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Product Selection Problem: Improve Market Share by Learning
Consumer Behavior

SILEI XU and JOHN C. S. LUI, The Chinese University of Hong Kong

It is often crucial for manufacturers to decide what products to produce so that they can increase their
market share in an increasingly fierce market. To decide which products to produce, manufacturers need to
analyze the consumers’ requirements and how consumers make their purchase decisions so that the new
products will be competitive in the market. In this paper, we first present a general distance-based product
adoption model to capture consumers’ purchase behavior. Using this model, various distance metrics can
be used to describe different real life purchase behavior. We then provide a learning algorithm to decide
which set of distance metrics one should use when we are given some accessible historical purchase data.
Based on the product adoption model, we formalize the k most marketable products (or k-MMP) selection
problem and formally prove that the problem is NP-hard. To tackle this problem, we propose an efficient
greedy-based approximation algorithm with a provable solution guarantee. Using submodularity analysis,
we prove that our approximation algorithm can achieve at least 63% of the optimal solution. We apply
our algorithm on both synthetic datasets and real-world datasets (TripAdvisor.com), and show that our
algorithm can easily achieve five or more orders of speedup over the exhaustive search and achieve about
96% of the optimal solution on average. Our experiments also demonstrate the robustness of our distance
metric learning method, and illustrate how one can adopt it to improve the accuracy of product selection.
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1. INTRODUCTION
Product competition in the current digital age is becoming increasingly fierce. Con-
sumers can easily access the information about a given product via the internet. More-
over, consumers can share their opinions on products in the form of ratings or reviews
via various web services, e.g., Amazon. Therefore, instead of relying on the sales pitch
by salesmen or traditional TV advertisements, consumers can now review many com-
peting products before they make their final purchase decision. Manufacturers, on the
other hand, can use the web information, such as ratings and reviews, to gain a bet-
ter understanding of consumers’ requirements on various products. This leads to a
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new challenge on how to discover consumers’ preferences, and how these preferences
may help manufacturer to select appropriate new products so to compete with other
manufacturers in the market.

To introduce new products into a market, a manufacturer usually has a set of can-
didate products to consider. However, due to budget constraints, the manufacturer can
only produce a small subset of these candidate products. The objective of a manufac-
turer is to select a subset of products which can maximize its profit or market share. In
this study, we consider the following scenario: In a market consisting of a set of existing
products from various manufacturers and a set of consumers, a manufacturer wants to
select “k most marketable products” (k-MMP) from a set of candidate products so as to
maximize the market share of all products from this manufacturer (this includes the
possibility that some existing products in the market are from the same manufacturer).

One of the major challenges of the “k-MMP” problem is how to model various con-
sumers’ adoption behavior, i.e., how consumers make their purchase decisions. Differ-
ent adoption behavior may lead to different product selection results. However, there
is a lack of formal work of how to model these behaviors using available data. Fur-
thermore, finding the optimal solution to the “k-MMP” problem can be shown to be
NP-hard in general.

In this paper, we first model the consumers’ adoption behavior with a generalized
distance-based model where different distance metrics can be used to describe many
different consumers’ behaviors. We then propose a method to learn which set of dis-
tance metrics one should use when we are given some historical purchase data. We
also present a computationally efficient approximation algorithm to solve the k-MMP
problem. To the best of our knowledge, this is the first paper that provides the formal
consumers’ adoption model and the analysis of product selection. The contributions of
this paper are as follows:

—We formulate the problem of finding the k-MMP for a manufacturer.
—We model the adoption behavior of consumers using a general distance-based product

adoption model which can take on various different distance metrics.
—Given a set of potential distance metrics, we provide a learning method to determine

the appropriate probability distribution of these distance metrics using the historical
purchase data on market share, actual sales, or only the ratio of actual sales of a
subset of existing products.

—We prove that the k-MMP problem is NP-hard and propose a computationally ef-
ficient approximation algorithm. By proving the monotonicity and submodularity
properties of the objective function, we show that our approximation algorithm pro-
vides a (1− 1/e)-approximation as compared with the optimal solution.

—We perform experiments on synthetic datasets to demonstrate the efficiency and
accuracy of our algorithm when varying parameters of the experiments.

—We illustrate the significant impact of different distance metrics and how one can
adopt our learning method to improve the market share. We also show that our
learning method maintains high accuracy no matter whether we have the perfect
information of the potential distance metrics or not.

The outline of the paper is as follows. In Section 2, we propose a general product
adoption model which can accommodate different distance metrics to describe the
consumers’ adoption behavior, and we formulate the k-MMP problem. In Section 3, we
present a learning method to select the appropriate set of distance metrics according
to the historical market share of existing products. In Section 4, we propose an exact
algorithm for the case of k = 1 and prove that finding the exact solution is NP-hard
with respect to a general k. To tackle the computational challenge, we present an
approximation algorithm in Section 5. We show that this algorithm is computationally
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efficient and also provides a high-quality solution guarantee. In Section 6, we perform
experiments on both the synthetic data and the real-world data. Related work is shown
in Section 7, and Section 8 concludes.

2. MATHEMATICAL MODELS AND PROBLEM FORMULATION
In this section, we first present a model of a market by considering both products
and consumers. Then, we present a distance-based product adoption model to describe
various consumers’ product adoption behaviors. Based on these models, we formulate
the k-MMP problem.

2.1. Market Model
Let us consider a market which consists of a set of l consumers C = {c1, c2, . . . , cl} and
a set of m existing products PE = {p1, p2, . . . , pm}. Let M represent a manufacturer in
the market, and PM denote the set of existing products produced by M, where PM ⊆ PE
and |PM| = mM. The remaining products in PE are from other manufacturers who are
the competitors of M. These competing products are denoted by PC , where PC ⊆ PE
and |PC | = mC . According to these definitions, we have m = mM + mC , PE = PM ∪ PC ,
and PM ∩ PC = ∅.

Suppose the manufacturer M wants to produce some new products to maximize its
utility, i.e., the market share. M has a set of n candidate new products to choose from,
which we denote by PN = {pm+1, pm+2, . . . , pm+n}. Note that all the products in PN are
new to the market, in other words, PN ∩ PE = ∅. Due to the budget, technological
and manufacturing constraints, the manufacturer M can only produce k ≤ n of these
candidate products in PN.

Each product in PE ∪ PN is associated with d attributes denoted by A =
{a1, a2, . . . , ad}. Each attribute ai is represented by a non-negative real number, and
higher value implies higher quality. One can use ai to represent various attributes of a
given product, e.g., durability, ratings, inverse of price. Hence, the quality of a product
can be described by a d-dimensional vector. Specially, the quality of product pj is de-
scribed by the vector qj = (qj[1], qj[2], . . . , qj[d]), where qj[t] ∈ [0,∞), ∀t ∈ {1, 2, .., d} in-
dicates pj ’s quality on attribute at. Similarly, each consumer in C is also associated with
A to describe his requirements on different attributes. Let ri = (ri[1], ri[2], . . . , ri[d]) be
the requirement vector of consumer ci, where ri[t] ∈ [0,∞), ∀t ∈ {1, 2, . . . , d} indicates
ci ’s minimum requirement on attribute at, i.e., ci requires that the product’s quality on
attribute at is at least ri[t], or he will not adopt (or purchase) that product.

Example 2.1. To illustrate the notations, we present an example in Figure 1. Con-
sider a market of smart phones where we have two existing products PE = {p1, p2} and
three consumers C = {c1, c2, c3}. Manufacturer M is considering two candidate products
PN = {p3, p4}. Let us say each product is described by two attributes: a1 is the inverse
of price (units per thousand dollars, UPM for short) and a2 is durability (years), and
they are represented in the horizontal and the vertical axis, respectively. The quality
vectors of products and the requirement vectors of consumers are shown in the figure
(with PE:♦, PN:✷, C:◦). For instance, the quality vector of p1 is (2, 6), so we can purchase
two units of p1 with one thousand dollars (or the price of p1 is $500), and the durability
of p1 is 6 years. Similarly, the requirement vector of c1 is (1, 5), so consumer c1 wants
a product which is at most $1,000 and can last for at least 5 years.

