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OLMS: A Flexible Online Learning Multi-Path
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Abstract—Over the past decade, there has been a tremendous
surge in the inter-connectivity among hosts in networks. Many
multi-path transport protocols, such as MPTCP, MPQUIC, and
MPRDMA, have emerged to facilitate multi-path data transmis-
sions between pairs of hosts. However, existing packet schedulers
in these protocols are quite limited as they neglect the stochas-
tic nature inherent in heterogeneous paths, such as, round-trip
time and available bandwidth. Moreover, users have diverse re-
quirements; for instance, some prioritize low latency, while others
consistently seek to achieve high bandwidth. In this paper, we
propose a flexible Online Learning Multi-path Scheduling (OLMS)
framework to schedule packets to multiple paths and meet various
user-defined requirements by learning the dynamic characteristics
of paths in various applications. Specifically, we consider two types
of applications, which are 1) maxRTT constrained and 2) band-
width constrained, and use OLMS to schedule packets to satisfy
the distinct user-defined requirements. Our theoretical analysis
demonstrates that OLMS achieves guarantees with sublinear regret
and sublinear violation. Furthermore, we implement a prototype
of OLMS in MPQUIC and conduct experiments across different
scenarios. Our experiments on Mininet show that OLMS enables
an 8.42%–18.71% increase in bandwidth utilization in the maxRTT
constrained application and negligible violations of user-defined
requirements in both applications compared to other schedulers.
Additionally, OLMS reduces flow completion times by 4.22%–
10.26% compared to other schedulers, all without incurring large
overhead.

Index Terms—Dynamic scheduling, multi-armed bandit
problem, multi-path data transmission protocols, online learning.

I. INTRODUCTION

N ETWORKS are becoming increasingly dense with strong
inter connectivity among hosts. A recent survey on rout-

ing policies in wide area networks (WANs) suggests that the
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Internet topology has evolved from a hierarchical topology to
an increasingly meshed network topology [1], which implies a
much higher number of paths connecting between two hosts in
WANs.

To take advantage of the redundant paths, several multi-
path transport protocols, such as MPTCP [2], MPQUIC [3],
MPRDMA [4], have emerged in recent years. This development
is driven by the limitations of classical single-path transport
protocols, which lack resilience to path failures and struggle
to fully exploit multi-path resources. These multi-path trans-
port protocols are specifically designed to facilitate multi-path
data transmission for devices equipped with multiple network
interfaces and have been adapted to manage traffic flows within
data center networks [4], [5], [6], [7]. The core functionality of
multi-path transport protocols is to transfer data traffic across
multiple paths from one end-host to another. In scenarios where
a path becomes congested, these protocols dynamically redirect
data traffic from the most congested path to those with lower con-
gestion levels. However, the effectiveness of multi-path transport
protocols is significantly impacted by the embedded multi-path
scheduler, as it determines the path for transmitting packets.
Specifically, the default scheduler in MPTCP and MPQUIC,
known as minRTT, sends packets along the path with the lowest
estimated RTT (round-trip time) until the congestion window of
that path is full [2]. Then it shifts packets to the path with the
next higher RTT. However, as reported in [8], minRTT suffers
from low bandwidth utilization, particularly on heterogeneous
paths.

While existing schedulers mainly focus on exploiting the
utilization of multiple paths [9], [10], [11], they face new chal-
lenges in networks with fluctuating bandwidth and latency. In
such environments, different transmission paths will experience
different fluctuations in path characteristics, such as round-trip
time or available bandwidth. Ignoring these changing path
characteristics and naively scheduling paths can degrade the
performance of applications. For example, as suggested in [12],
inappropriate scheduling to paths with high latencies would
adversely affect a significant fraction of requests in large-scale
distributed systems. Therefore, it is critical to consider the
stochastic path characteristics for better multi-path scheduling.
However, scheduling an optimal path for a packet from a set
of candidate paths with fluctuating characteristics is challeng-
ing. On the one hand, presetting an optimal path without any
prior knowledge of the path characteristics is not feasible. For
instance, in the initialization of a multi-path connection, there
is no historical information on path characteristics available for
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a host to make appropriate scheduling decisions. On the other
hand, the constantly changing path characteristics add complex-
ity to multi-path scheduling, making it challenging to identify
proper paths that offer long-term benefits for data packets.
Moreover, different applications impose different user-defined
requirements on multi-path scheduling. For example, real-time
video streaming services would require the latency to be under
a certain threshold [13], as high latency would deteriorate the
quality of video services.

