
Vol.:(0123456789)

Machine Learning (2025) 114:174
https://doi.org/10.1007/s10994-025-06813-1

Panda: partially approximate newton methods
for distributed minimax optimization with unbalanced
dimensions

Minheng Xiao1 · Chengchang Liu2 · Cheng Chen3 · John C. S. Lui2 · Sen Na4

Received: 31 January 2025 / Revised: 24 February 2025 / Accepted: 30 May 2025 /
Published online: 19 June 2025
© The Author(s) 2025

Abstract
Unbalanced dimensions are crucial characteristics in various minimax optimization prob-
lems, such as few-shot learning (Cortes and Mohri in Adv Neural Inf Process Syst 16,
2003; Ying et al. in Adv Neural Inf Process Syst 29, 2016) and fairness-aware machine
learning (Lowd and Meek, in: Proceedings of the eleventh ACM SIGKDD international
conference on knowledge discovery in data mining, 2005; Zhang et al., in: Proceedings
of the 2018 AAAI/ACM conference on AI, ethics, and society, 2018). In this paper, we
propose a communication-efficient second-order method named PANDA (Partially Approx-
imate Newton methods for Distributed minimAx) to solve problems with unbalanced
dimensions. PANDA requires almost the same per-iteration communication cost as the first-
order methods by utilizing the special problem structure in its design for data exchange
between the client and server. More importantly, it exhibits a superior linear-quadratic con-
vergence rate and significantly reduces the total number of communication rounds through
the efficient use of second-order information. We also develop GIANT-PANDA based on
the framework of PANDA, which further reduces the computation cost of the latter one by
performing sketching operations on each client. Through comprehensive theoretical analy-
sis and empirical evaluations, we demonstrate the superior performance of the proposed
methods compared to existing state-of-the-art methods.

Keywords  Distributed optimization · Minimax optimization · Fairness-aware machine
learning · Few-shot learning

Editor: Lam M. Nguyen.

Minheng Xiao and Chengchang Liu have been contributed equally to this work.

 *	 Chengchang Liu
	 ccliu22@cse.cuhk.edu.hk

1	 Ohio State University, Columbus, OH, USA
2	 The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
3	 East China Normal University, Shanghai, China
4	 Georgia Institute of Technology, Atlanta, GA, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-025-06813-1&domain=pdf

	 Machine Learning (2025) 114:174174  Page 2 of 40

1  Introduction

We consider a class of minimax optimization problems formulated as finite-sum
expressions:

where N denotes the sample size, and nx and ny denote the dimensions of the variables x
and y respectively. The smooth function f (x, y) is supposed to be strongly convex in x and
strongly concave in y (i.e., satisfying the SC-SC condition). For many machine learning
problems with a large sample size N, distributed methods are often preferable for solving
problems in a parallel fashion. To facilitate our study in a distributed setting, let us divide
the N samples that the i-th client holds |Si| samples. Consequently, we have N =

∑m

i=1
�Si� ,

leading us to the following alternative problem:

In this context, for each client i = 1,… ,m , f i represents its local function and Si is the
index set of local samples.

Minimax optimization has gained significant attention in the data mining and machine
learning community due to its broad applications in various domains, including game theory
(Basar & Olsder, 1999; Facchinei, 2003), supervised learning (Lanckriet et al., 2002), robust
optimization (Ben-Tal & Nemirovski, 2002; Deng & Mahdavi, 2021; Gao & Kleywegt,
2022), and fairness-aware machine learning (Creswell et al., 2018; Liu et al., 2020). Among
these applications, many of them share a critical property that the dimensions of variables x
and y are unbalanced (Liu et al., 2022). For instance, AUC maximization (Cortes & Mohri,
2003; Ying et al., 2016) aims to train a binary classifier on imbalanced datasets {aj, bj}Nj=1 ,
where aj denotes the input with d features and bj ∈ {−1,+1} denotes the label. This problem
can be formulated as a minimax problem with nx = d + 2 and ny = 1 . Additionally, in fair-
ness-aware machine learning tasks (Lowd & Meek, 2005; Zhang et al., 2018), we are given
a training set {aj, bj, cj}Nj=1 , where aj represents d-dimensional features to learn from, cj con-
tains s protected features, and bj denotes the label. In this case, we have nx = d ≫ ny = s .
Throughout this paper, we use the term “unbalanced dimensions"to describe the above spe-
cial problem structure, which can be expressed as nx ≫ ny or ny ≫ nx.1

There are numerous first-order methods for solving minimax optimization problems in
(1), including gradient descent ascent, extra gradient, and many of their variants (Chavdarova
et al., 2019; Hsieh et al., 2019; Korpelevich, 1976; Lin et al., 2020; Malitsky, 2015; Mish-
chenko et al., 2020; Nedić & Ozdaglar, 2009; Nouiehed et al., 2019; Tseng, 2000). These
first-order methods can be straightforwardly generalized to solve distributed problems in (2),
by simply aggregating the gradients to the server at each iteration. Distributed first-order
methods that perform multiple local iterations for each client before communication have
also been proposed to solve minimax problems (Deng & Mahdavi, 2021; Sun & Wei, 2022;
Zhang et al., 2024). Among these methods, Zhang et al. (2024) achieved the best-known

(1)min
x∈ℝnx

max
y∈ℝny

f (x, y)
def
=

1

N

N∑
j=1

lj(x, y),

(2)min
x∈ℝnx

max
y∈ℝny

f (x, y)=
1

m

m∑
i=1

f i(x, y), where f i(x, y)
def
=

1

|Si|
∑
j∈Si

lj(x, y).

1  For simplicity, we only consider the case n
x
≫ n

y
 in this paper, while n

y
≫ n

x
 can be studied trivially in

the same way.

Machine Learning (2025) 114:174	 Page 3 of 40  174

results in terms of the total communication rounds, with an order of O(�g ln(1∕�)) where
�g is the condition number of the objective (cf. Sect. 2.1) and � is the desired accuracy. It is
worth noting that the per-iteration communication complexity between the client and server
for first-order methods is only O(nx + ny) . However, these methods often require a substantial
number of communication rounds to attain an accurate solution (e.g., their communication
rounds depend heavily on the condition number). As a result, factors such as unpredictable
network latency can lead to expensive total communication costs.

Second-order methods are well-known for their fast convergence rates, brought about
by the utilization of the Hessian information of the objective. The Cubic regularized New-
ton method (Huang et al., 2022) and its restart variant (Huang & Zhang, 2022) have been
proposed for solving (1) and demonstrated local superlinear convergence rates under the
SC-SC condition. However, applying these methods directly in a distributed setting would
require the communication of the full local Hessian matrix, resulting in a per-iteration
communication complexity of O((nx + ny)

2) . This communication overhead is unaccepta-
ble due to bandwidth limitations. On the other hand, several communication-efficient2 dis-
tributed second-order methods (Islamov et al., 2022; Liu et al., 2024; Shamir et al., 2014;
Wang & Li, 2020; Ye et al., 2022) have been proposed for convex optimization problems,
eliminating the need for full Hessian communication. However, the design and analysis of
these communication-efficient second-order methods heavily depend on the convexity of
the objective function, making it challenging to generalize them to the minimax setting.
Building upon this, it is natural to ask: Is it possible to develop communication-efficient
distributed second-order methods for minimax optimization by leveraging the structure of
“unbalanced dimensions"?

In this paper, we provide an affirmative answer to this question by introducing PANDA
(Partially Approximate Newton methods for Distributed minimAx optimization). In each
iteration, PANDA avoids the need for communicating the full Hessian matrix, instead
requiring only the exchange of the partial Hessian matrix associated with y (recall that
we suppose nx ≫ ny in this paper), i.e. ∇2

yy
f i(x, y) ∈ ℝ

ny×ny , ∇2
xy
f i(x, y) ∈ ℝ

nx×ny , and
∇2

xx
f i(x, y)∇2

xy
f (x, y) ∈ ℝ

nx×ny . Additionally, it exchanges vectors such as gradients and
local descent directions. As a result, the per-iteration communication complexity of PANDA
can be summarized as:

This complexity significantly reduces that of typical second-order methods, bringing it to
the same order as first-order methods. Furthermore, the utilization of second-order infor-
mation in PANDA results in improved convergence behavior compared to existing distrib-
uted first-order methods.

1.1 � Contribution

The contribution of this paper is threefold.

O

(
nxny + n2

y

⏟⏟⏟
∇2

xy
f i, [∇2

xx
f i]−1∇2

xy
f , ∇2

yy
f i

+ nx + ny
⏟⏟⏟
vectors

)
= O(nxny) ≈ O(nx).

2  We use the term “communication-efficient” to describe second-order methods whose per-iteration com-
munication cost is of the same order as that of first-order methods.

	 Machine Learning (2025) 114:174174  Page 4 of 40

(a)	 We develop a Partially Approximate Newton (PAN) method to solve the general mini-
max problem (1) with unbalanced dimensions. If the approximate Hessian H̃xx satis-
fies (1 − 𝜂)∇2

xx
f ⪯ H̃

xx
⪯ (< spanclass =� crossLinkCiteEqu� > 1 < ∕span > +𝜂)∇2

xx
f

with � ∈ (0, 1) , then PAN exhibits a linear-quadratic convergence rate for some
measure �t :

 This result of PAN generalizes the approximate Newton method for convex optimiza-
tion in Ye et al. (2021) and relaxes the conditions in Liu et al. (2022, Lemma 4.3) for
minimax optimization.

(b)	 We develop the PANDA method to solve the distributed minimax problem (2).
If the local partial Hessian satisfies (1 − 𝜂)∇2

xx
f ⪯ ∇2

xx
f i ⪯ (< spanclass =

�crossLinkCiteEqu� > 1 < ∕span > +𝜂)∇2

xx
f with � ∈ (0, 1) , then PANDA exhibits a

linear-quadratic convergence rate:

 Furthermore, we can guarantee the existence of � provided that N ≥ O(mK∕�) ,
where m is the number of clients, K = maxj ‖∇2

xx
lj‖ , and � is the strong convexity

parameter (cf. Sect. 2.1).
(c)	 We develop the GIANT-PANDA method, which employs matrix sketching techniques

on each local client to construct the partial approximate Hessian H̃i

xx
 . This method

exhibits a linear-quadratic convergence rate:

 This result leads to a sharper analysis compared to the original GIANT method in
(Wang et al., 2018), as it improves the convergence rate by a factor of √�g in the lin-
ear term.

Organization We introduce fundamental notation, assumptions, and preliminary results
for Hessian approximation in Sect. 2. In Sects. 3 and 4, we introduce PAN for solving
(1) and introduce PANDA (along with GIANT-PANDA) for solving (2), respectively. We
conduct empirical studies in Sect. 5 and provide conclusions in Sect. 6. All proofs are
deferred to the appendix.

2 � Preliminaries

2.1 � Notation and assumptions

We use gx(x, y) and Hxx(x, y) to denote the gradient ∇xf (x, y) and Hessian ∇2
xx
f (x, y)

with respect to x , respectively (similar for gy , Hxy , Hyy ). For the local gradient and Hes-
sian associated with the i-th client, we use gi

x
(x, y) and Hi

xx
(x, y) to denote ∇xf

i(x, y) and
∇2

xx
f i(x, y) (similar for gi

y
 , Hi

xy
 , Hi

yy
 ). We use ‖ ⋅ ‖ to denote the spectral norm for matrices

�t+1 ≤ �

1 − �
�t + ��2

t
.

