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Abstract—This paper addresses the dual challenges of stabi-
lizing entanglement scheduling and maximizing communication
fidelity in multi-hop quantum networks under adversarial dy-
namics. Unlike prior works relying on stationary assumptions
or perfect pre-decision knowledge, we consider scenarios where
entanglement generation rates and task arrival patterns vary
arbitrarily over time, with only bandit feedback available post-
scheduling. We first propose Q-NSO, achieving stability for
quantum networks under arbitrary time-varying entanglement
request arrival rates and bandit feedback. Equipped with the
key components of Q-NSO, we propose Q-UMO, a learning-based
framework towards maximal utility by determining the entangle-
ment request arrivals and quantum link allocation distribution.
Integrating adversarial bandit convex optimization, an online
learning algorithm, and Lyapunov drift-plus-penalty analysis,
theoretical analysis demonstrates that Q-UMO ensures network
stability with bounded queue lengths while achieving a sub-linear
regret bound against the reference policy. This work provides
a robust foundation for scalable quantum internet applications,
balancing stability and performance in adversarial environments
with limited feedback.

Index Terms—Stability, Utility maximization, Quantum net-
works, Bandit Feedback, Adversarial settings.

I. INTRODUCTION

Quantum networks are poised to revolutionize communi-
cation and computation by enabling the distribution of en-
tanglement, a fundamental resource for quantum protocols
such as teleportation, secure cryptography, and distributed
quantum computing. A critical challenge in realizing scalable
quantum networks lies in efficiently scheduling entanglement
generation and routing under dynamic demand and stochastic
link successes. While significant progress has been made in
developing scheduling and routing algorithms for quantum
networks, existing approaches predominantly rely on station-
ary assumptions about entanglement success probabilities and
arrival rates. This paper addresses the pressing need for
robust scheduling algorithms that adapt to adversarial dy-
namics in real-world quantum networks, where environmental
fluctuations and unpredictable interference render stationary
assumptions impractical.

Recent works have proposed a rich array of protocols, algo-
rithms, and scheduling policies to enhance entanglement rout-
ing efficiency on diverse network architectures. For instance,
prior work has investigated opportunistic routing mechanisms
[1], and developed online approaches for entanglement routing
[2]. Other studies analyze the stability aspect of quantum
networks using the max-weight policy [3], build proactive
entanglement generation schemes with overlay structures [4],
or propose advanced frameworks for effectively increasing
entanglement fidelity and fairness [5]. Additional methods in-
corporate end-to-end routing with purification [6], throughput-
optimal memory allocation for bipartite requests [7], and
reinforcement learning-based algorithms [8]. Attention has
also been devoted to multi-entanglement routing [9], satellite-
assisted entanglement distribution [10], capacity characteriza-
tion under purification [11], and entanglement fusion tech-
niques [12] that can simultaneously fuse multiple entangled
states.

In parallel, research efforts have explored capacity analy-
sis for quantum switches with or without decoherence [13],
asynchronous routing and provisioning [14], transport layer
protocols guiding quantum data [15], and novel mechanisms
for integrating quantum swapping with optical switching [16].
There are also studies that seek to support multi-party en-
tanglement [17], investigate the switching performance of
quantum distribution policies [18], design routing algorithms
suited for heterogeneous entanglement durations [19], apply
Lyapunov drift optimization methods [20], offer entangle-
ment routing protocols aimed at maximizing the number of
successful quantum-user pairs [21], develop ranking-based
distribution protocols [22], and propose scheduling strategies
for multi-source entanglement distribution [23].

Despite these important advances, the vast majority of
the existing literature primarily focuses on settings where
the entanglement generation processes conform to stationary
probabilistic models. Under such assumptions, entanglement
success probabilities remain fixed or vary according to well-
characterized stochastic distributions. In practice, however, the
performance of quantum channels can fluctuate dramatically
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due to interference, hardware imperfections, or environmental
uncertainties. These factors can render stationarity assump-
tions invalid, making many existing methods less robust
or inapplicable to real-world scenarios where entanglement
generation is subject to arbitrary and potentially adversarial
dynamics. Accordingly, it becomes vital to develop scheduling
and routing algorithms capable of adapting to unpredictable
quantum channel conditions and dynamic user demands with-
out relying on rigid statistical models.