To tackle these challenges, we approach the multi-path
scheduling problem as an online learning problem. In this
paradigm, the multi-path scheduler is not required to possess
prior statistics of path characteristics (e.g., available bandwidth
and overall latency) but learns these statistics and optimizes
multi-path scheduling in an online fashion. In particular, we
propose a novel online learning framework derived from the
Multi-Armed Bandit (MAB) model, which enables network
performance optimization with partial observations of path
characteristics throughout the learning process. Different from
previous MAB work [14], [15], the main purpose of our on-
line learning framework is not only to find the optimal set of
arms (paths) to minimize the regret (which is the performance
gap between the optimal policy and our multi-path schedul-
ing algorithm during the learning process), but also to try
to satisfy the user-defined requirements in applications. This
is important for many real-world applications. For example,
it is crucial to schedule packets to paths with high available
bandwidth while simultaneously bounding the average latency
in latency-sensitive applications [16], [17]. Therefore, beyond
merely minimizing the regret, our learning algorithm also con-
siders violation, measuring how much the learning algorithm
breaches the user-defined requirements over time. Without these
constraints, the path scheduling algorithm could go wild without
meeting any requirements in applications.

In this work, we propose a flexible Online Learning Multi-
path Scheduling (OLMS) framework. Our framework integrates
constraints into the MAB model, facilitating scheduling packets
to multiple paths to meet user-defined requirements in various
applications. We develop a novel sampling technique based on
Thompson sampling [18] in OLMS to estimate fluctuating path
characteristics without assuming any prior distributions. We then
use the generated posterior samples as the estimates for path
characteristics to schedule packets to the optimal path under
the user-defined requirements, and update the distributions of
path characteristics of the scheduled path when receiving new
measurements. Furthermore, we develop a novel path charac-
teristic monitor to detect abrupt network changes and provide
more timely estimates of path characteristics to enhance the
adaptability of OLMS.

To demonstrate the flexibility of OLMS, we consider two
different applications, namely, maxRTT constrained and band-
width constrained multi-path scheduling applications to cover
most common requirements in real-world applications. For each
application, we specialize different components in the OLMS
framework, and we prove that our specialized algorithm achieves
both sublinear regret and sublinear violation. We also imple-
ment a prototype of our OLMS framework in MPQUIC and
conduct extensive experiments on Mininet. Our experiments

show that OLMS increases the bandwidth utilization by 8.42%–
18.71% in the maxRTT constrained application, and incurs
negligible violations in both applications compared to other
schedulers. In addition, OLMS reduces flow completion times
by 4.22%–10.26% compared to other schedulers, all without
incurring any significant overhead.

In summary, we make the following contributions. 1) To the
best of our knowledge, we are the first to present a flexible online
learning multi-path scheduling framework with user-defined
requirements for multi-path transport protocols. 2) We design
a general multi-path scheduling algorithm that performs well
while satisfying the diverse user-defined requirements in real-
world applications. 3) We also prove that our algorithm achieves
sublinear regret and sublinear violation. 4) We implement a
prototype of our framework in MPQUIC and demonstrate its
effectiveness in multi-path scheduling across different scenarios,
without incurring large overhead.

II. FRAMEWORK DESIGN

In this section, we give the definitions of time slots and
path characteristics, and present our Online Learning Multi-path
Scheduling (OLMS) framework design. Then we define the
general regret and violation to measure the performance of our
framework.

A. Time Slots and Path Characteristics

Throughout a multi-path data transmission session, the sched-
uler at the sender would constantly find available paths to trans-
mit packets to the receiver. We divide the total data transmission
time into a series of time slots where each time slot corresponds
to the duration of a single packet transmission. These time slots
serve as the clocked intervals in our framework. At each time
slot, the scheduler schedules one path from the K paths for
each packet transmission. This concept of “time slots” is similar
to the “Monitor Intervals (MIs)” in PCC Vivace [19] and PCC
Proteus [20], where network measurements and operations are
conducted within these time intervals. From now on, we refer to
the t-th time slot as time t.

To capture the characteristics of various paths in multi-path
data transmissions, we follow the salient works (BBR [21],
PCC [22], PCC Vivace [19], and PCC Proteus [20]) on con-
gestion control, and model a path using two basic characteris-
tics: round-trip time (Rrtt), and available bandwidth (Bbw). Let
K = {1, . . . ,K} denote a set of K candidate paths from the
sender to the receiver. TheRrtt of a path represents the end-to-end
latency caused by data transmission, propagation, and network
queuing; theBbw of a path represents the maximum rate at which
the sender can transmit along this path to its receiver.

B. OLMS Framework

We implement our Online Learning Multi-path Scheduling
(OLMS) framework to learn the two characteristics of multiple
paths and schedule packets to the proper paths. Our implementa-
tion is built upon MPQUIC, and is deployed at the sender in order
to control the multi-path scheduling. Fig. 1 gives an overview of
our framework design. Specifically, the implementation contains
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Fig. 1. An overview of OLMS framework.

three components: (i) Path Characteristic Statistics Update,
(ii) Path Characteristic Estimation, (iii) Constrained Multi-path
Scheduling.

In Path Characteristic Statistics Update, the sender receives
acknowledgments (ACKs) from the receiver via the sched-
uled paths and obtains measurements of path characteristics
at time t. Using these measurements, the sender updates the
posterior distribution of path characteristics for the scheduled
path. At time t+ 1, the sender will generate new estimates of
the path characteristics via the Path Characteristic Estimation
component. Then the sender transmits the packet along the path
scheduled via the Constrained Multi-path Scheduling. Inside the
Path Characteristic Statistics Update component, there is a sub-
component called Path Characteristic Measurements Monitor.
In this sub-component, the sender can detect abrupt network
changes based on the measurements and posterior distribution
of path characteristics. Upon detecting a network change, the
sender will reinitialize the path characteristic statistics.

