithm
SINUS in [1].
Distance Distortion: The distance distortion is an important

factor that would influence the routing stretch for graph embed-
ding algorithms. In this part, we evaluate the distance distor-
tion of SLICE and compare it to SINUS. Note that High-Genus
and Random-Walk are not comparable as they are not routing
schemes using embedding techniques. To evaluate the distance
distortion, we “glue” 50 50 uniformly distributed black and
white rectangles on the embedded planar surface (the convex
polygon in SLICE or the annulus in SINUS). Then, this tex-
ture is converted back to the original 3-D topology. If the black
and white rectangles are also evenly distributed in the original
topology, the distance distortion of the mapping algorithm is
small; otherwise the distance distortion is large. Fig. 14 shows
the results of this texture conversion for SLICE and SINUS.
It is observed that SLICE yields a more evenly distributed

conversed texture result than SINUS, indicating a smaller dis-
tance distortion of SLICE. In the corner of Fig. 14(a) and (b) and
the center of Fig. 14(c), there are large distance distortions of
SINUS, while SLICE maintains a relatively even texture distri-
bution. As mentioned before, the smaller distance distortion of
SLICE benefits from the proposed variation of the Ricci flow,
which approximates the original distance metric by embedding
to a convex polygon, a better approximation in shape to preserve
the distance metric.
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Fig. 13. Columns from left to right: (a) Genus-1 corridor network with 710 nodes; avg deg is 8.92. (b) Genus-2 bowknot network with 837 nodes; avg deg is
9.35. (c) Genus-3 smile network with 1102 nodes; avg deg is 10.01. (d) Genus-4 window network with 5429 nodes; avg deg is 9.74. Rows: 1) Original network.
2) Genus-0 surface with cuts. (3) Genus-0 open surface with exactly one boundary. (4) Convex polygon .

Fig. 14. (a)–(c) SINUS converted texture results. (d)–(f) SLICE converted tex-
ture results.

Routing Stretch: The routing stretch for a pair of nodes
is the ratio of the generated routing path length to the

shortest path length between and . In our simulation, 10 000
pairs of nodes are randomly selected to calculate the average

routing stretch for each network, as well as the worst-case
stretch (i.e., the average stretch of the largest 5% stretches),
shown in Fig. 15(a). It is observed that SLICE yields a much
smaller average routing stretch [1.18, the average of the four
topologies in Fig. 15(a)] than SINUS (1.30), High-Genus
(1.86), and Random-Walk (1.94). This means SLICE has the
highest routing efficiency, as the stretch is an indicator of
routing overhead. For example, an average stretch factor of
1.86 in High-Genus indicates its overhead of 86% on the basis
of the shortest path. Therefore, SLICE reduces the routing
overhead by 12%, 68%, and 76%, in comparison to SINUS,
High-Genus, and Random-Walk, respectively. Besides, SLICE
has a much smaller routing stretch for Corridor with one hole
(1.24) and Corridor volume (1.45), compared to Random-Walk
(resp. 2.08 and 2.12), while SINUS and High-Genus do not
work on surfaces with holes or in 3-D volumes.
It is noted that, for the topology of the genus-1 corridor, the

routing stretch of High-Genus is close to SLICE. This is be-
cause for genus-1 surfaces, High-Genus maps the network into
a standard genus-1 torus without introducing network decom-
position. When decomposition is introduced for High-Genus,
that is, when the topology is genus-2 or higher, the stretch of
High-Genus increases significantly. The reason is that the adja-
cency graph of High-Genus does not consider the size of the
components. When routing between different components, a
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Fig. 15. (a) Routing stretch (Hole stands for Corridor with a hole in Fig. 11(a),
Volume for Corridor volume in Fig. 12(a); SINUS and High-Genus do not work
on these two topologies). (b) Load distribution.

packet may travel through a series of large components even
if there exists a much shorter path in small components.
It is also observed that Random-Walk has larger stretches

in Corridor and Smile than in Bowknot and Window, where
Random-Walk has to traverse the nodes in the concave region.
When the concave region is large (say Corridor and Smile),
the stretch increases notably. In contrast to High-Genus and
Random-Walk, SLICE keeps a small routing stretch despite the
diversity in the genus or topology concavity since it embeds the
topology as a whole with the concave region flattened, effec-
tively reducing the distance distortion in the embedding process.
Note that SLICE is slightly superior to SINUS in terms of

the average routing stretch because the distance distortions are
not that large in most regions of the networks, and therefore the
average routing stretches are close to 1.0 for both SINUS and
SLICE. For the worst-case stretch, however, SLICE performs
much better than SINUS, as SLICE has relatively smaller dis-
tance distortions in those regions where the distance distortions
of SINUS are large, e.g., the corner of Fig. 14(a) and (b) and the
center of Fig. 14(c).
Load Balance: For algorithms that enable greedy routing by

embedding, such as [3] and [7], there exists a critical issue—the
nodes on the embedded hole boundary tend to suffer a higher
traffic load. In SLICE, the case that the packet is routed between
nonneighbor boundary nodes has been considered. Therefore,
SLICE achieves better load balance, and its boundary nodes are
not overloaded. We simulated the traffic load of SLICE, SINUS,
High-Genus, and Random-Walk, with randomly selected 10 000
routes from the four tested topologies. Fig. 15(b) shows the cu-
mulative distribution function (CDF) of the load of nodes, which
is measured by the number of routes involved.
It is observed that, in SLICE, all the nodes evolve a number of

routes less than 280, and its CDF rapidly increases to 1, which
means SLICE generates few overloaded nodes and the nodes
involve relatively fewer routes in SLICE than in other three
schemes. For Random-Walk, it has to traverse the concave re-
gion within a certain radius. Therefore, the nodes of the con-
cave region attract a lot of traffic and may be overloaded. As for
High-Genus, the boundary nodes in each region may be over-
loaded, since the six boundaries of a component [4] are concave,
so routing within each region tends to route along these concave
boundaries. For SINUS, it embeds a surface of any shape to an
annulus, resulting in large distance distortion as well as high
routing stretch. In contrast, SLICE achieves a better load bal-
ance with the concave region flattened and the distance metric
well preserved by mapping the surface to a convex polygon.

VII. CONCLUSION

We have presented SLICE, a novel scalable and distributed
routing algorithm with guaranteed delivery for sensor networks
on high genus 3-D surfaces. By slicing the high genus surface
to a simpler one for embedding, SLICE finally realizes a vari-
ation of greedy routing with a low stretch. The proposed algo-
rithm is appealing as it has the best performance with respect to
routing stretch and load balance for routing on high genus sur-
faces. Plus, SLICE can be easily adapted to high genus 3-D sur-
face networks with holes and high genus 3-D volume networks.
Finally, the proposed algorithm requires the connectivity infor-
mation only. We have demonstrated the effectiveness of SLICE
through extensive simulations.
One limitation of SLICE is that it relies on a triangular form of

the original network. However, current triangulation algorithms
forWSNs with mere connectivity information [30], [31] require
that network nodes be relatively evenly distributed for a rea-
sonable accuracy when the distance is estimated by hop count.
When the network size is small, or the node density is quite
nonuniform, the performance of network triangulation as well
as SLICE will be affected. Thus, in terms of the future work,
we plan to explore triangulation techniques with more general
assumptions for our algorithm. We are also interested in how
SLICE can incorporate with other routing algorithms to further
offer a complete solution for 3-D WSNs with arbitrary shapes.
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