In this work, we take a step toward realizing such ro-
bust quantum routing solutions by studying the problems
of stability and utility maximization under adversarial vari-
ations in entanglement success probabilities and task arrival
rates. Specifically, we assume that an oblivious adversary
can choose the success probabilities and arrival processes
arbitrarily over time. Moreover, the proposed algorithms are
designed under bandit feedback, wherein after selecting a
particular routing path for entanglement generation, the sched-
uler only observes the actual entanglement outcomes on that
path, without access to any additional channel information.
This feedback model accurately encapsulates scenarios where
quantum network monitoring is prohibitively resource-heavy,
or where inherent hardware constraints—such as in satellite-
based systems—limit continuous surveillance of global link
states.

Building on the novel adversarial learning-based framework
recently developed in [24], we design two algorithms, Q-NSO
and Q-UMO, that address the pressing need for both stability
and utility guarantees in quantum multi-hop networks. The
Q-NSO mechanism proves network stability by ensuring that
queue backlogs remain bounded under adversarial entangle-
ment requests and bandit feedback. To complement this,
Q-UMO focuses on achieving strong utility performance by
maximizing a well-defined network utility function, which
captures key operational metrics related to entanglement distri-
bution and user satisfaction. Both algorithms are lightweight,
requiring only limited online observations, and are thus suit-
able for realistic quantum infrastructures where real-time data
collection may be highly constrained.

A. Notations

We use bold letters to denote vectors, e.g., qt, µt, At,
and denote their elements with corresponding normal letters,
e.g., qt,i, µt,i, At,i. For an integer n ≥ 0, [n] stands for
{1, 2, . . . , n}. For a finite set S, ∆(S) is the simplex over
S, i.e., {x ∈ R|S| |

∑|S|
i=1 xi = 1}, where every element

x ∈ ∆(S) is a discrete probability distribution over S. We
use O to hide all absolute constants, and use Õ to additionally
hide all logarithmic factors. For functions f(T ) and g(T ),
we say f(T ) = OT (g(T )) if lim supT→∞

f(T )
g(T ) < ∞, and

f(T ) = oT (g(T )) if lim supT→∞
f(T )
g(T ) = 0.

II. PROBLEM FORMULATION

A. System Model

We consider a discrete-time multi-hop quantum network
composed of a finite set of quantum nodes N = {1, 2, . . . , N},

Fig. 1. An example of entanglement requests transiting through a multi-hop
quantum network. Entanglement requests arrive at the nodes and end-to-end
entanglements are established by link-level entanglements and swapping.

interconnected by directional quantum links L ⊆ N × N . A
link (n,m) ∈ L indicates that there exists a physical or logical
channel from node n to node m (e.g., a fiber optic link).
At the beginning of each time slot t, a set of entanglement
requests arrive at various source nodes and require end-to-
end entanglements with designated destination nodes. The
network then performs entanglement routing—activating link-
level entanglements along a pre-specified path—until end-to-
end entanglements are established.

Here we show an example of an entanglement request
transiting through a multi-hop quantum network in Figure 1.
At time slot t, we assume an end-to-end entanglement request
(s1, t1) arrives at the quantum node s1, which means that
the scheduler needs to establish the entanglement between
the qubits in node s1 and t1. Simultaneously, another entan-
glement request (s2, t2) arrives at node s2. However, there
may not exist a direct quantum link between s1, t1 and
s2, t2. Therefore, we need to transmit this request through
the path in this multi-hop quantum network. For example, to
process the request (s1, t1), the scheduler first establishes the
entanglement between the quantum nodes s1 and a at time slot
t, as shown in Figure 1. This can be viewed as “transmitting”
the request from s1 to a. Then, in the next time slot, by
establishing an entanglement between a and b and performing
entanglement swapping, we can establish an entanglement
between s1 and b, and the request can be similarly viewed
as being “transmitted” to b now. This process goes on until
the request is eventually delivered to its destination t1. By
then, an end-to-end entanglement is setup between s1 and t1
and we say that the request is served.

To model the procedure of scheduling the multi-hop quan-
tum network with multiple requests, we consider a time
horizon of T discrete slots, labeled t = 1, 2, . . . , T . For each
time slot t, the following notations will be used throughout
the paper:

1) Entanglement Request Arrivals: Let A
(k)
n (t) denote

the number of new end-to-end entanglement requests
arriving at node n ∈ N for destination node k ∈ N .
In other words, these arrivals represent requests for
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establishing a quantum entanglement between node n
and node k over multiple hops if necessary. We assume
that A(k)

n (t) is bounded uniformly by Amax for all valid
n, k ∈ N with n ̸= k. Moreover, we denote A as the
feasible request arrival set, such that A(t) ∈ A for all
t ∈ [T ].