�t+1 ≤ �2

1 − �
�t + �1�

2
t
.

�t+1 ≤
�

�√
m

+
�2

1 − �

�
�t + �2�

2
t
.

Machine Learning (2025) 114:174	 Page 5 of 40  174

and the Euclidean norm for vectors. Additionally, we define the matrix row coherence
as follows.

Definition 2.1  (Wang et al., 2018, Definition 1) Let A ∈ ℝ
N×d be a matrix with full col-

umn rank and A = UΣV⊤ be its reduced singular value decomposition with U,V ∈ ℝ
N×d .

The row coherence of A is defined as �(A)
def
=

N

d
maxj ‖uj‖2 ∈ [1,

N

d
] , where uj is the j-th

row of U.

We introduce the following assumption for the objective function in (1).

Assumption 2.2  We assume f (x, y) is twice differentiable, �-strongly convex in x , �
-strongly concave in y , and has Lg-Lipschitz continuous gradient and LH-Lipschitz continu-
ous Hessian. We also assume each individual function lj(x, y) is convex in x . We denote

�g
def
= Lg∕� and �H

def
= LH∕�.

The convexity of each individual function lj in x , along with the Lg-Lipschitz con-
tinuity of the gradient gx , implies that the Hessian ∇2

xx
lj is bounded. Let us denote

K
def
= maxj ‖∇2

xx
lj‖ and 𝜅̂

def
= K∕𝜇.

2.2 � Matrix approximation via sub‑sampling and sketching

Let us introduce some preliminary results for approximating a positive definite Hessian
matrix. We first consider a Hessian matrix in the form of H =

1

N

∑N

j=1
Hj ∈ ℝ

d×d , and
approximate it using sub-sampling:

where elements in S are uniformly sampled from {1,⋯ ,N} . The following lemma charac-
terizes the error of the sub-sampling approximation.

Lemma 2.3  (Ye et al., 2021, Lemma 9) Suppose H ⪰ �I and max1≤j≤N ‖Hj‖ ≤ K̂ for some
constants 𝜇, K̂ > 0 . For any � ∈ (0, 1) and � ∈ (0, 0.5) , if the sample size satisfies
|S| ≥ 3K̂ log(2d∕𝛿)

𝜇𝜂2
 , then with probability at least 1 − � , we have (1 − 𝜂)H ⪯ H̃ ⪯ (< spanclass

=� crossLinkCiteEqu� > 1 < ∕span > +𝜂)H for H̃ defined in (3).

We then consider a special case where the Hessian matrix is expressed as
H = A⊤A + 𝛼I , with A ∈ ℝ

N×d being a full column-rank matrix. This form of Hessian
matrix naturally arises in classical regression problems (Ye et al., 2021; Wang et al.,
2017). We construct two approximate Hessians using sketching techniques:

(3)H̃ =
1

|S|
∑
j∈S

Hj,

(4)H̃i = A⊤SiS
⊤
i
A + 𝛼I, Ĥ = A⊤SS⊤A + 𝛼I.

	 Machine Learning (2025) 114:174174  Page 6 of 40

here {Si}mi=1 ∈ ℝ
N×s� represent the sketching matrices and S

def
=

1√
m
[S1,⋯ , Sm] ∈ ℝ

N×ms� .
The following lemma characterizes the errors of these two sketching approximations.

Lemma 2.4  Adapted from (Wang et al., 2018, Lemma 8)

Let � and � ∈ (0, 1) be fixed parameters, � = �(A) , and S1,⋯ , Sm ∈ ℝ
N×s� be independ-

ent uniform sampling matrices with s� ≥ 3�d

�2
log(

dm

�
) . Then, with probability at least 1 − � ,

we have (1 − 𝜂)H ⪯ H̃i ⪯ (< spanclass =� crossLinkCiteEqu� > 1 < ∕span > +𝜂)H and
(1 − 𝜂∕

√
m)H ⪯ Ĥ ⪯ (< spanclass =� crossLinkCiteEqu� > 1 < ∕span > +𝜂∕

√
m)H for

Hi and Ĥ defined in (4).

3 � The analysis framework of partially approximate Newton method

In this section, we propose a Partially Approximate Newton (PAN) method for Problem
(1). We start with the classical Newton update:

Using the approximate Hessian matrix H̃xx to replace the exact Hessian matrix Hxx(x, y) in
(5) leads to the update rule of PAN as follows:

We use the weighted gradient norm as the measure in our analysis (Liu et al., 2022):

where P(x, y) is defined as

The following lemma shows that if H̃xx is a good approximation of Hxx(x, y) , then P(x, y)
can be also well approximated by C(x, y) , defined as

Lemma 3.1  Under Assumption 2.2 and suppose that H̃xx satisfies
(1 − 𝜂)H

xx
⪯ H̃

xx
⪯ (< spanclass =� crossLinkCiteEqu� > 1 < ∕span > +𝜂)H

xx
 , we have

(5)
[
x+
y+

]
=

[
x

y

]
−

[
Hxx(x, y) Hxy(x, y)

(Hxy(x, y))
⊤ Hyy(x, y)

]−1 [
gx(x, y)

gy(x, y)

]
.

(6)
[
x+
y+

]
=

[
x

y

]
−

[
H̃xx Hxy(x, y)

(Hxy(x, y))
⊤ Hyy(x, y)

]−1 [
gx(x, y)

gy(x, y)

]
.

𝜆(x, y)
def
=

�
(gx(x, y))

⊤(P(x, y))−1gx(x, y)+
2√
𝜇
‖gy(x, y)‖,

(7)P(x, y)
def
= Hxx(x, y)−Hxy(x, y)(Hyy(x, y))

−1Hyx(x, y).

(8)C(x, y)
def
= H̃xx −Hxy(x, y)(Hyy(x, y))

−1Hyx(x, y).

‖‖‖I − P(x, y)1∕2(C(x, y))−1P(x, y)1∕2
‖‖‖ ≤ �

1 − �

Machine Learning (2025) 114:174	 Page 7 of 40  174

We establish a linear-quadratic convergence rate for the PAN update when P(x, y) and
C(x, y) are close.

Theorem 3.2  Under the Assumption 2.2 and suppose P(x, y) and C(x, y) are close such
that ‖I − P(x, y)1∕2C(x, y)−1P(x, y)1∕2‖ ≤ �1 , the update of PAN in (6) exhibits the follow-
ing linear-quadratic convergence rate:

When employing the sub-sampling approximation to construct H̃xx , we derive the
following corollary by combining the results from Lemma 3.1 and Theorem 3.2.

Corollary 3.3  Let us construct the partial Hessian approximation by sub-sampling
H̃xx =

1

�S�
∑

j∈S ∇
2
xx
lj(x, y) . Under Assumption 2.2 and for any � ∈ (0, 1) , if the sample size

satisfies |S| ≥ 12𝜅̂ log(2nx∕𝛿) , then with probability at least 1 − � , the update of PAN in (6)
satisfies

with 𝜂 = 𝜂PAN
def
=

√
3𝜅̂ log(2nx∕𝛿)

|S| .

Corollary 3.3 suggests that PAN requires O(log(1∕𝜖)∕log(|S|∕𝜅̂)) iterations to
achieve �-accuracy in terms of the measure �(x, y) for a quadratic objective function.
Analyzing the complexity of linear-quadratic rates on quadratic functions is a com-
mon practice in the literature (Roosta-Khorasani & Mahoney, 2019; Wang et al.,
2018; Ye et al., 2020, 2021), which allows us to simply ignore the quadratic term in
(9) since �H = 0 . In comparison, state-of-the-art first-order methods such as optimis-
tic gradient and extra gradient methods have complexities O

(
�g log(1∕�)

)
 ; methods that

do not access the full Hessian at each iteration such as the quasi-Newton method (Liu
& Luo, 2022) and the partial-quasi-Newton method (Liu et al., 2022) have complexi-
ties O(�2

g
+
√
nx log(1∕�)) and O(�g +

√
nx log(1∕�)) , respectively. We can see that PAN

exhibits a much weaker dependency on the condition number �g . We present the com-
parisons in Table 1.

4 � Partially approximate Newton methods for distributed minimax
optimization

In this section, we present the PANDA method for solving Problem (2) in Sect. 4.1,
establish its convergence results in Sect. 4.2, and extend PANDA to GIANT-PANDA for
a special function class that commonly appears in regression problems in Sect. 4.3.

�(x+, y+) ≤ �1�(x, y) +
12�2

g
�H(1 + �1)

2

√
�

�(x, y)2.

(9)�(x+, y+) ≤ �

1 − �
�(x, y) +

12�2
g
�H(1 + �∕(1 − �))2

√
�

�(x, y)2

	 Machine Learning (2025) 114:174174  Page 8 of 40

Algorithm 1   PANDA(x
0
, y

0
,T)

Table 1   We present the iteration
complexity of proposed method
(PAN) and baselines for solving
quadratic minimax optimization
(AUC maximization)

Methods Iteration complexity References

Extra gradient O
(
�
g
log(1∕�)

)
Korpelevich (1976)

Quasi-Newton O(�2
g
+
√
n
x
log(1∕�)) Liu and Luo

(2022)
Partial-quasi-Newton O(�

g
+
√
n
x
log(1∕�)) Liu et al. (2022)

PAN O(log(1∕𝜖)∕log(|S|∕𝜅̂)) Corollary 3.3

Machine Learning (2025) 114:174	 Page 9 of 40  174

4.1 � The PANDA algorithm

For simplicity, we suppress the evaluation point and use gx to denote gx(x, y) (similar to gy ,

Hxx , Hxy , Hyy ). We start with the standard Newton direction
[
dx
dy

]
def
=

[
Hxx Hxy

H⊤
xy

Hyy

]−1 [
gx
gy

]
 ,

which can be expressed explicitly by using block matrix inversion formula:

where Δyy = (Hyy −H⊤
xy
H−1

xx
Hxy)

−1.

Under the setup of unbalanced dimensions nx ≫ ny , obtaining the exact Hessian Hxx
on the server is prohibitive due to the communication overhead associated with Hi

xx
 . How-

ever, communication costs of gradients and partial Hessians Hi
xy

 and Hi
yy

 are relatively low.
Thus, in the first round of PANDA, the server aggregates these quantities to acquire precise
gradient and partial Hessian information as follows:

The server then broadcasts the above-aggregated quantities to the clients, allowing each
client to access global information of gx , gy , Hxy , and Hyy . Further, since the communica-
tion costs of Qi

xy

def
= [Hi

xx
]−1Hxy and qi

x

def
= [Hi

xx
]−1gx are only O(nxny) and O(nx) , in the

second round of PANDA, the server aggregates Qi
xy

 and qi
x
 as follows:

Using Qxy and qx to replace H−1
xx
Hxy and H−1

xx
gx in (10), the server finally computes the fol-

lowing approximate Newton direction

with Δ̃yy

def
= [Hyy −H⊤

xy
Qxy]

−1 and updates the parameters based on d̃x and d̃y.
We formally summarize the PANDA method in Algorithm 1. The following proposition

indicates that the update rule of PANDA can be viewed as a partially approximate Newton
method.

