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Abstract 

Disk arrays (RAID) have been proposed as a possi- 
ble approach to solving the emerging I/O bottleneck 
problem. The performance of a RAID system when 
all disks are operational and the MTTF,,, (mean 
time to system failure) have been well studied. How- 
ever, the performance of disk arrays in the presence 
of failed disks has not received much attention. The 
same techniques that provide the storage efficient re- 
dundancy of a RAID system can also result in a sig- 
nificant performance hit when a single disk fails. This 
is of importance since single disk failures are expected 
to be relatively frequent in a system with a large num- 
ber of disks. In this paper we propose a new varia- 
tion of the RAID organization that has significant ad- 
vantages in both reducing the magnitude of the per- 
formance degradation when there is a single failure 
and can also reduce the MTTF,,,. We also discuss 
several strategies that can be implemented to speed 
the rebuild of the failed disk and thus increase the 
MTTF,,,. The efficacy of these strategies is shown 
to require the improved properties of the new RAID 
organization. An analysis is carried out to quantify 
the tradeoffs. 

1 Introduction. 

A disk array is a set of disks with redundancy to pro- 
tect against data loss. Patterson [7] describes sev- 
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era1 methods of organizing the data on disks includ- 
ing mirroring and multiple data blocks plus parity. 
Compared with mirroring, the “N + 1” RAID orga- 
nization sacrifices some performance in terms of I/O 
access rate but with a reduced storage penalty for 
redundancy. In the remainder of this paper we will 
use the term RAID to refer to the N + 1 RAID or- 
ganization. We also concentrate exclusively on the 
%mall read/small writen use of the disks in which 
they are accessed independently rather than the mode 
in which large reads (writes) are performed by con- 
current reads (writes) executed on each disk. 

Two aspects of RAID systems have been examined 
most clo&ly: performance under the condition that 
all disks are operational (e.g., [l]) and the mean time 
to system failure (data loss) (e.g. [4]). The perfor- 
mance of RAID when there are inoperable (or inac- 
cessible) disks has largely been ignored (an exception 
is [a]). 

Compared to system failure, it is a relatively com- 
mon occurrence to have a single disk unavailable and 
therefore the performance of the system during the 
repair period is of concern. The N + 1 RAID or- 
ganization achieves a low cost in redundant storage 
overhead but at the price of requiring multiple reads 
to the surviving disks in the same array each time a 
block on the failed disk must be reconstructed (i.e., 
to satisfy a read request for that block). In the worst 
case (a workload of all reads and no writes) this can 
double the access rate to the surviving disks and thus 
in effect, cut the capacity of the array in half. Con- 
sider for example a shared nothing DBM architec- 
ture as in Figure 1. Each node is this system would 
have one or more disk arrays. The impact that this 
can have on total system performance is dependent 
on the characteristics of the system workload. We 
are particularly interested in database applications of 
the RAID architecture. The impact of a single disk 
failure is most severe in the case of a ‘decision sup- 

port” environment in which complex queries are com- 
mon and the database tables have been partitioned 
among the disks on all or many nodes for increased 
I/O bandwidth. Complex operations can be limited 
by any imbalance in the system, which can be caused 
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by skew in the load [S] or by a disk array with di- 
minished capacity due to a failed disk [5]. In a one 
hundred disk system, a single failed disk will repre- 
sent a loss of only 1% of the raw I/O capacity of the 
system. However, if the effect is to reduce the capac- 
ity of the array to which it belongs by say 25%, this 
can cause a significant imbalance in the system, and 
the impact on aggregate system performance can be 
considerable. 

Figure 1: Shared Nothing DBM with disk arrays. 

In order to maintain a reasonable MTTF,,, (mean 
time to failure of the system) in a system with a large 
number of disks it is necessary to provide immedi- 
ate repair of a failed disk. To accomplish this, “hot 
standby” disks are provided and the system automat- 
ically rebuilds the contents of the failed disk on the 
standby disk from the redundant information on the 
surviving disks [4]. The MTTF,,, of the RAID is 
easily shown to be inversely proportional to the re- 
build time [l, 31. In the N+l RAID system described 
in [7], to rebuild the failed disk contents at maximum 
speed (the capacity of the standby disk) would use 
the entire capacity of the surviving disks in the ar- 
ray. Thus to rebuild at maximum rate would mean 
that the array can perform no other work during the 
rebuild period. One can of course, tradeoff the re- 
build rate with the rate at which the surviving disks 
process normal workload requests. However, this in- 
creases the time to rebuild the failed disk contents 
and thereby decrease the MTTF,,,. Quantifying this 
tradeoff is one of the purposes of this paper. 

