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In contemporary society, understanding how information, such as trends and viruses, spreads in various social
networks is an important topic in many areas. However, it is difficult to mathematically measure how widespread
the information is, especially for a general network structure. There have been studies on opinion spreading, but
many studies are limited to specific spreading models such as the susceptible-infected-recovered model and the
independent cascade model, and it is difficult to apply these studies to various situations. In this paper, we first
suggest a general opinion spreading model (GOSM) that generalizes a large class of popular spreading models.
In this model, each node has one of several states, and the state changes through interaction with neighboring
nodes at discrete time intervals. Next, we show that many GOSMs have a stable property that is a GOSM version
of a uniform equicontinuity. Then, we provide an approximation method to approximate the expected spread size
for stable GOSMs. For the approximation method, we propose a concentration theorem that guarantees that a
generalized mean-field theorem calculates the expected spreading size within small error bounds for finite time
steps for a slightly dense network structure. Furthermore, we prove that a “single simulation” of running the
Monte Carlo simulation is sufficient to approximate the expected spreading size. We conduct experiments on
both synthetic and real-world networks and show that our generalized approximation method well predicts the
state density of the various models, especially in graphs with a large number of nodes. Experimental results
show that the generalized mean-field approximation and a single Monte Carlo simulation converge as shown in
the concentration theorem.
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I. INTRODUCTION

How political opinion, product adoption, rumors, trends,
and viruses spread through a society has been of fundamental
interest for many years and has been studied in a wide variety
of research disciplines. In particular, accurately analyzing the
spread size of information such as a virus in a human society
is one of the growing concerns in diffusion problems. For
example, recent epidemics, such as severe acute respiratory
syndrome (SARS), influenza A, and Ebola, show that viruses
can easily spread on a global scale. Similarly, rumors and
trends can also spread quickly and widely to alter human
behavior. Furthermore, analyzing the spread size and density
of information can be used to maximize the influence of the
information. With the growing usage of online social networks
(OSNs) and blog sites, predicting spread size to measure
the influence of the information is taking on added signifi-
cance. Many companies are now performing viral marketing
on OSNs, and they rely on the word-of-mouth of adopters
to influence other people to increase product sales. Since
companies can only perform viral marketing with a limited
advertising budget, predicting and evaluating the effectiveness
of viral marketing strategies (in terms of number of final
adopters) is of the utmost importance.

*Also at Automation and Systems Research Institute (ASRI), Seoul
National University; Corresponding author: kjung@snu.ac.kr

For the study of information spread size approximation
problems, there have been a number of works on building
spreading models through mathematical assumptions about
social network structures and how information spreads in
social networks. In these models, a person is represented by
a node, and a relationship between people is represented by a
graph structure of the nodes. Information such as whether or
not a person is an iPhone user or is infected by an epidemic are
assigned on each node as a state. For example, in the epidemic
model, each person (i.e., node) can be assigned one of three
states: infected, not infected, or recovered.

The voter model is a prime example of a spreading
model [1,2]. In this model, each node updates its state by fol-
lowing the state of a randomly chosen neighbor. The original
voter model has only two possible states: 0 or 1. The general
voter model [3,4] generalizes this original model. One of the
variants of the voter model is the Naming Game [5], in which
each node has a set of states that evolves conditioned on its
own state as well as its neighbors.

The susceptible-infected-recovered (SIR) model [6] is a
well-known model for predicting the diffusion of epidemics.
The susceptible-infectious-susceptible (SIS) model is one of
the variations of the SIR model. In this setting, each in-
fected (or activated) node attempts to infect its neighbors
independently and succeed with a fixed probability or rate.
The independent cascade model [7] is also one of the models
that aims to explain the opinion spreading process and can
be regarded as an SIR model. In the independent cascade
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model, every influenced node has a single chance to influence
each of its uninfluenced neighbors. Recently, the Hawkes
point process model was used to analyze user activities in
social networks [8,9]. It is known that the rate of events in
an extended model is identical to the rate of new infections in
the SIR model [10].

Another well-known spreading model is the linear thresh-
old model [11,12], where each node possesses a real-valued
threshold, to which the sum of incoming influences from
neighboring nodes is compared at each iteration. If this
combined influence is greater than the threshold, then the
node becomes influenced (or activated). Kempe et al. [7]
integrated both the threshold model and the cascade model.
They revealed that the general threshold model is equivalent
to the general cascade model, which is the generalized version
of the independent cascade model.

However, evaluating the expected density of nodes with
each state in the network is often difficult [11,13,14], espe-
cially for a general network structure and a general spreading
model. Many analyses on these spreading models have been
performed on networks satisfying certain properties that are
very strong. For the linear threshold model, most of previous
studies have focused on special graphs, such as complete
graphs [11] and locally treelike graphs [14–16]. Additionally,
there is a vast literature on the SIR models for analyzing the
spread on networks, including locally treelike graphs [6,17]
and graphs with a clustered structure [18]. Schneider-Mizell
and Sander [3] explored a general voter model on bipartite
networks and random scale-free networks.

Therefore, there have been some studies to predict the
state density in complex networks. Moretti et al. [4] analyzed
the general voter model by the mean-field approximation
on networks that disregard the specific connection pattern.
Sahneh et al. [19] constructed a generalized epidemic spread-
ing model for multistate and multilayer networks and provide
a mean-field approximation for the overall density. In recent
studies, a pairwise mean-field approximation [20–22] that im-
proves the accuracy of the mean-field approximation has been
studied. In the pairwise approximation, the approximation is
performed through the probability of the state combination
of two connected nodes to consider the dynamical correlation
between neighbors [23,24]. However, these studies focus only
on the specific spreading model, so they have limitations in
scalability. Moreover, the theoretical accuracy of the approxi-
mation is not properly shown.

In this paper, we first provide a general opinion spreading
model (GOSM) that is a generalization of various discrete-
time spreading models. The GOSM represents models that
update each node’s state with some probability that is depen-
dent on the present node’s state and its neighbors’ states. Then
we focus on GOSMs that have the stable property, which can
be seen as a GOSM version of a uniform equicontinuity. In
essence, we define a GOSM as stable when slight changes in
the state density of a set of nodes do not cause a dramatic
change in the state transition probability in the next step.
We prove that stable GOSM includes well-known spreading
models, such as the voter model and the SIR model.

Next, we provide a concentration theorem showing that
our generalized mean-field approximation converges to exact
solutions with high probability for any stable GOSM. Specifi-

cally, the theorem proves that under the stable GOSM, for any
initial node states, our generalized mean-field approximation
is close to the true expected state density with probability
1 − o(n−δ ) for a certain δ, where n is the number of nodes.
The concentration theorem also provides a theoretical back-
ground for applicability of the mean-field approximation.
Moreover, surprisingly, we prove that just a single simulation
of the Monte Carlo simulation can efficiently approximate the
true expected state density with any finite number of states
and network structures that have degree ω(log n). Previous
mean-field approximation studies [4,20–22] addressed only a
limited set of GOSMs that cannot be approximated in other
GOSMs, but our theorem is applicable to all stable GOSM.

To show that our concentration theorem is also proven ex-
perimentally, we demonstrate the effectiveness of generalized
approximation and the single Monte Carlo run via extensive
experiments on both synthetic networks and real-world net-
works. Experimental results show that our generalized mean-
field approximation is sufficiently accurate compared to the
state-of-the-art approximation in many stable GOSMs such
as the general voter model, the epidemic spreading model,
and the daily active user (DAU) model [25]. We also exper-
imentally show that a single simulation of the Monte Carlo
simulation can approximate the true expected state density
sufficiently well.

The rest of the paper is structured as follows. In Sec. II
we present the GOSM that can represent many state-change
spreading models on networks. In Sec. III we suggest the sta-
ble property for the GOSM and show many classical spread-
ing models have the stable property. In Sec. IV we present
the concentration theorem, which shows a new framework of
calculating a spreading model’s state density, and we formally
prove its validity. Our experimental results on both synthetic
and real data are given in Sec. V. Finally, our conclusion is
given in Sec. VI.

II. GENERAL OPINION SPREADING MODELS

In this section, we describe our class of GOSMs as a
general framework for opinion spreading in social networks.
Such a model is a special case of a discrete-time Markov
process in which the future states of each node depend upon
only the present states of that node and its neighbors, not on
the sequence of present and past states. After we present the
expression of GOSM, we show how several popular spreading
models (e.g., the voter model and the SIR and SIS models) can
be easily represented under our GOSM.

In our model, we consider a given directed graph G =
(V, E ), where V is a set of nodes (with n = |V |) and E is
a set of directed edges. A directed edge euv from node u
to node v implies that node u can influence node v, and
we say that node u is an in-neighbor of node v. At each
discrete time step t = 0, 1, 2, . . . , each node v ∈ V exists in
a state drawn from a finite state space S = {0, 1, . . . s − 1}.
Let sv (t ) ∈ S be a state variable of node v at time t , and let
I i
v (t ) ∈ {0, 1} be an indicator variable such that I i

v (t ) = 1 if
sv (t ) = i and 0 otherwise. If s = 2, then the state of a node
may correspond to an indicator of adoption, i.e., whether or
not the node has adopted a certain opinion. If node v’s state
variable satisfies sv (t ) = 0, node v has not yet adopted the
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opinion, whereas if sv (t ) = 1, it has. The state of node v at
time 0 is assigned based on the initial probability {ai

v (0)}.
Specifically, Pr[sv (0) = i] = ai

v (0), independently of all other
nodes. If {ai

v (0)} takes its value only from {0, 1}, then the
initial state of node v is fixed. The state of node v at time
t + 1 is updated probabilistically, where the probability is
determined only by the state of v and the states of its set of
in-neighbors (“neighbors,” for brevity), which we denote by
N (v), at time t . The indegree of v, which we denote by dv , is
simply dv = |N (v)|.