Proposition 4.1  Using PANDA in Algorithm 1, the update rule on the server is equivalent
to

where H̃xx,t

def
=

�
1

m

∑m

i=1
(Hi

xx
(xt, yt))

−1
�−1

.

(10)
dx = H−1

xx
gx −

(
H−1

xx
Hxy

)
Δyygy +

(
H−1

xx
Hxy

)
Δyy

(
H−1

xx
Hxy

)⊤
gx

dy = −ΔyyH
⊤
xy
H−1

xx
gx + Δyygy,

(11)gx =
1

m

m∑
i=1

gi
x
, gy =

1

m

m∑
i=1

gi
y
, Hxy =

1

m

m∑
i=1

Hi

xy
, Hyy =

1

m

m∑
i=1

Hi

yy
.

(12)Qxy =
1

m

m∑
i=1

Qi

xy
, qx =

1

m

m∑
i=1

qi
x
.

(13)
[
d̃x
d̃y

]
def
=

[
qx −QxyΔ̃yygy +QxyΔ̃yyQ

⊤
xy
gx

−Δ̃yyH
⊤
xy
qx + Δ̃yygy

]
,

(14)
[
xt+1
yt+1

]
=

[
xt
yt

]
−

[
H̃xx,t Hxy(xt, yt)

Hxy(xt, yt)
⊤ Hyy(xt, yt)

]−1[
gx(xt, yt)

gy(xt, yt)

]
,

	 Machine Learning (2025) 114:174174  Page 10 of 40

Proof  We ignore the subscript t in the following proof such that H̃xx = H̃xx,t ,
Hxy = Hxy(xt, yt) (similar for Hxx , H

i
xx

 , Hyy , gx , gy ). We denote

Then, it holds that

	� ◻

4.2 � Convergence analysis of PANDA

We suppose the N samples are i.i.d drawn from some distribution and each sample is asso-
ciated with a local loss function lj(⋅) . We also assume each client holds s samples drawn
from {lj(⋅)}Nj=1 , such that N = ms and |Si| ≡ s . According to Lemma 2.3, each local partial
Hessian, Hi

xx
(xt, yt) =

1

s

∑
j∈Si

∇2lj(xt, yt) , can be viewed as an sub-sampling approxima-
tion of Hxx(xt, yt) when s is large. The following Lemma indicates that

with H̃xx,t defined in (14) is a good estimation of P(xt, yt).

Lemma 4.2  Under Assumption 2.2 and suppose that for all i ∈ [m] , Hi
xx
(x, y) satisfies that

then we have ‖‖‖I − P(xt, yt)
1∕2C−1

t
P(xt, yt)

1∕2‖‖‖ ≤ �2

1−�
.

Incorporating the linear-quadratic rates established by the PAN framework, we can
obtain the improved linear-quadratic rates for PANDA.

Theorem 4.3  Under Assumption 2.2 and suppose that

Δ̂yy

def
= [Hyy −H⊤

xy
H̃

−1

xx
Hxy]

−1=

[
Hyy −H⊤

xy

1

m

m∑
i=1

(Hi

xx
)−1Hxy

]−1

=

[
Hyy −H⊤

xy

1

m

m∑
i=1

Qi
xy

]−1

=Δ̃yy.

�
H̃xx Hxy

H⊤
xy

Hyy

�−1 �
gx
gy

�

=

⎡⎢⎢⎣
H̃

−1

xx
gx +

�
H̃

−1

xx
Hxy

�
Δ̂yy

�
H̃

−1

xx
Hxy

�⊤

gx −
�
H̃

−1

xx
Hxy

�
Δ̂yygy

−Δ̂yyH
⊤
xy
H̃

−1

xx
gx + Δ̂yygy

⎤⎥⎥⎦
(12)
=

⎡⎢⎢⎣

1

m

∑m

i=1

�
qi
x
+Qi

xy
Δ̃yy

�
1

m

∑m

i=1
Qi

xy

�⊤
gx −Qi

xy
Δ̃yygy

�

−
1

m

∑m

i=1
Δ̃yyH

⊤
xy
qi
x
+ Δ̃yygy

⎤⎥⎥⎦
(13)
=

�
d̃x
d̃y

�
.

Ct

def
= H̃xx,t −Hxy(xt, yt)(Hyy(xt, yt))

−1(Hxy(xt, yt))
⊤

(1 − 𝜂)H
xx
(xt , yt) ⪯ H

i
xx
(xt , yt) ⪯ (< spanclass =� crossLinkCiteEqu� > 1 < ∕span > +𝜂)H

xx
(xt , yt),

Machine Learning (2025) 114:174	 Page 11 of 40  174

holds for all i ∈ [m] , the update rule of PANDA (Algorithm 1) in (14) satisfies that

Similar to Corollary 3.3, we can guarantee a small � ∈ (0, 0.5) for Theorem 4.3.

Corollary 4.4  Under Assumption 2.2, for any � ∈ (0, 1) and � ∈ (0, 0.5) , if each client holds
s ≥ 3𝜅̂ log(2nxm∕𝛿)

𝜂2
 samples, then with probability at least 1 − � , the update rule of PANDA

(Algorithm 1) in (14) satisfies (15).

Remark 4.5  The Corollary 4.4 can be interpreted in this way: if N is at least
12m𝜅̂ log(2nxm∕𝛿) , then (15) holds with probability at least 1 − � where
𝜂 = 𝜂PANDA

def
=

√
3𝜅̂m log(2nxm∕𝛿)

N
.

We highlight the advancements of the PANDA method in the following two aspects:

(a)	 We compare PANDA with its single-agent version, which corresponds to using N/m
samples to construct the approximated Hessian in PAN. According to Corollary 3.3
and Corollary 4.4, we observe that 𝜂PAN =

√
3𝜅̂m log(2nx∕𝛿)

N
≈ 𝜂PANDA . This indicates that

the linear-quadratic rate (15) of PANDA significantly improves upon its single-agent
version (9), which demonstrates the superiority of using the distributed framework.

(b)	 We compare PANDA with state-of-the-art first-order methods in Table 2. Both distrib-
uted EG and Proxskip-VI-FL (Zhang et al., 2024) require the communication rounds
of O(�g log(1∕�)) , whereas PANDA only requires O

(
log(1∕𝜖)

log(N∕(m𝜅̂))

)
 communication rounds.

This highlights the advantage of using second-order information.

4.3 � Extension to the GIANT‑PANDA Algorithm

PANDA exhibits provably faster convergence rates than the first-order methods for minimax
distributed optimization, however, each client is required to access the full local Hessian at

(1 − 𝜂)Hxx(xt , yt) ⪯ H
i
xx
(xt , yt) ⪯ (< spanclass =� crossLinkCiteEqu� > 1 < ∕span > +𝜂)Hxx(xt , yt)

(15)�(xt+1, yt+1) ≤ �2

1 − �
�(xt, yt) +

12�2
g
�H(1 − � + �2)2

√
�(1 − �)2

�(xt, yt)
2.

Table 2   We present the communication complexity of proposed method (PANDA) and baselines for solving
quadratic distributed minimax optimization (AUC maximization)

Methods Communication complexity References

Distributed extra gradient O
(
�
g
log(1∕�)

)
 Korpelevich (1976)

FedGDA-GT O(poly(�
g
) log(1∕�)) Sun and Wei

(2022)
Proxskip-VI-FL O(�

g
log(1∕�)) Zhang et al. (2024)

PANDA
O

(
log(1∕𝜖)

log(N∕(m𝜅̂))

)
Corollary 4.4

	 Machine Learning (2025) 114:174174  Page 12 of 40

each iteration. In this section, we develop a communication-efficient algorithm that allows
using inexact Hessian instead of the exact one during the local computation.

We focus on a specific function class that lj(⋅) in (2) can be expressed as
lj(x, y)

def
= hj(w

⊤x, y) +
𝜇

2
‖x‖2 , where hj(⋅, ⋅) is convex in x and �-strongly concave in y . This

function class generalizes the objective considered in convex optimization as discussed in
GIANT (Wang et al., 2018), which has important applications in regression-type models.

The partial Hessian of the objective at (xt, yt) can be written as

where At

def
=

[
a⊤
1
,⋯ , a⊤

N

]
∈ ℝ

N×nx is a full column-rank matrix with nx ≤ N ,

aj =
�

∇2
xx
hj(w

⊤xt, yt)w∕
√
N , Si is some sketching matrix such that (Si)⊤At contains the

rows of At indexed by Si . The local partial Hessian of the i-th client can be indicated by
Hi

xx
(xt, yt)

def
=

{
A⊤

t
Si(Si)⊤At + 𝜇I

}
Taking advantage of such a structure, we perform a sketch operation on Hi

xx
(xt, yt) to

reduce the computation cost on the client such that:

where S̃i
t
∈ ℝ

nx×st is chosen randomly from the columns of Si so that st ≤ s . We replace
Hi

xx
(xt, yt) by its sketched approximation H̃i

xx
(xt, yt) in line 15 and line 16 of PANDA

(Algorithm 1), naturally resulting the modified algorithm GIANT-PANDA. The routine of
GIANT-PANDA is formally presented in Algorithm 2 in A.

Now, we start to characterize the convergence behavior of GIANT-PANDA. Since
GIANT-PANDA inherits the framework of PANDA, the update rule of GIANT-PANDA
can be viewed as

where H̃gp

xx,t

def
=

�
1

m

∑m

i=1
[H̃

i

xx,t
]−1

�−1
.

Let Cgp
t

def
= H̃

gp

xx,t
−Hxy(xt, yt)[Hyy(xt, yt)]

−1(Hxy(xt, yt))
⊤ , the following lemma shows

C
gp
t is still a good approximation to P(xt, yt).

Lemma 4.6  Let �, � ∈ (0, 1) be fixed parameters, �t = �(At) , and {S̃i
t
} is independent uni-

form sampling matrices with st ≥ 3�tnx

�2
log

(
mnx

�

)
 . Under Assumption 2.2, we have

holds with probability at least 1 − �.

Remark 4.7  The condition of Lemma 4.6 requires {S̃i
t
} to be uniform sampling matrices,

which means we perform uniform sketch to obtain the local approximate Hessian H̃i
(xt, yt)

Hxx(xt, yt) =
1

N

N∑
j=1

∇2
xx
hj
(
w⊤xt, yt

)
ww⊤ + 𝜇I =

1

m

m∑
i=1

{
A⊤

t
Si(Si)⊤At + 𝜇I

}
,

(16)H̃
i

xx,t

def
= A⊤

t
S̃
i

t
(S̃

i

t
)⊤At + 𝜇I,

(17)
[
xt+1
yt+1

]
=

[
xt
yt

]
−

[
H̃

gp

xx,t
Hxy(xt, yt)

Hxy(xt, yt)
⊤ Hyy(xt, yt)

]−1[
gx(xt, yt)

gy(xt, yt)

]
,

���I − P(xt, yt)
1∕2(C

gp
t)−1P(xt, yt)

1∕2��� ≤ �√
m

+
�2

1 − �

Machine Learning (2025) 114:174	 Page 13 of 40  174

in GIANT-PANDA. GIANT-PANDA also allows using other sketching techniques like
count sketch (Clarkson & Woodruff, 2017; Meng & Mahoney, 2013) or Gaussian sketch
(Johnson & Lindenstrauss, 1984) to obtain S̃i

t
 . These sketching methods can improve the

dependence of st on �t , but will be more expensive to implement than the simple uniform
sketching matrix (Wang et al., 2018).