In Path Characteristic Estimation, at time t ≥ 1, the sender
generates path characteristics estimates of theK candidate paths
from the updated posterior distributions using the Thompson
Sampling method. Specifically, we model the unknown prior dis-
tributions of path characteristics of theK candidate paths by gen-
eralizing the Bernoulli distributions (see details in § III). This ap-
proach does not require knowledge of prior distributions, which
differs from the classical sampling techniques. These estimates
are then input into the optimization module in the Constrained
Multi-path Scheduling, where the sender schedules the packet to
the optimal path pt ∈ {1, . . . ,K} from the K candidate paths
that optimizes the utility (e.g., delay, bandwidth) and satisfies
the user-defined requirements in applications. The sender then
transmits the packet along the scheduled optimal path.

In summary, our OLMS framework measures the path char-
acteristics, updates the statistics, estimates the characteristics,
transmits data along the scheduled optimal path, and obtains
new path characteristic measurements in an iterative fashion.
This closed control loop enables flexible and adaptive multi-path
packet scheduling.

C. General Regret and Violation

In our OLMS framework, different applications may tailor
their implementations of the three components to align with their
unique requirements. Despite the diversity of implementations

across different applications, we use two common metrics, regret
and violation, to measure their performance.

Let U(pt) be the general utility function of path pt. The regret
of a multi-path scheduling algorithm measures the cumulative
loss of utility of the scheduled path compared against the utility
of the optimal path scheduling algorithm1 which knows all path
characteristics and can consistently schedule the optimal path at
each time slot. Define the utility of the optimal path scheduling
algorithm at time t as OPT. Specifically, in the context of a
maximization problem, compared to the maximal optimal utility
OPTmax, the general regret for a multi-path scheduling algorithm
up to time T is defined as follows,

Regmax(T ) = E
[∑T

t=1
(OPTmax − U(pt))

+

]
, (1)

where the expectation is taken over the randomness of the
algorithm in scheduling the paths and (·)+ = max(·, 0). Here
we only take account of the non-negative values in calculating
the regret as suboptimal performance arises only when OPTmax

is greater than U(pt). Conversely, for a minimization problem,
the minimal optimal utility is OPTmin and the general regret can
be defined as

Regmin(T ) = E
[∑T

t=1
(U(pt)−OPTmin)

+

]
. (2)

Note that the smaller the regret, the closer the algorithm ap-
proaches the optimal algorithm. Thus, the regret should be as
small as possible.

Given that the sender can only use the estimates of path
characteristics to schedule paths, the actual path characteristics
of the scheduled path may initially violate the user-defined
requirements. This is particularly evident when there is little
information about the paths during the connection setup. Let
the general constraint function G(pt) (G(pt) ≤ 0) represent
the user-defined requirement on path pt for pt ∈ K. A positive
violation G(pt) will be incurred if the constraint G(pt) ≤ 0 is
violated. Thus, we define the general overall violation of the
constraint of a path scheduling algorithm at time T as follows:

Vio(T ) = E
[∑T

t=1
G(pt)

+

]
, (3)

where the expectation is taken over the randomness of the
algorithm in scheduling the paths. Here a small violation means
that the path scheduled by the algorithm seldom violates the
constraint. Thus, the violation should be as small as possible.
Note that the violation defined in (3) accumulates the step-wise
constraint violation over T time slots. This violation is different
from violations defined on the long-term constraint satisfac-
tion, i.e., (

∑T
t=1 G(pt))+ in [23] and [24], where the feasible

solutions to G(pt) ≤ 0 can cancel out the effects of violated
constraints.

1Note that the optimal multi-path scheduling algorithm may not be realizable
in practice because it requires the full knowledge of the stochastic nature of the
path characteristics.
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III. ALGORITHM DESIGN

In this section, we first present the general path model-
ing and elaborate on the multi-path scheduling algorithm in
the OLMS framework. Then we provide a detailed descrip-
tion of the sub-component Path Characteristic Measurements
Monitor.

A. Path Modeling

Let the random variable rti characterize the round-trip time
(Rrtt) of path i at time t ≥ 1 and ri = E[rti ] be the unknown mean
of rti for i ∈ K. Let r̂ti be the estimate of rti at time t. For the
Rrtt of theK paths, we have the vectors2rt = (rt1, . . . , r

t
K), r =

(r1, . . . , rK), and r̂t = (r̂t1, . . . , r̂
t
K). Let the random variable

bti denote the bandwidth (Bbw) of path i at time t and bi = E[bti]
denote the unknown mean of bti for i ∈ K. Denote b̂ti as the
estimate of bti at time t. Similarly, for the Bbw of the K paths,
we have the vectors bt = (bt1, . . . , b

t
K), b = (b1, . . . , bK), and

b̂t = (b̂t1, . . . , b̂
t
K).