2) Entanglement Queues: Each node n ∈ N maintains
one or more logical queues Q

(k)
n (t) to track the number

of requests at node n that are still pending for a
particular destination k. The queues evolve over time
based on the requests served on outgoing links from n
and any incoming requests from other nodes linking to
n.

B. Entanglement Scheduling

Notice that in the example illustrated in Figure 1, two
different requests (s1, t1) and (s2, t2) may meet at the same
quantum node c at the same time. Constrained by the physical
devices and environmental conditions, the scheduler needs to
determine which quantum links (n,m) ∈ L to activate and
with what capacity allocation. We assume that each activated
link (n,m) has a capacity Cn,m(t) ∈ [0,M ], reflecting the
probability of successfully established quantum entanglement
qubits from node n to node m. The value of M is a known
constant bounding link capacities.

To handle multi-hop flows of entanglement requests from
different sources and destined for different nodes, we introduce
an allocation plan pn,m(t) ∈ ∆(N ) on each link (n,m),
where ∆(N ) is the probability simplex over destinations in
N . Specifically, p(k)n,m(t) represents the fraction of link capac-
ity Cn,m(t) assigned to serve requests from queue Q

(k)
n (t).

Roughly speaking, approximately p
(k)
n,m(t)Cn,m(t) requests

can be transferred from Q
(k)
n to Q

(k)
m during slot t.

Formally, the number of entanglement requests of destina-
tion k successfully served from node n to m is a random
variable µ

(k)
n,m(t) ∈ [0,M ] with an expected value:

E
[
µ(k)
n,m(t)

]
= Cn,m(t) p(k)n,m(t).

We operate under a bandit feedback model, meaning that at
the end of time slot t, the scheduler only observes the random
outcomes µ

(k)
n,m(t) for links actually chosen, as well as the

realized link capacities Cn,m(t), but gains no direct or prior
knowledge about the capacities or outcomes on links not used.
This setup contrasts with previous works such as [3], [13],
where link rates are assumed to be fully known or can be
accurately estimated before scheduling. Similar to [3], [4],
we also adopt the simplifying assumption of no entanglement
decoherence, i.e., entangled qubits remain valid as long as they
have been successfully distributed.

C. Queue Dynamics

For each node n and destination k with k ̸= n, the queue
Q

(k)
n (t) evolves according to

Q(k)
n (t+ 1) =

[
Q(k)

n (t)−
∑

(n,m)∈L

µ(k)
n,m(t)

]
+

+
∑

(o,n)∈L

µ(k)
o,n(t) +A(k)

n (t),

(1)

where [x]+ ≜ max{x, 0}. Intuitively, Q(k)
n (t) first decreases

by the number of requests successfully served on outgoing
quantum links (n,m) for that destination k, and then increases
by the number of newly arrived or incoming requests on links
(o, n) and the arrivals A

(k)
n (t). Requests with k = n are

considered self-destinations and immediately consumed, hence
need not be queued.

D. Problem Objective

Each admission control or scheduling decision A(t) =

{A(k)
n (t)}n,k∈N yields a utility gt

(
A(t)

)
, capturing metrics

such as the throughput of the network. We assume gt is
concave, nondecreasing in its arguments, and L-Lipschitz in
some suitable norm, with values bounded in [−G,G]. The
scheduler does not know the entire function gt a priori and
only observes the actual achieved value gt

(
A(t)

)
once A(t)

is chosen, which is again consistent with a full bandit feedback
paradigm.

Our goal is twofold:

1) Stability of Quantum Queues: We require that the
system’s entanglement queues remain stable by choosing
proper link allocation action pn,m(t) ∈ ∆(N ) for each
(n,m) ∈ L. Formally, we require

1

T
E

[
T∑

t=1

∑
n∈N

∑
k∈N

Q(k)
n (t)

]
= OT (1), (2)

which means the time-averaged expected total queue
size does not grow unbounded as T becomes large.

2) Maximize Quantum Utility: Subject to the stability
constraint, we seek to maximize the average utility
associated with entanglement distribution, i.e.,

max
1

T
E

[
T∑

t=1

gt
(
A(t)

)]
subject to the stability requirement in Eq. (2).