Using the analysis framework of PAN, we establish the linear-quadratic rate of
GIANT-PANDA.

Theorem 4.8  Under the same condition of Lemma 4.6, the update of GIANT-PANDA
(Algorithm 2) in (17) satisfies

with probability at least 1 − � , where c = 12((
√
m−1)(�2−�+1)+1)2

(1−�)2m

Remark 4.9 
�

�√
m
+

�2

1−�

�
 in the linear term �(xt, yt) in (18) for GIANT-PANDA is slightly

worse than
(

�2

1−�

)
 in (15) for PANDA. This is because GIANT-PANDA uses the approxi-

mate local partial Hessian instead of the full local partial Hessian. However, it is still better
than

(
�

1−�

)
 in (9) for PAN by a factor of 1√

m
 . This demonstrates the advantage of utilizing m

clients in the parallel training process.

Improved Results for GIANT. GIANT (Wang et al., 2018) (Algorithm 3 in Appendix
A) can be regarded as a special case of GIANT-PANDA for convex optimization when tak-
ing ny = 0 . Using the analysis techniques developed for GIANT-PANDA, we also improve
the convergence results for GIANT.

In the following corollary, we present a sharper linear-quadratic rate for GIANT under
the same assumption as in (Wang et al., 2018), which improves the previous result by a fac-
tor of √�g in the linear term.

Corollary 4.10  To solve the minimization problem (𝜇 > 0)
minx∈ℝnx f (x) =

1

N

∑N

j=1
hj(w

⊤x) +
𝜇

2
‖x‖2 on m clients and each client holds s samples, if

hj(⋅) is a convex loss function, f (⋅) has L2-Lipschitz continuous Hessian, and st satisfies that
s ≥ st ≥ 3�tnx

�2
log

(
mnx

�

)
 for some fixed parameters �, � ∈ (0, 1) , then with probability at

least 1 − � , the update rule of GIANT (Algorithm 3) satisfies that

where 𝜆̂(x)
def
=

√
∇f (x)[∇2f (x)]−1∇f (x).

(18)�(xt+1, yt+1) ≤
�

�√
m

+
�2

1 − �

�
�(xt, yt) +

c�2
g
�H√
�

�(xt, yt)
2.

𝜆̂(xt+1) ≤
�

𝜂√
m

+
𝜂2

1 − 𝜂

�
𝜆̂(xt) +

2L2

𝜇3∕2
𝜆̂(xt)

2,

	 Machine Learning (2025) 114:174174  Page 14 of 40

5 � Experiments

We validate the proposed methods on the following important data mining tasks, which
enjoy the structure of “unbalanced dimension” and have been well studied in previous liter-
ature (Liu et al., 2022; Liu & Luo, 2022). The experiments are conducted on a workstation
with an Intel(R) Core(TM) i7-10870 H CPU @ 2.20GHz. The code was executed using
Python 3.8.

•	 AUC Maximization. To train a classifier w on imbalanced datasets {aj, bj}Nj=1 such that
p =

N+

N
≈ 1 or 0 where N+ is the number of positive instances, AUC maximization can

be reformulated into minimax problems, where lj(x, y) of (1) takes the following quad-
ratic form

 where x = [w;u;v] ∈ ℝ
d+2,w ∈ ℝ

d, u ∈ ℝ, v ∈ ℝ and y ∈ ℝ . We set � = 0.5 . We
perform experiments on “a9a” ( N = 32, 651 , nx = 125 , ny = 1 , p = 0.241 ), “w8a”
( N = 45, 546, nx = 302, ny = 1, p = 0.029 ), and “sido0” ( N = 12, 678 , nx = 4, 932 ,
ny = 1 ) which can be downloaded from Libsvm (Chang & Lin, 2011). We choose the
regularized parameter � = 0.5 and the number of the clients m = 8 . We tune the learn-
ing rates of all methods (include the baselines) from {1.0, 0.9,… , 0.1}.

•	 Fairness-Aware Machine Learning. Given the training set {aj, bj, cj}Nj=1 where aj ∈ ℝ
d

and cj ∈ ℝ , we can use the following adversarial training model to train a binary classi-
fier x (Zhang et al., 2018) and make it unbiased to the feature cj that we want to protect:

 We choose � = 0.5 and � = � = 0.0001 . We conduct experiments on “adult”
( N = 32, 651, nx = 122, ny = 1 ) and “law school” ( N = 20, 427, nx = 379, ny = 1 ) data-
sets (Le Quy et al., 2022; Liu & Luo, 2022). We set regularization parameters � = 0.5
and � = � = 0.0001.

5.1 � Comparison with the baselines

We compare PANDA and GIANT-PANDA with existing state-of-the-art communication-
efficient methods. Specifically, we adopt distributed version of extra gradient (Korpelevich,
1976; Tseng, 2000) (EG), federated gradient descent ascent with gradient tracking (Sun &
Wei, 2022) (FedGDA), and proximal skip method for variational inequalities (Zhang et al.,
2024) (ProxSkip) as the baselines. Both EG and ProxSkip achieve the optimal com-
munication complexity for first-order methods. We tune the learning rates of all methods
from {1.0, 0.9,… , 0.1}.

For all experiments, we use 70% percent local data in GIANT-PANDA. The results for
AUC maximization under different client numbers m = 8 and m = 128 are presented in

lj(x, y) = (1 − p)
��
w⊤aj − u

�2
− 2(1 + y)w⊤aj

�
�bj=1

+
𝜆

2
‖x‖2

+ p
��
w⊤aj − v

�2
+ 2(1 + y)w⊤aj

�
�bj=−1

− p(1 − p)y2,

lj(x, y)= log
�
1+exp

�
− bj(aj)

⊤x
��
+𝜆‖x‖2−𝛾y2−𝛽 log �1+exp �− cj(aj)

⊤xy
��
.

Machine Learning (2025) 114:174	 Page 15 of 40  174

Fig. 1   We demonstrate the communication rounds (#comm) against ‖∇f (x, y)‖
2
 and running time (seconds)

against ‖∇f (x, y)‖
2
 for AUC maximization under the case m = 8 on datasets “a9a”, “w8a”, and “sido0”

Fig. 2   We demonstrate the communication rounds (#comm) against ‖∇f (x, y)‖
2
 and running time (seconds)

against ‖∇f (x, y)‖
2
 for AUC maximization under the case m = 128 on datasets “a9a”, “w8a”, and “sido0”

	 Machine Learning (2025) 114:174174  Page 16 of 40

Figs. 1 and 2. We also demonstrate the results for Fairness-aware machine learning under
different client numbers m = 8 and m = 128 in Figs. 3 and 4.

We observe that our newly proposed PANDA and GIANT-PANDA outperform the base-
lines in terms of both communication rounds and the running time for all cases. This indi-
cates that our methods indeed not only significantly reduce the communication rounds as
compared to the optimal first-order methods, but also maintain communication efficiency
which makes the optimization procedure fast.

We also observe that the communication complexity of PANDA can be affected by
the number of clients (m). This is because �PANDA is proportional to

√
m according to

Remark 4.5. On the other hand, the increase of m makes the training time per iteration
smaller due to the distributed framework, thus, larger m always leads to a faster training
process. Take (a), (b) of Figs. 1 and 2 for example, PANDA requires less communication
round when m = 8 , but takes less running time when m = 128.

Fig. 3   We demonstrate the communication rounds (#comm) against ‖∇f (x, y)‖
2
 and running time (second)

against ‖∇f (x, y)‖
2
 for Fairness-aware machine learning under the case m = 8 on datasets “adult” and “law

school”

Machine Learning (2025) 114:174	 Page 17 of 40  174

5.2 � Comparison of different sketch ratios for GIANT‑PANDA

We investigate the impact of the sketch ratio ( p = st∕s ) on GIANT-PANDA. We choose
different sketch ratios p from {10%, 30%, 50%, 70%, 100%} for GIANT-PANDA. For the
case p = 100% , GIANT-PANDA reduces to its full version PANDA. We set the number
of clients as m = 8.

We present the results for AUC maximization and Fairness-aware machine learn-
ing in Figs. 5 and 6 respectively. The numerical results show that larger sketch ratios
lead to fewer communication rounds for the training process, which is because one can
obtain a better approximation to the local exact partial Hessian, and thus get a smaller � .
GIANT-PANDA with p = 100% (PANDA) outperforms other cases in terms of the com-
munication rounds. On the other hand, GIANT-PANDA shows its advantage in terms
of the running time. We find that GIANT-PANDA with p = 30% for “a9a”, p = 10%
for “w8a” in AUC maximization and with p = 10% for “law school” in Fairness-aware
machine learning achieves the best behavior in terms of the running time ((b), (d) of

Fig. 4   We demonstrate the communication rounds (#comm) against ‖∇f (x, y)‖
2
 and running time (second)

against ‖∇f (x, y)‖
2
 for Fairness-aware machine learning under the case m = 128 on datasets “adult” and

“law school”

	 Machine Learning (2025) 114:174174  Page 18 of 40

Figs. 5 and 6). This is because the sketch operation in GIANT-PANDA reduces the com-
putation time for each client.

We also provide additional experiments to study the impact of sketch ratio under
m = 128 and the impact of using different sketch methods in G.

6 � Conclusion

In this paper, we have proposed PANDA and GIANT-PANDA to solve the distributed mini-
max problems with unbalanced dimensions. PANDA eliminates the requirement of commu-
nicating the full Hessian and substantially reduces the communication rounds compared to
the optimal first-order methods. GIANT-PANDA further reduces the computation cost by
performing sketch operations to compute the local partial Hessian on each client.

For future work, it is interesting to generalize PANDA and GIANT-PANDA to more gen-
eral minimax optimization problems (Adil et al., 2022; Lin & Jordan, 2022; Liu & Luo,
2022; Luo et al., 2022). It is also possible to leverage the idea of Hessian average (Na et al.,

Fig. 5   We demonstrate the communication rounds (#comm) against ‖∇f (x, y)‖
2
 and running time (second)

against ‖∇f (x, y)‖
2
 for AUC maximization on datasets “a9a” and “w8a” with different sketch ratio p under

the case m = 8

Machine Learning (2025) 114:174	 Page 19 of 40  174

2023) to further enhance the behavior of GIANT-PANDA and design the decentralized sce-
nario of PANDA and GIANT-PANDA.

The Appendix A GIANT‑PANDA algorithm

We present the detailed implementation of GIANT-PANDA and GIANT in Algorithms 2
and 3 respectively.

Fig. 6   We demonstrate the communication rounds (#comm) against ‖∇f (x, y)‖
2
 and running time (second)

against ‖∇f (x, y)‖
2
 for Fairness-aware machine learning on datasets “adult” and “law school” with different

sketch ratio p under the case m = 8

	 Machine Learning (2025) 114:174174  Page 20 of 40

Algorithm 2   GIANT-PANDA(x
0
, y

0
,T)

Machine Learning (2025) 114:174	 Page 21 of 40  174

Algorithm 3   GIANT(x
0
,T)

Appendix B Auxiliary Lemmas for positive definite matrices

We first provide some useful lemmas for positive definite matrices.