2.2. Product Adoption Model
We assume that a consumer may adopt a product if the product satisfies his require-
ment. We say that a product satisfies a consumer’s requirements if and only if the
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Fig. 1. An illustration of the market model.

product meets the requirements of that consumer on all attributes. Formally, we define
the product satisfiability condition.

Definition 2.2 (Product Satisfiability). Consider a consumer ci and a product pj . We
say the product pj satisfies the consumer ci if and only if qj[t] ≥ ri[t], ∀t = 1, . . . , d.
We denote this relationship as pj " ci, and pj is said to be a satisfactory product of ci,
while ci is a potential consumer of pj in other words.

For example, consider the products and consumers depicted in Figure 1. One can
observe that the quality vector of p1 is (2, 6) and the requirement vector of c1 is (1, 5).
Since 2 > 1 and 6 > 5, so p1 satisfies c1, or p1 " c1. Similarly, we have p3 " c2 and
p3 " c3.

We assume that if a consumer has some satisfactory products, then he will adopt
one unit of product from any of these feasible products. When a consumer ci has only
one satisfactory product, say pj , then ci will adopt pj for sure. However, it becomes
complicated when there are multiple satisfactory products. All previous works [Li et al.
2006; Peng et al. 2012; Wan et al. 2011; Zhang et al. 2009] assume that the consumer
will randomly adopt one of the satisfactory products, but this is not realistic in many
situations. In the following, we present the distance-based adoption model to describe
some realistic and representative product adoption behavior when consumers make
their purchase decisions. Our model is very general to model various product adoption
behaviors in the real-world scenarios.

In a real-world market, products with higher quality usually attract more consumers.
Therefore, we use a distance measure between a product’s quality and a consumer’s
requirement to decide which product the consumer may adopt. Note that consumers
will only consider their satisfactory products. Furthermore, larger distance implies
better quality. Let di, j be the distance between the consumer ci ’s requirement vector
(ri) and the product pj ’s quality vector (qj). We assume that ci will adopt the product pj
which has the largest distance among all his satisfactory products. If there are multiple
satisfactory products which have the same largest distance measure with ci, then ci will
randomly select one of these products. Mathematically, we define the distance-based
adoption model as follows.

Definition 2.3 (Distance-Based Adoption Model). Given a consumer ci and a set P
of products available in the market, let FP(ci|P) be the set of products which have the
largest distance between their quality vectors and ci ’s requirement vector among all
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ci ’s satisfactory products. The probability that ci adopts a product pj ∈ P is

Pr(i, j|P) =
{ 1

|FP(ci |P)| if pj ∈ FP(ci|P),
0 otherwise.

(1)

Note that we can use many distance metrics, e.g., l1, l2, l∞ norms. For instance, if l1
norm (or the Manhattan distance) is used, then consumers will choose the satisfactory
products which have the largest sum of all components’ values in the quality vectors. To
describe different adoption behaviors of different consumers in a real-world market, we
also take into account the weighted distance metrics. Let wt be the weight of attribute
at, wt ≥ 0,∀at ∈ A, then under the l1 norm, the distance di, j can be expressed as

di, j =
∑

at∈A
wt · (qj[t] − ri[t]). (2)

It is important to point out that the algorithms we present in this paper are general
to all distance metrics. Readers can use other distance metrics when appropriate. In
here, we present four representative distance metrics which we use as examples for
illustrations and experiments.
—Discrete metric (DM)
We define di, j = 1 for consumers ci and ci ’s satisfactory product pj in the discrete metric.
This distance metric simplifies the adoption model that consumers will randomly select
one from all his satisfactory products. Using this distance metric, our work subsumes
the adoption models of previous works [Li et al. 2006; Peng et al. 2012; Wan et al. 2011;
Zhang et al. 2009].

—Norm metric (NM)
In this distance metric, we set the weight wt = 1.0, ∀at ∈ A based on the l1 norm metric
as defined in Equation (2). Note that in general, one can use other norm as distance
metric and our algorithms still apply.

—Price metric (PM)
In a real-world market, one common situation is that if a consumer’s requirements are
satisfied, then he will select the cheapest product, i.e., the one with the highest quality
on the attribute of “price”. In this case, we can set the weight of all attributes to zero
except the “price” based on the l1 norm metric as defined in Equation (2).

—Richman metric (RM)
Unlike the PM, some consumers may be rich and they are insensitive to the price but
only want the best product. In this case, we can set the weight of “price” attribute to
zero while setting the weight of other attributes to one.

Example 2.4. To illustrate, let us consider the products and consumers depicted in
Figure 1. Suppose that manufacturer M decides to produce p3, then the set of available
products in the market is P = PE ∪ {p3} = {p1, p2, p3}. Let us consider the probability
c2 will adopt p3, i.e., Pr(2, 3|P), when c2 uses the above four distance metrics. From
Figure 1, one can observe that c2 is satisfied by p1, p2, and p3. If c2 uses the discrete
metric, then d2,1 = d2,2 = d2,3 = 1, so Pr(2, 3|P) = 1/3. If c2 uses the norm metric,
then we have d2,1 = 3, d2,2 = d2,3 = 5. Hence, c2 will select p2 and p3 with probability
Pr(2, 2|P) = Pr(2, 3|P) = 1/2. If c2 uses the price metric, then we only need to consider
the attribute inverse of price. We have d2,1 = 0, d2,2 = 4, d2,3 = 5, so Pr(2, 3|P) = 1, c2
will adopt p3. If c2 uses the richman metric, we have d2,1 = 3, d2,2 = 1, d2,3 = 0. Thus,
c2 will adopt p1 only, or Pr(2, 1|P) = 1 and Pr(2, 3|P) = 0.
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2.3. Problem Formulation
To find the k-MMP, we first need to define the expected market share of a set of
products under the distance-based adoption model. Given the market condition, i.e.,
the consumers C and the existing products PE, let P be the set of products we consider,
then the expected market share of P is defined as

MS(P) = 1
l

·
∑

pj∈P

∑

ci∈PC(pj )

Pr(i, j|PE ∪ P), (3)

where l = |C|, PC(pj) denotes the set of potential consumers of product pj , and
Pr(i, j|PE ∪ P) is defined in Equation (1).

Example 2.5. Let us illustrate the expected market share of p3, or MS({p3}), by
considering the scenario depicted in Figure 1. There are two existing products (PE =
{p1, p2}) and three consumers (C = {c1, c2, c3}) in the market. By adding product p3 into
the market, p3 satisfies consumers c2 and c3. Assume that c2 uses the norm metric, then
according to Example 2.4, we have Pr(2, 3|P) = 1/2. Now consider consumer c3. Since
we have not added p4 into the market, p3 is c3’s only satisfactory product, so c3 will
adopt p3 for sure. Therefore, in this scenario, c2 and c3 will adopt p3 with probability
1/2 and 1, respectively. So the expected sales of p3 is 1.5 units. It follows that the
expected market share of p3 is 1.5/3 = 50% since there are three consumers in total.

Based on the definition of market share in Equation (3), we formulate the k-MMP
problem as follows.

Definition 2.6 (k-MMP). Given a set of consumers C, a set of existing products
PE = PC ∪PM in the market, and PN, a set of candidate products by the manufacturer
M, select a set P ⊆ PN, where |P| = k so to maximize MS(P ∪ PM) for manufacturer
M.