(3)

In short, we seek an online scheduling and routing policy
by choosing A(t) and p(t) for each time slot t ∈ [T ] that
ensures provable stability of the quantum queues while simul-
taneously maximizing an unknown, time-varying adversarial
utility function gt. The subsequent sections outline the design
of such algorithms and prove theoretical guarantees regarding
their performance in multi-hop quantum networks.
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Algorithm 1 Q-NSO: Quantum Network Stability via Online
Linear Optimization (restated from [24, Algorithm 1])

1: Initialize AdaPFOL [24, Algorithm 2] instances for each
quantum link (n,m) ∈ L with action set ∆(N ) as
AdaPFOLn,m.

2: for t = 1, 2, . . . , T do
3: For each quantum link (n,m) ∈ L, pass the maximum

loss magnitude for this round M∥Qm(t)−Qn(t)∥∞ to
AdaPFOLn,m.

4: Pick quantum link allocation pn,m(t) ∈ ∆(N ) as the
output of AdaPFOLn,m.

5: Observe entanglement request arrival rates A(t) ∈ A.
6: Observe quantum link capacities {Cn,m(t)}(n,m)∈L

and successfully establish entanglement counts
{µ(k)

n,m(t)}(n,m)∈L,k∈N .
7: Calculate queue lengths for each quantum node Q(t+1)

from Q(t) according to Eq. (1).
8: For each quantum link (n,m) ∈ L, pass the loss vector

Cn,m(t)(Qm(t)−Qn(t)) to AdaPFOLn,m.
9: end for

III. ACHIEVING STABILITY IN ADVERSARIAL MULTI-HOP
QUANTUM NETWORKS

In this section, we present our Q-NSO algorithm (Algo-
rithm 1), which ensures the stability of adversarial quantum
multi-hop networks by provably bounding the average queue
size. Formally, for large enough T and any time-varying arrival
process A(t), Q-NSO guarantees

1

T
E

 T∑
t=1

∑
n∈N , k∈N

Q(k)
n (t)

 =
1

T
E

[
T∑

t=1

∥Q(t)∥1

]
= OT (1).

Beyond establishing stability, Q-NSO will serve as a key com-
ponent in our forthcoming Q-UMO (Algorithm 2) algorithm,
dedicated to utility maximization under related adversarial
conditions in multi-hop quantum networks. Our Q-NSO is a
restatement of the NSO algorithm [24, Algorithm 1], adapted to
the quantum setting. Throughout this section, the entanglement
requests arrivals rate A(t) is arbitrary and time-varying vector
which is obliviously decided

A. Algorithm for Quantum Network Stability Q-NSO

We propose the Quantum Network Stability via Online
Linear Optimization (Q-NSO) algorithm to handle the network
scheduling problem under adversarial request arrivals and
bandit feedback. The overarching strategy is to recast the
network stability objective in a form amenable to Online Lin-
ear Optimization (OLO), leveraging classical Lyapunov drift
techniques. Because queue lengths in adversarial settings can
grow large and induce correspondingly large loss magnitudes,
we use a robust OLO subroutine named AdaPFOL [24, Algo-
rithm 2]. This algorithm can effectively handle large and time-
varying loss magnitudes, providing performance guarantees
based on the geometric mean of observed losses.

B. Lyapunov Drift Analysis

Q-NSO uses classic Lyapunov drift arguments [25] to es-
tablish stability. Define the quadratic Lyapunov function

Lt ≜
1

2

∑
n∈N

∑
k∈N

(
Q(k)

n (t)
)2

, (4)

and the one-step Lyapunov drift

∆(Q(t)) ≜ E [Lt+1 − Lt | Q(t)] . (5)

Using standard drift inequalities, one can show:

E

[
T∑

t=1

∆(Q(t))

]
≤ E

 T∑
t=1

∑
n,k∈N

Q(k)
n (t)

·

 ∑
(o,n)∈L

µ(k)
o,n(t) +A(k)

n (t)−
∑

(n,m)∈L

µ(k)
n,m(t)


+

1

2
N2((NM)2 + 2(NM)2 + 2R2)T,

(6)

where R is an upper bound on arrival requests magnitudes and
M is the upper bound of capacity for each quantum link. As
A(t) is chosen obliviously, our main objective is to use online
learning to minimize the term corresponding to µ(t):

f(µ) ≜ E

 T∑
t=1

∑
(n,m)∈L

⟨µn,m(t),Qm(t)−Qn(t)⟩

 . (7)

Since µn,m(t) = Cn,m(t)pn,m(t), each link (n,m) ∈ L
faces an Online Linear Optimization problem with loss vectors
Cn,m(t)(Qm(t)−Qn(t)). Notice that we need to decide the
allocation vector pn,m(t), we can write:

T∑
t=1

⟨µn,m(t),Qm(t)−Qn(t)⟩

=
T∑

t=1

⟨Cn,m(t) (Qm(t)−Qn(t)) ,pn,m(t)⟩ .