Lemma B.1  For two positive definite matrices A,B , if

for some � ∈ (0, 1) , then it holds that

Proof  We have

so that

and

(1 − �)A ⪯ B ⪯ (1 + �)A,

‖‖‖I − A1∕2B−1A1∕2‖‖‖ ≤ �

1 − �
.

1

1 + �
A−1 ⪯ B−1 ⪯

1

1 − �
A−1,

1

1 + �
I ⪯ A1∕2B−1A1∕2 ⪯

1

1 − �
I,

�

1 − �
I ⪯ I − A1∕2B−1A1∕2 ⪯

�

1 + �
I.

	 Machine Learning (2025) 114:174174  Page 22 of 40

So, we have

	� ◻

Lemma B.2  For two positive definite matrices A,B , if

for some � ∈ (0, 1) , then it holds that

for any Δ ⪰ 0.

Proof  According to (B1), we have

which means

so that

Since Δ ⪰ 0 , we have

which means

So that we have

Finally, we have

	� ◻

‖‖‖I − A1∕2B−1A1∕2‖‖‖ ≤ max

{
�

1 − �
,

�

1 + �

}
=

�

1 − �
.

(B1)‖I − A1∕2B−1A1∕2‖ ≤ �,

‖I − (A + Δ)1∕2(B + Δ)−1(A + Δ)1∕2‖ ≤ �,

(1 − �)I ⪯ A1∕2B−1A1∕2 ⪯ (1 + �)I,

(1 − �)A−1 ⪯ B−1 ⪯ (1 + �)A−1,

1

1 + �
A ⪯ B ⪯

1

1 − �
A.

1

1 + �
(A + Δ) ⪯

1

1 + �
A + Δ ⪯ B + Δ ⪯

1

1 − �
A + Δ ⪯

1

1 − �
(A + Δ),

(1 − �)(A + Δ)−1 ⪯ (B + Δ)−1 ⪯ (1 + �)(A + Δ)−1.

(1 − �)I ⪯ (A + Δ)1∕2(B + Δ)−1(A + Δ)1∕2 ⪯ (1 + �)I.

−�I ⪯ I − (A + Δ)1∕2(B + Δ)−1(A + Δ)1∕2 ⪯ �I.

Machine Learning (2025) 114:174	 Page 23 of 40  174

Appendix C The Proof of Sect. 2.2

C.1 The Proof of Lemma 2.4

Proof  Recall the singular value decomposition of A = UΣV in Definition 2.1 where
U ∈ ℝ

N×d , Σ ∈ ℝ
d×d and V ∈ ℝ

d×N . We can directly obtain the following results by taking
� = d of Wang et al. (2018, Lemma 8) that

holds for all i ∈ [m] with probability at least 1 − � . Then we have

and

Recall the definition of Hi = A⊤SiS
⊤
i
A + 𝛼 , H = A⊤A + 𝛼I , we have

and

Similarly, recall the definition of Ĥ = A⊤SS⊤A + 𝛼 , we have

and

	� ◻

���U
⊤SiS

⊤
i
U − I

��� ≤ 𝜂 and
���U

⊤SS⊤U − I
��� ≤ 𝜂√

m
,

(1 − 𝜂)I ⪯ U⊤SiS
⊤
i
U ⪯ (1 + 𝜂)I,

�
1 − 𝜂∕

√
m
�
I ⪯ U⊤SS⊤U ⪯

�
1 + 𝜂∕

√
m
�
I.

Hi = V⊤ΣU⊤SiS
⊤
i
UΣV + 𝛼I

⪯ (1 + 𝜂)V⊤Σ2V + 𝛼I

⪯ (1 + 𝜂)
(
A⊤A + 𝛼I

)
= (1 + 𝜂)H,

Hi = V⊤ΣU⊤SiS
⊤
i
UΣV + 𝛼I

⪰ (1 − 𝜂)V⊤Σ2V + 𝛼I

⪰ (1 − 𝜂)(A⊤A + 𝛼I) = (1 − 𝜂)H.

Ĥ = V⊤ΣU⊤SS⊤UΣV + 𝛼I

⪯ (1 + 𝜂∕
√
m)V⊤Σ2V + 𝛼I

⪯ (1 + 𝜂∕
√
m)(A⊤A + 𝛼I) = (1 + 𝜂∕

√
m)H,

Ĥ = V⊤ΣU⊤SS⊤UΣV + 𝛼I

⪰ (1 − 𝜂∕
√
m)V⊤Σ2V + 𝛼I

⪰ (1 − 𝜂∕
√
m)(A⊤A + 𝛼I) = (1 − 𝜂∕

√
m)H.

	 Machine Learning (2025) 114:174174  Page 24 of 40

Appendix D The Proof of Sect. 3

D.1 The Proof of Lemma 3.1

Proof  According to the condition, it holds that

Using Lemma B.1, we have

Denote Δ = −Hxy(x, y)Hyy(x, y)
−1H⊤

xy
(x, y) . According to Assumption 2.2, we have

Hyy(x, y) ⪯ −�]I , which means that Δ ⪰ 0 . Using Lemma B.2 on A = Hxx(x, y) and
B = H̃xx , we have

	� ◻

D.2 The Proof of Theorem 3.2

Denote J =

�
P(x, y)1∕2 0

0

√
�

2
Iny

�
 and r =

������

�
P(x, y)1∕2(x+ − x)√

�

2
(y+ − y)

�������
 . The following lemma

illustrates the relation between P(x, y) and P(x+, y+).

Lemma D.1  (Liu et al., 2022, Lemma 4.3) Under Assumptions 2.2, we have

•	 1

1+
3�2�2√

�
r
P(x, y) ⪯ P(x+, y+) ⪯

�
1 +

3�2�2√
�
r

�
P(x, y).

•	 ‖J‖ ⪰
√
�

2
.

For simplicity, we use gx , gy , Hxx , Hxy , Hyy , P , P+ , C to represent the gx(x, y) , gy(x, y) ,
Hxx(x, y) , Hxy(x, y) , Hyy(x, y) , Pxx(x, y) , P(x+, y+) and C(x, y) . We also represent the full

accurate Hessian matrix H = H(x, y) =

[
Hxx(x, y) Hxy(x, y)

Hyx(x, y) Hyy(x, y)

]
 and approximated full Hes-

sian matrix H̃ = H̃(x, y) =

[
H̃xx(x, y) Hxy(x, y)

Hyx(x, y) Hyy(x, y)

]
.

Proof  According to the condition ‖I − P1∕2C−1P1∕2‖ ≤ �1 , we can obtain that

Under assumption 2.2, we have Hxx ⪰ �I and Hyy ⪯ −�I , then

(1 − 𝜂)Hxx(x, y) ⪯ H̃xx ⪯ (1 + 𝜂)Hxx(x, y).

‖‖‖I − [Hxx(x, y)]
1∕2[H̃xx]

−1[Hxx(x, y)]
1∕2‖‖‖ ≤ 𝜂

1 − 𝜂
.

‖‖‖I − P(x, y)1∕2C(x, y)−1P(x, y)1∕2
‖‖‖ ≤ �

1 − �
.

(D2)
���P

1∕2C−1P1∕2��� ≤ ‖I‖ + ���I − P1∕2C−1P1∕2��� ≤ 1 + �1,

Machine Learning (2025) 114:174	 Page 25 of 40  174

and

If follows that

and

According to Woodbury identity, we have

Hence, we have

According to the update rule, we have

Using block inverse formula, we can write � as

𝜇I ⪯ −Hyy ⪯ −Hyy +H⊤
xy
H−1

xx
Hxy,

𝜇I ⪯ −Hyy ⪯ −Hyy +H⊤
xy
H̃

−1

xx
Hxy.

(D3)
‖‖‖‖‖

[
Hyy −H⊤

xy
H−1

xx
Hxy(x, y)

]−1‖‖‖‖‖
≤ 1

𝜇
,

(D4)
‖‖‖‖‖

[
Hyy −H⊤

xy
H̃

−1

xx
Hxy

]−1‖‖‖‖‖
≤ 1

𝜇
.

[
Hyy −H⊤

xy
H−1

xx
Hxy

]−1
= H−1

yy
+H−1

yy
H⊤

xy
P−1HxyH

−1
yy
.

(D5)

���P
−1∕2HxyH

−1
yy

��� =

�
𝜆max

�
H−1

yy
H⊤

xy
P−1HxyH

−1
yy

�

=

�
���H

−1
yy
H⊤

xy
P−1HxyH

−1
yy

���
=

�
���
�
Hyy −H⊤

xy
H−1

xx
Hxy

�−1
−H−1

yy

���
≤
�

���
�
Hyy −H⊤

xy
H−1

xx
Hxy

�−1��� +
���H

−1
yy

���
≤ 2√

𝜇
.

(D6)

[
gx(x+, y+)

gy(x+, y+)

]
=

[
H̃xx −Hxx 0

0 0

]
H̃

−1

[
gx
gy

]

���������������������������������
�

+ ∫
1

0

(
[H

(
x + s(x+ − x), y + s(y+ − y)

)
−H(x, y)]

[
x+ − x

y+ − y

])
ds

���
�

.

	 Machine Learning (2025) 114:174174  Page 26 of 40

Let
�
�x
�y

�
= J−1

�
gx
gy

�
=

�
P−1∕2 0

0
2√
�
Iny

��
gx
gy

�
=

�
P−1∕2gx

2√
�
gy

�
 , then the weighted gradient

norm can be written as

From (D6) we can build the following relationship

Hence, in order to build the relationship between �+ and � , we need to bound
‖‖‖P

−1∕2
+ �x

‖‖‖,
‖‖‖P

−1∕2
+ �

‖‖‖x and ‖�‖y . Since

and

we have

Using Lemma D.1, wehave

[
�x

�y

]
=

[
(H̃xx −Hxx)C

−1gx − (H̃xx −Hxx)C
−1HxyH

−1
yy
gy

0

]
.

�(x, y) = ⟨gx,P−1gx⟩1∕2 + 2√
�
‖gy‖ = ���x�� + ����y

���.

gx(x+, y+) = �x + �x,

gy(x+, y+) = �y + �y = �y.

‖‖‖P
−1∕2(H̃xx −Hxx)C

−1gx
‖‖‖

(7), (8)
=

‖‖‖P
−1∕2(C − P)C−1gx

‖‖‖
=
‖‖‖
(
I − P1∕2C−1P1∕2

)
P−1∕2gx

‖‖‖
≤ ‖‖‖I − P1∕2C−1P1∕2‖‖‖

‖‖‖P
−1∕2gx

‖‖‖
≤ 𝜂1

‖‖‖P
−1∕2gx

‖‖‖,

���P
−1∕2(H̃xx −Hxx)C

−1HxyH
−1
yy
gy
���

=
���
�
I − P1∕2C−1P1∕2

�
P−1∕2HxyHyygy

���
(D5)≤ 𝜂1

2√
𝜇

���gy
���,

���P
−1∕2

�x
��� ≤ ���P

−1∕2(H̃xx −Hxx)C
−1gx

���
+
���P

−1∕2(H̃xx −Hxx)C
−1HxyH

−1
yy
gy
���

≤ 𝜂1
���P

−1∕2gx
��� + 𝜂1

2√
𝜇

���gy
���.