Let us define the function f k
v as the probability that v is in

state k at time t + 1 if the states of its neighboring nodes at
time t are given:

Pr[sv (t + 1) = k|{su(t )}u∈N (v)] = E
[
Ik
v (t + 1)

]

= f k
v

({
I i
v (t )

}
i∈S,

{
I i
u(t )

}
i∈S,u∈N (v)

)
.

Then,
∑

k∈S f k
v ({I i

v (t )}i∈S, {I i
u(t )}i∈S,u∈N (v)) = 1. The inputs of

the function f k
v are the state indicators of the current node v

and its neighbors u.
Next, we define f̄ k

v (xv, {xu}u∈N (v) ), which is a natural ex-
tension of f k

v (·) that extends the input variables from indica-
tors {I i

v (t )}i∈S ∈ {0, 1}s to real numbers xv = {xi
v}i∈S ∈ [0, 1]s.

The indicator variables can also be the input of f̄ k
v . Then

f̄ k
v

({
I i
v (t )

}
i∈S,

{
I i
u(t )

}
i∈S,u∈N (v)

)

= f k
v

({
I i
v (t )

}
i∈S,

{
I i
u(t )

}
i∈S,u∈N (v)

)
.

Examples are given in Sec. II A, and f k
v and f̄ k

v can be derived
for other models as well.

The goal of this paper is to estimate the expected state
density:

E

[
1

|W |
∑

u∈W

Ii
u(t )

]

for a given t , i ∈ S, and W ⊆ V .

For example, suppose that we are considering the influence
regarding the adoption of a product, where S = {0, 1}, with 1
meaning that the person adopts the product and 0 meaning
otherwise. When we take W = V , we are interested in the
fraction of all people in network G who adopt the product.
If we consider W to be all female users in network G, then we
are interested in the fraction of women who adopt the product.
We assume that each node v has a given initial state proba-
bility ai

v (0) [i.e., E[I i
v (0)] = Pr[I i

v (0) = 1] = ai
v (0)] such that∑

i∈S ai
v (0) = 1.

Let us now show how several well-known spreading mod-
els can be represented by our model. Specifically, we will give
the details of the mappings and how to analyze these models
under our framework.

A. Simple voter model

A voter model provides a set of rules for contact-based
spreading in a network. In statistical physics, such a model
has also been used to study the phase transition phenomenon
of a certain type of Ising model [26]. Let us first describe the
simple voter model [1]. A node v updates its state by copying
that of a randomly chosen neighbor. In each time step, node v
adopts the state of its neighbor u with probability 1/dv , where

dv is the indegree of v. We can use the GOSM to describe the
state-change rule for the simple voter model as follows:

f k
v

({
I i
v (t )

}
i∈S,

{
I i
u(t )

}
i∈S,u∈N (v)

)
= 1

dv

∑

u∈N (v)

Ik
u (t ) (1)

for all k ∈ S. The extended function f̄ k
v is given by

f̄ k
v (xv, {xu}u∈N (v) ) = 1

dv

∑

u∈N (v)

xk
u. (2)

B. General voter model

In addition to the simple voter model discussed above,
there is also the general voter model, in which each edge euv

has a weight wuv and
∑

u∈N (v) ωuv = dv . In the general voter
model, node v selects its neighbor u as its reference neighbor
with a probability proportional to wuv in each time step. Let
pi, j,k be the probability that node v’s state will change from i
to k if the state of the reference node u is j. Using the notation
of our model, we have the following:

f k
v

({
I i
v (t )

}
i∈S,

{
I i
u(t )

}
i∈S,u∈N (v)

)

=
∑

i∈S

I i
v (t )





∑

j∈S



pi, j,k
1
dv

∑

u∈N (v)

ωuvI j
u (t )








. (3)

C. SIR model and independent cascade model

In the SIR model, each node is in one of three states: sus-
ceptible, infected, or recovered. Using our model, we can label
these states as states 0, 1, and 2, respectively. In each time
step, a susceptible node v has an opportunity to be infected
by each of its infected neighbors. Each infected neighbor
u will succeed in infecting v with probability βuv ∈ [0, 1].
Furthermore, infected nodes will recover with probability γ ;
recovered nodes will not be infected again and lose the ability
to infect others. The state-change rule for this model is as
follows:

(i) f 0
v

({
I i
v (t )

}
i∈S,

{
I i
u(t )

}
i∈S,u∈N (v)

)

= I0
v (t )

∏

u∈N (v)

[
1 − I1

u (t )βuv

]
,

(ii) f 1
v

({
I i
v (t )

}
i∈S,

{
I i
u(t )

}
i∈S,u∈N (v)

)

= I0
v (t )




1 −
∏

u∈N (v)

[1 − I1
u (t )βuv]




 + I1
v (t )(1 − γ ),

(iii) f 2
v

({
I i
v (t )

}
i∈S,

{
I i
u(t )

}
i∈S,u∈N (v)

)
= I1

v (t )γ + I2
v (t ).

(4)

In the independent cascade model [7], each node is in one
of three states: inactivated, activated, or already activated,
where a node in the last state has lost the ability to influence
others. These three states of the independent cascade model
correspond to the three states of the SIR model, and the
dynamics of the independent cascade model are similar to
stochastic SIR dynamics. In the original independent cascade
model, γ = 1, meaning that an activated node always deacti-
vates after it tries to influence its neighbors.
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D. SIS model and its generalized form

In the susceptible-infected-susceptible (SIS) model, each
node has two possible states: the susceptible state and the
infected state, which we label as states 0 and 1, respectively.
The SIS model is similar to the SIR model. However, in the
SIS model, infected nodes have a chance to spontaneously
revert to the susceptible state. Using our GOSM, we can
specify the state-change rule for the SIS model as follows:

(i) f 0
v

({
I i
v (t )

}
i∈S,

{
I i
u(t )

}
i∈S,u∈N (v)

)

= I0
v (t )

∏

u∈N (v)

[
1 − I1

u (t )βuv

]
+ I1

v (t )γ ,

(ii) f 1
v

({
I i
v (t )

}
i∈S,

{
I i
u(t )

}
i∈S,u∈N (v)

)

= I0
v (t )




1 −
∏

u∈N (v)

[1 − I1
u (t )βuv]




 + I1
v (t )(1 − γ ).

A generalized SIS model [27] can also be expressed as
a GOSM. Such a model considers a state space S =
{0, 1, . . . , s − 1}; the infection rate between nodes in the
states % − 1 and % is β%, and each node in a nonzero state can
revert to the zero state with probability γ . As an extension to
the SIS model, this model can also be mapped to the GOSM.
For instance, the state-change rule for a ternary SIS model is
expressed by the following set of equations:

(i) f 0
v

({
I i
v (t )

}
i∈S,

{
I i
u(t )

}
i∈S,u∈N (v)

)

= I0
v (t )

∏

u∈N (v)

[
1 − I1

u (t )β1
]
+

[
1 − I0

v (t )
]
γ ,

(ii) f 1
v

({
I i
v (t )

}
i∈S,

{
I i
u(t )

}
i∈S,u∈N (v)

)

= I0
v (t )




1 −
∏

u∈N (v)

[
1 − I1

u (t )β1
]





+ I1
v (t )





∏

u∈N (v)

[
1 − I2

u (t )β2
]



(1 − γ ),

(iii) f 2
v

({
I i
v (t )

}
i∈S,

{
I i
u(t )

}
i∈S,u∈N (v)

)

=



I1
v (t )




1 −
∏

u∈N (v)

[
1 − I2

u (t )β2
]



 + I2
v (t )



(1 − γ ).

E. DAU model

The daily active user (DAU) model [25] was proposed
to capture the growth and decline of users in OSNs. In this
model, each user can be in one of the following three states:
nonmember (U), inactive (I), or active (A). We label them as
states 0, 1, and 2, respectively. There are four state-change
rules in the DAU model:

(1) Reaction: If an inactive (I) user comes in contact with
an active (A) user, the inactive (I) user will become active (A)
with probability α.

(2) Decay: An active (A) user can spontaneously become
inactive (I) with probability β.

(3) Word-of-mouth reaction:
If a nonmember (U) user comes in contact with an active

(A) user, the nonmember (U) user will become active (A) with
probability γ .

(4) Media and marketing diffusion:
A nonmember (U) user can spontaneously become active

(A) with probability λ.
The DAU model is a deterministic model and is based

on the assumption that the underlying network is complete.
However, one can easily extend the DAU model to a stochastic
model on a noncomplete graph as follows. Suppose that in a
given time step, node v comes in contact with its neighbor u.
The state-change probabilities in the stochastic DAU model
are as follows, as expressed for nodes v and u ∈ N (v):

(1) Node v is a nonmember user: If node u is active,
then node v will be activated with probability λ + γ (1 − λ).
Otherwise, node v will become active with probability λ.

(2) Node v is inactive: If node u is active, then node v will
be activated with probability α. Otherwise, the state of node v
will not change.