For mathematical tractability, we assume that the both path
characteristics, Rrtt and Bbw of the K paths, are independent of
each other. Such independence among the path characteristics is
also suggested in BBR [21] and PCC Vivace [19], where the
path characteristics are measured with different uncorrelated
functions. Without loss of generality, we normalize these char-
acteristics to [0,1] with min-max scaling, i.e., rti ∈ [0, 1], and
bti ∈ [0, 1] for i ∈ K, t ≥ 1.

At each time t, we consider scheduling a packet to the optimal
path in the K candidate paths. Here we point out that a good
multi-path scheduling algorithm should find the optimal path by
taking the random nature of the path characteristics into consid-
eration. In other words, the algorithm should continuously ex-
plore the optimal path and adjust the probabilities of scheduling
the K paths by estimating the path characteristics. Otherwise,
the regret and violation of the algorithm would be linear in time
T . A simple example is the uniform random algorithm where
each path is scheduled with equal probability. This algorithm
neglects the heterogeneity of the path characteristics. As a result,
it incurs both linear regret and linear violation as there can
be a constant loss in the utility U(pt) compared to OPTmax

or OPTmin at each time t, where pt represents the scheduled
path at time t. Let vt = (vt1, . . . , v

t
K) be the probabilistic path

scheduling vector for the K paths at time t, where vti ∈ [0, 1] is
the probability of scheduling a packet to path i at time t for i ∈ K.
We have

∑K
i=1 v

t
i = L (1 ≤ L < K) as we aim to identify an

optimal set of L paths and schedule packets to a path within this
set at each time t. Let 1 be the K-dimensional vector whose
elements are all ones. Let NB,t

i and NR,t
i be the number of

times that bti and rti are measured from path i at the beginning of
time t, i.e., NB,t

i =
∑

τ<t 1(i ∈ pτ ), N
R,t
i =

∑
τ<t 1(i ∈ pτ )

and NB,1
i = 0, NR,1

i = 0. Here 1(E) is an indicator function.
Let χ = {v ∈ RK |0 ≤ vi ≤ 1,1ᵀv = L} be the set of feasible
probabilistic path scheduling vectors.

2All vectors are column vectors.

Algorithm 1: General Algorithm Design in OLMS.

1: Init: SB
i = SR

i = 0, NB,1
i = NR,1

i = 0 for i ∈ K
2: Establish K paths between sender and receiver.
3: for t = 1, 2, . . . , T do

◃ Path Characteristic Estimation:
4: for i = 1, 2, . . . ,K do
5: b̂ti = Beta(SB

i + 1, NB,t
i − SB

i + 1)

6: r̂ti = Beta(SR
i + 1, NR,t

i − SR
i + 1)

◃ Constrained Multi-path Scheduling:
7: Solve a linear program for path scheduling vector vt.
8: Select a path pt with vt and send packet along pt.

◃ Path Characteristic Statistics Update:
9: btpt

, rtpt
← measurements of pt’s Bbw, Rrtt

◃ Path Characteristic Measurements Monitor:
10: MONITOR(btpt

, pt) ◃ Bandwidth monitor
11: MONITOR(rtpt

, pt) ◃ RTT monitor
12: SB

pt
← SB

pt
+ 1 if Bernoulli(btpt

) = 1
13: SR

pt
← SR

pt
+ 1 if Bernoulli(rtpt

) = 1
14: NB,t+1

pt
← NB,t

pt
+ 1, NR,t+1

pt
← NR,t

pt
+ 1

B. General Algorithm Design

Algorithm 1 shows the general design of our online learning
multi-path scheduling (OLMS) framework. First, the multi-path
packet sender establishes K data transmission paths with the
receiver (Line 2). At each time t, via the Path Characteristic
Estimation (Line 5-7), the sender gets the estimates of the
path characteristics of the K paths. In particular, note that the
probability of observing a success in a Bernoulli trial Bern(ri)
with probability ri is exactly the expectation of the random
variable rti with unknown probability density function f(rti).
That is, Pr(rti = 1) =

∫ 1
0 rtif(r

t
i)dr

t
i = ri. Hence, one can per-

form Bernoulli trials with the success probabilities bti, and rti ,
and use random samples from Beta distributions which are
conjugate priors of Bernoulli distributions to estimate the path
characteristics b̂ti, and r̂ti , respectively.

More specifically, let SB
i be the number of successful

Bernoulli trials with unknown probability bti up to time t.
Initially, we have SB

i = 0 and SR
i = 0 at time t = 1 since no

path has been scheduled. Then we can give Bayesian estimates
for the Bbw and Rrtt of path i ∈ K, b̂ti and r̂ti , by sampling
from the Beta distributions at time t as shown in Line 6 and
Line 7, respectively. For large NB,t

i , according to the law of
large numbers, the estimate b̂ti in Line 6 would be concentrated
on the fraction SB

i /NB,t
i . This fraction is approximately equal

to bi and is equal to the expected successful probability of the
Bernoulli trial Bernoulli(bti). Similarly, the estimate r̂ti in Line 7
would be close to ri for large NR,t

i .
In the Constrained Multi-path Scheduling (Line 9-10), the

sender uses the estimates as input to solve a linear program (LP)
optimizeG(pt)≤0,vt∈χU(pt) to find the path scheduling vectorvt

that optimizes the utility function, and at the same time, satisfies
the constraint of a given multi-path scheduling application. If the
LP has no feasible solution, OLMS would fall back to default
path scheduler minRTT. Then it samples a set of L paths from
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Algorithm 2: Path Characteristic Measurements (Bbw)
Monitor.