We also propose a new RAID organization. In the 
proposed architecture the same type of tradeoffs exist 
between normal workload and MTTF,,, but the pro- 
posed organization can (for some system and work- 
load parameters) yield an improved MTTF,,, and 
support a higher workload during the rebuild period. 

This is accomplished by relaxing an assumption that 
has been made in most of the RAID work, i.e., that 
the =group size” (the number of data blocks plus par- 
ity) is the same as the “cluster” size (the number of 
disks over which the groups of blocks are distributed). 
We propose consideration of larger cluster sizes and 
show that by spreading the groups over a larger clus- 
ter of disks the increased load (per disk) on surviving 
disks can be significantly decreased. The cluster size 
will effect the time required to rebuild a failed disk 
(and therefore the MTTF,,,) and also the workload 
(measured in accesses per second per disk) that can 
be supported during the rebuild. These issues are 
addressed analytically in a later section. The results 
indicate that substantially better performance and re- 
liability can often be obtained from such an organiza- 
tion with properly chosen values for group and cluster 
size. 

The only study that we are aware of that con- 
siders disk subsystem performance under failure and 
the reconstruction of the failed disk is the Copeland 
and Keller study comparing mirroring and “inter- 
leaved declustering” [3]. The analysis of the proposed 
RAID organization presented here is similar with the 
methodology introduced in [3]. 

In section 2 we present the proposed new RAID 
organization and also several strategies for efficient 
rebuilding of a failed disk. In section 3 we present 
an outline of the analysis of the proposed techniques. 
Section 4 presents numerical results for a range of 
parameter values and their interpretation. Section 5 
summarizes the contributions of the paper. 

2 RAID Recovery. 

It is assumed here (as in [3]) that there is a system re- 
quirement to provide some minimum level of service 
during the rebuild period which will be measured in 
terms of accesses per second per disk, denoted by &. 
Xe is the access rate per “logical disk” and when an 
array contains a failed disk, the load on the surviv- 
ing disks will actually be higher since the Xe accesses 
per ,second originally directed to the failed disk will 
require additional I/OS to the surviving disks. A con- 
sequence of the requirement for a minimum workload 
throughput is an additional limitation on the rate 
at which the failed disk can be rebuilt, i.e. the full 
capacity of the surviving disks is not available for re- 
building the contents of the failed disk. The cost of 
reconstructing the contents of a block from the failed 
disk causes the tradeoff between & and the rebuild 
rate to be of greater importance because the rebuild 
time becomes more sensitive to &. Next we introduce 
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the clustered RAID architecture which separates the 
issue of group size and the cluster of disks over which 
the groups are distributed and then in the remainder 
of this section we define several disk rebuild strate- 
gies. In the following section we will use an analytic 
model to show that the proposed new RAID orga- 
nization, in conjunction with the suggested rebuild 
strategies, can significantly improve the level of per- 
formance in the face of failures. 

2.1 Clustered RAID. 

We use the term “group” to refer to a set of N data 
blocks and 1 parity block that the N + 1 RAID orga- 
nization uses. As depicted in Figure 2, in the original 
N + 1 RAID architecture the number of disks over 
which the groups are distributed is also equal to the 
group size. Define a cluster to be the set of disks 
over which the groups are distributed. The cluster 
size will be denoted by C and the group size by G 
where G 5 C. In the classic N + 1 RAID architec- 
ture N + 1 = G = C. Figure 3 depicts a cluster of 
size 5 with a group size of 4. (These small numbers 
are chosen for ease of presentation.) 

DISKI DUIt Dl93 DISK4 DISK5 

Figure 2: Data placement in N + 1 RAID. 

When a disk has failed, G-l blocks must be read to 
reconstruct the contents of a block on the failed disk. 
However, by properly distributing the groups over the 
C disks in a cluster the extra load can be distributed 
evenly over the C - 1 surviving disks in the cluster. 