Machine Learning (2025) 114:174	 Page 27 of 40  174

Then, the term ‖�‖ can be bounded under assumption 2.2, that is

We can further bound ‖‖‖P
−1∕2
+ �x

‖‖‖ as follows:

With all bounds we have obtained, we are able to construct an incomplete relationship as
follows:

Then we need to bound r by � . By the update rule, we have

which is equivalent to

���P
−1∕2
+ �x

��� ≤
�

1 +
3�2�2√

�
r
���P

−1∕2
�x

���

≤
�

1 +
3�2�2√

�
r

�
�1
���P

−1∕2gx
��� + �1

2√
�

���gy
���
�
.

‖�‖ ≤ �
1

0

���H
�
x + s(x+ − x), y + s(y+ − y) −H(x, y)

���
�����

�
x+ − x

y+ − y

������
ds

≤ L2

2

�����

�
x+ − x

y+ − y

������

2

≤ L2

2�

�����
J

�
x+ − x

y+ − y

������

2

≤ L2

2�
r2.

���P
−1∕2
+ �x

��� ≤ ���P
−1∕2
+

������x
��

≤ 1√
�

L2

2�
r2 =

L2

2�
√
�
r2.

(D7)

�(x+, y+) =
���P

−1∕2
+ gx(x+, y+)

��� +
������

2√
�
gy(x+, y+)

������
=
���P

−1∕2
+ (�x + �x)

��� +
������

2√
�
�y

������
≤ ���P

−1∕2
+ �x

��� +
���P

−1∕2
+ �x

��� +
2√
�
‖�‖

≤ �1

�
1 +

3�2�2√
�

r� +
L2

2�
√
�
r2 +

2√
�

L2

2�
r2

= �1

�
1 +

3�2�2√
�

r� +
3L2

2�
√
�
r2.

J

[
x+ − x

y+ − y

]
= −JH̃

−1

[
gx
gy

]
= −JH̃

−1
J

[
�x
�y

]
,

	 Machine Learning (2025) 114:174174  Page 28 of 40

Then we can bound ‖‖‖P
1∕2(x+ − x)

‖‖‖ and
����
√
�

2
(y+ − y)

���� as follows:

and

Combine these two bounds, we have

Plug this back to (D7), we have

−

�
P1∕2(x+ − x)√

𝜇

2
(y+ − y)

�
=

�
P1∕2C−1P1∕2�x

−
√
𝜇

2
(P1∕2C−1P1∕2P−1∕2HxyH

−1
yy
)⊤�x

�

+

�
−

√
𝜇

2
P1∕2C−1HxyH

−1
yy
�y

𝜇

4
(Hyy −HyxH̃

−1
Hxy)

−1�y

�

���P
1∕2(x+ − x)

��� ≤ ���P
1∕2C−1P1∕2������x��

+

√
�

2

���P
1∕2C−1P1∕2���

���P
−1∕2HxyH

−1
yy

���
����y

���
(D2), (D5)≤ (1 + �1)

���x�� +
√
�

2
(1 + �1)

2√
�

����y
���

= (1 + �1)�,

������

√
𝜇

2
(y+ − y)

������
≤

√
𝜇

2

���P
1∕2C−1P1∕2���

���P
−1∕2HxyH

−1
yy

������x��

+
𝜇

4

���
�
Hyy −HyxH̃

−1
Hxy

�−1���
����y

���
≤

√
𝜇

2
(1 + 𝜂1)

2√
𝜇
���x�� +

𝜇

4
⋅

1

𝜇

����y
���

≤ (1 + 𝜂1)𝜆.

r =
���P

1∕2(x+ − x)
��� +

������

√
�

2
(y+ − y)

������
≤ 2(1 + �1)�.

(D8)

�(x+, y+) ≤ �1

�
1 +

3�2�2√
�

r� +
3L2

2�
√
�
r2

≤ �1
�
1 +

3�2�2√
�

r
�
� +

3L2

2�
√
�
r2

≤ �1� +
6�1�

2�2√
�

(1 + �1)
2�2 +

6�2√
�
(1 + �1)

2�2

≤ �1� +
12(1 + �1)

2�2�2√
�

�2.

Machine Learning (2025) 114:174	 Page 29 of 40  174

	� ◻

D.3 The Proof of Corollary 3.3

Proof  According Lemma 2.3 and take � = �PAN =
√

3K log(2nx∕�)

|S|�  , it holds with probability
at least 1 − � that

Using Lemma 3.1, we have

holds with probability at least 1 − � . Using Theorem 3.2, we can directly conclude (9). 	
� ◻

Appendix E The Proof of Sect. 4.2

To simplify the presentation, we use Hxx,t , H
i
xx,t

 to represent Hxx(xt, yt) and Hi
xx
(xt, yt).

E.1 The Proof of Lemma 4.2

Proof  We denote

According to the condition for Hi
xx,t

 , we have

so that Ei satisfies that

and

We rewrite H1∕2
xx,t[H

i
xx,t

]−1H
1∕2
xx,t − I as follows

(1 − 𝜂)Hxx(x, y) ⪯ H̃xx ⪯ (1 + 𝜂)Hxx(x, y).

‖‖‖I − P(x, y)1∕2[C(x, y)]−1P(x, y)1∕2
‖‖‖ ≤ �

1 − �
,

(E9)H
1∕2
xx,t

[
Hi

xx,t

]−1
H

1∕2
xx,t

def
= I + Ei.

1

1 + �
I ⪯ H1∕2

xx

[
Hi

xx,t

]−1
H1∕2

xx
⪯

1

1 − �
I,

(E10)−
�

1 + �
I ⪯ Ei ⪯

�

1 − �
I,

(E11)
‖‖‖H

−1∕2
xx,t (Hxx,t −Hi

xx,t
)H

−1∕2
xx,t

‖‖‖ ≤ �.

H
1∕2
xx,t

[
Hi

xx,t

]−1
H

1∕2
xx,t − I

= H
−1∕2
xx,t

(
Hxx,t −Hi

xx,t

)
H

−1∕2
xx,t

(
H

1∕2
xx,t

[
Hi

xx,t

]−1
H

1∕2
xx,t

)
.

	 Machine Learning (2025) 114:174174  Page 30 of 40

Then, H̃xx,t satisfies that

Thus, we have

Applying Lemma B.2 on A = Hxx,t , B = H̃xx,t and

we obtain

	� ◻

E.2 The Proof of Theorem 4.3

Proof  Using Lemma 4.2, we have

H
1∕2
xx,t

[
H̃xx,t

]−1
H

1∕2
xx,t − I = H

1∕2
xx,t

[
1

m

m∑
i=1

[
Hi

xx,t

]−1
]
H

1∕2
xx,t − I

=
1

m

m∑
i=1

H
−1∕2
xx,t

(
Hxx,t −Hi

xx,t

)
H

−1∕2
xx,t

(
H

1∕2
xx,t

[
Hi

xx,t

]−1
H

1∕2
xx,t

)
.

‖‖‖H
1∕2
xx,tH̃

−1

xx,t
H

1∕2
xx,t − I

‖‖‖
=
‖‖‖‖‖
1

m

m∑
i=1

H
−1∕2
xx,t (Hxx,t −Hi

xx,t
)H

−1∕2
xx,t (H

1∕2
xx,t[H

i

xx,t
]−1H

1∕2
xx,t))

‖‖‖‖‖
(E9)
=

‖‖‖‖‖
1

m

m∑
i=1

H
−1∕2
xx,t (Hxx,t −Hi

xx,t
)H

−1∕2
xx,t (I + Ei)

‖‖‖‖‖
≤ ‖‖‖‖‖

1

m

m∑
i=1

H
−1∕2
xx,t (Hxx,t −Hi

xx,t
)H

−1∕2
xx,t

‖‖‖‖‖
+
‖‖‖‖‖
1

m

m∑
i=1

H
−1∕2
xx,t (Hxx,t −Hi

xx,t
)H

−1∕2
xx,t Ei

‖‖‖‖‖

≤

‖‖‖‖‖‖‖‖‖‖‖‖

H
−1∕2
xx,t

(
Hxx,t −

1

m

m∑
i=1

Hi

xx,t

)

�����������������������������
=0

H
−1∕2
xx,t

‖‖‖‖‖‖‖‖‖‖‖‖
+

1

m

m∑
i=1

‖‖‖H
−1∕2
xx,t (Hxx,t −Hi

xx,t
)H

−1∕2
xx,t

‖‖‖
‖‖‖E

i‖‖‖
(E11),(E10)≤ 𝜂2

1 − 𝜂
.

Δ = −Hxy(xt, yt)[Hyy(xt, yt)
−1][Hxy(xt, yt)]

⊤,

‖‖‖P(xt, yt)
1∕2C−1

t
P(xt, yt)

1∕2 − I
‖‖‖ ≤ �2

1 − �
.

Machine Learning (2025) 114:174	 Page 31 of 40  174

According to Proposition 4.1 and using Theorem 3.2 by taking �1 =
�2

1−�
 , we obtain (15). 	

� ◻

E.3 The Proof of Corollary 4.4

Proof  Using Lemma 2.3, with sample size on each client s ≥ 3K∕� log(2nxm∕�)

�2
 , we have

holds with probability at least 1 − �∕m . Then we have

holds for all i ∈ [m] with probability 1 − � , remaining proof directly follows the proof of
Theorem 4.3. 	� ◻

Appendix F The Proof of Sect. 4.3

To simplify the presentation, we use Hxx,t , H
i
xx,t

 to represent Hxx(xt, yt) and Hi
xx
(xt, yt).

F.1 The Proof of Lemma 4.6

Proof  Recall that we do matrix sketching on each client such that as

we denote S =
1√
m
[S̃1,⋯ , S̃m] ∈ ℝ

N×mst , then the aggregation of H̃i

xx,t
 can be defined by

Using the results of Lemma 2.4, we have

and

hold with probability at least 1 − � . Following the proof of Lemma 4.2, we also denote

‖‖‖P(xt, yt)
1∕2C−1

t
P(xt, yt)

1∕2 − I
‖‖‖ ≤ �2

1 − �
.

(1 − �)Hxx(xt, yt) ⪯ Hi

xx
(xt, yt) ⪯ (1 + �)Hxx(xt, yt),

(1 − �)Hxx(xt, yt) ⪯ Hi

xx
(xt, yt) ⪯ (1 + �)Hxx(xt, yt),

H̃
i

xx,t
= A⊤

t
S̃iS̃

⊤

i
At + 𝛼I,

Ĥxx,t

def
=

1

m

m∑
i=1

H̃
i

xx,t
= A⊤

t
SS⊤At + 𝛼I.

(F12)(1 − 𝜂)Hxx,t ⪯ H̃
i

xx,t
⪯ (1 + 𝜂)Hxx,t,

(F13)(1 − 𝜂∕
√
m)Hxx,t ⪯ Ĥxx,t ⪯ (1 + 𝜂∕

√
m)Hxx,t,

	 Machine Learning (2025) 114:174174  Page 32 of 40

According to (F12), we have

and

hold with probability at least 1 − � . It also satisfies that

Thus, we have

holds with probability at least 1 − �.
Applying Lemma B.2 on A = Hxx,t , B = H̃

gp

xx,t
 and

(F14)H
1∕2
xx,t

[
H̃

i

xx,t

]−1
H

1∕2
xx,t

def
= I + Ẽ

i
.