Init: q, δ, h, cBi = 0 for i ∈ K
1: function Monitorbti, i
2: if NB,t

i < q then return

3: µb =
SB
i +1

NB,t
i

, σb =

√
(SB

i +1)(NB,t
i −SB

i +1)

(NB,t
i +3)(NB,t

i +2)2

4: if |bti − µb| > δσb then
5: cBi ← cBi + 1
6: if cBi > h then
7: SB

i ← 0, NB,t
i ← 0 ◃ Statistics reinitialization

8: cBi ← 0 ◃ Counter reset

theK candidate paths probabilistically using the path scheduling
vector vt via a randomized rounding scheme [25]. From this set,
it selects a path pt with the highest vpt

t from that set. Then the
sender transmits the packet along the scheduled path pt.

Finally, in the Path Characteristic Statistics Update (Line 12-
18), when the sender obtains new measurements of the path char-
acteristics from the scheduled path pt, it first examines whether
the distributions of the path characteristics are shifted or not with
the Path Characteristic Measurements Monitor. Specifically, the
sender invokes the MONITOR function (detailed in Algorithm 2)
for both the bandwidth and the RTT measurement of path pt
and check if the path characteristic statistics (SB

i , NB,t
i , SR

i ,
and NR,t

i ) should be updated. Then it updates the parameters
using Bernoulli trials, Bernoulli(bti) and Bernoulli(rti), as shown
in Line 16, and Line 17 in Algorithm 1, respectively. Overall,
Algorithm 1 operates in an iterative fashion to find the optimal
path in different applications.

C. Path Characteristic Measurements Monitor

As the distributions of bandwidth or RTT can change due to
network fluctuations, the estimates of bandwidth and RTT from
the Path Characteristic Estimation component could be inaccu-
rate. To address this issue, we propose the Path Characteristic
Measurements Monitor sub-component in the Path Character-
istic Statistics Update to detect the shift of distributions of the
path characteristics. Take the Path Characteristic Measurements
Monitor for Bbw in Algorithm 2 as an example. At each time t,
the function MONITOR takes the bandwidth measurement (bti)
and the index of path (i) as the input. It first disregards the
initial q measurements to avoid insufficient statistics, as shown
in Line 3. Then it computes the average bandwidth µb and
standard deviation of the bandwidth σb using the bandwidth
statistics, as shown in Line 4. When the bandwidth measurement
deviates from the average bandwidth by δσb (|bti − µb| > δσb), it
increments the deviation counter of bandwidth (cBi ) by 1. Upon
reaching a threshold of h such deviations, the Path Character-
istic Measurements Monitor reinitializes the path characteristic
statistics and resets the deviation counter, as shown in Line 8 and
9, respectively. The Path Characteristic Measurements Monitor
for Rrtt operates in a similar manner to that for Bbw, except that
the MONITOR function takes the Rrtt measurement as input and
has the capability to reinitialize the Rrtt statistics.

IV. APPLICATIONS AND ALGORITHM ANALYSIS

In this section, we consider two types of applications which
users can specify the constraints, they are 1) maxRTT con-
strained, and 2) bandwidth constrainedmulti-path scheduling
applications. For each application, we specify the utility of
the optimal algorithm, the utility function, and the constraint
function in the Constrained Multi-path Scheduling component
in our general algorithm design (see Algorithm 1), and provide
theoretical guarantees on the specialized regret and violation.

A. MaxRTT Constrained Multi-path Scheduling

In scenarios where the underlying network paths are heteroge-
neous, multi-path transport protocols often perform worse than
single-path transport protocols, particularly in latency-sensitive
applications such as search engines and financial trading applica-
tions [26], [27]. These latency-sensitive applications can benefit
from shaving off even fractions of a second of latency to improve
the users’ experience or boost the revenue. Moreover, maintain-
ing consistently low latency is critical, as even a small number
of delayed operations can cause a ripple effect that degrades the
application performance [12]. In a multi-path connection, where
packets can traverse different paths with varying round-trip
times (Rrtt) due to path heterogeneity, the maximum Rrtt among
these paths becomes the crucial determinant of the applica-
tion’s latency. By imposing a threshold on the maximum Rrtt,
we can effectively control the end-to-end delay in multi-path
transmission. This ensures that even if individual paths exhibit
large latencies, the overall latency of the transmission remains
within acceptable bounds, thereby enhancing the reliability and
performance of the application.