(3) Node v is active: Node v will become inactive with
probability β.

The state-change rule for the stochastic DAU model is
expressed in our model by the following set of equations:

(i) f 0
v

({
I i
v (t )

}
i∈S,

{
I i
u(t )

}
i∈S,u∈N (v)

)

= I0
v (t )



1 − λ − 1
dv

∑

u∈N (v)

I2
u (t )(1 − λ)γ



,

(ii) f 1
v

({
I i
v (t )

}
i∈S,

{
I i
u(t )

}
i∈S,u∈N (v)

)

= I1
v (t )



1 − 1
dv

∑

u∈N (v)

I2
u (t )α



 + I2
v (t )β,

(iii) f 2
v

({
I i
v (t )

}
i∈S,

{
I i
u(t )

}
i∈S,u∈N (v)

)

= I0
v (t )λ + I0

v (t )



 1
dv

∑

u∈N (v)

I2
u (t )(1 − λ)γ





+ I1
v (t )



 1
dv

∑

u∈N (v)

I2
u (t )α



 + I2
v (t )(1 − β ).

Therefore, the GOSM provides a way to express and analyze
the behavior of the DAU model. The validity of this modeling
is verified by the experiments reported in Sec. V.

III. STABLE PROPERTY

In this section, we define the concept of stable property,
which is a variation of the uniform equicontinuity for the
GOSM. This property is satisfied in well-known GOSMs such
as the general voter model and the SIR model, as we prove in
Sec. VI.

In general, the family F of functions is called uniformly
equicontinuous if for all ε > 0, there exists δ > 0 such that
d ( f (x1), f (x2)) < ε, for all f ∈ F and all x1, x2 ∈ X such that
d (x1, x2) < δ. However, the stable property targets a weighted
average of probability function { f (xu)}xu∈X in the GOSM
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instead of the general function f (x1). The definition of the
stable property is as follows.

Definition 1 (Stable property). We say a model that has
functions { f̄ k

v (xv, {xu}u∈N (v) )}v∈V,k∈S is stable if for any ε > 0,
there exists a δ > 0 depending only on ε and the set of
spreading model functions f̄ k

v (·)v∈V , so that the following
condition holds: for any vector sets {xv}v∈V and {yv}v∈V where
xv = {xi

v}i∈S ∈ [0, 1]s and yv = {yi
v}i∈S ∈ [0, 1]s, if

∣∣∣∣∣∣
1
dv

∑

u∈N (v)

ω̄uvxk
u − 1

dv

∑

u∈N (v)

ω̄uvyk
u

∣∣∣∣∣∣
! δ (5)

holds for all k ∈ S, all v ∈ V , and all {ω̄uv}u∈N (v) ∈ Kv . Then
we have

∣∣∣∣∣∣
1
dv

∑

u∈N (v)

ω̄uv f̄ k
v (xv, {xu}u∈N (v) )

− 1
dv

∑

u∈N (v)

ω̄uv f̄ k
v (yv, {yu}u∈N (v) )

∣∣∣∣∣∣
! ε (6)

holds for all v ∈ V , all k ∈ S and all {ω̄uv}u∈N (v) ∈ Kv where
Kv = {(ω̄uv )u∈N (v)|

∑
u∈N (v) ω̄

2
uv ! 4dv, ω̄uv ∈ R++}.

This stable property represents that a sufficiently small
difference between weighted averages of inputs xv and yv

induces a small difference in weighted average outputs.
Many popular GOSMs whose state change probability

function according to the state ratio of neighboring nodes
is equicontinuous have the stable property. For example,
the general voter model satisfies the stable property because
if we determine δ as (

∑
i, j∈S 3pi, j,k )δ = ε, then the stable

property holds under the condition of
∑

u∈N (v) ωuv
2 ! 4dv .

Additionally, the SIR model also has the stable property where
dv max(βuv, u ∈ N (v)) ! 2, βuv < 0.98. Detailed proofs are
described in the following subsection. One of the spreading
models, the majority rule model [28] which has an extremely
skewed state change rule, does not have a stable property.
In the majority rule, assuming there are only two states, the
majority rule’s state change probability function is not con-
tinuous when the state ratio of neighboring nodes is 0.5. For
another example, let us assume that there is a state change rule
that randomly selects one of the states of neighboring nodes
in general, but when 80% of neighboring nodes becomes one
state, follows the state. This rule also does not satisfy the
stable property.

Proofs of stability for popular GOSMs such as the general
voter model and the SIR model are included in Appendix A.

IV. CONCENTRATION THEOREM FOR GENERAL
OPINION SPREADING MODELS

In this section, we introduce a formula for approximating
the expected state density of nodes under a stable GOSM.
Moreover, we provide a concentration theorem that guarantees
the error bound of approximations.

According to the stability property of a GOSM, if the
current state density and its approximation are sufficiently
similar, we can compute a sufficiently similar approximate
value of the state density from the approximation of the

current state density in the next time step. On this basis, we
present a state density approximation ak

v (t ) as follows.
Definition 2 (Our approximation of the state density). We

define ak
v (t + 1) ∈ [0, 1], our approximation of E[I i

u(t + 1)]
[i.e., Pr[Ik

v (t + 1) = 1]], as follows:

ak
v (t + 1) = f̄ k

v

({
ai

v (t )
}

i∈S,
{
ai

u(t )
}

i∈S,u∈N (v)

)
, (7)

where {ak
v (0)} are the initial state probabilities.

The following theorem shows that this approximation for
the next time step can be extended over multiple time steps.
In other words, if a model has the stability property, then
with high probability, our approximation of the state density
is very close to the expected state density for a finite number
of time steps for an arbitrary network structure of node degree
ω(log n).

Theorem 1 (The concentration theorem). Let G = (V, E )
be a given directed graph, and let S be the set of state vectors,
with n = |V | and s = |S|. Consider a subset of nodes W ⊆ V ,
with m = |W |. Suppose that m = ω(log n) and dv = ω(log n)
for all v ∈ V . If { f̄ k

v (·)}v∈V,k∈S has the stability property, then
for any initial state probabilities {ai

v (0)}, any constant T ∈ N,
any ε > 0, and a certain δ > 0, we have

Pr

{

0 ! t ! T,∀i ∈ S,

∣∣∣∣∣
1
m

∑

u∈W

ai
u(t )−E

[
1
m

∑

u∈W

Ii
u(t )

]∣∣∣∣∣!ε

}

= 1 − o(n−δ ).

Here 1
m

∑
u∈W ai

u(t ) is our approximation of the state density
of W , and 1

m

∑
u∈W E[I i

u(t )] is the expected state density that
we want to compute.

By a simple modification of the proof, Theorem 1 can also
be applied to compute a weighted state density in the case that
there is a weight associated with each neighboring node.

We may out a proof of the above theorem as follows. We
prove Lemma 4, which states that for any node v ∈ V and
any time step t , the observed state density of all neighboring
nodes’ states, 1

dv

∑
u∈N (v) I i

u(t ), is close to the expected state
density, 1

dv

∑
u∈N (v) E[I i

u(t )], for all nodes v ∈ V with high
probability.

To prove Lemma 4, we consider the approximated state
density 1

dv

∑
u∈N (v) ai

u(t ), which is close to the expected state
density, and prove that it is close to 1

dv

∑
u∈N (v) I i

u(t ) with high
probability.

Lemma 4 can be proven through mathematical induction.
Lemma 2 is the first step in the inductive method; in Lemma 2,
we derive an error bound for the approximated state density of
weighted neighboring nodes at t = 0. Lemma 3 is an inductive
step that proves that the one-time observed state density is
close to the approximated state density at time t + 1 under the
given condition at time t .

To prove Theorem 1, we consider the following graph G′

and apply Lemma 4. Suppose that a new node v′ /∈ V , which
has only inward edges from u ∈ W , is added to G. We call this
graph G′. Node v′ can be influenced by all nodes in W but does
not influence any nodes. Formally, we define a directed graph
G′ = (V ′, E ′), where V ′ = V ∪ {v′} and E ′ = E ∪ {euv′}∀u∈W .
We will apply Lemma 4 to G′ to prove Theorem 1.
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Formula (7) and the algorithm that computes ai
v (t ) based

on (7) can be understood as a generalized mean-field approx-
imation for a nonsymmetric network structure and arbitrary
initial states. For example, if we consider the simple voter
model and assume that for each i ∈ S, the {ai

v (0)} are the same
for all v ∈ V , then for all times t and i ∈ S, the ai

v (t ) become
the same for all v, as in the usual mean-field approximation.

Proof of Theorem 1. We define

ri
v (t ) = 1

dv

∑

u∈N (v)

ωuvI i
u(t )

to denote the observed state density of v’s neighboring nodes
with weights ωuv " 0, (ωuv )∀u∈N (v) ∈ Kv . By the linearity of
expectation, we have E[ri

v (t )] = 1
dv

∑
u∈N (v) ωuvE[I i

u(t )]. We
define

bi
v (t ) = 1

dv

∑

u∈N (v)

ωuvai
u(t )

as the approximation of ri
v (t ). For the case in which all

weights ωuv are equal to 1, we denote the corresponding
quantities by r̄i

v (t ) and b̄i
v (t ). Let min(dv, v ∈ V ) = dv,min.