(F15)−
𝜂

1 + 𝜂
I ⪯ Ẽ

i
⪯

𝜂

1 − 𝜂
I,

(F16)
‖‖‖‖H

−1∕2
xx,t

(
Hxx,t − H̃

i

xx,t

)
H

−1∕2
xx,t

‖‖‖‖ ≤ 𝜂.

(F17)
����H

−1∕2
xx,t

�
Hxx,t − Ĥxx,t

�
H

−1∕2
xx,t

���� ≤ 𝜂∕
√
m,

H
1∕2
xx,t

[
H̃

gp

xx,t

]−1
H

1∕2
xx,t − I = H

1∕2
xx,t

[
1

m

m∑
i=1

[H̃
i

xx,t
]−1

]
H

1∕2
xx,t − I

=
1

m

m∑
i=1

H
−1∕2
xx,t (Hxx,t − H̃

i

xx,t
)H

−1∕2
xx,t (H

1∕2
xx,t[H̃

i

xx,t
]−1H

1∕2
xx,t).

���H
1∕2
xx,t[H̃

gp

xx,t
]−1H

1∕2
xx,t − I

���
=
�����
1

m

m�
i=1

H
−1∕2
xx,t (Hxx,t − H̃

i

xx,t
)H

−1∕2
xx,t (H

1∕2
xx,t[H̃

i

xx,t
]−1H

1∕2
xx,t)

�����
=
�����
1

m

m�
i=1

H
−1∕2
xx,t (Hxx,t − H̃

i

xx,t
)H

−1∕2
xx,t (I + Ẽ

i
)
�����

≤ �����
1

m

m�
i=1

H
−1∕2
xx,t (Hxx,t − H̃

i

xx,t
)H

−1∕2
xx,t

�����
+
�����
1

m

m�
i=1

H
−1∕2
xx,t (Hxx,t −Hi

xx,t
)H

−1∕2
xx,t Ẽ

i
�����

≤ ����H
−1∕2
xx,t

�
Hxx,t − Ĥxx,t

�
H

−1∕2
xx,t

����
+

1

m

m�
i=1

���H
−1∕2
xx,t (Hxx,t −Hi

xx,t
)H

−1∕2
xx,t

���
���E

i���
(F17),(F15)≤ 𝜂√

m
+

𝜂2

1 − 𝜂
,

Machine Learning (2025) 114:174	 Page 33 of 40  174

we conclude that

holds with probability at least 1 − � . 	� ◻

F.2 The Proof of Theorem 4.8

Using Lemma 4.6, we have

holds with probability at least 1 − � . Since the update rule of GIANT-PANDA on the
server can be written as

Using the convergence results of PAN (Theorem 3.2) by taking �1 =
�√
m
+

�2

1−�
 , we can

directly obtain (18).

F.3 The Proof of Corollary 4.10

When the variable y vanishes, we have

the corresponding measure can be written as

which recovers the measure of Rodomanov and Nesterov (2021). Under the condi-
tion of Corollary 4.10, f is �-strongly convex, L2-Lipschitz continuous. We define
r̂
def
= ‖P̂(x)1∕2(x+ − x)‖ , using the results in Rodomanov and Nesterov (2021), it holds that

•	 1

1+
L2 r̂

2𝜇3∕2

P̂(x) ⪯ P̂(x+) ⪯
(
1 +

L2 r̂

2𝜇3∕2

)
P̂(x),

•	 r̂ ≤ 𝜆̂(x).

Lemma F.1  Under the same condition of Corollary 4.10, when we use the update rule

Δ = −Hxy(xt, yt)[Hyy(xt, yt)
−1][Hxy(xt, yt)]

⊤,

���P(xt, yt)
1∕2[C

gp
t]−1P(xt, yt)

1∕2 − I
��� ≤ �√

m
+

�2

1 − �

���P(xt, yt)
1∕2[C

gp
t]−1P(xt, yt)

1∕2 − I
��� ≤ �√

m
+

�2

1 − �
,

[
xt+1
yt+1

]
=

[
xt
yt

]
−

[
H̃

gp

xx,t
Hxy(xt, yt)

Hxy(xt, yt)
⊤ Hyy(xt, yt)

]−1 [
gx(xt, yt)

gy(xt, yt)

]
,

P̂(x)
def
= ∇2f (x),

𝛾̂(x)
def
=

‖‖‖[P̂(x)]
−1∇f (x)

‖‖‖,

	 Machine Learning (2025) 114:174174  Page 34 of 40

where H ∈ ℝ
nx×nx is a positive definite matrix satisfies

then it holds that

Now, we formally present the proof of Corollary 4.10.

Proof  Replacing the factor
√

1 +
3�2�2

�
r by

√
1 +

L2

2𝜇3∕2
r̂ of (D7) in Theorem 3.2, we have

Using r̂ ≤ 𝜆̂(x) , we have

	� ◻

Now we present the proof of Corollary 4.10 which is very similar to the proof of
Theorem 4.8.

Proof  Using the results of Lemma 4.6, we have

holds with probability at least 1 − � where H̃t is defined by

The update rule of GIANT can be written as

Using Lemma F.1 by taking �1 =
�√
m
+

�2

1−�
 , we have

holds with probability at least 1 − � . 	� ◻

x+ = x −H−1∇f (x),

‖‖‖I − ∇2f (x)1∕2H−1∇2f (x)1∕2
‖‖‖ ≤ �1,

𝜆̂(x+) ≤ 𝜂1𝜆̂(x) +
2L2

𝜇3∕2
𝜆̂(x)2.

(F18)𝜆̂(x+) ≤ 𝜂1

√
1 +

L2

2𝜇3∕2
r̂𝜆̂(x) +

3L2

2𝜇3∕2
r̂2,

𝜆̂(x+) ≤ 𝜂1𝜆̂(x) +
L2

𝜇3∕2
𝜆̂(x)2 +

3L2

2𝜇3∕2
𝜆̂(x)2 = 𝜂1𝜆̂(x) +

2L2

𝜇3∕2
𝜆̂(x)2.

(F19)
���I − [∇2f (xt)]

1∕2H̃
−1

t
[∇2f (xt)]

1∕2��� ≤ 𝜂√
m

+
𝜂2

1 − 𝜂
,

H̃t

def
=

[
1

m

m∑
i=1

[H̃
i

xx,t
]−1

]−1

.

xt+1 = xt − H̃
−1

t
∇f (xt).

𝜆̂(xt+1) ≤
�

𝜂√
m

+
𝜂2

1 − 𝜂

�
𝜆̂(xt) +

2L2

𝜇3∕2
𝜆̂(xt)

Machine Learning (2025) 114:174	 Page 35 of 40  174

Appendix G Additional experiments

This section provides additional experiments to validate our new proposed methods. In G.1,
we present additional numerical results of different sketch ratios for GIANT-PANDA. In
G.2, we study the impact of the sketch methods on the convergence behavior for GIANT-
PANDA. In G.3, we compare PAN with existing state-of-the-art methods for single-agent
optimization ( m = 1).

G.1 More study on the impact of the sketch ratio

We choose the sketch ratio from p ∈ {10%, 30%, 50%, 70%, 100%} . We set the number of
clients m = 128 . We present the results for AUC maximization and Fairness-aware machine
learning in Figs. 7 and 8 respectively. We observe similar behaviors as in Sect. 5.2.

G.2 Comparison of different sketch methods for GIANT‑PANDA

We validate the impact of using different sketch methods in GIANT-PANDA. Specifi-
cally, we choose uniform sketch, Gauss sketch (Johnson & Lindenstrauss, 1984), and count
sketch (Clarkson & Woodruff, 2017) to construct the local approximate partial Hessian
H̃

i

xx,t
 in (16) in GIANT-PANDA.

We present the behavior of GIANT-PANDA under m = 8 for AUC maximization and
Fairness-aware machine learning in Figs. 9 and 10 respectively.

Fig. 7   We demonstrate the communication rounds (#comm) against ‖∇f (x, y)‖
2
 and running time (second)

against ‖∇f (x, y)‖
2
 for AUC maximization on datasets “a9a” and “w8a” with different sketch ratio p under

the case m = 128

Fig. 8   We demonstrate the communication rounds (#comm) against ‖∇f (x, y)‖
2
 and running time (second)

against ‖∇f (x, y)‖
2
 for Fairness-aware machine learning on datasets “adult” and “law school” with different

sketch ratio p under the case m = 128

	 Machine Learning (2025) 114:174174  Page 36 of 40

Fig. 9   We demonstrate the communication rounds (#comm) against ‖∇f (x, y)‖
2
 and running time (second)

against ‖∇f (x, y)‖
2
 for AUC maximization under m = 8 on datasets “a9a” and “w8a” with different sketch

methods

Fig. 10   We demonstrate the communication rounds (#comm) against ‖∇f (x, y)‖
2
 and running time (second)

against ‖∇f (x, y)‖
2
 for Fairness-aware machine learning under m = 8 on datasets “adult” and “law school”

with different sketch methods

Fig. 11   We demonstrate the communication rounds (#comm) against ‖∇f (x, y)‖
2
 and running time (sec-

ond) against ‖∇f (x, y)‖
2
 for AUC maximization under m = 128 on datasets “a9a” and “w8a” with different

sketch methods

Fig. 12   We demonstrate the communication rounds (#comm) against ‖∇f (x, y)‖
2
 and running time (second)

against ‖∇f (x, y)‖
2
 for AUC maximization under m = 128 on datasets “adult” and “law school” with differ-

ent sketch ratio p 

Machine Learning (2025) 114:174	 Page 37 of 40  174

We also present the behavior of GIANT-PANDA under m = 128 for AUC maximization
and Fairness-aware machine learning in Figs. 11 and 12 respectively.

We observe that when m = 8 , GIANT-PANDA with uniform sketch achieves the best
behavior in terms of both communication rounds and running time (Figs. 9 and 10).
This means when the local sample size s is relatively large, employing uniform sketch in
GIANT-PANDA is good enough.

However, when the number of clients is as large as m = 128 , the count sketch and
Gauss sketch behave better than the uniform sketch (Figs. 11 and 12). This encourages us
to choose more complicated sketch methods to improve the behavior of GIANT-PANDA
when the local sample size is small.

G.3 Comparison of baselines on single‑agent optimization

We compare partially approximate Newton (PAN) with existing state-of-the-art methods
for single-agent minimax optimization. We adopt extra gradient (EG) and partial-quasi-
Newton methods with SR1 update (Liu et al., 2022) (RaSR1) algorithms for comparison.
We present the numerical results for AUC maximization and Fairness-aware machine
learning in Figs. 13 and 14. The experiment results indicate that PAN with the sample ratio
( p� = |S|∕N ) at p� = 10% or p� = 20% outperforms the baselines significantly.

Author Contributions  M.X. and C.L. wrote the main manuscript text, including numerical experiments and
proofs. C.C. provided proofs of a key lemma. J.L and S.N. reviewed the manuscript and offered valuable
suggestions and assistance. All authors reviewed and approved the final version of the manuscript.