In Figure 3 there are 
5 

( > 
4 different ways to select 

the disks to hold a group. For each such combination 
there are 4 choices for which is the parity block. It is 

Figure 3: Each group type corresponds to one way 
to select 4 disks out of the five. Within a group type 
there are choices as to which disk holds the parity 
block. 

not difficult to see that if groups are assigned in this 
manner then when any disk fails the extra load will be 
evenly distributed over the surviving disks. Note that 
the unlabeled blocks in the figure do not represent 
unused blocks (e.g. the data blocks for group type 2 
on disk 5 are allocated to the first 4 physical blocks 
of disk 5). 

This scheme does not require additional disks for 
a system (the storage overhead is determined by the 
group size G) and yet derives advantages from clus- 
tering the disks in sets larger than G. In this pa- 
per we will evaluate the benefits of this organiza- 
tion with respect to the performance under failure 
and MTTF,,,. Our first priority was to determine 
if there is significant advantage to this scheme which 
we believe has been answered in the affirmative in 
this paper. There does remain an interesting prob- 
lem with respect to implementation of this scheme. 
For small values of G and C, it is not difficult to ob- 
tain the corresponding addresses for buddy and par- 
ity blocks. But for reasonable values of G and C the 
simple scheme of using all combinations of G disks 
out of C becomes unmanageable. For example for 

G = 10 and C = 20 there are different 

groups (times 10 to account for precessing the par- 
ity block). This is a large number for table lookup 
implementation to obtain addresses for buddy and 
parity blocks. To implement the various algorithms 
(e.g., to determine the address of the parity block 
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for a data block) the addresses of the buddy blocks the bottleneck (and the optimum choice can change 
must be either easily computable or the set of differ- with time). Let j(t) be the fraction of the failed 
ent groups should be small enough to allow for table disk that has been reconstructed at time t (the re- 
lookup. This is still an open problem which we are build starts at t = 0 ). If we assume that the access 
currently investigating. It appears to be a combina- pattern of the normal workload is uniform across all 
torial block design problem [2]. This paper addresses blocks, then the fraction of reads that can be redi- 
the issue of evaluating the proposed architecture un- rected to the standby disk at time t can be denoted 
der the assumption that the group assignment and by W) - f(t) w h ere b(t) is a control variable which 
addressing issues will be adequately solved given that can vary between 0 and 1. In the analysis presented 
we can show sufficient advantages to the larger cluster in the next section we determine the optimal policy 
size. and assume perfect adherence to that optimal policy. 

Piggy-backing Rebuild on Normal Workload. 
2.2 Disk Rebuild Strategies. 

In this section we describe several options that might 
be employed in rebuilding the failed disk. We start 
with a description of the simple baseline copy proce- 
dure and then discuss the more sophisticated schemes 
in following subsections. 

An assumption common in all the rebuild schemes 
we consider concerns how writes to the failed disk are 
handled. It is clear that writes of blocks that have 
already been copied to the standby disk should be 
redirected to the standby to keep that portion of the 
disk up to date. For writes to the portion of the disk 
that has not yet been copied there are two possible 
options: (1) convert the write to a null operation or, 
(2) write the block to the corresponding block on the 
standby disk. We will assume in all schemes that all 
writes to the failed disk are redirected to the standby 
disk. This appears to be relatively easy to accomplish 
using a bit map to indicate which blocks have already 
been copied. The copy procedure will just skip over 
the blocks that have already been copied as a result 
of the write operations. The bit map would require 
no more than 16 Kbytes for reasonable block size and 
disk capacity. 
Baseline Copy Procedure. 

The idea here is to “capture” a block from the failed 
disk that is reconstructed due to a read request that 
was issued as part of the normal workload. A rel- 
atively simple implementation is possible assuming 
only a slight modification to a conventional buffer 
manager. When a read from the failed disk is satis- 
fied by reconstruction of the block, the block contents 
will be stored in a buffer. At this time buffer copy 
can be marked as “modified”, the disk address ass+ 
ciated with the buffer page can be changed to refer 
to the standby disk, and the rebuild bit map can be 
changed to show this page as being copied. Normal 
buffer replacement will eventually copy the contents 
to the appropriate block on the standby. (At the end 
of the rebuild any blocks remaining in the cache can 
be flushed to the standby disk.) 