Lemma 2. For any initial state probabilities {ai
v (0)} and

any {ωuv}u∈N (v) ∈ Kv ,

Pr
[
∀v ∈ V,∀i ∈ S,

∣∣ri
v (0) − bi

v (0)
∣∣ ! ε0

]

" 1 − 2sn exp
(

−2ε0
2dv,min

4

)
. (8)

Lemma 2 holds for t = 0 and serves as the basis for induction.
We will now prove Ineq. (8), which shows that the probability
of satisfying |ri

v (0) − bi
v (0)| ! ε0 is sufficiently high.

The initial state sv (0) is determined only by the given initial
probabilities {ai

v (0)}i∈S . The initial probabilities for each node
are given values and do not depend on the initial probabilities
for any other node. Therefore, the initial states of all nodes
are mutually independent. We apply Hoeffding’s inequality
since ri

v (0) can be described as a linear combination of inde-
pendent indicator variables I i

v (0) for a given i ∈ S. Therefore,
for all v ∈ V and all i ∈ S, ri

v (0) =
∑

u∈N (v)
1
dv

ωuvI i
u(0) and

Pr( ωuv

dv
I i
v (0) ∈ [0, ωuv

dv
]) = 1 are satisfied. Then we have the

following inequality at t = 0 for any i ∈ S:

Pr





∣∣∣∣∣∣
1
dv

∑

u∈N (v)

ωuvI i
u(0) − 1

dv

∑

u∈N (v)

ωuvai
u(0)

∣∣∣∣∣∣
" ε0





= Pr






∣∣∣∣∣∣
1
dv

∑

u∈N (v)

ωuvI i
u(0) − 1

dv

∑

u∈N (v)

ωuvE
[
I i
u(0)

]
∣∣∣∣∣∣
" ε0






! 2 exp

[

− 2ε0
2

∑
u∈N (v) (ωuv/dv )2

]

! 2 exp
(

−2ε0
2dv,min

4

)
.

(9)

Hoeffding’s inequality shows that the observed state density
among v’s neighbors rarely deviates from the expected state
density among those neighbors. By the union bound, we

obtain

Pr
[
∀v ∈ V,∀i ∈ S,

∣∣ri
v (0) − bi

v (0)
∣∣ " ε0

]

! 2sn exp
(

−2ε0
2dv,min

4

)
(10)

and

Pr
{
∀v ∈ V,∀i ∈ S,

∣∣ri
v (0) − E[ri

v (0)]
∣∣ ! ε0

}

= Pr
[
∀v ∈ V,∀i ∈ S,

∣∣ri
v (0) − bi

v (0)
∣∣ ! ε0

]

" 1 − 2sn exp
(

−2ε0
2dv,min

4

)
. (11)

!
The next lemma is an inductive step that shows that if the

presented statement holds for some natural number t , then it
also holds for t + 1.

Lemma 3. For t = 0, 1, 2, . . . , T , if |ri
v (t ) − bi

v (t )| ! εt is
satisfied for all v ∈ V , all i ∈ S, and all {ωuv}u∈N (v) ∈ Kv , then
for any {ωuv}u∈V ∈ Kv ,

Pr
[
∀v ∈ V,∀i ∈ S,

∣∣ri
v (t + 1) − bi

v (t + 1)
∣∣

! εt+1
∣∣∀v ∈ V,∀i ∈ S,

∣∣ri
v (t ) − bi

v (t )
∣∣ ! εt

]

" 1 − 2sn exp
(

−2εt
2dv,min

4

)
. (12)

Proof of this lemma is in Appendix B.
Lemma 4. Let G = (V, E ) be a given directed graph, and

let S be the set of state vectors, with n = |V | and s = |S|.
Suppose that dv = ω(log n) for all v ∈ V . If { f̄ k

v (·)}v∈V has
the stability property, then for any initial state probabilities
{ai

v (0)}, any constant T ∈ N, any ε > 0, and a certain δ > 0,
we have

Pr
{
0 ! t ! T,∀v ∈ V,∀i ∈ S,

∣∣r̄i
v (t ) − E

[
r̄i
v (t )

]∣∣ ! ε
}

" 1 − o(n−δ ). (13)

We prove this lemma by applying mathematical induction
to Lemmas 2 and 3. The remaining proof of this lemma is in
Appendix C.

The rest of the proof of Theorem 1 is as follows. Recall the
graph G′ = G ∪ v′ and v′ /∈ V , which has only inward edges
from u ∈ W . By applying Lemma 4 to graph G′, we obtain,
for any v ∈ V ′,

Pr
{
0 ! t ! T,∀i ∈ S

∣∣āi
v (t ) − E

[
r̄i
v (t )

]∣∣ ! ε
}

" Pr
{
0!t ! T,∀v ∈ V ′,∀i ∈ S,

∣∣āi
v (t ) − E

[
r̄i
v (t )

]∣∣ ! ε
}

= 1 − o
(
(n + 1)−δ

)
.

Therefore, for node v′,

Pr

{

0 ! t ! T,∀i ∈ S,

∣∣∣∣∣
1
m

∑

u∈W

ai
u(t )−E

[
1
m

∑

u∈W

Ii
u(t )

]∣∣∣∣∣ ! ε

}

" 1 − o(n−δ ). (14)

!
In the previous arguments, we have assumed that each

node has an independent initial state distribution ai
v (0). Note,

however, that Theorem 1 is also applicable to a model in
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which the initial states of the nodes are deterministic. Since
deterministic initial node states are expressed as ai

v (0) =
I i
v (0), Lemma 2 still holds when the initial states of the nodes

are given deterministically.
Corollary 5 (Single Monte Carlo simulation). Let G =

(V, E ) be a given directed graph, and let S be the set of
state vectors, with n = |V | and s = |S|. Consider a subset of
nodes W ⊆ V , with m = |W |. Suppose that m = ω(log n) and
dv = ω(log n) for all v ∈ V . If { f̄ k

v (·)}v∈V,k∈S has the stability
property, then for any initial state probabilities {ai

v (0)}, any
constant T ∈ N, any ε > 0, and a certain δ > 0, we have

Pr

{

0 ! t ! T,∀i ∈ S,

∣∣∣∣∣
1
m

∑

u∈W

Ii
u(t )−E

[
1
m

∑

u∈W

Ii
u(t )

]∣∣∣∣∣!ε

}

= 1 − o(n−δ ).

Here 1
m

∑
u∈W Ii

u(t ) is the state density of W in one Monte
Carlo simulation. The above theorem states that we can
approximate the state density through just one simulation
of a Monte Carlo simulation because each observed density
1
m

∑
u∈W Ii

u(t ) will have a similar value to the expected state
density with high probability.

V. EXPERIMENTAL RESULTS

In this section, we present the results of empirical verifica-
tion of our theorems and algorithms. The models we examine
are the SIS model, the simple voter model, and the DAU
model described in previous sections. We will show that our
approximation can well predict the expected state density of a
set of nodes.

A. Methods

1. Data sets

The data sets used in the experiments include four synthetic
random networks and two real networks. The synthetic ran-
dom networks were generated using the Barabasi-Albert (BA)
model and the Watts-Strogatz (WS) model. We downloaded
the real-world networks from the Stanford Large Network
Dataset Collection [29]. Slashdot is a technology-related news
website known for its specific user community. In 2002,
Slashdot introduced the Slashdot Zoo feature, which allows
users to tag each other as friends or foes. The corresponding
network consists of friend-foe links between Slashdot users.
Gowalla is a location-based social networking website where
users share their locations by checking in. Table I summarizes
the basic statistics of the networks used in our experiments.

TABLE I. Data sets.

Data set Type No. of nodes No. of edges

BA1000 Undirected 1000 3990
BA10000 Undirected 10 000 39 990
W S1000,10 Undirected 1000 10 000
W S10000,100 Undirected 10 000 1 000 000
Gowalla Undirected 196 591 950 327
Slashdot Directed 77 360 905 468

(a) (b)

(c) (d)

FIG. 1. “S” state density for the SIS model with the parametric
value sets P1 and P2 and initial state distribution D1 = (0.4, 0.6).
(a) P1, BA10000, (b) P1, Slashdot, (c) P2, BA10000, (d) P2, Slashdot.

2. Experimental setup

For each experiment, we first predicted the state density
based on our approximation as

u(t ). Next, we ran one Monte
Carlo simulation. Is

u (t ) is an indicator function indicating
whether node u is in state s at time t in a simulation run.
Then we ran 1000 additional Monte Carlo simulations to
estimate the probability of each node being in each state
in each time step. More specifically, we used the relative
frequency of node u being in state s at time t as an estimate of
E[Is

u (t )]. According to the Chernoff bound, the relative error
of the above estimation method is insignificant; therefore,
we ignored it in our experimental analysis. For any given
subset W of nodes in the network, we compared our approx-
imation, 1

|W |
∑

u∈W as
u(t ), and the result of a single Monte

Carlo simulation, 1
|W |

∑
u∈W Is

u (t ), with the true expected state
density, 1

|W |
∑

u∈W E[Is
u (t )], for each state s in each time step

t . According to Theorem 1, there should be no significant
differences between these three values with high probability.

B. Results for the SIS model

In this subsection, we compare the results of our general-
ized mean-field approximation (GMF), a single Monte Carlo
simulation run and pairwise(pair-quenched) approximation
(PWA) for the SIS model. The model we consider here has
two states: a susceptible state, denoted by S, and an infected
state, denoted by I . Initially, all nodes in the network have a
uniform initial state distribution of D1 = (S = 0.4, I = 0.6).