C. Plug-In Online Learning Optimization Framework

To solve each link’s OLO subproblem, we use AdaPFOL
[24, Algorithm 2], a robust online learning method capable
of handling large, dynamically changing loss magnitudes.
Let {AdaPFOLn,m} denote the set of AdaPFOL instances
for each link (n,m), which is detailed in Line 3 of Al-
gorithm 1. We measure the efficiency of AdaPFOL via a
reference link allocation sequence {p̄(t)}, satisfying multi-hop
piecewise stability conditions [24, Assumption 1], an extension
of assumptions from [26, Assumption 1]. Intuitively, {p̄(t)}
describes a “baseline” policy that stabilizes the network in a
piecewise manner over certain intervals. Formally, we write

Assumption III.1 (Extension Piecewise Stability [24, As-
sumption 1]). There exists a reference policy {p̄(t)}Tt=1 with
link allocations p̄n,m(t) ∈ △(N ) and constants ϵW > 0,
CW ≥ 0, such that for some partitioned intervals {Wj}Jj=1

of [T ]:

350

Authorized licensed use limited to: Tsinghua University. Downloaded on May 29,2025 at 03:42:43 UTC from IEEE Xplore.  Restrictions apply. 



1) The partition of [T ] satisfies that
J∑

j=1

(|Wj | − 1)2 ≤ CWT

2) For ∀j ∈ [J ], n ∈ N , k ∈ N :

1

|Wj |
∑
t∈Wj

∑
(n,m)∈L

Cn,m(t)p̄(k)n,m(t)

≥ ϵW +
1

|Wj |
∑
t∈Wj

A(k)
n (t) +

∑
(o,n)∈L

Co,n(t)p̄
(k)
o,n(t)

 ,

where A
(k)
n (t) is the obliviously decided arrival rates

that we assume in this section.

If {p̄n,m(t)} is such a reference policy, define µ̄
(k)
n,m(t) =

Cn,m(t) p̄
(k)
n,m(t) and let µ

(k)
n,m(t) = Cn,m(t) p

(k)
n,m(t) be the

allocations chosen by Q-NSO. By [24, Theorem 3.5], one
obtains regret-like bounds on the total cost difference

f(µ)− f(µ̄)

= O

(
M

√
1 + P p̄

TE

[(
T∑

t=1

∥Q(t)∥22

)1/2

· log T

· log
(

max
t∈[T ],(n,m)∈L

M∥Qm(t)−Qn(t)∥∞
)])

,

where P p̄
T is the path length of {p̄(t)}Tt=1, defined by

P p̄
T ≜

T−1∑
t=1

∑
(n,m)∈L

∥p̄n,m(t)− p̄n,m(t+ 1)∥1. (8)

Restricting {p̄(t)} to have controlled path length is necessary
in adversarial settings, since without such constraints, perfor-
mance guarantees would be unattainable, as shown in [27].

D. Theoretical Results of Q-NSO

Now we are able to present the theoretical average queue
length bound (and hence stability) result of Q-NSO (Algo-
rithm 1), as the following Theorem III.2 which is a direct
corollary of Theorem 3.6 of [24].

Theorem III.2 (Main Theorem Q-NSO (Algorithm 1)). Sup-
pose {p̄n,m(t)} is the reference policy satisfying Assump-
tion III.1, and the path length P p̄

t satisfies

P p̄
t ≜

t−1∑
s=1

∥p̄(s)− p̄(s+ 1)∥1 ≤ Cpt1/2−δp , (9)

for every t ∈ [T ] and some known constants C and δp. Then,
we have

1

T
E

[
T∑

t=1

∥Q(t)∥1

]
= O

(
ϵ−1
W ·

(
(N2(2NM +R)2 + ϵWN2(2NM +R))CW

+ (N4M2 +N2R2)
))

+ oT (1).

That is, when T ≫ 0, we have 1
T E
[∑T

t=1∥Q(t)∥1
]
= OT (1),

i.e., Eq. (2) holds and the system is stable.

Remark III.3. In other words, Q-NSO extends the robust
online stability results of [24] to quantum multi-hop settings
under limited feedback. The theorem guarantees that queues
remain stable, addressing the fundamental goal of preventing
queue explosion in adversarial multi-hop quantum networks,
laying the groundwork for additional objectives such as utility
maximization and service quality within the same adversar-
ial framework. In the subsequent section, the algorithmic
framework of Q-NSO in Algorithm 1 will act as the crucial
component for the utility maximization task to maintain the
stability of the quantum network.