The baseline procedure then simply sequentially 
reads blocks from the failed disk (causing reconstruc- 
tion) and writes them to the standby disk. The only 
exception to the sequential copying is to skip over 
blocks already copied due to writes in the normal 
workload. 
Rebuild with Redirection of Reads. 

When the failed disk has been partially recon- 
structed on the standby, it is possible to satisfy some 
reads by either reconstructing the block (by multiple 
reads of blocks on the surviving disks) or by read- 
ing from the standby (if the block has already been 
copied). Which of the two options is optimal will 
depend on whether the surviving disks are the bot- 
tleneck in the rebuild process or the standby disk is 

Piggy-backing and redirection can help to reduce 
the load on the surviving disks in an array which has 
a failed disk. The extent to which this can be of 
benefit depends on several factors. For the same re- 
build rate and the same minimum access rate for the 
normal workload, both redirection and piggy-backing 
can be used to reduce the load on the surviving disks. 
The I/O access capacity thus made available on the 
surviving disks can be used to either support a higher 
normal workload during rebuild (Ae) or a faster re- 
build. In the following section we present an analy- 
sis of disk arrays under failure to quantify the trade- 
offs between (1) the cluster size C, (2) the minimum 
workload that must be supported & and, (3) the 
MTTF..,,. Qualitatively the tradeoffs are clear but 
quantitatively they are not. With a constant mini- 
mum workload Xe, a larger cluster size will allow a 
faster copy rate but the larger cluster size increases 
the likelihood of a second failure in the cluster. Which 
effect is dominant is not immediately obvious. As we 
will show from the analysis in the next section, a 
larger cluster size can sometimes simultaneously sup 
port a higher minimum workload and provide a longer 
MMTF,,,. 
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3 Performance Analysis 

We first summarize the notation used in the analysis: 

P = 

c = 
N, = 
Ndisk = 

I = 

G = 

a = 

ii(t) = 

k(t) = 

x0 = 

W = 

P = 

b(t) = 

r(t) = 

maximum capacity of a disk in access 
per second. 
number of disks in a cluster. 
number of clusters in the system. 
total number of disks in the system, 
which is equal to CN,. 
number of blocks on a disk. 
the group size: G - 1 data blocks and 1 
parity block. 
(G - l)/(C - l), and 0 < a 5 1 
instantaneous throughput of a disk in 
accesses per second. 
instantaneous copy rate in accesses per 
second. 
minimum throughput for normal work- 
load in accesses per sec. 
fraction of disk accesses in the normal 
workload that are writes. 
fraction of disk accesses in the normal 
workload that are reads. 
the control variable for dynamic re- 
routing, 0 5 b(t) < 1. 
instantaneous fraction of the failed disk 
image that has been reconstructed by 
time 1. 

In this section, we derive expressions for the re- 
build time and MTTF,,, for the recovery techniques 
introduced in the previous section. We first outline 
the analysis and provide an intuitive interpretation. 
Since the analysis is similar in all cases, we present 
only the analysis of the rebuild with redirection of 
reads in detail. Results for the Baseline copy pro- 
cedure and Piggy-backing are given in the appendix. 

An informal explanation of the results is rather 
straightforward. In all cases there are two constraints 
that relate the copy rate AC(t) and the normal work- 
load, &. In the case of rerouting there is also the 
control variable that can be used to shift some load 
between the surviving disks and the standby. Each 
of the two constraints can be viewed as providing an 
upper bound on X,(t). Each of the constraints is also 
linear in As, f(t) and b(t). The only complication is 
that the bounds shift with time as f(t) (the portion 
of the disk that has been rebuilt) increases. At any 
time t, as b(t) is varied from 0 to 1 each constraint 
equation sweeps out a region on the Xs - AC plane 
as shown in Figure 4’. Given a particular value of 

‘For the Piggybacking strategy, it is possible to choose an 
optimal control such that the slope of both constraints will 
increase. 

&, say AZ, the problem is to determine the value of 
b(t) that maximizes AC(t). It is not difficult to show 
that this will be the value of b(t), say b’, for which 
the two constraint equations give the same value for 
X,(t). This is illustrated in Figure 4. 