To solve the k-MMP problem, we need to tackle the following two issues: (1) Find
the proper distance metrics for the market. (2) Design an efficient algorithm to find
the solution to the k-MMP problem. Since there are various potential distance metrics
and manufacturers usually do not know which distance metrics the consumers may
adopt, we present a learning approach to discover the proper set of distance metrics
for a given market from historical purchase data. This is presented in Section 3. After
deciding on the proper distance metrics, we present the algorithmic design in solving
the k-MMP problem. In Section 4, we present an efficient and exact algorithm for the
1-MMP problem and prove that the k-MMP problem is NP-hard in general. In Sec-
tion 5, we present an efficient approximation algorithm. By exploiting the monotonicity
and submodularity properties of the market share function MS(·), we prove that our
approximation algorithm can provide high performance guarantee on the quality of the
solutions. Table I depicts the notations we use in this paper.

3. DISTANCE METRIC LEARNING
As discussed in Section 2, there are various distance metrics one can use and the
product selection results can vary significantly depending on the distance metrics
according to the results shown in Section 6. Hence, it is important to “learn” about the
proper distance metrics (in other words, consumers’ product adoption behavior) from
the available data. In this work, we propose a learning method based on the market
share, actual sales, or even only the ratio of actual sales of a subset of products in the
market so to discover the appropriate distance metrics.
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Table I. Notations

Notations Description

C a set of consumers in the market
PE a set of existing products in the market
PM a set of existing products from manufacturer M
PC a set of existing products from M’s competitors
PN a set of candidate new products for M
A a set of attributes

l, m, mM, mC , n, d the size of C,PE,PM,PC ,PN,A, respectively
k the number of new products to produce
ri consumer ci ’s requirement vector
qj product pj ’s quality vector
di, j the distance between ri and qj

FP(ci |P) the set of ci ’s satisfactory products which have the largest distance to ci when
a set P of products are available in the market

Pr(i, j|P) the probability that ci adopt pj when a set P of products are available in the
market

PC(pj ) a set of potential consumers of pj

ms j the real-world market share of pj

sj the real-world sales of pj

Rj, j′ the ratio between sj and sj′

e ji the expected market share of pj under the adoption model using ith potential
distance metric

θi the probability consumers use the ith potential distance metric
f j the forecast market share of pj

3.1. Learning From Market Share
Note that in real life, some manufacturers may not release full information about their
market share. Therefore, we assume that we only know the market share of a subset of
existing products. Formally, let P ′

E be the n′ products that we know the market share
data, where P ′

E ⊆ PE. Let msj be the market share of pj ∈ P ′
E.

Assume that we have a model set consisting of distance-based product adoption
models using m′ different potential distance metrics, which are numbered from 1 to
m′. Let e ji be the expected market share of product pj under the product adoption
model using the ith potential distance metric, and ej = (e j1, e j2, . . . , e jm′ )T . Let θi be
the probability that consumers use the ith distance metric, and " = (θ1, θ2, . . . , θm′ )T .
Then, we can forecast the market share for each product pj ∈ P ′

E as

f j(") = "T · ej

= θ1e j1 + θ2e j2 + · · · + θm′e jm′ ,
(4)

where f j(") is the forecast market share of product pj .
We can find the best fit for " by minimizing the squared difference between the

forecast market share f j and the real-world market share msj . Let # j be the difference
between f j and msj , or mathematically,

# j(") = | f j(") − msj |. (5)

Then, we can formalize the model selection problem as follows:

Minimize
∑

pj∈P ′
E

#2
j ("),

subject to " ≥ 0, θ1 + θ2 + · · · + θm′ = 1,

(6)

where " ≥ 0 means that θi ≥ 0,∀i ∈ {1, . . . , m′}.
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Table II. An Example of Model Selection

NM PM RM real-world

p1 20% 1% 50% 5%
p2 30% 10% 10% 15%
p3 5% 30% 0% 20%
p4 10% 40% 5% unknown

Thus, the problem is reduced to a linear regression problem with constrained least-
squares approach, which can be solved using the technique in Gill et al. [1981]. Once
we solve this linear regression problem, we can forecast the market share f j(") based
on the probability vector ".

Example 3.1. Consider a model set consisting of adoption models using the NM, PM,
and RM. Assume, we obtain the real-world market share of three products p1, p2, and
p3 and we want to forecast the market share of p4. The real-world market share and
the expected market share under three different models of these products are shown
in Table II.

Let θ1, θ2, and θ3 be the probability of consumers using the “NM”, the “PM”, and the
“RM”, respectively. Then, we can formalize the problem as follows:

Minimize

∥∥∥∥∥

θ1 · 20% θ2 · 1% θ3 · 50% −5%
θ1 · 30% θ2 · 10% θ3 · 10% −15%
θ1 · 5% θ2 · 30% θ3 · 0% −20%

∥∥∥∥∥

2

2

subject to " ≥ 0, θ1 + θ2 + θ3 = 1.

We obtain " = (0.3074, 0.6926, 0)T by solving the above optimization problem. Thus,
we can forecast that the real-world market share of p4 as "T · ej = (0.3074, 0.6926, 0) ·
(10%, 40%, 5%)T = 30.78%.

3.2. Learning From Sales
Foregoing approach also works well if we have the products’ actual sales. In fact, this
is not as restrictive as using the market share because each manufacturer knows exact
its own sales: A manufacturer M knows the actual sales of its own existing products
PM in the market.

Assume that we know the actual sales of products in P ′
E, where sj denotes the sales

of pj . Let L be the number of all consumers in the market, then the market share of
pj can be expressed as msj = sj/L. Since we want our forecast market share f j is as
close as possible to the real-world market share msj , the ratio between f j and sj should
approach to a constant for any pj ∈ P ′

E:

f j/sj = f j/(msj · L) ≈ 1/L. (7)

Thus, in this case we minimize the squared difference between f j/sj and f j ′/sj ′ for
each pair of products pj, pj ′ ∈ P ′

E. Let # j, j ′ (") be the difference between f j/sj and
f j ′/sj ′ , or mathematically,

# j, j ′ (") = | f j(")/sj − f j ′ (")/sj ′ |. (8)

Then, the problem can also be transformed to a constrained minimization problem as
follows:

Minimize
∑

pj ,pj′ ∈P ′
E

#2
j, j ′ ("),

subject to " ≥ 0, θ1 + θ2 + · · · + θm′ = 1,

(9)
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where
# j, j ′ (") = | f j(")/sj − f j ′(")/sj ′ |

=
∣∣∣∣"

T · ej

sj
− "T · ej ′

sj ′

∣∣∣∣

=
∣∣∣∣∣"

T ·
(

e j1

sj
, . . . ,

e jm′

sj

)T

− "T ·
(

e j ′1

sj ′
, . . . ,

e j ′m′

sj ′

)T
∣∣∣∣∣

=
∣∣∣∣∣"

T ·
(

e j1

sj
− e j ′1

sj ′
, . . . ,

e jm′

sj
− e j ′m′

sj ′

)T
∣∣∣∣∣ .

(10)

One can observe that # j, j ′ (") is a linear function of " as shown in Equation (10), so
this problem is a linear regression problem with constrained least-squares approach.
By solving this linear regression problem, we can forecast the market share f j(") based
on the probability vector ".

3.3. Learning From Ratio of Sales
When a new manufacturer enters the market, it has no existing product in the current
market, it is possible that the manufacturer does not know any product’s market share
or sales. However, it is not difficult to obtain the ratio of sales. For instance, if we can
obtain the sales of products on an online store, then we can get an estimation of the
ratio of the total sales.