In this subsection, we consider the maxRTT constrained ap-
plication: Scheduling a path at each time slot to maximize the
available bandwidth, subject to the maximum RTT of the sched-
uled path is no greater than a preset threshold Cr throughout
the data transmission.

To adapt the maxRTT constrained application to the OLMS
framework, we specify the Constrained Multi-path Scheduling
component in Algorithm 1. Specifically, we solve the LP for the
path scheduling vectorvt using the estimates of theBbw andRrtt.
Let Cr = Cr1 and x & Cr if xi ≤ Cr for all i = 1, . . . ,K,
where x = (x1, . . . , xK) is a K-dimensional vector. Let ◦ be
the element-wise product operator of two vectors. Then the LP
for the maxRTT constrained application can be expressed as
follows,

vt = argmax
v∈χ, r̂t◦v&Cr

{
vᵀb̂t

}
. (4)

In (4), the objective is to maximize the available bandwidth,
i.e., vᵀb̂t, of different paths, given the Bbw estimates b̂t and
the Rrtt estimates r̂t of the paths. The constraint r̂t ◦ v & Cr is
to guarantee that the Rrtt estimate of any scheduled path is no
greater than Cr.

Now we give the specific utility function OPTmax of the
optimal path scheduling algorithm, utility function U(pt), and
the constraint functionG(pt) for the maxRTT constrained appli-
cation. Given the full knowledge of the available bandwidthBbw
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(b) and round-trip time Rrtt (r) of the K paths, the optimal algo-
rithm OPTmax can find the optimal path scheduling vector v∗ to
maximize the available bandwidth and satisfy the constraint on
the maximum latency. Specifically, the OPTmax in the maxRTT
constrained application can be expressed as

OPTmax ≡ max
v∈χ,r◦v&Cr

{vᵀb} , (5)

and the optimal path scheduling vector is v∗ = argmaxv
OPTmax. In addition, the utility U(pt) in the maxRTT con-
strained application is the available bandwidth of the scheduled
path at time t:

U(pt) ≡ bpt . (6)

As the maximum Rrtt of the scheduled path should be no greater
than the preset threshold Cr, we define the constraint function
G(pt) for the maxRTT constrained application as follows,

G(pt) ≡ rpt − Cr. (7)

Note that violation occurs when G(pt) ≥ 0 if rpt is greater than
Cr at time t in (7). With the function definitions in (5)-(7), we
can compute the regret and violation for the maxRTT constrained
application.

At this stage, we have specified the functions in the Con-
strained Multi-path Scheduling component in Algorithm 1 and
have adapted the maxRTT constrained multi-path scheduling to
our OLMS framework.

B. Bandwidth Constrained Multi-path Scheduling

Many cellular Internet Service Providers (ISPs) currently
offer plans featuring unlimited data usage but limited data rates
achieved through bandwidth throttling. This strategy aims to
attract cellular users who prioritize low-latency applications,
such as sending chat messages or browsing text-rich websites,
over high bandwidth. By offering plans tailored to users who are
not sensitive to bandwidth but value low latency, ISPs can cater
to a diverse range of user preferences and enhance their overall
service offerings.

To improve the users’ experience, it is also crucial for the
ISPs to deliver data with minimum delay under the bandwidth
throttling constraint. However, the deployment of multi-path
transport protocol on mobile devices [28], [29] poses challenges
in this regard, as data are transmitted through multiple paths
instead of a single one. Traditional token-based bandwidth throt-
tling methods, originally designed for single network interfaces,
cannot guarantee minimal delay in multipath transport protocols.
To achieve the minimal latency under the bandwidth throttling
constraint, one can schedule paths that minimize the maximum
Rrtt while limiting the available bandwidth. Specifically, we
consider the bandwidth constrained application: Scheduling a
path at each time slot such that the maximum RTT of the sched-
uled path is minimized, with the requirement that the available
bandwidth of the scheduled path is at most Cb throughout the
data transmission. Here Cb is an application specific bandwidth
throttling threshold.

For the Constrained Multi-path Scheduling component in the
bandwidth constrained multi-path scheduling, the correspond-
ing path scheduling vector vt can be expressed as:

vt = argmin
v∈χ,vᵀb̂t≤Cb

{
max
i∈K

{
vir̂

t
i

}}
. (8)

In (8), the objective is to minimizemaxi∈K vir̂ti , which is the
maximumRrtt of the scheduled path i. The constraintvᵀb̂t ≤ Cb

is to ensure that the available bandwidth of the scheduled paths
cannot exceed Cb.

Now we give the specific utility function OPTmin of the opti-
mal algorithm, utility functionU(pt), and the constraint function
G(pt) for the bandwidth constrained application. Given the K
paths’ available bandwidth b and round-trip time r, the OPTmin

for the bandwidth constrained application can be expressed as

OPTmin ≡ min
v∈χ,vᵀb≤Cb

{
max
i∈K

{viri}
}
, (9)

and the optimal path scheduling vector is v∗ = argminv
OPTmin. In addition, the utility function for the bandwidth
constrained multi-path scheduling is as follows,

U(pt) ≡ rpt , (10)

which is the maximum Rrtt of the scheduled path, i.e, pt, at
time t.