Figure 1 shows the results obtained on the synthetic undi-
rected network BA10000 and on the real directed network
Slashdot. We use two sets of parametric values for this model,
denoted by P1 and P2. We set P1 = (β = 0.0005, γ = 0.01)
and P2 = (β = 0.0005, γ = 0.0001). Figure 2 shows the dif-
ferences in value between the true state density and the results
of the three approximation methods with the parametric value
sets P1 and P2.
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(a)

(b)

FIG. 2. Error with respect to the true expected density of state S
for the SIS model with parametric value sets (a) P1 and (b) P2 and
initial state distribution D1 = (0.4, 0.6) on the BA10000 data set.

For both sets of parametric values, there is no significant
difference between the true expected state density and the
density predicted by generalized mean-field approximation.
The error of generalized mean-field approximation is less
than 0.1% for various experimental environments. Pairwise
approximation also approximates the true expected state den-
sity with an error of less than 0.1% in most cases, similar
to the generalized mean-field approximation. Therefore, gen-
eralized mean-field approximation method approximates the
state density under various SIS model parameters and able to
perform as good as the pairwise approximation. In addition,
in some cases, error of generalized mean-field approximation
is smaller than the pairwise approximation. If the infection
probability β is large, as shown in Fig. 3, the error is drasti-
cally larger than in other cases. We believe that the reason for
this phenomenon is because the experiment was conducted in
a discrete environment. The pairwise approximation assumes
a continuous time step, but larger β represents that the exper-
iment move away from continuous time step environment.

As shown in Fig. 2, running a Monte Carlo simulation once
also yields an approximation of the true expected state density

0.00001
0.0001
0.001
0.01
0.1
1

0 0.001 0.002 0.003

Er
ro
r(l
og
)

FIG. 3. Error with respect to the true expected density of state S
at time t = 50 for the SIS model with a fixed value of γ = 0.001,
various values of β and initial state distribution D1 = (0.4, 0.6).

(a)

(b)

FIG. 4. Positive state density for the binary voter model with data
sets (a) W S1000,10 and (b) W S10000,100.

but with a larger error and greater instability over time than
generalized mean-field approximation. Therefore running one
Monte Carlo simulation is one of the effective approximation
although the error is larger than that of generalized mean-field
approximation.

C. Results for the simple voter model

In this subsection, we present the results for a simple voter
model with two states, the positive state and the negative
state. We also refer to this model as the binary voter model.
We focus on a special initial condition such that each node
initially has a probability of 0.5 of being positive and a
probability of 0.5 of being negative. In this case, we have
E[ 1

|W |
∑

u∈W Ii
u(t )] = E[ 1

|W |
∑

u∈W Ii
u(0)] for all W ⊆ V , t > 0

and s ∈ {positive, negative}.
Figure 4 shows the results for the binary voter model.

There is little difference between generalized mean-field ap-
proximation and the expected state ratio on the various net-
works. Therefore, generalized mean-field approximation is
very effective in predicting the expected state density in this
experimental setting. In addition, these experiments show how
the accuracy of the prediction obtained through one Monte
Carlo simulation run depends on the size of the graph. Recall
that Corollary 5 provides a lower bound on the probability
such that we can predict the state density with a small error
by running one Monte Carlo simulation. For a given T , the
lower bound on this probability approaches 1 as the number
of nodes in the graph becomes sufficiently large. Figure 4
demonstrates the correctness of the corollary by showing that
the accuracy of the prediction obtained from a single Monte
Carlo simulation run does increase as the graph size increases.

D. Results for the DAU model

We show the results for the stochastic version of the
DAU model in this subsection. We examine how the results
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FIG. 5. State density for the DAU model with the self-
sustainable parametric value set P1 and the initial state distribution
D1 = (0.5, 0.4, 0.1). The set W contains all nodes with nonzero
(in)degrees. (a) BA10000, (b) Gowalla.

of a single Monte Carlo simulation behave for networks of
different sizes and structures. In the experimental results, the
states U , I , and A represent the nonmember, inactive, and
active states, respectively.

1. Parametric values for the DAU model

We use two sets of parametric values, denoted by P1 and
P2. We set P1 = (α = 0.2,β = 0.05, γ = 0.08, λ = 0.001)
and P2 = (α = 0.02,β = 0.05, γ = 0.001, λ = 0.08). In ac-
cordance with the analysis of the DAU model, the model
with parametric value set P1 is characterized as a model with
self-sustainability and gradual word-of-mouth growth, which
means that the density of the active state will converge to a
positive value. By contrast, the DAU model with parametric
value set P2 is characterized as a model with unsustain-
able and intense media-and-marketing-driven growth, which
means that the number of active users will initially increase
but converge to zero in the steady state.

We use a uniform initial state distribution to define the
initial conditions for the nodes. In a uniform initial state
distribution, all nodes have the same probability of being in
any given state. We use two uniform initial state distributions,
one for each set of parametric values.

Figures 5 and 6 show the results for all six data sets with
parametric value set P1 and a uniform initial state distri-
bution of D1 = (nonmember = 0.5, inactive = 0.4, active =
0.1). The initial state of each node is independently chosen
from the distribution D1. For example, each node initially
has a probability 0.4 of being inactive and a probability 0.1
of being active. For simplicity, we also write D1 as D1 =
(0.5, 0.4, 0.1).

Figure 5 shows that for BA10000 and Gowalla tested,
we can accurately predict the state density in any time step
by running only one Monte Carlo simulation. The results

FIG. 6. State density for the DAU model with the self-sustainable
parametric value set P1 and the initial state distribution D1 =
(0.5, 0.4, 0.1). The set W contains the (a) top 1%, (b) 5%, or (c) 10%
of the nodes as ranked by (in)degree.

obtained on the W S1000,10, W S10000,100, BA1000 and Slashdot
data sets are similar as shown in Fig. 10 in Appendix D.
One should note that for real networks, even if a network
is weakly connected, there still exists a significantly large
state density with very few incoming edges because of the
power-law degree distributions in real networks. For example,
approximately 25% of the nodes in the undirected Gowalla
network have only one neighbor. Figure 5(b) show that even
if the degree distribution of a real network does not satisfy
the minimum degree requirement of Theorem 1, a single run
of a Monte Carlo simulation can still yield a highly accurate
prediction of the state density.

Figure 6 shows the results obtained when W consists of
the top 1%, top 5% and top 10% of the nodes ranked by
(in)degree.

Note that the state density of the nonmember state con-
verges to zero, while the state densities of the other two states
converge to one. Moreover, for the DAU model, we are mainly
interested in the fraction of users who are active. Therefore,
we show the fraction of active users as a function of t . From
Fig. 6 we can observe that when W contains at least the top 5%
of the nodes as ranked by degree, then a single Monte Carlo
simulation run can accurately predict the expected density of
the active state. If W contains only the top 1% of the nodes as
ranked by degree, then the predicted density of active nodes
may not always be accurate. This inaccuracy arises because
there is an implicit constraint on the cardinality of W in our
main theorem. However, in this case, a single Monte Carlo
simulation run can still be used to predict the trend of the
change in density as well as the approximate density of active
nodes in the steady state.

We now consider another set of experimental configura-
tions. Figure 7 shows the results obtained on BA10000 and
Gowalla with parametric value set P2 and a uniform ini-
tial state distribution of D2 = (nonmember = 0.7, inactive =
0.1, active = 0.2). The results obtained on the W S1000,10,
W S10000,100, BA1000 and Slashdot data sets are similar as
shown in Fig. 11 in Appendix D. From Fig. 7 we can see that
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FIG. 7. State density for the DAU model with the unsus-
tainable parametric value set P2 and the initial state distribution
D2 = (0.7, 0.1, 0.2). The set W contains all nodes with nonzero
(in)degrees. (a) BA10000, (b) Gowalla.

for parametric value set P2 and initial state distribution D2, we
can accurately predict the state density by running a Monte
Carlo simulation only once. Moreover, the prediction is very
accurate for any arbitrary time step on all data sets tested.

2. Effect of initial conditions

We have previously considered two different uniform ini-
tial state distributions. Now, we consider a nonuniform initial
state distribution as follows. For each network, the nodes
with the top 50 highest degrees are initially selected as active
nodes, while all other nodes are initially in the “nonmember”
state. Figures 8 and 9 show the results obtained on the BA10000
and Gowalla data sets with this initial condition. Here, the
DAU model has parametric value set P1. Figures 8 and 9 show
that for all data sets, a single Monte Carlo simulation run can
provide an accurate prediction of the density of any given state
in the steady state for the case in which W contains all nodes
with nonzero (in)degrees and for the case in which W contains
at least the top 10% of the nodes as ranked by (in)degree.
Figure 9 shows that if W contains a small fraction of the nodes
with the highest (in)degrees, e.g., the top 1% of the nodes, then
a single Monte Carlo simulation run can accurately predict the
expected density of the active state for most time steps. The
results obtained on the W S10000,100, Gowalla, and Slashdot
data sets are similar.