Assume that we know the ratios of the actual sales of products in P ′
E, or mathemat-

ically, Rj, j ′ = sj/sj ′ . Let L be the number of all consumers in the market. With similar
derivation of Equation (7), we have

f j/sj = f j/(sj ′ · Rj, j ′ ) ≈ f j ′/sj ′ ≈ 1/L
⇒ f j/Rj, j ′ ≈ sj ′/L ≈ f j ′

. (11)

Thus, in this case we minimize the squared difference between f j/Rj, j ′ and f j ′ for each
pair of products pj, pj ′ ∈ P ′

E. Let #′
j, j ′ (") be the difference between f j/Rj, j ′ and f j ′ , or

mathematically,

#′
j, j ′ (") = | f j(")/Rj, j ′ − f j ′ (")|. (12)

Then, the problem can also be transformed to a constrained minimization problem as
follows:

Minimize
∑

pj ,pj′ ∈P ′
E

#2′

j, j ′ ("),

subject to " ≥ 0, θ1 + θ2 + · · · + θm′ = 1,

(13)

where
#′

j, j ′ (") = | f j(")/Rj, j ′ − f j ′ (")|

=
∣∣∣∣"

T · ej

Rj, j ′
− "T · ej ′

∣∣∣∣

=
∣∣∣∣∣"

T ·
(

e j1

Rj, j ′
, . . . ,

e jm′

Rj, j ′

)T

− "T ·
(
e j ′1, . . . , e j ′m′

)T

∣∣∣∣∣

=
∣∣∣∣∣"

T ·
(

e j1

Rj, j ′
− e j ′1, . . . ,

e jm′

Rj, j ′
− e j ′m′

)T
∣∣∣∣∣ .

(14)
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Table III. Farthest Product Table Under NM

Consumers fd1[i] e1[i] m1[i]

c1 2 1 (p3) 0
c2 5 2 (p2, p3) 1 (p3)
c3 3 1 (p4) 1 (p4)

Note that #′
j, j ′ (") is also a linear function of " as shown in Equation (14), so this

problem is also a linear regression problem with constrained least-squares approach.
By solving this linear regression problem, we can forecast the market share f j(") based
on the probability vector ".

In Section 6, we will show that we can estimate the probability vector " with high
accuracy if we know the model set and the historical purchase data of a small number
of products, based on which, we can find products with higher market share.

4. EXACT ALGORITHM AND HARDNESS
Let us first present the exact algorithm for solving a special case of the k-MMP problem
when k = 1. This will serve as the foundation of our approximation algorithm in
Section 5. Then, we prove the NP-hardness of the k-MMP problem.

4.1. Exact Top-1 Algorithm
One way to find the exact solution of the 1-MMP problem is via exhaustive search:
Calculate the expected market share for all candidate products in PN and select the
product with the largest market share. To calculate the expected market share of a
product, we need to check the requirement vectors of all l consumers and the quality
vectors of their satisfactory products with time complexity O(mld), where m is the
number of existing products and d is the dimension of the attribute vector A. Assume
that we consider a model set S consisting of m′ potential product adoption models.
Since there are n candidate products, the computational complexity of the exhaustive
search is O(m′mnld).

In the following, we present an enhanced algorithm for the 1-MMP problem based
on precomputation. This enhanced algorithm has a lower computational complexity, or
O(m′(m+ n)ld). The main idea is as follows.

Let S be the model set consisting of m′ potential product adoption models. Under each
product adoption model, we build a farthest product table for each consumer ci ∈ C to
store the information about FP(ci|PE), which represents the set of satisfactory products
which are farthest from ci when only the existing products PE are considered. We store
the distances between ci and these ci ’s farthest satisfactory products, the number of
these farthest products, as well as the number of products from manufacturer M among
these farthest products. We denote them as fdt[i], et[i], and mt[i] under the distance
metric model t, respectively. Formally, they can be expressed as

fdt[i] = di, j, where pj ∈ FP(ci|PE),
et[i] = |FP(ci|PE)|,

mt[i] = |FP(ci|PE) ∩ PM|. (15)

The algorithm of building the farthest product table is shown in Algorithm 1.

Example 4.1. To illustrate, let us consider the products and consumers depicted in
Figure 1 again. Let us say that manufacturer M has produced both p3 and p4, then in
the current market we have PE = {p1, . . . , p4}, PM = {p3, p4}. Suppose that consumers
use adoption model NM. Assume that NM is adoption model 1, then we can build the
farthest product table as shown in Table III.
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ALGORITHM 1: Farthest Product Table Builder
Input: PE, PM, C, adoption model t
Output: farthest product table under adoption model t
for all ci ∈ C(pj) do

fdt[i] ← 0
FP(ci|PE) ← ∅
for all pj ∈ PE do

if pj " ci and di, j > fdt[i] then
fdt[i] ← di, j , FP(ci|PE) ← {pj}

else if pj " ci and di, j = fdt[i] then
FP(ci|PE) ← FP(ci|PE) ∪ {pj}

end
end
et[i] ← |FP(ci|PE)|
mt[i] ← |FP(ci|PE) ∩ PM|

end

Then, for each candidate new product pj ∈ PN, instead of calculating the market
share according Equation (3), we can simply perform a table lookup to check whether
each consumer will be influenced by the new product, and then calculate the increase
of sales by adding pj . Based on the increase of sales under different distance metric
models and the probability of using each model, we can calculate the expected increase
of sales under the given model set S. The product which has the largest expected
increase on sales will be returned as the result of the algorithm. The pseudo code of
this precomputation-based exact algorithm is shown in Algorithm 2.

ALGORITHM 2: Exact Top-1 Algorithm
Input: PE,PM,PN, C, S,"
Output: 1-MMP
for all model t in S do

build farthest product table
end
max increase ← 0
for all pj ∈ PN do

for all ci ∈ PC(pj) under each model t in S do
#salest(pj) ← 0
if d(i, j) > fdt[i] then

#salest(pj) ← #salest(pj) + (1 − mt[i]
et[i]

)
else if d(i, j) = fdt[i] then

#salest(pj) ← #salest(pj) + ( mt[i]+1
et[i]+1 − mt[i]

et[i]
)

end
end
#Sales(pj) ← θ1#sales1(pj) + · · · + θm′#salesm′ (pj)
if #Sales(pj) > max increase then

res ← pj max increase ← #Sales(pj)
end

end
return res

LEMMA 4.2. The computational complexity of Algorithm 2 is O(m′(m + n)ld), where
m′ = |S|, m = |PE|, n = |PN|, l = |C|, d = |A|.

PROOF. First, we build the farthest products table. It takes O(d) time to calculate the
distance for each pair of consumer and product, while there are l consumers, mexisting
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products, and m′ product adoption models, so the complexity of building the table is
O(m′mld). Then, for each product pj ∈ PN, we calculate the increase of sales caused
by adding pj , which takes O(m′ld) time. Since there are n candidate new products, the
complexity of these steps is O(m′nld). Therefore, the total computational complexity of
Algorithm 2 is O(m′(m+ n)ld).

We like to point out that for some cases, Algorithm 2 could be further optimized by
using skyline algorithms. The idea is as following. Consider the case that the distance
metric adopted is not a discrete metric, then if a product pj is dominated by another
product and there does not exist an attribute at ∈ A that qj[t] = maxpi∈PE qi[t], pj
will not have the largest distance to any consumers. Thus, by filtering out these type of
products, we could reduce the number of products we need to calculate the distance. The
known optimal skyline algorithm costs O(N(logd−3 N)d) for d > 4 [Chan et al. 2011],
where N and d denote the number of points and the dimension of the space, respec-
tively. In our case, N = m+n. So the filtering process will cost O((m+n)(logd−3(m+n))d)
time. Let n′ ≤ m+n denote the number of skyline products, then the complexity of opti-
mized algorithm will be O(m′n′ld+ (m+n)(logd−3 (m+ n))d). Note that this optimization
will improve the performance only when n′ < m + n and (m + n) logd−3 (m+ n) < m′l,
otherwise, it will have a worse complexity as compared with Algorithm 2. Thus, in
the following analysis, we still adopt Algorithm 2 as the algorithm of finding the exact
solution of top-1 MMP problem.