IV. MAXIMIZING UTILITY IN ADVERSARIAL MULTI-HOP
QUANTUM NETWORKS

With the above stability foundation, we now turn to the
utility maximization task. In this case, the entanglement re-
quest rates are also decided by the scheduler with the objective
of maximizing the unknown and time-varying utility function
while maintaining the stability of the multi-hop quantum
network. We have already introduced the algorithm Q-NSO
for quantum networks, which achieves stability under arbitrary
request arrival rates A(t). Equipped with the key intuition of
Q-NSO, we need to determine the arrival rates for maximizing
the average utility it gains (as formally stated in Eq. (3)).

A. Algorithm for Utility Maximization Q-UMO

We summarize our approach with the pseudo-code in Al-
gorithm 2, a quantum adaptation of Algorithm 3 from [24].
This method, called Q-UMO, preserves key elements of Q-NSO
(Algorithm 1), in that each link allocation is determined by the
plug-in learning subroutine AdaPFOL, which ensures stability
under adversarial conditions. On top of that, Q-UMO now
selects the entanglement arrival rates A(t) each slot in a
manner designed to maximize cumulative utility

∑
t gt(A(t)).

To balance these dual goals, Q-UMO combines the Lyapunov
drift-plus-penalty analysis [25, Theorem 4.2] with a bandit
convex optimization approach known as AdaBGD [24, Algo-
rithm 4], which adapts to possible infinite queue lengths and
time-varying loss magnitudes.

B. Lyapunov Drift-Plus-Penalty Analysis

Under the drift-plus-penalty framework [25, Theorem 4.2],
we modify the classical Lyapunov analysis by including a
penalty term −V E[gt(A(t)) | Q(t)] in the drift expression.
Recall the Lyapunov function Lt = 1

2∥Q(t)∥22 and drift
∆(Q(t)) = E[Lt+1 − Lt | Q(t)] from before. With penalty,
the Drift-Plus-Penalty (DPP) function is:

∆(Q(t))− V E[gt(A(t)) | Q(t)],

where ∆(Q(t)) is defined in Eq. (5) and V is arbitrarily
determined for our purpose. Following similar steps as in Sec-
tion III-B, one obtains two subproblems: one for controlling
µ(t) via AdaPFOL, and one for managing A(t) to explore and
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Algorithm 2 Q-UMO: Utility Maximization via Online Lin-
ear Optimization in Quantum Networks (restated from [24,
Algorithm 3])

1: Initialize AdaPFOL [24, Algorithm 2] instances for each
quantum link (n,m) ∈ L with action set ∆(N ) as
AdaPFOLn,m.

2: Initialize a bandit convex optimization algorithm AdaBGD
for learning rates defined in Eq. (12) and feasible action
set A.

3: for t = 1, 2, . . . , T do
4: For each quantum link (n,m) ∈ L, pass the maximum

loss magnitude for this round M∥Qm(t)−Qn(t)∥∞ to
AdaPFOLn,m.

5: Pick quantum link allocation pn,m(t) ∈ ∆(N ) as the
output of AdaPFOLn,m.

6: Pick entanglement request arrival rates A(t) as the
output of AdaBGD under learning rates {ηs, δs, αs}ts=1

given in Eq. (12).
7: Observe quantum link capacities {Cn,m(t)}(n,m)∈L

and successfully establish entanglement counts
{µ(k)

n,m(t)}(n,m)∈L,k∈N .
8: Observe the collected utility gt(A(t)).
9: Calculate queue lengths for each quantum node Q(t+1)

from Q(t) according to Eq. (1).
10: For each quantum link (n,m) ∈ L, pass the loss vector

Cn,m(t)(Qm(t)−Qn(t)) to AdaPFOLn,m, and the loss
⟨Q(t),A(t)⟩ − V gt(A(t)) to AdaBGD.

11: end for

exploit the best utility. We derive the optimization objective
corresponding to µ(t) and A(t), respectively:

f(µ) ≜ E

 T∑
t=1

∑
(n,m)∈L

⟨µn,m(t),Qm(t)−Qn(t)⟩

 , (10)

h(A) ≜ E

[
T∑

t=1

∑
n∈N

⟨Qn(t),An(t)⟩

]
− V E

[
T∑

t=1

(gt(A(t)))

]
.