Consider a given network G = (V, E ). If the minimum
degree among all nodes in G is ω(log |V |), then the degree
requirement in Theorem 1 is satisfied. Then, for any node set
W containing a large number of the nodes in V , a single Monte
Carlo simulation run is sufficient to accurately predict the
expected state density in any time step. Otherwise, suppose
that the minimum degree requirement in Theorem 1 is not
satisfied for the given network G. For example, the data set
may be very sparse, or it may contain a large fraction of

FIG. 8. State density for the DAU model with the unsustainable
parametric value set P1 and data sets (a) BA10000 and (b) Gowalla.
Initially, the nodes with the top 50 highest (in)degrees are selected
as active nodes, while all other nodes are in the “nonmember” state.
The set W contains all nodes with nonzero (in)degrees.

nodes with very low (in)degrees. The experimental results
demonstrate that even in this case, for a given W containing
a large state density or nodes with high (in)degrees, a single
Monte Carlo simulation run is still sufficient to predict the
state density to a certain accuracy. Moreover, for the case in
which W contains only a small fraction of the nodes in the
network, e.g., only 1%, one Monte Carlo simulation run is
still sufficient to effectively predict the trend of the change in
the expected state density.

FIG. 9. State density for the DAU model with the unsustainable
parametric value set P1 and data set BA10000. Initially, the nodes with
the top 50 highest (in)degree are selected as active nodes, while the
other nodes are in the “nonmember” state. The set W contains the
(a) top 1%, (b) 5%, or (c) 10% of the nodes as ranked by (in)degree.
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VI. CONCLUSION

In this paper, we have presented a GOSM and analyzed
the opinion spread size of GOSMs for general network struc-
tures. Many discrete-time spreading models, such as the voter
model, the DAU model, the independent cascade model, and
the SIS model, can be formulated as GOSMs. In addition, we
have shown that many well-known GOSMs have the stability
property, which is the GOSM equivalent of uniform continu-
ity. We prove that for a slightly dense network, our generalized
mean-field approximation method can successfully compute
the state density. Our approximation is applicable to all stable
GOSMs, unlike the conventional mean-field approximation.
Extensive experiments confirm that generalized mean-field
approximation method indeed computes the state densities for
the given nodes very well in practice. We have shown that
a single Monte Carlo simulation run can also be used as a
cost-efficient means of approximating the state density both
theoretically and practically. Our results can be applied to
various practical problems arising in social networks, includ-
ing epidemic spreading analysis, the influence maximization
problem [30], and viral marketing [31]. Two possible avenues
for future work include relaxing the structure condition that
requires a slightly dense network and generalizing our results
to continuous-time Markovian opinion spreading models.
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APPENDIX A: PROOF OF STABILITY FOR GOSMS

1. General voter model

For example, we consider two cases of OSM, the general
voter model and the cascade model. First, we formally prove
that the general voter model is stable. Since the DAU model is
a special case of the general voter model, the stability of the
DAU model follows directly.

Lemma 6. If f k
v (·) is given as (3) and for all v ∈ V ,∑

u∈N (v) ωuv
2 ! 4dv , then { f̄ k

v (·)}v∈V is stable.
Proof. With the Definition 1’s notation, let δ be

δ = ε∑
i∈S

∑
j∈S 3pi, j,k

.

From the condition of stable property (5), we have for all
k ∈ S, all v ∈ V , and all {ω̄uv}u∈N (v) ∈ Kv ,

∣∣∣∣∣∣
1
dv

∑

u∈N (v)

ω̄uvxk
u − 1

dv

∑

u∈N (v)

ω̄uvyk
u

∣∣∣∣∣∣
< δ.

The objective of this proof is to show Ineq. (6); that is, for any
v ∈ V , k ∈ S, and {ω̄uv}u∈N (v) ∈ Kv , we have

∣∣∣∣∣∣
1
dv

∑

u∈N (v)

ω̄uv f̄ k
v (xv, {xu}u∈N (v) )

− 1
dv

∑

u∈N (v)

ω̄uv f̄ k
v (yv, {yu}u∈N (v) )

∣∣∣∣∣∣
! ε.

We can rewrite 1
dv

∑
u∈N (v) ω̄uv f̄ k

u (xu, {xw}w∈N (u) ) as fol-
lows:

1
dv

∑

u∈N (v)

ω̄uv f̄ k
u (xu, {xw}w∈N (u) )

= 1
dv

∑

u∈N (v)

ω̄uv

∑

i∈S

xi
u





∑

j∈S



pi, j,k
1
du

∑

w∈N (u)

ωwux j
w










=
∑

i∈S

∑

j∈S

pi, j,k
1
dv

∑

u∈N (v)

ω̄uvxi
u

1
du

∑

w∈N (u)

ωwux j
w. (A1)

We show the bound of (A1) by using the condition of the
stable property. First, we show the upper bound of (A1),
1
dv

∑
u∈N (v) ω̄uv f̄ k

u (xu, {xw}w∈N (u) ).
From the condition of the general voter model in this

lemma, {ωuv}u∈N (v) ∈ Kv for all v ∈ V , i.e.
∑

u∈N (v) ωuv
2 !

4dv for all v ∈ V . Then, by the stable condition Ineq. (5), we
have

1
du

∑

w∈N (u)

ωwux j
w ! 1

du

∑

w∈N (u)

ωwuy j
w + δ. (A2)

We know for all x j
w ! 1 and all u ∈ V ,

∑
w∈N (u) ωwu = 1.

Then we obtain

1
du

∑

w∈N (u)

ωwux j
w ! 1. (A3)

With {ω̄uv}u∈N (v) ∈ Kv and Ineq. (A3),

∑

u∈N (v)



ω̄uv

1
du

∑

w∈N (u)

ωwux j
w




2

! 4dv,
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i.e., {ω̄uv
1
du

∑
w∈N (u) ωwux j

w}u∈N (v) ∈ Kv . Hence, by Ineq. (5),

1
dv

∑

u∈N (v)

ω̄uvxi
u



 1
du

∑

w∈N (u)

ωwux j
w





! 1
dv

∑

u∈N (v)

ω̄uvyi
u



 1
du

∑

w∈N (u)

ωwux j
w



 + δ. (A4)

We apply Ineqs. (A2) and (A4) on Eq. (A1) as follows:

1
dv

∑

u∈N (v)

ωuv f̄ k
u (xu, {xw}w∈N (u) )

!
∑

i∈S

∑

j∈S

pi, j,k



 1
dv

∑

u∈N (v)

ω̄uvyi
u

1
du

∑

w∈N (u)

ωwuy j
w





+
∑

i∈S

∑

j∈S

pi, j,k



 1
du

∑

w∈N (u)

ω̄uvyi
u + 1



δ. (A5)

Since for all yi
u ! 1 and

∑
u∈N (v) ω̄uv ! 2dv for all v ∈ V ,

∑

i∈S

∑

j∈S

pi, j,k



 1
du

∑

w∈N (u)

ω̄uvyi
u + 1



δ !
∑

i∈S

∑

j∈S

3pi, j,kδ.

(A6)

By the definition of f̄ k
u (yu, {yw}w∈N (u) ) and δ, we have

1
dv

∑

u∈N (v)

ω̄uv f̄ k
u (xu, {xw}w∈N (u) )

! 1
dv

∑

u∈N (v)

ω̄uv f̄ k
u (yu, {yw}w∈N (u) ) + ε. (A7)

Using a similar method as above, the lower bound is given as

1
dv

∑

u∈N (v)

ω̄uv f̄ k
u (xu, {xw}w∈N (u) )

" 1
dv

∑

u∈N (v)

ω̄uv f̄ k
u (yu, {yw}w∈N (u) ) − ε. (A8)

Then, we obtain the boundary equation
∣∣∣∣∣∣

1
dv

∑

u∈N (v)

ω̄uv f̄ k
u (xu, {xw}u∈N (u) )

− 1
dv

∑

u∈N (v)

ω̄uv f̄ k
u (yu, {yw}u∈N (u) )

∣∣∣∣∣∣
! ε. (A9)

This shows that Lemma 6 follows. !

2. SIR model

Next, we provide a proof that shows the SIR model is
stable. Since the SIS model and the multistate SIS models are
variations of the SIR model, a similar proof of the stability can
be applied to those models.

Lemma 7. If f k
v (·) is given as Eq. (4) and dv max(βuv, u ∈

N (v)) ! 2, βuv < 0.98 are satisfied for all v ∈ V , then
{ f̄ k

v (·)}v∈V is stable.
Proof. We use the same notations as in Definition 1. If Ineq.

(6) is derived from a given condition Ineq. (5), Lemma 7 is
proved. We prove this model has a stable property by using
Lemma 8.

Let us define

βuv,max = max(βuv, u ∈ N (v)),

κv = | log(1 − βuv,max)|/2,

µuv = log
(
1 − βuvy1

u(t )
)

− log(1 − βuv )y1
u (t ),

µv = 1
dv

∑

u∈N (v)

µuv.

Lemma 8. With the condition of stable property (5), we
have for all v ∈ V ,

∣∣∣∣∣∣
1
dv

∑

u∈N (v)

log
(
1 − βuvx1

u

)
− 1

dv

∑

u∈N (v)

log
(
1 − βuvy1

u

)
∣∣∣∣∣∣

! µv + κvδ. (A10)

We prove Lemma 8 by showing the bound of

1
dv

∑

u∈N (v)

log
(
1 − βuvxi

u

)
. (A11)

Let us find the lower bound of (A11) first. It is easy to show

1
dv

∑

u∈N (v)

log
(
1 − βuvxi

u

)
" 1

dv

∑

u∈N (v)

xi
u log(1 − βuv ) (A12)

by using 0 ! βuv, xi
u ! 1. The right-hand side of this inequal-

ity can be rewritten as

1
dv

∑

u∈N (v)

x1
u log(1 − βuv )

= −| log(1 − βuv,max)|
2dv

∑

u∈N (v)

x1
u

2 log(1 − βuv )
−| log(1 − βuv,max)|

= −κv

dv

∑

u∈N (v)

x1
u

log(1 − βuv )
−κv

. (A13)

Because 2 log(1−βuv )
−| log(1−βuv,max )| ! 2, { 2 log(1−βuv )

−| log(1−βuv,max )| }u∈N (v)
is in Kv .