4.2. Top-k Exact Algorithm
Similarly, exhaustive search is a direct approach to find the exact solution of the k-MMP
problem. By enumerating all possible subsets of size k from PN, and calculating the
expected market share of each subset, one can find the set of product with size k which
achieves the largest market share. However, the exhaustive approach is not scalable
since there exist exponentially many possible subsets. In the following theorem, we
formally show that finding the exact solution of the k-MMP problem is NP-hard, where
k is considered as a variable.

THEOREM 4.3. Finding the exact solution for the k-MMP selection problem is NP-hard
when the number of attributes d is three or more.

PROOF. Please refer to the appendix.

5. APPROXIMATION ALGORITHM
In this section, we extend the top-1 algorithm for the k-MMP problem using a greedy-
based approximation algorithm. The algorithm is not only computationally efficient,
but also provide at least (1 − 1/e)-approximation by exploiting that the market share
function is monotone and submodular. In the following, let us first present our approx-
imation algorithm. Then, we formally prove its performance guarantee, and finally
prove that the market share function we consider is indeed monotone and submodular.

5.1. Greedy-based Approximation Algorithm
Our approximation algorithm is based on the exact top-1 algorithm to solve the top-k
problem. The main idea is as follows. We select k products in k steps. In each step,
we select the product which is the solution of the exact top-1 algorithm. Furthermore,
instead of building the farthest product tables at each step, we only build them in the
first step, and then update the tables in the remaining steps. The pseudo code of this
algorithm is depicted in Algorithm 3.

THEOREM 5.1 (COMPUTATIONAL COMPLEXITY). The computational complexity of Algo-
rithm 3 is O(m′(m+ kn)ld), where m′ = |S|, m = |PE|, n = |PN|, l = |C|, d = |A|.
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ALGORITHM 3: Approximation Top-k Greedy Algorithm
Input: PE,PM,PN, C, S,", k
Output: k-MMP
Pres ← ∅
while |Pres| < k do

pnew ← solution of the exact top-1 algorithm
for ci ∈ PC(pnew) under each model t in S do

if d(i, new) > fdt[i] then
fdt[i] ← d(i, new), et[i] ← 1, mt[i] ← 1

else if d(i, new) = fdt[i] then
et[i] ← et[i] + 1, mt[i] ← mt[i] + 1

end
end
Pres ← Pres ∩ {pnew}
PM ← PM ∪ {pnew}
PN ← PN \ {pnew}

end
return Pres

PROOF. Based on Lemma 4.2, it takes O(m′mld) time to build these farthest product
tables and O(m′nld) time to find the exact solution of 1-MMP. The complexity of up-
dating tables is only O(ld). Since we only build the tables once and find the 1-MMP k
times in Algorithm 3, the computational complexity of Algorithm 3 is (m′(m+kn)ld).

5.2. Guarantee on Solution Quality
To prove the performance guarantee of our approximation algorithm, let us first intro-
duce the notion of “submodular set function” [Nemhauser et al. 1978].

Definition 5.2 (Submodular Set Function). Given a finite ground set U , a function
f that maps subsets of U to real numbers is called submodular if

f (S ∪ {u}) − f (S) ≥ f (T ∪ {u}) − f (T ), ∀S ⊆ T ⊆ U, u ∈ U. (16)

Next, we show one interesting property of submodular set functions [Kempe et al.
2003], based on which we design our approximation algorithm with theoretical perfor-
mance guarantee.

THEOREM 5.3. For a non-negative monotone submodular function f : 2U → R, let
S ⊆ U be the set of size k obtained by selecting elements from U one at a time, each time
choosing the element that provides the largest marginal increase in the function value.
Let S∗ ⊆ U be the set that maximizes the value of f over all k-element sets. Then, we
have f (S) ≥ (1 − 1/e) · f (S∗). In other words, S provides a (1 − 1/e)-approximation, or
guarantees a lower bound on the quality of solution as compared to the optimal solution.

Applying to the k-MMP problem, the ground set is PM ∪ PN, the market share
function MS(·) defined in Section 2 maps subsets of PM ∪ PN to real numbers, i.e.,
the expected market share of products. According to Theorem 5.3, if we can prove that
MS(·) is a non-negative monotone submodular set function, then our approximation Al-
gorithm 3 can provide a (1−1/e)-approximation. We leaves the proof of these properties
in the next subsection, and once we prove them, we have the following theorem.

THEOREM 5.4 (PERFORMANCE GUARANTEE). The approximation algorithm stated in Al-
gorithm 3 provides at least (1 − 1/e)-approximate solutions compared with the optimal
ones, where e is the base of the natural logarithm.
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PROOF. According to Theorem 5.8, which will be proved in the following subsection,
the market share function MS(·) in Equation (3) is non-negative, monotone submodular.
So, according to Theorem 5.3, Algorithm 3 provides (1−1/e)-approximate solutions.

5.3. Submodular Market Share Function
Let us consider the market share function MS(·) defined in Section 2. According to the
definition of MS(·), it is obviously non-negative, so we seek to prove the monotonicity
and submodularity properties. For the ease of presentation, we define the following
notations. For any set S ⊆ PM ∪ PN of products, let PS = PE ∪ S and Sj = S ∪ {pj}, let
pri(S) =

∑
pj∈S Pr(i, j|PS) denote the probability of the consumer ci adopting products

in S when a set PS of products is available in the market. Furthermore, when a set P of
products is available in the market, we define FC(pj |P) as the set of consumers that pj
is their farthest product, and recall that FP(ci|P) is the set of farthest products from ci.

One key fact we use in our proof is that by adding a new product, say pu, only
those consumers in FC(pu|Pu) will change their product adoption decisions. Therefore,
to calculate the change of market share caused by adding pu, we only need to consider
the consumers in FC(pu|Pu). Mathematically, we have the following proposition.

PROPOSITION 5.5. Let PS be the set of products in the market, by adding a new product
pu into the market, pu ∈ PN \ PS, the increase of the market share of products in Su is

MS(Su) − MS(S) =
∑

ci∈FC(pu|Su)

1
l

[
pri(Su) − pri(S)

]
. (17)

Based on Proposition 5.5, we now proceed to prove the monotonicity and submodu-
larity of the market share function MS(·). First, we prove two lemmas (Lemmas 5.6
and 5.7). Based on these two lemmas, we prove the monotonicity and submodularity
properties in Theorem 5.8.

LEMMA 5.6. Let S ⊆ PM ∪ PN be a set of products, and pu be another product in PN,
pu ∈ PN\S. For a consumer ci ∈ C, if ci ∈ FC(pu|PSu), then we have

pri(Su) − pri(S) ≥ 0. (18)

PROOF. Please refer to the appendix.

LEMMA 5.7. Let S and T be two sets of products, S ⊆ T ⊆ PM ∪PN, and pu be another
product in PN, pu ∈ PN\T . For a consumer ci ∈ C, if ci ∈ FC(pu|PTu), then we have

pri(Su) − pri(S) ≥ pri(Tu) − pri(T ). (19)

PROOF. Please refer to the appendix.

THEOREM 5.8. Suppose consumers adopt products following the distance-based adop-
tion model, then the market share function MS(·) defined in Equation (3) is monotone
submodular for the k-MMP problem.