(11)

Section III-B has already discuss the optimization on f(µ)
(Eq. (10)). Here we focus on the optimization problem on
h(A) (Eq. (11)).

Concretely, the second subproblem translates into a bandit
convex optimization (BCO) objective with only partial feed-
back on gt, i.e., only gt(A(t)) is observable once A(t) is
chosen. Because high queue backlogs can inflate both losses
and Lipschitz constants, an adaptive BCO approach is re-
quired. Hence, Q-UMO applies the AdaBGD [24, Algorithm 4]
method, designed for such adversarial bandit settings, to track
the optimal arrival rates despite large, time-varying losses.

C. Plug-In Bandit Convex Optimization Algorithm

The Bandit Convex Optimization (BCO) problem (Eq. (11))
impose the loss vector ℓt for each round t

ℓt(A) ≜ ⟨Q(t),A⟩ − V gt(A).

To handle this BCO problem under bandit feedback, Q-UMO
calls AdaBGD (Algorithm 4 in [28]) each round. This sub-
routine adaptively adjusts its learning rate (detailed in Eq.
(12)) based on the magnitude of ∥Q(t)∥∞, thus coping with
substantial and unpredictable fluctuations to handle the case
when the loss magnitude ∥Q(t)∥∞+V G and the Lipschitzness
∥Q(t)∥2 + V L are both large when ∥Q(t)∥ is large. This
approach also assumes only that gt (A(t)) (i.e., the utility
realized by the chosen entanglement request arrival rates A(t))
is observed each time slot t ∈ [T ], rather than having knowl-
edge of gt over the entire domain A. This partial-information
setting closely matches real-world quantum network scenarios
in which measuring the complete set of channel utilities is
prohibitively expensive. Hence only ℓt(A(t)), the actual loss
associated with our action, can be accurately calculated.

To show the theoretical guarantees of AdaBGD, we first
introduce the following assumption on the reference policy
including the self-determined entanglement request arrival
rates A, which is similar to Assumption III.1. We assume a ref-
erence control sequence

(
p̄(t), Ā(t)

)
that piecewise stabilizes

the system, similar to Assumption III.1 ( [24, Assumption 2]),
but now incorporating dynamic arrival rates. The performance
of Q-UMO is then benchmarked against this reference, yielding
both queue stability and near-optimal long-term utility.

Assumption IV.1 (Extension Piecewise Stability for Utility
Maximization [24, Assumption 2]). There exists a reference
policy {(p̄(t), Ā(t))}t∈[T ] and constants ϵW > 0, CW ≥ 0,
such that for some partitioned intervals {Wj}Jj=1 of [T ]:

1) The partition of [T ] satisfies that

J∑
j=1

(|Wj | − 1)2 ≤ CWT

2) For ∀j ∈ [J ], n ∈ N , k ∈ N :

1

|Wj |
∑
t∈Wj

∑
(n,m)∈L

Cn,m(t)p̄(k)n,m(t)

≥ ϵW +
1

|Wj |
∑
t∈Wj

Ā(k)
n (t) +

∑
(o,n)∈L

Co,n(t)p̄
(k)
o,n(t)

 .

[24, Theorem 4.4] shows that For the reference arrival rates
{Ā(t)}t∈[T ] defined in Assumption IV.1, suppose that its path
length ensures for every t ∈ [T ]:

P Ā
t ≜

T−1∑
t=1

∥Ā(t+ 1)− Ā(t))∥1 ≤ CAt1/2−δA ,

where CA and δA are known constants but the precise P Ā
t or

{Ā(t)}t∈[T ] both remain unknown.
Suppose that the action set A is bounded by [r,R] (i.e.,

rB ⊆ A ⊆ RB, where B is the unit ball). [24] shows that,
if we execute AdaBGD over A with loss functions ℓt(A) =
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⟨Q(t),A⟩ − V gt(A) and parameters ηt, δt, αt defined in Eq.
(12):

ηt =

CAT
1
2−δA

/
(CAT 1/2−δA)

7
3 (4r−3d2)

28
9 (M+R)

4
3 +

CAT
1
2
−δA (r−3d2V G2/L)

4
3 +∑t

s=1((∥Qs∥∞+V G)2(∥Qs∥2+V L)2)
1
3


3
4

,

δt =

(
ηtd

2 (∥Q(t)∥∞ + V G)2

(∥Q(t)∥2 + V L)

) 1
3

, αt =
δt
r
,

(12)
then the outputs A(1),A(2), . . . ,A(T ) ∈ A of AdaBGD
ensure

h(A)− h(Ā) = O
(
R(2NM +R)

r7
d14/3(CAT 1/2−δA)2

)
+O

(
E

[(
R

r
d2/3 +R

)
(CAT 1/2−δA)1/4

·

(
T∑

t=1

(∥Q(t)∥2 + V (L+G))
4/3

)3/4 ])
.