AC 
I 

- constraints when b(t) 
is not optimal 

--------- constraints when 

* 
+I %I 

Figure 4: Varying feasible solution space as the con- 
trol variable b(t) varies. 

Controlling the value of b(t) can be viewed as at- 
tempting to maximize the instantaneous copy rate 
subject to the constraints. The two constraints re- 
flect that neither of the two disks can be greater 
than 100% utilized. In practice, b(t) can be adjusted 
heuristically based on measuring the utilization of the 
disks. If the surviving disks were the bottleneck and 
the reroute was not enabled, we should set the con- 
trol variable b(t) = 1 and re-route the workload to the 
standby. If the standby disk is the bottleneck and the 
m-route operation was enable, we should shift some 
workload back to the surviving disks. The optimal 
control policy would use this degree of freedom to try 
to balance the load as much as possible and thereby 
maximizing the instantaneous rebuild rate. 

3.1 Rebuild Time 

In this section, we develop an expression for the re- 
build time in the case of Rebuild with Redirection of 
Reads. The first constraint (Cl below) comes from 
considering the surviving disks in the array and the 
second constraint (C2) comes from considering the 
standby disk. 

P 2 W) + wW)P - WfWl + h(t) (Cl) 
P 1 AC(t) + wX(t) + pA(t)b(t)f(t) (3 
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with : 

f(2) = 

For (Cl), the first term is the regular workload to 
the surviving disk, the second term is the fraction 
of workload referencing the un-rebuilt portion of the 
failed disk and the last term is the copy workload to 
the surviving disk. For (C2), the first term is the 
copy workload, the second term reflects the updates 
to the failed disk and the last term is the fraction 
of the workload referencing the rebuilt portion of the 
failed disk at time t. 

Figure 5 illustrates the feasible solution space dur- 
ing the rebuild period. It is important to note 
that the feasible solution space is time-varying and 
a higher instantaneous workload can be supported as 
more of the failed disk is rebuilt. 

Figure 5: Feasible solution space for &(t) and X(t) 
during the rebuild period. 

Depending on the value of the required minimum 
workload Xo. there are two cases : 

Case 1: -'o L A0 L &&5&y 
In this case the optimali, is obtained by satu- 

rating the standby disk. To maximize the copy rate, 
the control variable b(t) should be set to 0 during for 
the entire rebuild period and thus during the rebuild 
period x:(t) will remain constant. X:(l) is: 

A:(t) = /.t - WA0 (1) 

Once we know x:(t), we can substitute it into the 
expression of f(t). Using Laplace Transform we can 
obtain r(s), the transform of f(t), and by inverse 
transform operation, we can obtain f(t). 

f+(s) = PII 
s(s + 9) 

f(l) = & [l -e-=+1 

But equation f(t) = 1, we can find the rebuild time 
T which can be expressed as: 

T = -&ln(l-$) 
0 

C-~~:.&$$IXOS&. 

There are two phases in the rebuild process. In 
phase 1, AZ(t) is chosen to saturate the surviving 
disks. During this phase the control variable b(t) 
should be set to 1 to maximize the copy rate. As 
the failed disk is rebuilt, a time tr may be reached 
such that both the surviving disks and the standby 
disk disks are saturated. If this occurs before the re- 
build is completed, then phase 2 begins. In phase 2 
both the standby disks and the surviving disk will be 
saturated. To maximize the copy rate after ti, the 
control variable b(t) is set so that only those reads 
that reference the rebuilt portion of the failed disk 
by time ti will be rerouted. 

To compute the optimal copy rate x:(t) in phase 1, 
we let the control variable b(t) = 1. Applying Laplace 
to j(t) and substituting the transform f’(s) into the 
Laplace transform of (Cl) and by inverse transform 
operation, the optimal copy rate AZ(i) is obtained as: 

P(P - X0) - PXo4P - w) 
4P - w) I 

e+%-JP 

Then AZ(s) ( the Laplace Transform of AZ(t) ) can be 
substituted into the expression of p(s) and obtain 
f(t), which is : 

f(t) = [ 
(IJ - w + 1 a(w - ppo I 

[I_ e++Pq 
To find. the rebuild time, let f(t) = 1 and we find 

the time t* at which f(t) = 1 : 

t+ = 
-I 

In l- 
[ 

aAo(w - P) 
Xo(w - P) P - A0 + Xoa(w - P) 1 

However, the rebuilding process may not be com- 
pleted by time i* since by time tl, both the surviving 
disk and the standby disks are saturated. To obtain 
tr, we can equate the two constraints (Cl) and (C2). 
Since &(t) = x:(t) and by time 11, J+(t) = Xc. tl can 
be expressed as: 