PROOF. We prove the monotonicity property first. To prove the monotonicity property,
we need to show

MS(Su) − MS(S) ≥ 0 ∀S ⊆ PN ∪ PM, pu ∈ PN (20)

holds, which can be proved by combining the results of Proposition 5.5 and Lemma 5.6.
To prove the submodularity property, according to Definition 5.2, we need to show

MS(Su) − MS(S) ≥ MS(Tu) − MS(T ) (21)

holds ∀S ⊆ T ⊆ PN ∪ PM and pu ∈ PN.
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Table IV. Parameters of Synthetic Data

Parameters Range Default

Distance metrics DM, NM, PM, RM NM
m (|PE|) 1K, 2K, 3K, 4K 1K

l (|C|) 10K, 20K, 30K, 40K 10K
d (|A|) 10, 15, 20, 25 10

n (|PN |) 20, 40, 60, 80 20
k 2, 3, 4, 5 2

In the case of pu ∈ S, Inequality (21) holds since both sides are equal to 0. In the case of
pu ∈ T \S, the right side of the inequality equals 0, while according to the monotonicity,
which has been proved, the left side is non-negative. Hence, Inequality (21) also holds.
In the case of pu ∈ PN \T , Inequality (21) can be easily proved by combining the results
of Proposition 5.5 and Lemma 5.7. Thus, Inequality (21) holds ∀S ⊆ T ⊆ PN ∪ PM and
pu ∈ PN.

6. EXPERIMENTS
We perform experiments on both synthetic datasets and real-world web datasets. We
implement our approximation algorithm and the exhaustive search algorithm in C++
and perform experiments on a PC with a 16-core 2.4GHz CPU, 30GB of main memory
under the 64-bit Debian 6.0. First, we use synthetic datasets to evaluate the compu-
tational efficiency and accuracy of our approximation algorithm. Then, we apply our
algorithm on the real-world web datasets to show the impact of different distance met-
rics, and how to learn distance metrics from some historical sales data and to perform
product selection.

6.1. Speedup and Accuracy
We generate the synthetic datasets using the generator provide by Borzsony et al.
[2001]. In a real-world market, products usually do not have high quality on all at-
tributes. Instead, they have high quality on some subset of attributes only. For example,
a smart phone with a large screen will have high quality on display but low quality
on portability. Furthermore, if a product has high quality on most attributes, then the
price of this product will be high in general, which indicates low quality on the price
attribute. We generate the datasets of products with negative correlation on attributes:
Products which have high quality in one attribute tends to have low quality on at least
one other attribute. On the other hand, we generate the consumers’ requirement of
each attribute independently using a uniform distribution.

We compare the running time and the market share between our approximation algo-
rithm (or greedy) and the exhaustive search algorithm (or exh). We examine the impact
of various factors, including the size of datasets (n, m, l), the number of new products
we need to select (k), and models using different distance metrics (four distance metrics
as introduced in Section 2).

The values of parameters are shown in Table IV. In the following, we examine the
impact of each factor by considering the corresponding parameter as a variable and
setting other parameters as default value as shown in Table IV. Figures 2–7 depict the
results. In each figure, the horizontal axis shows the corresponding parameter which
is considered as the variable, while the vertical axis of (a) shows the running time of
the two algorithms and the vertical axis of (b) shows the expected market share of the
selected products.

—Impact of distance metrics
We firstly explore the impact of different distance metrics on the efficiency and accu-
racy of our greedy algorithm. Figure 2 shows the running time and expected market
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Fig. 2. Varying distance metrics: greedy vs. exh.

Fig. 3. Varying l: greedy vs. exh.

share under adoption models using different distance metrics. One can observe that
our greedy algorithm is much faster (about 70 times faster) than the exhaustive search
algorithms for all different distance metrics. The expected market share of the products
selected by our greedy algorithm is nearly the same with that by exhaustive search
and it is insensitive to the distance metrics. The optimal market share, however, are
sensitive to the distance metrics. The expected market share varies significantly, which
shows that the distance metrics have a high impact on the expected market share.

Since the computational efficiency and accuracy our experiments are similar under
all distance models, we only show the results for the norm distance metric in the
following experiments. Note that if we want to use m′ different distance models to
describe the potential behavior of consumers, then the running time of the algorithm
will be about m′ times longer.

—Impact of the market size
Recall that the size of the market can be measured by the number of consumers l and
the number of existing products m.

First, we vary the number of consumers l from 104 to 4 × 104. We show the running
time and the market share in Figure 3. Then, we set the number of consumers to
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Fig. 4. Varying m: greedy vs. exh.

Fig. 5. Varying d: greedy vs. exh.

the default number and vary the number of existing products m from 103 to 4 × 103.
The running time and market share are shown in Figure 4. From the figure, one can
observe that the running time of both algorithms increase linearly as the increase of
the market size, and our greedy algorithm maintains a high level of quality guarantee
regardless of the change of the market size.

—Impact of d
We examine the impact of the number of attributes, or d, on the efficiency and accu-
racy of our greedy algorithm. Figure 5 shows the running time and expected market
share when we vary d from 10 to 25. In Figure 5, one can observe that the efficiency
and accuracy are insensitive to the number of attributes. It is interesting to observe
that increasing the number of attributes decreases the expected market share. Be-
cause larger number of attributes indicates stronger consumers’ requirement, thus
less products will satisfy the consumers.

—Impact of n and k
Table V shows the speedup of our approximation algorithm over the exhaustive algo-
rithm. Figures 6(a) and 7(a) show the running time of these two algorithms, where the
horizontal axis depicts the variation on parameters n (number of candidate products
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Table V. Speedup: Varying k and n

k = 2 k = 3 k = 4 k = 5

n=20 65.89 1,160.37 18,799.17 285,804.08
n=40 256.62 8,111.76 287,626.53 ≈1×107

n=60 535.29 26,511.67 ≈1×106 ≈5×107

n=80 915.38 57,812.33 ≈4×106 ≈2×108

Fig. 6. Varying n: greedy vs. exh.

Fig. 7. Varying k: greedy vs. exh.

we need to consider) and k (number of products we need to select), while the vertical
axis depicts the log scale of the running time, in seconds.

From the table and the figure, one can observe that our approximation algorithm is
significantly faster than the exhaustive algorithm: O(nk) times faster when selecting k
products from n candidate products. The speedup is around 285,000 even for a small
dataset (i.e., select k = 5 products from n = 20 candidates). In this case, the running
time of exhaustive algorithm is around 40 hours. In the case of selecting five products
from n = 80 candidates, our conservative estimate on the running time of the exhaus-
tive algorithm is about 10 years. In contrast, the running time of our approximation
algorithm for all cases remain in less than 1 second. We also test our approximation
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Table VI. Parameters of Web Dataset

# of products # of consumers # of attributes

1,605 186,249 8

Table VII. Results of the 2-MMP Problem

Distance ID of selected Market share of
metrics products selected products

DM 214,566 32.33%
NM 284,214 11.20%
PM 566,350 35.43%
RM 284,214 11.20%

"̂ 566,284 38.09%

algorithm on a larger dataset, where m = 1,000, n = 100, l = 1,000,000. We select
k = 8 new products from the 100 candidates. Our approximation algorithm still only
takes about 7 minutes.

Figures 6(b) and 7(b) depict the expected market share of the two algorithms. One
can observe that our approximation algorithm provides high accuracy: about 0.96 ap-
proximation on average as compared with the optimal solution obtained using the
exhaustive algorithm. This shows that our algorithm generates results which is much
better than the theoretical lower bound guarantee. In fact, the results of the two al-
gorithms are exactly the same for over 80% of all experiments we performed and our
approximation algorithm still provides a 0.82 approximation even under the worst case
scenario among all experiments.

6.2. Impact of Distance Metrics
In this subsection, we perform experiments on a real-world web dataset, and we aim
to show the influence of using different distance metrics.