Data availibility  No datasets were generated or analysed during the current study.

Fig. 13   We demonstrate the iteration rounds (#iter) against ‖∇f (x, y)‖
2
 and running time (second) against

‖∇f (x, y)‖
2
 for AUC maximization on datasets “a9a” and “w8a”

Fig. 14   We demonstrate the iteration rounds (#iter) against ‖∇f (x, y)‖
2
 and running time (second) against

‖∇f (x, y)‖
2
 for Fairness-aware machine learning on datasets “adult” and “law school”

	 Machine Learning (2025) 114:174174  Page 38 of 40

Declarations 

Conflict of interest  The authors declare no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Adil, D., Bullins, B., Jambulapati, A., & Sachdeva, S. (2022). Line search-free methods for higher-order
smooth monotone variational inequalities. arXiv preprint arXiv:​2205.​06167

Basar, T., & Olsder, G. J. (1999). Dynamic noncooperative game theory. ser. Classics in Applied
MathematicsSIAM.

Ben-Tal, A., & Nemirovski, A. (2002). Robust optimization-methodology and applications. Mathemati-
cal Programming, 92, 453–480.

Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM Transactions
on Intelligent Systems and Technology, 2, 27–12727.

Chavdarova, T., Gidel, G., Fleuret, F., & Lacoste-Julien, S. (2019). Reducing noise in gan training with
variance reduced extragradient. Advances in Neural Information Processing Systems, 32.

Clarkson, K. L., & Woodruff, D. P. (2017). Low-rank approximation and regression in input sparsity
time. Journal of the ACM (JACM), 63(6), 1–45.

Cortes, C., & Mohri, M. (2003). Auc optimization vs. error rate minimization. Advances in neural infor-
mation processing systems, 16.

Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., & Bharath, A. A. (2018). Gen-
erative adversarial networks: An overview. IEEE Signal Processing Magazine, 35(1), 53–65.

Deng, Y., & Mahdavi, M. (2021). Local stochastic gradient descent ascent: Convergence analysis and
communication efficiency. International conference on artificial intelligence and statistics (pp.
1387–1395). PMLR.

Facchinei, F. (2003). Finite-dimensional variational inequalities and complementarity problems.
Springer.

Gao, R., & Kleywegt, A. (2022). Distributionally robust stochastic optimization with wasserstein distance.
Mathematics of Operations Research, 48(2), 603–655.

Hsieh, Y.-G., Iutzeler, F., Malick, J., & Mertikopoulos, P. (2019). On the convergence of single-call stochas-
tic extra-gradient methods. Advances in Neural Information Processing Systems, 32.

Huang, K., & Zhang, S. (2022). An approximation-based regularized extra-gradient method for monotone
variational inequalities. arXiv preprint arXiv:​2210.​04440

Huang, K., Zhang, J., & Zhang, S. (2022). Cubic regularized newton method for the saddle point models: A
global and local convergence analysis. Journal of Scientific Computing, 91(2), 60.

Islamov, R., Qian, X., Hanzely, S., Safaryan, M., & Richtárik, P. (2022). Distributed Newton-type meth-
ods with communication compression and bernoulli aggregation. Transactions on Machine Learning
Research

Johnson, W. B., & Lindenstrauss, J. (1984). Extensions of Lipschitz maps into a Hilbert space. Contempo-
rary Mathematics, 26, 189–206.

Korpelevich, G. M. (1976). The extragradient method for finding saddle points and other problems. Mate-
con, 12, 747–756.

Lanckriet, G. R., Ghaoui, L. E., Bhattacharyya, C., & Jordan, M. I. (2002). A robust minimax approach to
classification. Journal of Machine Learning Research, 3, 555–582.

Le Quy, T., Roy, A., Iosifidis, V., Zhang, W., & Ntoutsi, E. (2022). A survey on datasets for fairness-aware
machine learning. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 12(3),
1452.

Lin, T., & Jordan, M.I. (2022). Perseus: A simple high-order regularization method for variational inequali-
ties. arXiv preprint arXiv:​2205.​03202

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2205.06167
http://arxiv.org/abs/2210.04440
http://arxiv.org/abs/2205.03202

Machine Learning (2025) 114:174	 Page 39 of 40  174

Lin, T., Jin, C., & Jordan, M. (2020). On gradient descent ascent for nonconvex-concave minimax problems.
International conference on machine learning (pp. 6083–6093). PMLR.

Liu, C., & Luo, L. (2022). Regularized newton methods for monotone variational inequalities with holders
continuous jacobians. arXiv preprint arXiv:​2212.​07824

Liu, C., Bi, S., Luo, L., & Lui, J. C. (2022). Partial-quasi-newton methods: Efficient algorithms for minimax
optimization problems with unbalanced dimensionality. In Proceedings of the 28th ACM SIGKDD
conference on knowledge discovery and data mining (pp. 1031–1041).

Liu, C., Chen, L., Luo, L., & Lui, J. (2024). Communication efficient distributed newton method with fast
convergence rates. In Proceedings of the 29th ACM SIGKDD conference on knowledge discovery and
data mining.

Liu, C., & Luo, L. (2022). Quasi-newton methods for saddle point problems. Advances in Neural Informa-
tion Processing Systems, 35, 3975–3987.

Liu, M., Zhang, W., Mroueh, Y., Cui, X., Ross, J., Yang, T., & Das, P. (2020). A decentralized parallel algo-
rithm for training generative adversarial nets. Advances in Neural Information Processing Systems, 33,
11056–11070.

Lowd, D., & Meek, C. (2005). Adversarial learning. In Proceedings of the Eleventh ACM SIGKDD Interna-
tional Conference on Knowledge Discovery in Data Mining (pp. 641–647).

Luo, L., Li, Y., & Chen, C. (2022). Finding second-order stationary points in nonconvex-strongly-concave
minimax optimization. Advances in Neural Information Processing Systems, 35, 36667–36679.

Malitsky, Y. (2015). Projected reflected gradient methods for monotone variational inequalities. SIAM Jour-
nal on Optimization, 25(1), 502–520.

Meng, X., & Mahoney, M. W. (2013). Low-distortion subspace embeddings in input-sparsity time and
applications to robust linear regression. In Proceedings of the forty-fifth annual ACM symposium on
theory of computing (pp. 91–100).

Mishchenko, K., Kovalev, D., Shulgin, E., Richtárik, P., & Malitsky, Y. (2020). Revisiting stochastic extra-
gradient. In International conference on artificial intelligence and statistics (pp. 4573–4582). PMLR

Na, S., Dereziński, M., & Mahoney, M. W. (2023). Hessian averaging in stochastic newton methods achieves
superlinear convergence. Mathematical Programming, 201(1–2), 473–520.

Nedić, A., & Ozdaglar, A. (2009). Subgradient methods for saddle-point problems. Journal of Optimization
Theory and Applications, 142, 205–228.

, Nouiehed, M., Sanjabi, M., Huang, T., Lee, J. D., & Razaviyayn, M. (2019). Solving a class of non-convex
min-max games using iterative first order methods. Advances in Neural Information Processing Sys-
tems, 32.

Rodomanov, A., & Nesterov, Y. (2021). Greedy quasi-newton methods with explicit superlinear conver-
gence. SIAM Journal on Optimization, 31(1), 785–811.

Roosta-Khorasani, F., & Mahoney, M. W. (2019). Sub-sampled newton methods. Mathematical Program-
ming, 174, 293–326.

Shamir, O., Srebro, N., & Zhang, T. (2014). Communication-efficient distributed optimization using an
approximate newton-type method. International conference on machine learning (pp. 1000–1008).
PMLR.

Sun, Z., & Wei, E. (2022). A communication-efficient algorithm with linear convergence for federated mini-
max learning. Advances in Neural Information Processing Systems, 35, 6060–6073.

Tseng, P. (2000). A modified forward-backward splitting method for maximal monotone mappings. SIAM
Journal on Control and Optimization, 38(2), 431–446.

Wang, S., Gittens, A., & Mahoney, M. W. (2017). Sketched ridge regression: Optimization perspective, sta-
tistical perspective, and model averaging. International conference on machine learning (pp. 3608–
3616). PMLR.

Wang, S., Roosta, F., Xu, P., & Mahoney, M. W. (2018). Giant: Globally improved approximate newton
method for distributed optimization. Advances in Neural Information Processing Systems, 31.

Wang, Y., & Li, J. (2020). Improved algorithms for convex-concave minimax optimization. Advances in
Neural Information Processing Systems, 33, 4800–4810.

Ye, H., He, C., & Chang, X. (2022). Accelerated distributed approximate newton method. IEEE Transac-
tions on Neural Networks and Learning Systems

Ye, H., Luo, L., & Zhang, Z. (2020). Nesterov’s acceleration for approximate newton. The Journal of
Machine Learning Research, 21(1), 5627–5663.

Ye, H., Luo, L., & Zhang, Z. (2021). Approximate newton methods. The Journal of Machine Learning
Research, 22(1), 3067–3107.

Ying, Y., Wen, L., & Lyu, S. (2016). Stochastic online AUC maximization. NIPS.

http://arxiv.org/abs/2212.07824

	 Machine Learning (2025) 114:174174  Page 40 of 40

Zhang, S., Choudhury, S., Stich, S. U., & Loizou, N. (2024). Communication-efficient gradient descent-
accent methods for distributed variational inequalities: Unified analysis and local updates. In The
twelfth international conference on learning representations

Zhang, B. H., Lemoine, B., & Mitchell, M. (2018). Mitigating unwanted biases with adversarial learning. In
Proceedings of the 2018 AAAI/ACM conference on AI, ethics, and society (pp. 335–340).

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Panda: partially approximate newton methods for distributed minimax optimization with unbalanced dimensions
	Abstract
	1 Introduction
	1.1 Contribution

	2 Preliminaries
	2.1 Notation and assumptions
	2.2 Matrix approximation via sub-sampling and sketching

	3 The analysis framework of partially approximate Newton method
	4 Partially approximate Newton methods for distributed minimax optimization
	4.1 The PANDA algorithm
	4.2 Convergence analysis of PANDA
	4.3 Extension to the GIANT-PANDA Algorithm

	5 Experiments
	5.1 Comparison with the baselines
	5.2 Comparison of different sketch ratios for GIANT-PANDA

	6 Conclusion
	The Appendix A GIANT-PANDA algorithm
	Appendix B Auxiliary Lemmas for positive definite matrices
	Appendix C The Proof of Sect. 2.2
	C.1 The Proof of Lemma 2.4

	Appendix D The Proof of Sect. 3
	D.1 The Proof of Lemma 3.1
	D.2 The Proof of Theorem 3.2
	D.3 The Proof of Corollary 3.3

	Appendix E The Proof of Sect. 4.2
	E.1 The Proof of Lemma 4.2
	E.2 The Proof of Theorem 4.3
	E.3 The Proof of Corollary 4.4

	Appendix F The Proof of Sect. 4.3
	F.1 The Proof of Lemma 4.6
	F.2 The Proof of Theorem 4.8
	F.3 The Proof of Corollary 4.10

	Appendix G Additional experiments
	G.1 More study on the impact of the sketch ratio
	G.2 Comparison of different sketch methods for GIANT-PANDA
	G.3 Comparison of baselines on single-agent optimization

	References