I 
t1 = 

Xo(P - w) 

ln 5 [ 1 K2 
where 

(1+ a)b - X0) + (cl - Xo)w 
4P - w) 

and 
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Therefore, if 1* 5 tr , the rebuilding is finished at t*, 
otherwise phase 2 of the rebuilding process starts at 
time tl. To maximize the copy rate in phase 2, only 
the reads which reference the rebuilt data before tl 
are redirected to the standby disk. The optimal copy 
rate after 11 will be constant and is equal to: 

x:(t) = P - Ao[W+Pf(h)l for t 2 t1 (4) 

From AZ(t) h w ere t > 11, we can obtain the time 
22, to complete the rebuilding process: 

t2 = 21, l- 
[ 

[l - f(il)lwxo 

0 A:(h)+ wAo[l- f(h)] 1 
Therefore, the rebuild time T will be : 

if t* 5 t1 
ijtl>t* (5) 

The optimal copy rate and rebuild time of the base- 
line recovery procedure and piggy-backing recovery 
procedure are summarized in the appendix. 

3.2 Mean Time to System Failure 

For a RAID system, whenever two or more disks fail 
in the same cluster; data will be unavailable and we 
will consider that the system has failed. If this situ- 
ation occurs, it is assumed that a checkpoint-and-log 
recovery technique is initiated to recover the data. 

To calculate the MTTF,,,, we assume the fail- 
ure times of each disk are identically distributed 
and independent exponential random variables. Let 
hfmFdj,k be the mean time to fake for a single 
disk and let T be the rebuild time. Let MTTFcluster 
be the mean time to data unavailability for a cluster, 
then MTTFcr,,,~er can be expressed as: 

w (MTTFdisk)2 
C(C - l)T 

MTTF,,, can then be expressed as: 

MTTF,,, = MTTFclurtcr 
NC 

Ndirk 

(MnFdirk)I 

m Ndiak(C - l)T (6) 
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Since (Y = (G - l)/(C - l), we can also express 
MTTF,,, as: 

MTTF,,, % +fTT&,k)2 
Ndisk(G - l)T (7) 

We note that MTTF,,, is inversely proportional 
to the cluster size and also inversely proportional to 
the disk rebuild time. 

4 Discussion 

Figures 6 ,7 and 8 show the MTTF,,, as a function 
of a and for different values of As. In all cases the 
group size is fixed at G = 5, the total number of 
disks in the system is 1000 and MTTFdi,k = 30,000 
hours. The three figures differ in the fraction of reads 
versus writes in the normal workload. 

Consider first Figure 6 in which the workload is 
50% reads and 50% writes; The three graphs (from 
top to bottom) correspond to (1) the baseline rebuild 
policy, (2) the strategy with dynamic rerouting and 
(3) the strategy with piggy-backing and rerouting. It 
is easy to see that for any particular values for Q and 
AO the MTTF,,, is increased and sometimes by as 
much as 50%. The original RAID architecture with 
o = 1 corresponds to the points along the vertical 
axis to the far right. From these points one can see 
that with Q = 1 a workload of X0 = 35 can not 
be supported regardless of the rebuild policy used. 
However, in a clustered RAID with a 5 0.7 (i.e., 
C 2 7) and utilizing the more sophisticated rebuild 
strategy, a workload of 35 accesses per second can be 
supported. From the bottom graph we see that the 
MTTF,,, is reduced to approximately 14 years to 
support this workload. Using this same example we 
can see the beneficial effect of the more sophisticated 
rebuild schemes. For a workload of 35 accesses per 
second and a = 0.7 the MTTF,,, goes from 2 years 
for the baseline rebuild strategy to 14 years for the 
piggy-back and m-route strategy. 