We extract the TripAdvisor dataset from Wang et al. [2010]. Hotels and reviewers
of these hotels are considered as products and consumers, respectively, in this dataset.
The reviewers rated hotels on seven attributes: value, room, location, cleanliness, front
desk, service, and business service. We use the average rating of an attribute as the
quality of that attribute for each hotel. We also add the inverse of the average price of
the hotel as the eighth attribute, which is normalized in the range of (1, 5). For each
consumer, we extract requirement vector as follows. Let r̄ be the average rating of a
hotel’s attribute and ri be the rating from the consumer ci. If ri is lower than r̄, it means
that ci has a higher requirement than average, and if ri is higher than r̄, ci may have a
lower requirement than the average. Thus, we set the requirement of ci as r̄ + (r̄ − ri).
For example, if r̄ = 3.5 and ri = 4, then the requirement of ci will be 3.5 + (3.5 − 4) = 3.
Table VI shows the overall statistics of the dataset.

We select the first 605 hotels as the candidate products and set the remaining 1,000
hotels as the existing products. We apply our approximation algorithm to solve the
2-MMP problem using the four distance metrics introduced in Section 2: DM, NM,
PM, and RM. The results are shown in the first four rows of the second column in
Table VII. One can observe that the results vary greatly when we use different dis-
tance metrics. This implies the importance of inferring and understanding consumers’
adoption behavior.

6.3. Learning Distance Metrics
In the following, we first evaluate the accuracy of our learning method when we have a
perfect knowledge on the distance metric of each model in the model set, i.e., we know
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Table VIII. Market Share (%)

ID DM NM PM RM real-world

91 0.21 0.13 4.81 0.13 2.93
500 0.40 0.14 0.33 0.07 0.27
517 1.30 49.83 2.10 25.38 13.75
746 1.07 0.79 0.81 11.40 1.87
350 0.68 1.09 3.80 1.09 2.64

exactly what kind of distance metrics the consumers may adopt. Afterwards, we also
evaluate our method in case that we don’t have a perfect knowledge.

—Learning with perfect knowledge
In the following, we assume that the consumers use the four distance metrics we intro-
duced in Section 2, i.e., DM, NM, PM, and RM. Since we do not have the information
about products’ real-world market share and consumers’ adoption models, we manu-
ally set the probability "̂ that consumers use the above four distance metrics. Then,
we randomly set the distance metric for each consumer according to "̂ and estimate
the “real-world market share” by enumerating each consumer’s choice.

We estimate the probability as " using the learning method in Section 3 and compare
the normalized root-mean-square error (NRMSE) between " and "̂ to evaluate the
accuracy of our learning method. Note that NRMSE ranges in (0, 1) and lower value
implies higher accuracy.

We present the experimental results in the case that "̂ = (0.1, 0.2, 0.6, 0.1)T and the
“real-world market share” of a set P ′

E of five products are known. First, we calculate the
expected market share of these products under all the four potential models. The results
are shown in Table VIII along with the “real-world market share”. Then, by solving the
following optimization problem, we can estimate " = (0.1084, 0.1979, 0.5953, 0.0984)T .
One can observe that " is very close to "̂ (NRMSE ≈ 0.0099), which indicates a high
accuracy of the estimation.

Minimize

∥∥∥∥∥∥∥∥∥

θ1 · 0.21% θ2 · 0.13% θ3 · 4.81% θ4 · 0.13% −2.93%
θ1 · 0.40% θ2 · 0.14% θ3 · 0.33% θ4 · 0.130.07% −0.27%
θ1 · 1.30% θ2 · 49.83% θ3 · 2.10% θ4 · 0.1325.38% −13.75%
θ1 · 1.07% θ2 · 0.79% θ3 · 0.81% θ4 · 0.1311.40% −1.87%
θ1 · 0.70% θ2 · 0.15% θ3 · 1.68% θ4 · 0.130.15% −2.64%

∥∥∥∥∥∥∥∥∥

2

2

subject to " ≥ 0, θ1 + θ2 + θ3 + θ4 = 1.

Based on the derived probability ", one can forecast the market share of products
and make a better product selection decision. The result of the 2-MMP problem in this
scenario is shown in the last row of Table VIII. For the selected products under each
adoption model in Table VIII, we estimate the “real-world market share” and list the
result in the last column. One can observe that, the product selection result based on
learning the proper weighting of distance metrics achieves a better market share than
other distance metrics.

We also select different sets P ′
E of products that we know the market share and

examine the NRMSE. The results are shown in Figure 8, where the vertical axis is the
NRMSE of the estimation, the horizontal axis of (a) is n′ which is the size of P ′

E, and
the horizontal axis of (b) is the average variance σ 2 of the expected market share of
products in P ′

E under different models when n′ = 5 and n′ = 20.
One can observe that our estimation maintains a high accuracy in general. The

average accuracy is about 0.035 even in the case that we only know the market share
of five products. Furthermore, the accuracy increases exponentially fast when the size
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Fig. 8. Accuracy of learning from perfect knowledge.

Fig. 9. Accuracy of learning from arbitrary guess.

of P ′
E increases. On the other hand, product sets with larger σ 2 have higher accuracy,

which is realistic since if the market share varies slightly under different models, it
may be difficult to estimate. We only present one example here, however, we like to
note that our results and conclusions are consistent when we vary "̂, model set, or any
other parameters.

—Learning with arbitrary guess
In reality, it is difficult to know all the consumers’ behavior. Hence, we probably do not
have a perfect knowledge on the distance metrics in the model set. In the following, we
estimate the accuracy of our learning method when we do not know the exact consumer
behavior. We randomly assign 20 different distance metrics, excluding the four distance
metrics introduced in this paper, to the consumers. These 20 different metrics include
Euclidean norm, maximum norm, norms with different weight on different attributes,
and the like. Similarly with learning from perfect knowledge, we estimate the “real-
world market share” by enumerating each consumer’s choice.

Other than calculating the probability of the 20 different distance metrics we as-
signed to consumers, we still use DM, NM, PM, and RM to estimate the probability
". We then calculate the market share based on the estimation of " and compare the
results with “real-world market share”. Figure 9 shows the accuracy of our learning
method where the horizontal axis n′ is the number of products which we know the
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market share, and the vertical axis shows the average ratio between the estimated
market share and the “real-world mark share”.

One can observe that the estimation of market share has a high accuracy as com-
pared with the “real-world market share” even though the distance metrics we use
are very different from the reality. This shows that even there is no guarantee on the
accuracy when using the “wrong” model set, but if the distance metrics in the model
set are representative enough for the consumer behavior, the differences between the
selected distance metrics and real-world consumer behavior will have an acceptable
small influence on the estimation results. Thus, when applying our learning algorithm
to the real-world problems, the selected distance metrics need not be exactly the same
as the real consumer behavior, and this implies high robustness and practicability of
our learning method.

7. RELATED WORK
Product selection
Let us provide some related work on product selection. In Kleinberg et al. [1998],
authors formulated a number of microeconomic applications as optimization problems
via data mining perspective. Inspired by Kleinberg et al. [1998] and Li et al. [2006]
extended the concept of dominance, which is used as skyline operators [Borzsony et al.
2001] to analyze various forms of relationships between products and consumers. A
manufacturer can position popular products effectively while remaining profitable by
analyzing the dominance relationships. The works in Zhang et al. [2009]; Wan et al.
[2009, 2011]; Peng et al. [2012] considered the situation that there exist multiple
manufacturers. The authors of Zhang et al. [2009] derived the Nash Equilibrium when
each manufacturer modifies its product in a round robin manner to maximize the
market share. Wan et al. [2009] aimed to find the most competitive products which
are not dominated by any competitors without taking into account the consumers.
They extended their work in Wan et al. [2011]; Peng et al. [2012] by considering the
consumers’ preferences. However, the above papers all aimed to maximize the number
of potential consumers, which is not equivalent to the market share derived in this paper.
In fact, potential consumers may not lead to higher market share because different
consumers have different probability to adopt new products. Authors in Lin et al. [2013]
aimed to find the products with the maximum expected number of total adopters, which
is similar with the market share in our paper. But their algorithm could not provide any
theoretical performance guarantee. Furthermore, none of the previous works consider
the complicated product adoption behavior of consumers. Instead, they assumed that
consumers will make random product adoption decisions, which corresponds to a special
case of our product adoption model using the discrete norm.