By the stable condition, we have

−κv

dv

∑

u∈N (v)

xi
u

log(1 − βuv )
−κv

" −κv



 1
dv

∑

u∈N (v)

yi
u

log(1 − βuv )
−κv

+ δ





= 1
dv

∑

u∈N (v)

y1
u log(1 − βuv ) − κvδ

=



 1
dv

∑

u∈N (v)

log(1 − βuv )y1
u



 − κvδ. (A14)
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To prove this lemma, we want to estimate log(1 − βuv )yi
u to

log(1 − βuvyi
u), so we use the µuv . The value of µuv goes to 0

when βuv goes to 0 or yi
u(t ) goes to 0 or 1. For example, for any

yi
u ∈ [0, 1], if βuv = 0.5, then µuv < 0.06, and if βuv = 0.1,

then µuv < 0.0015.
Therefore,

1
dv

∑

u∈N (v)

log(1 − βuv )y1
u − κvδ

=



 1
dv

∑

u∈N (v)

log
(
1 − βuvy1

u

)


 − µv − κvδ. (A15)

Hence, we obtain the lower bound

1
dv

∑

u∈N (v)

log
(
1−βuvx1

u

)
" 1

dv

∑

u∈N (v)

log
(
1−βuvy1

u

)
− µv − κvδ.

(A16)

We obtain the upper bound by reversing the method derived
from the lower bound. The upper bound of (A11) is given as

1
dv

∑

u∈N (v)

log
(
1 − βuvx1

u

)

! 1
dv

∑

u∈N (v)

x1
u log(1 − βuv ) + µv

! 1
dv

∑

u∈N (v)

y1
u(t ) log(1 − βuv ) + µv + κvδ

! 1
dv

∑

u∈N (v)

log
(
1 − βuvy1

u

)
+ µv + κvδ. (A17)

Thus, we obtain the following bound inequality:∣∣∣∣∣∣
1
dv

∑

u∈N (v)

log
(
1 − βuvx1

u

)
− 1

dv

∑

u∈N (v)

log
(
1 − βuvy1

u

)
∣∣∣∣∣∣

! µv + κvδ. (A18)
!

Next, we prove that (4) has a stable property by Lemma 8.
Let us define ε̄v = exp [dv (µv + κvδ)] − 1. Then

∣∣∣∣∣

∏
u∈N (v)

(
1 − x1

uβuv

)
∏

u∈N (v)

(
1 − y1

uβuv

) − 1

∣∣∣∣∣ ! ε̄v. (A19)

In the SIR model, the probability function f k
v is differ-

ent for each state k. Hence, we need to show the stable
property for each state. Let us start with the case of k = 0.
With 0 ! βwu, x1

w ! 1 for all βwu, x1
w,

∏
w∈N (u) (1 − x1

wβwu)
is equal to or less than 1. From the definition of sta-
ble property, {ω̄uv}u∈N (v) ∈ Kv . Using methods similar to
those we applied from Ineq. (A3) to Ineq. (A4), we have
{ω̄uv

∏
w∈N (u) (1 − x1

wβwu)}u∈N (v) ∈ Kv and

1
dv

∑

u∈N (v)

ω̄uvx0
u

∏

w∈N (u)

(
1 − x1

wβwu
)

! 1
dv

∑

u∈N (v)

ω̄uvy0
u

∏

w∈N (u)

(
1 − x1

wβwu
)
+ δ. (A20)

By Ineqs. (A19) and (A20), we have

1
dv

∑

u∈N (v)

ω̄uv f̄ 0
v (xv, {xu}u∈N (v) )

! 1
dv

∑

u∈N (v)

ω̄uvy0
u(1 + ε̄u)

∏

w∈N (u)

(
1 − y1

wβwu
)
+ δ

= 1
dv

∑

u∈N (v)

ω̄uvy0
u

∏

w∈N (u)

(
1 − y1

wβwu
)

+ δ + 1
dv

∑

u∈N (v)

ε̄u



ω̄uvy0
u

∏

w∈N (u)

(
1 − y1

wβwu
)


.

(A21)

Similar to Ineq. (A7), ε̄u(·) is equal to or less than 2ε̄u. Let
us define ε̄ = max( 1

dv

∑
u∈N (v) ε̄u, v ∈ V ) and ε0 = δ + 2ε̄.

Then we have

1
dv

∑

u∈N (v)

ω̄uv f̄ 0
v (xv, {xu}u∈N (v) )

! 1
dv

∑

u∈N (v)

ω̄uv f̄ k
v (yv, {yu}u∈N (v) ) + ε0. (A22)

The upper bound of the case of k = 1 can also be derived
easily by Ineq. (A19), Ineq. (A20), and γ ! 1. Define ε1 =
3δ + 2ε̄. Then

1
dv

∑

u∈N (v)

ω̄uv f̄ 1
v (xv, {xu}u∈N (v) )

! 1
dv

∑

u∈N (v)

ω̄uv f̄ 1
v (yv, {yu}u∈N (v) ) + ε1. (A23)

Define ε2 = (1 + γ )δ. For the case of k = 2, the upper bound
is given as

1
dv

∑

u∈N (v)

ω̄uv f̄ 2
v (xv, {xu}u∈N (v) )

! 1
dv

∑

u∈N (v)

ω̄uv

(
y1

uγ + y2
u

)
+ δ(γ + 1)

= 1
dv

∑

u∈N (v)

ω̄uv f̄ 2
v (yv, {yu}u∈N (v) ) + ε2. (A24)

Using a method similar to the above, the lower bound is given
as

1
dv

∑

u∈N (v)

ω̄uv f̄ k
v (xv, {xu}u∈N (v) )

" 1
dv

∑

u∈N (v)

ω̄uv f̄ k
v (yv, {yu}u∈N (v) ) − εk, (A25)
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for all states k in S. Let ε = max(εk, k ∈ S) = ε1. We finally
obtain

∣∣∣∣∣∣
1
dv

∑

u∈N (v)

ω̄uv f̄ k
v (xv, {xu}u∈N (v) )

− 1
dv

∑

u∈N (v)

ω̄uv f̄ k
v (yv, {yu}u∈N (v) )

∣∣∣∣∣∣
! ε. (A26)

From the definition of ε̄v ,

ε̄ = max



 1
dv

∑

u∈N (v)

(exp (duµu) exp (duκuδ) − 1), v ∈ V





! max(exp (duµu) exp (duκuδ) − 1).

From the condition of Lemma 8, dv · βuv,max ! 1 for
all v ∈ V . Then exp (duµu) is close to 1 and ε̄ '
exp (duκuδ) − 1. Because max(duκu) < 4 where β < 0.98
and δ < 1, exp (duκuδ) = 1 + duκuδ + O[(duκuδ)2] ! 1 +
16duκuδ. Then, from the definition of ε, for some constant C,
ε = 3δ + 2ε̄ ! Cδ where dv βuv,max ! 1 and β < 0.98.

Hence, the SIR model also possesses the stable property.
!

APPENDIX B: PROOF OF LEMMA 3

If I i
v (t ) and ai

v (t ) are given values, then with the notation
of Definition 1, we can map I i

v (t ) to xi
v , ai

v (t ) to yi
v and εt to

δ. In addition, {ωuv}u∈N (v) ∈ Kv for all v ∈ V . Let κt+1 be ε in
the notation of Definition 1. Then, the condition of Lemma 3
can be applied to the condition for the stability property given
in (5). Hence, by the stability property, for any deterministic
values I i

v (t ) and ai
v (t ) and any {ωuv}u∈N (v) ∈ Kv , we have

∣∣∣∣∣∣
1
dv

∑

u∈N (v)

ωuv f̄ k
v

({
I i
v (t )

}
i∈S,

{
I i
u(t )

}
i∈S,u∈N (v)

)

− 1
dv

∑

u∈N (v)

ωuv f̄ k
v

({
ai

v (t )
}

i∈S,
{
ai

u(t )
}

i∈S,u∈N (v)

)
∣∣∣∣∣∣
! κt+1.

(B1)

From the definitions of f k
v (·) and f̄ k

v (·), we have

E
[
Ik
v (t + 1)

]
= f̄ k

v

({
I i
v (t )

}
i∈S,

{
I i
u(t )

}
i∈S,u∈N (v)

)
.