As the available bandwidth of the scheduled path is no greater
than the throttling bandwidth Cb, the constraint function G(pt)
in the bandwidth constrained application is defined as follows,

G(pt) ≡ bpt − Cb. (11)

In above, violation occurs if the bandwidth bpt of the scheduled
path pt is greater than the throttling bandwidth Cb at time t.

Using the function definitions in (9)–(11), we can compute the
regret and violation for the bandwidth constrained application.
This completes the adaptation of the bandwidth constrained
application to the OLMS framework.

C. Theoretical Guarantee of OLMS

Our OLMS framework has some attractive theoretical prop-
erties which we state in the following theorem.

Theorem 1: Suppose that the path characteristics, Rrtt and
Bbw of path i, are independent and identically distributed (i.i.d.)
over time for i ∈ K, with the unknown mean ri = E[rti ] and
bi = E[bti], and assume that Rrtt and Bbw are independent across
different paths. By adapting the two multi-path scheduling appli-
cations, namely the maxRTT constrained multi-path scheduling,
and bandwidth constrained multi-path scheduling, to the OLMS
framework, for each application, we can guarantee that the upper
bound of the regrets in (1) and (2) are

Regmin(T ) ≤ O
(√

KT log T
)
,

Regmax(T ) ≤ O
(√

KT log T
)
, (12)

respectively, and the upper bound of the violation in (3) is

Vio(T ) ≤ O
(√

KT log T
)
. (13)
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For the two applications of the OLMS framework, as we have
different utility functions and constraint functions, the analyses
of regrets and violations of the applications are also different.
Thus, we prove Theorem 1 separately for each application.
Notably, OLMS remains effective, albeit with a less tight bound,
when the path characteristics are dependent [30]. We refer
interested readers to the supplementary material for the details
of the proofs of the above theorem.

V. IMPLEMENTATION

We implement OLMS in an MPQUIC [3]-enabled sender
based on quic-go. The implementation of OLMS3 consists of
four key components, as described below:

Negotiation mechanism; The negotiation mechanism compo-
nent enables an application to communicate its requirements to
the server/sender during the connection establishment phase.
During connection initiation, the application specifies its re-
quirements (e.g., maxRTT constrained and bandwidth con-
strained) as part of the setup parameters. These requirements are
encoded in a custom packet compatible with the MPQUIC trans-
port protocol. The sender integrates the received requirements
into the OLMS framework to configure the linear programming
solver. This ensures that the OLMS framework is properly
configured with user-defined requirements, enabling tailored
scheduling decisions and improved performance.

Constrained multi-path scheduling: The Constrained Multi-
Path Scheduling component selects optimal paths for packet
transmission while satisfying user-defined requirements. During
each transmission, the Path Characteristic Estimation compo-
nent (described in the next paragraph) updates path character-
istics (e.g., RTT and bandwidth), which are then used as input
for a linear programming (LP) solver. The scheduling vector
vt is determined by solving the LP problem using a standard
technique [31]. Dependent rounding technique is then applied
to convert the probabilistic scheduling vector into deterministic
path selections. Finally, one path is randomly chosen for packet
transmission. This approach balances the exploration of multiple
paths with the exploitation of high-utility paths, ensuring robust
and efficient scheduling.

Path characteristic estimation: The Path Characteristic Es-
timation component provides accurate and dynamic estimates
of path characteristics. It uses posterior Beta distributions to
model the characteristics and generate estimates by sampling
from the continuously updated distributions (see Algorithm 1).
Upon receiving ACKs, bandwidth and RTT measurements are
computed using the congestion window and the smoothed RTT
of each path. These measurements are then used to update the
posterior distributions, ensuring the estimates remain accurate
and adapt to current network conditions.

Path characteristic statistics update: The Path Characteristic
Statistics Update component collects measurements and
monitors them for any abrupt changes. When ACKs are received,
the smoothed RTT of each path is retrieved using MPQUIC’s

3Our implementation of OLMS is open-source and available at https://github.
com/MLCL-SYSU/OLMS-MPQUIC.git.

Fig. 2. Network setup with a multi-path packet sender and receiver.

internal function pth.rttStats.SmoothedRTT(), and
the congestion window is obtained with function pth.sent
PacketHandler.GetCongestionWindow(). Band-
width for each path is then calculated as the ratio of the
congestion window size to the smoothed RTT. To detect abrupt
changes in path characteristics, we implement the MONITOR()
function in the Path Characteristic Measurements Monitor
to track deviations of measurements from their expected
distributions. Path statistics are reinitialized only if these
deviations persist for h consecutive monitoring intervals,
ensuring robust adaptation to network changes while reducing
false alarms (see Algorithm 2).

VI. EXPERIMENTS

In this section, we conduct experiments on the maxRTT
constrained and bandwidth constrainedmulti-path scheduling
applications under a controlled network environment. Specifi-
cally, we employ the congestion control algorithm OLIA [32] at
the sender, and compare the performance of OLMS framework
against the different schedulers, including Round Robin (RR),
minRTT [33], ECF [34], BLEST [35], and Peekaboo [36] for
each application.