Maximization of submodular functions
Submodular functions have properties which are very similar to the convex and concave
functions. The authors of Cornuejols et al. [1977] and Nemhauser et al. [1978] showed
that a natural greedy hill-climbing strategy can achieve a provable performance guar-
antee for a problem of maximizing a non-negative monotone submodular function: at
least 63% of optimal. Due to the generality of this performance guarantee, this results
has found applications in a number of areas, e.g., discrete optimization [Nemhauser
and Wolsey 1988], materialized view [Harinarayan et al. 1996], and influence maxi-
mization [Kempe et al. 2003].

8. CONCLUSIONS
In this work, we present the problem of finding the k-MMP under a distance-based
adoption model. Our adoption model is general in that we can use different dis-
tance metrics to describe various consumers’ adoption behaviors. Given some historical
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datasets on market share, we propose a learning method to select the appropriate dis-
tance metrics to describe consumers’ production adoption behavior. We prove that the
k-MMP problem is NP-hard in general. We propose a polynomial time approximation
algorithm to solve the k-MMP problem. Using the submodularity analysis, we formally
prove that our approximation algorithm can guarantee a (1 − 1/e)-approximation as
compared to the optimal solution. We compared our approximation algorithm with the
exhaustive search algorithm on the synthetic datasets. The results showed that our
approximation algorithm can achieve O(nk) times speedup when selecting k products
from n candidates. Furthermore, the solution quality of our algorithm is about 96%
on average, which is much higher than the theoretical lower bound. We also perform
experiments on the real-world web datasets to show the crucial impact of different
distance metrics and how we can improve the accuracy of product selection using our
distance metric selection method.

APPENDIX
—Proof of Theorem 4.3:

PROOF. The NP-hardness proof can be achieved by transforming an NP-hard problem,
called the top-k Representative Skyline Product (top-k RSP) [Lin et al. 2007], to a special
case of the k-MMP problem.

Let us state the top-k RSP [Lin et al. 2007]. Given a set U of points and a positive
integer k, compute a set S of k skyline points such that the number of points dominated
by these k points is maximized. A point p = (p[1], p[2], . . . , p[d]) dominates another
point q = (q[1], q[2], . . . , q[d]) iff p[i] ≥ q[i], ∀1 ≤ i ≤ d and there exists at least one
dimension d such that p[d] > q[d], and we denote this as p ≻ q. Consequently, the
skyline point is defined as follows. Given a set U of points, the skyline points of U are
the set of S ⊆ U points which are not dominated by any points in U .

Given an instance of top-k RSP problem, we construct an instance of k-MMP problem,
which can be carried out as follows. Set PE = ∅, i.e., m = 0. Let PN be the set of skyline
points in U , and C be the rest, i.e., C = U\PN. Note that in general, the concept of
dominance is different from product satisfiability as stated in Definition 2.2. Formally,
we have pj ≻ ci ⇒ pj " ci, but pj " ci " pj ≻ ci. However, if pj " ci but pj # ci, then
the quality vector of pj is exactly the same with the requirement vector of ci, i.e., pj
and ci have the same location in the d-dimensional space. But in our construction, the
product points are skyline points while the consumer points are not, so there does not
exist such kind of ci and pj pairing in our construct. Therefore, we can treat dominance
and product satisfiability to be the same in this instance.

Let P be the set of k products we select from PN. In this case, since there is no
existing product, so if a consumer has any satisfactory product in P, the consumer
will adopt one unit of products in P, otherwise, 0. As a result, the expected number of
adopters is equal to the number of consumers who have satisfactory products in P. In
another word, MS(P) is equal to the total number of points dominated by the skyline
points in P divide by the total number of non-skyline points. Since the total number of
non-skyline points is fixed, the result of the corresponding top-k RSP problem is also
the result of this instance of the k-MMP problem.

Therefore, any instance of the top-k RSP problem can be transformed to an instance
of the k-MMP problem. Since the top-k RSP problem has been proved to be an NP-hard
problem, the k-MMP problem is also NP-hard.

—Proof of Lemma 5.6:

PROOF. To simplify the proof, we define the following notations. Let σ = |FP(ci|PSu)|
and s = |FP(ci|PSu) ∩ Su|, where σ ≥ s ≥ 1. Let d = di, j , where pj ∈ FC(ci|PS). Since
ci ∈ FC(pu|PSu), we have di,u ≥ d. If di,u > d, then ci will adopt pu with probability 1,
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i.e., pri(Su) = 1. While pri(S) ≤ 1, so Inequality (18) holds. If di,u = d, then FP(ci|PSu) =
FP(ci|PS)∪ {pu}, so |FP(ci|PS)| = σ −1. Similarly, we have |FP(ci|PS)∩ S| = s−1. When
σ = 1, FP(ci|PS) is an empty set, which means pu is ci ’s only choice, the situation is the
same with the case of di,u = d. So we only need to consider the case when σ > 1. Bring
the notations into Inequality (18), we have

pri(Su) − pri(S) = s
σ

− s − 1
σ − 1

= σ − s
σ (σ − 1)

≥ 0, (A1)

which can be proved by observing that σ ≥ s and σ > 1.

—Proof of Lemma 5.7:

PROOF. Because Su ⊆ Tu, pu has more competitors when a set Tu of products is
available in the market. As a result, FC(pu|Tu) ⊆ FC(pu|Su). Since ci ∈ FC(pu|Tu), we
have ci ∈ FC(pu|Su). Follow the same notations in the proof of Lemma 5.6, let us
consider the case of σ = 1 first. In this case, pri(Su) = 1, pri(S) = 0, so the left side
of Inequality (19) equals to 1. While the right side of the inequality is obviously no
larger than 1, so the Inequality (19) holds. Now, let us consider the case when σ > 1.
According to the proof of Lemma 5.6, we have

pri(Su) − pri(S) = s
σ

− s − 1
σ − 1

. (A2)

Let dT and dS denote the distance between ci and the products in FP(ci|PT ) and
FP(ci|PS), respectively, where di,u ≥ dT ≥ dS. In the case of di,u > dS, then the left side
of Inequality (19) equals to 1, so the inequality holds. Thus, the remaining thing is to
prove the inequality holds when di,u = dT = dS. In this case, FP(ci|PSu) = FP(ci|PS) ∪
{pu}, FP(ci|PTu) = FP(ci|PT ) ∪ {pu}, and FP(ci|PS) ⊆ FP(ci|PT ). Let δ = |FP(ci|PTu)| −
|FP(ci|PSu)|, then it follows that δ ≥ 0, σ + δ = |FP(ci|PTu)|, s + δ = |FP(ci|PTu) ∪ Tu|.
Thus, we have

pri(Tu) − pri(T ) = s + δ

σ + δ
− s + δ + 1

σ + δ + 1
. (A3)

According to Equations (A2) and (A3), we can derive Inequality (19) as follows.

Inequality (19) holds

⇔ s
σ

− s − 1
σ − 1

≥ s + δ

σ + δ
− s + δ − 1

σ + δ − 1

⇔ σ − s
σ (σ − 1)

≥ σ − s
(σ + δ)(σ + δ − 1)

. (A4)

Hence, we only need to show that Inequality (A4) holds, which can be proved by ob-
serving that σ > 1, δ ≥ 0 and σ ≥ s.
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