The graph corresponding to the baseline rebuild 
strategy shows that as a decreases (i.e., the cluster 
size increases) the MTTF,y, can actually increase. 
For this case the increased rate at which a second fail- 
ure occurs in the cluster is more than compensated for 
by a decreased rebuild time (at least over some range 
of values for a). For small enough a, the MTTF,,, 
eventually starts to decrease. This occurs because the 
standby disk becomes the bottleneck and decreasing 
o further cannot speed the rebuild process but it does 
increase the rate of a second failure in the cluster. For 
the other two rebuild schemes the MTTF,,, is flat at 



first and then monotonically decreasing with decreas- 
ing CY. In the flat part the decreased rebuild time is 
almost exactly compensated for by the increased rate 
of a second failure. As in the baseline case a large 
enough cluster will eventually saturate the standby 
disk and the MTTF,,, will then start to fall. 

Figure 7 illustrates a 100 percent read workload. It 
has the same general behavior as in Figure 6 except 
that all of the characteristics are more pronounced. A 
pure read case is the worst case in terms of the recon- 
struction overhead per access in the regular workload. 
Thus for the same As there is more load per surviv- 
ing disk and more of an impact on the rebuild time. 
In this situation the m-routing and piggy-backing re- 
build strategies have a proportionately bigger effect. 
For example, for a required MTTF,,, = 10 years, 
with the baseline strategy, Ac 5 approximately 27. 
With the m-routing and piggy-backing rebuild strat- 
egy Xc can be approximately 36, an increase of 33%. 

In Figure 8 the same behavior is again illustrated 
for a 100% write workload. This type of workload im- 
poses the least reconstruction overhead penalty. Just 
as the worst case (a pure read workload) showed more 
pronounced benefit from the larger cluster sizes and 
the more sophisticated rebuild strategies, the pure 
write workload shows the least benefit. In this case 
if we required a MTTF,,, of at least 10 years, then 
with the baseline rebuild strategy and a = 0.30 we 
can have Xs = 35 (approximately). With m-routing 
and piggy-backing we can support & = 40 (approx- 
imately) which is an increase of only 15%. 

For the analysis in the previous section, we assume 
an uniform distribution in accessing the data. In re- 
ality, the distribution of accessing the data is often 
non-uniform. In this section, we assume a 80 - 20 
model in which 80 percent of the disk accesses are to 
20 percent of the data in the database. 

We used simulation to study the impact of the non- 
uniform access pattern and compare the MTTF,,, 
with the uniform reference case. Figure 9 shows the 
MTTF,,.. for the uniform and 80 - 20 access pat- 
tern. Under low to medium require workload Xc, the 
MTTF,,, of the uniform access case is only at most 6 
percent higher than the MTTF,,, of the non-uniform 
case. However, when the workload is write-intensive 
as depicted in Figure 10, MTTF,,, of the uniform 
access case can be up to 20 percent higher than the 
skewed access case. This is due to a large part of the 
standby disk throughput being used for writes in the 
normal workload. 

Figure 6: MTTF,,, for various recovery scheme for 
half read half write transactions. 
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Figure 7: MTTF,,, for various recovery. scheme for 
pure read transactions. 

y# . . . . . . . . . . . . . . . . . . . .._.. . . . . ~.‘i .__._..; _______; . . . . . . . . . ..‘............... 
1 : : : : : : : : : 

Figure 8: MTTF.,,, for various recovery scheme pure 
write transactions. 
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Figure 9: Comparison of rebuild time for uniform 
access vs. skewed access under light load. 

Figure 10: Comparison of rebuild time for uniform 
access vs. skewed access under write intensive work- 
load. 

reads. In other cases the degradation is not as severe 
but can still be significant. A clustered RAID orga- 
nization has been proposed in which data plus parity 
groups are distributed over a larger number of disks 
such that, when there is a failure, the increased load 
per disk is reduced. A larger cluster size can poten- 
tially have a negative effect in that the rate of having 
a second failure in a cluster (and thus data becomes 
unavailable) can increase. The analysis reported in 
this paper shows that a larger cluster size can be used 
to advantage to speed the rebuild of the failed disk 
and also to support a larger workload during the re- 
build period. The tradeoffs between the workload 
that is supported during rebuild, the cluster size and 
the mean time to system failure were quantified by 
the analysis and illustrated by numerical examples. 
Several rebuild schemes were defined and analyzed. 
The more sophisticated schemes were demonstrated 
to have significant potential benefit, particularly in 
conjunction with the larger cluster sizes. 