D. Theoretical Results of Q-UMO

Finally, we state the main outcome for Q-UMO in Theo-
rem IV.2, as the following Theorem IV.2, which is a direct
corollary of Theorem 4.5 of [24]. Roughly speaking, if there
is a piecewise-stabilizing reference policy with bounded path
lengths for both link allocations and arrivals, Q-UMO can
sustain bounded queues while achieving an average utility
that approaches that of the reference policy on the order
of OT (V

−1) as T grows. By carefully tuning V as a sub-
polynomial in T , the algorithm can reconcile the competing
goals of fast utility convergence and stable queue operation in
large-scale adversarial quantum networks.

Theorem IV.2 (Main Theorem Q-UMO (Algorithm 2)). Sup-
pose that the feasible set of arrival rates vector A is bounded
by [r,R]. Assume all (unknown) utility functions gt to be
concave, L-Lipschitz, and [−G,G]-bounded. Consider a refer-
ence action sequence {(p̄(t), Ā(t))}t∈[T ] satisfying Assump-
tion IV.1, such that their path lengths satisfy

P p̄
t ≜

t−1∑
s=1

∥p̄(s)− p̄(s+ 1)∥1 ≤ Cpt1/2−δp ,

P Ā
t ≜

t−1∑
s=1

∥Ā(s)− Ā(s+ 1)∥1 ≤ CAt1/2−δA , ∀t ∈ [T ].

Here, M,R, r, L,G,Cp, δp, C
A, δA are known constants,

whereas the specific {(p̄(t), Ā(t))}t∈[T ] remains unknown.
If we execute the Q-UMO in Algorithm 2 with the plug-
in online learning optimization algorithm AdaPFOL and
the bandit convex optimization algorithm AdaBGD given
in [24], when T is large enough such that the constant

V = oT (min{T 2δp/3, T 2δA/7}), the following inequalities
hold simultaneously:

1

T
E

[
T∑

t=1

∥Q(t)∥1

]
= O

(
ϵW

−1 ·
(
N2(2NM +R)2 + ϵWN2(2NM +R))CW

+ (N4M2 +N2R2)
))

+ oT (1),

1

T
E

[
T∑

t=1

(
gt(Ā(t))− gt(A(t))

)]
= O

(
V −1

(
(N2(2NM +R)2 + ϵWN2(2NM +R))CW

+ (N4M2 +N2R2)
))

+ oT (V
−1).

That is, when T ≫ 0, our algorithm not only stabilizes the
system so that 1

T E
[∑T

t=1∥Q(t)∥1
]
= OT (1), but also enjoys

an average utility approaching that of the reference policy
polynomially fast, i.e., 1

T E
[∑T

t=1

(
gt(Ā(t))− gt(A(t))

)]
=

OT (V
−1) – the utility maximization objective Eq. (3) is

ensured.

Remark IV.3. As shown in Theorem IV.2, Q-UMO jointly
ensures bounded average queue length and guarantees an
O
(
V −1

)
gap in utility with respect to the reference policy. By

appropriately selecting V (e.g., as a sub-polynomial function
in T ), the scheduler can maintain stability and simultaneously
approach the best attainable utility in an adversarial multi-
hop quantum network. This result demonstrates that Q-UMO
can achieve both OT (1) average queue length and O

(
V −1

)
utility gap simultaneously by carefully handling the drift-plus-
penalty framework in adversarial quantum networks.

V. CONCLUSION

In this paper, we proposed two scheduling protocols, Q-NSO
and Q-UMO, to tackle adversarial quantum network control
with bandit feedback. Our methods are tightly built upon the
algorithmic framework and analytical tools in [24]. Specifi-
cally, Q-NSO ensures the quantum network’s stability. Mean-
while, Q-UMO extends Q-NSO to incorporate utility maxi-
mization, combining Lyapunov drift-plus-penalty analysis with
adaptive bandit convex optimization. This approach jointly
stabilizes quantum queues and optimizes the adversarial utility
function under bandit feedback, enabling the network to handle
dynamic arrival rates while continuously improving overall
utility.
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