Moreover, f̄ k
v ({ai

v (t )}i∈S, {ai
u(t )}i∈S,u∈N (v)) is defined as

ak
v (t + 1) in (7). Hence, we have

∣∣E
[
rk
v (t + 1)

]
− bk

v (t + 1)
∣∣

=
∣∣∣∣

1
dv

∑
ωuvE

[
Ik
u (t + 1)

]
− 1

dv

∑
ωuvak

u(t + 1)
∣∣∣∣ ! κt+1,

(B2)

which gives the bound on the difference between the approxi-
mated and expected state densities of v’s neighbors, where for
all v ∈ V and all i ∈ S, I i

v (t ) is given and |ri
v (t ) − bi

v (t )| ! εt .
Since the sv (t ) for all v ∈ V are given, i.e., I i

v (t ) is given
for all v ∈ V and all i ∈ S, the sv (t + 1) are mutually inde-
pendent. Hence, from Hoeffding’s inequality, for any v ∈ V
and any i ∈ S, we have

Pr
[∣∣ri

v (t + 1) − E
[
ri
v (t + 1)

]∣∣ " εt |{sv (t )}v∈V
]

! 2 exp

[

− 2εt
2

∑
u∈N (v) (ωuv/dv )2

]

! 2 exp
(

−2εt
2dv,min

4

)
.

(B3)

We know the approximated probability ai
v (t + 1), which is

a deterministic variable. Then, by Ineq. (B2), the
∣∣∣∣

1
dv

∑
Pr

[
Ik
u (t + 1) = 1

]
− 1

dv

∑
ak

u(t + 1)
∣∣∣∣

are small, where the sv (t ) for all v ∈ V are given.
Inequality (B3) is valid for all given I i

v (t ); therefore,
Ineq. (B3) is also valid for all given I i

v (t ) that satisfy
|ri

v (t ) − bi
v (t )| ! εt , ∀v ∈ V . If the probability of ri

v (t + 1)
lying outside the bound is smaller than some specific value
for all cases of si

v (t ), then we can say that the probability
of ri

v (t + 1) lying outside the bound is smaller than that
specific value without knowing si

v (t ). Therefore, by applying
Ineq. (B2) to Ineq. (B3), we obtain

Pr
[∣∣ri

v (t + 1) − bi
v (t + 1)

∣∣

" εt + κt+1|∀v ∈ V,∀i ∈ S,
∣∣ri

v (t ) − bi
v (t )

∣∣ ! εt
]

! Pr
[∣∣ri

v (t + 1) − E
[
ri
v (t + 1)

]∣∣

" εt
∣∣{sv (t )}v∈V ,∀v ∈ V,∀i ∈ S,

∣∣ri
v (t ) − bi

v (t )
∣∣ ! εt

]

! 2 exp
(

−2εt
2dv,min

4

)
. (B4)

Let εt+1 = εt + κt+1. By the union bound, we have

Pr
[
∀v ∈ V,∀i ∈ S,

∣∣ri
v (t + 1) − bi

v (t + 1)
∣∣

! εt+1|∀v ∈ V,∀i ∈ S,
∣∣ri

v (t ) − bi
v (t )

∣∣ ! εt
]

" 1 − 2sn exp
(

−2εt
2dv,min

4

)
. (B5)

!

APPENDIX C: PROOF OF LEMMA 4

Lemma 2 gives the proof at t = 0. Since E[ri
v (0)] = bi

v (0),
if |ri

v (0) − bi
v (0)| ! ε0 is satisfied, then |ri

v (0) − E[ri
v (0)]| !

ε0 is also satisfied. Thus,

Pr
{
∀v ∈ V,∀i ∈ S,

∣∣ri
v (0) − E

[
ri
v (0)

]∣∣ ! ε0
}

" 1 − 2sn exp
(

−2ε0
2dv,min

4

)
. (C1)
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To prove that this inequality holds for t = 1, . . . , T , let us
start with Lemma 3. By Lemma 3, ri

v (t + 1) approximates
bi

v (t + 1) with high probability if the differential between the
densities ri

u(t ) and bi
u(t ) at the previous time is within a small

error bound. By applying the inductive approach to Lemma 3,
we find that if |ri

v (0) − bi
v (0)| ! ε0 is satisfied, then we have

Pr
[
1 ! t ! T,∀v ∈ V,∀i ∈ S,

∣∣ri
v (t ) − bi

v (t )
∣∣ ! εt

]

"
T∏

t=1

[
1 − 2sn exp

(
−2εt−1

2dv,min

4

)]
. (C2)

For any {ωuv}u∈N (v) ∈ Kv , Ineq. (12) holds. This statement
implies that Ineq. (12) holds when ωuv = 1 for all v ∈ V and
all u ∈ N (v). In other words,

Pr
[
∀v ∈ V,∀i ∈ S,

∣∣r̄i
v (t + 1) − b̄i

v (t + 1)
∣∣

! εt+1
∣∣∀v ∈ V,∀i ∈ S,

∣∣ri
v (t ) − bi

v (t )
∣∣ < εt

]

= Pr
[
∀v ∈ V,∀i ∈ S,

∣∣ri
v (t + 1) − bi

v (t + 1)
∣∣

! εt+1
∣∣∀v ∈ V,∀i ∈ S,

∣∣ri
v (t ) − bi

v (t )
∣∣ < εt

]
. (C3)

Under the condition that |ri
v (t ) − bi

v (t )| ! εt for all v ∈ V
and all i ∈ S, E[r̄i

v (t + 1)] without a given sv (t ) lies between
the maximum and minimum cases of E[r̄i

v (t + 1)], where
sv (t ) is given for all v ∈ V , i.e., is bounded within b̄i

v (t + 1) ±
κt+1 according to Ineq. (B2). Hence,

Pr
{
∀v ∈ V,∀i ∈ S,

∣∣r̄i
v (t + 1) − E

[
r̄i
v (t + 1)]

∣∣

! εt+1 + κt+1
∣∣∀v ∈ V,∀i ∈ S,

∣∣r̄i
v (t ) − b̄i

v (t )
∣∣ ! εt

}

" Pr
[
∀v ∈ V,∀i ∈ S,

∣∣r̄i
v (t + 1) − b̄i

v (t + 1)
∣∣

! εt+1|∀v ∈ V,∀i ∈ S,
∣∣r̄i

v (t ) − b̄i
v (t )

∣∣ ! εt
]

(C4)

follows. By Ineqs. (C2) and (C4) and Eq. (C3), if the condition
|ri

v (0) − bi
v (0)| ! ε0 is satisfied for all v ∈ V and all i ∈ S, we

have

Pr
{
1 ! t ! T,∀v ∈ V,∀i ∈ S,

∣∣r̄i
v (t ) − E

[
r̄i
v (t )

]∣∣ ! εt + κt
}

"
T∏

t=1

[
1 − 2sn exp

(
−2εt−1

2dv,min

4

)]
. (C5)

Let us define ε = max(εt + κt ) = εT + κT . The minimum of
all εt is ε0. Combining Ineqs. (C1) and (C5) yields

Pr
{
0 ! t ! T − 1,∀v ∈ V,∀i ∈ S,

∣∣r̄i
v (t ) − E

[
r̄i
v (t )

]∣∣ ! ε
}

"
T −1∏

t=0

[
1 − 2sn exp

(
−2ε0

2dv,min

4

)]

" 1 − 2T sn exp
(−2ε0

2dv,min

4

)
(C6)

and

Pr
{
0 ! t ! T,∀v ∈ V,∀i ∈ S,

∣∣āi
v (t ) − E

[
r̄i
v (t )

]∣∣ ! ε
}

" 1 − 2(T )sn exp
(−2ε0

2dv,min

4

)
. (C7)

If dv,min = τ log n for some constant τ > 0, then we have

Pr
{
0 ! t ! T,∀v ∈ V,∀i ∈ S,

∣∣āi
v (t ) − E

[
r̄i
v (t )

]∣∣ ! ε
}

" 1 − 2T sn(1−2ε0
2τ/4). (C8)

Based on the condition of Theorem 1, dv,min " τ log n for all
τ > 0 as n goes to ∞. Let δ = −1 + 2ε0

2τ/4. Then δ goes to
∞ as τ goes to ∞. Thus, we have

Pr
{
0 ! t ! T,∀v ∈ V,∀i ∈ S,

∣∣āi
v (t ) − E

[
r̄i
v (t )

]∣∣ ! ε
}

= 1 − o(n−δ ). (C9)

!

APPENDIX D: ADDITIONAL EXPERIMENTAL RESULTS

In this Appendix section, we present the results for the
DAU model on various dataset that were not displayed in
Sec. V. Figures 10 and 11 shows the results for the DAU
model with parametric values set P1, P2 on the (a) W S1000,10,
(b) W S10000,100, (c) BA1000 and (d) Slashdot. Figure 12 shows
the results obtained on the real dataset, Gowalla with selected
50 initial active nodes when W contains a small fraction of the
nodes. In summary, the above figures also show similar results
as Sec. V.

(a) (b)

(c) (d)

FIG. 10. Results for the DAU model with the self-sustainable
parametric value set P1 and the initial state distribution D1 =
(0.5, 0.4, 0.1). The set W contains all nodes with nonzero
(in)degrees. (a) W S1000,10, (b) W S10000,100, (c) BA1000, (d) Slashdot.
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(a) (b)

(c) (d)

FIG. 11. Results for the DAU model with the unsustain-
able parametric value set P2 and the initial state distribution
D2 = (0.7, 0.1, 0.2). The set W contains all nodes with nonzero
(in)degrees. (a) W S1000,10, (b) W S10000,100, (c) BA1000, (d) Slashdot.

(a) (b)

(c)

FIG. 12. Results for the DAU model with the unsustainable
parametric value set P1 and Gowalla data set. Initially, the nodes with
the top 50 highest (in)degree are selected as active nodes, while the
other nodes are in the “nonmember” state. The set W contains the
(a) top 1%, (b) 5%, or (c) 10% of the nodes as ranked by (in)degree.
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