An open problem with respect to the clustered 
RAID architecture is the issue of mapping the ad- 
dress of a data block to the addresses of the parity 
block and the other data blocks in the same group. 
A scheme which provides the symmetry to balance 
the load over the surviving disks in a cluster and also 
to provide a practical address mapping function is a 
subject of current research. 
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Appendix 

A Results of the Baseline Re- 
covery Procedure 

The constraints for the surviving and standby disks 
are : 

cc 2 qq + aPw) + a&(t) (Cl) 
P 2 b(t) + WW) (C2) 

with : 

f(t) = + ot 
J 

GW + wWI1 - f (411 dT 

In (Cl), the first term on the right is the regular 
workload on a surviving disk, the second term is the 
normal workload resulting from reads to the failed 
disk, and the last term is the copy workload to the 
surviving disk. For (C2), the first term is the copy 
workload and the second term reflects the updates to 
the failed disk. 

Depending on Xe, the optimal copy rate AZ(t) is : 
ifO<&< i&j+ 

A:(t) = /.t - WXIJ (8) 

A;(t) = P - AoIl+ WI 
a (9) 

The rebuild time T can be expressed as: 
ifO~&5~j$+ 

T= I WA0 --In l-- 
WA0 ( > c1 

(10) 

B Results of the Piggybacking 
Recovery Procedure 

Again the two constraints (Cl) and (C2) are : 

P 1 J(t) + WW)P - Wf(t>l + A(t) 

P L h(t) + WW) + tWWf(t) + 

PW[l - f WI 
with : 

These constraints have the same interpretation as the 
re-route recovery procedure except the last term in 
(C2) and f(t) P re resents the piggy-backing workload. 

Depending on the &, we have the optimal copy 
rate AZ(t) and rebuild time T : 

Case 1 : If 0 2 X0 5 ?a>. 

AZ(t) = -X0 + & [l -pe-+(l-P)‘] (12) 

T = -&, WA0 (13) 

Case 2 : If &$&& 5 A0 5 &$+. 
fort stl: 

x:(t) = -Ai) + & [l - pe-+(‘-p)‘] (14) 

for t > tl: 

A:(t) = 2K + AoP[~ - f(h)] 
> 

_ 
2-P 

KP + AoP[~ - f(h)] 
2-P > 

,-+p(l-p/q’-‘1) 

where : 

05) 

p - Ao(1+ “P) + aA 

WV 
(1 -PI-J 
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The rebuild time T will be : 

T = t1 + 
I 

Ao(f - 1) In 
‘1 - ; f(h)] (16) 

where : 

Cl = 
2K 

X0(2 - P) - 
t P[l- fW + 1 - f(tl) 

t 2[lT fL,l 
2-P 

c, = 
2K 

X0(2-p) - 

X;(t) = 

Case 3: if &$+j : sxo5Gk. - ‘Tuy 
for t* 2 tl: 

cc - x0 
a(l-P) - 41-P) [ 

(cc - AO)P + PA0 e- +P(l-P)t 
I 

(17) 

for t* > 

AZ(i) = 

t1: 

( 

2K + AoP[~ - f(h)] 

2-P > 

_ 

( 

KP + XOP[~ - f(tdl 

2-P > 

e- +(l--p/2)(t-t1) 

(18) 

where : 

f(h) = 
P - x0 + aAo(l- PI 

aXo(l- PI 1 
1 

- 
/p(l-p)t1 1 

K = (jt - Ao)(l - (y--l) 
2a - f AOP + ;PXof(tl) 

t’ = - 
I 

X0(1 - p) In [ l- 
aAo(l - P) 

jl- Al) + f&(1 - p) I 

I 
t1 = -- 

x UP [ 

(P - Ao)(l - 4 

0 (cc- Xo)p+apXow I 

The rebuild time T will be : 
If t* 5 t1: 

T = t* (19) 
If t+ > t1: 

T = tl+ 
I 

XO(P/2 - 1) In [ 
Cl-1+f(t1) 

c2 1 (20) 
where : 

Cl = 
2K Pi1 - fW1 + I_ fctl) 

Ao(2--P) + 2-P 

c2 = 2K 
X0(2 - PI 

+ a1 - f(h)1 
2-P 