A. Network Setup

1) Network Topology: To evaluate the performance of the
two applications in our OLMS framework, we set up a net-
work with the topology shown in Fig. 2. We deploy OLMS in
Mininet 2.2.2 [37] on Ubuntu 18.04 and use the traffic control
tool tc4 to conduct controlled experiments for the study of the
efficacy of different schedulers under various path characteristic
settings. This experimental setup facilitates a comprehensive
evaluation of the OLMS framework’s performance across dif-
ferent network configurations and conditions.

As shown in Fig. 2, each Ethernet port (eth0a-eth3a and
eth0b-eth3b) is configured with a unique IP address with a
network mask, and all ports are connected to an 8-port Gigabit
Ethernet router. If all Ethernet ports on the sender are configured
to communicate directly with those on the client, an MPQUIC
connection can establish up to 16 distinct paths between the
server and the client. Modern smart devices, leveraging advance-
ments such as the DSDA (Dual SIM Dual Active) technique in

4https://man7.org/linux/man-pages/man8/tc.8.html
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5G networks [38] and the DBDC (Dual-Band Dual-Concurrent)
technique in Wi-Fi networks [39], typically support 2 to 4 dis-
tinct transmission paths. To evaluate the robustness of OLMS in
challenging environments, we first consider 4 paths between the
two hosts, as suggested in the previous study [40]. To control the
maximum number of supported paths, we configure the routing
table such that each sender’s Ethernet port can only communicate
directly with only one receiving host’s Ethernet port. This cre-
ates 4 disjoint paths: eth0a-Router-eth0b, eth1a-Router-eth1b,
eth2a-Router-eth2b, and eth3a-Router-eth3b). Note that paths
are not required to be disjoint, as overlapping paths are common
in practical network scenarios. This configuration aligns with
the setups used in the recent studies [36], [41].

2) Path Characteristic Control: We configure the Ethernet
ports at the sender to vary the path characteristics using the
network emulation function netem5 and the traffic control tool
tc. Specifically, for each of the four successfully established
paths, we set different queuing disciplines using tc on each of
the four Ethernet ports at the sender to create heterogeneity in
the path characteristics, Rrtt and Bbw.

B. Application I: MaxRTT Constrained Multi-path Scheduling

To investigate the performance of the maxRTT constrained ap-
plication, we initiate a large file (5 GB) transfer from the sender
to the client in our network setup described in Section VI-A.
Upon establishing an MPQUIC connection with four paths, we
consider scheduling the optimal path for each packet from 4
paths (K = 4) using Algorithm 1 with components specified in
maxRTT constrained multi-path scheduling in Section IV-A.

Then we use tc to configure the Ethernet ports at the sender
to control the path characteristics of the 4 paths. Specifically,
the delays of the four Ethernet ports at the sender are set to
20 ms, 30 ms, 50 ms, and 60 ms respectively, with an additional
jitter of 5 ms introduced on each path to simulate realistic delay
variations. The available bandwidth for these ports is limited at
30 Mbps, 20 Mbps, 60 Mbps, and 40 Mbps, respectively. The
loss rates for these paths are set to 1.00%, 1.19%, 1.50% and
1.56%, respectively. We set the maximum RTT threshold for
the maxRTT constrained application to 50 ms, i.e., on average,
the maximum RTT of the scheduled path should not exceed
50 ms. To facilitate comparison, we normalize the four RTTs and
the threshold to [0,1] using a scaling factor of 100 ms, and we
normalize the four available bandwidths to [0,1] using a scaling
factor of 100 Mbps. Thus, theRrtt vector for the four paths is r =
(0.2, 0.3, 0.5, 0.6), theBbw vector isb = (0.3, 0.2, 0.6, 0.4), and
the maximum RTT threshold is Cr = 0.5. For each packet,
we select a path randomly from a set of 2 (L = 2) optimal
paths sampled with the path scheduling vector vt. This random
selection from a set of optimal paths ensures that packets are
transmitted via high-quality paths in case the primary path
becomes unavailable. By pre-selecting a subset of optimal paths,
the scheduler reduces the risk of falling back to a suboptimal
path selected by minRTT. By solving (5) for the optimal path
scheduling vector v∗ and the optimal utility OPTmax, we have
v∗ = (0.17, 0, 1.0, 0.83) and OPTmax = 0.98.

5https://man7.org/linux/man-pages/man8/tc-netem.8.html

We compare OLMS against other schedulers by examining the
total throughput of selected paths and the RTT of the MPQUIC
data connection. We estimate the RTT of the scheduled path by
reading from the measurements of smoothed RTT. We estimate
the throughput of the scheduled paths using the ratios of the size
of the congestion window to the smoothed RTT. The throughput
of the selected path quantifies the total throughput of the paths
selected by the scheduler in each time slot. For simplicity of
illustration, we present the first 20-second experiment results
averaged over 50 times of the same 5 GB file transfers. These
averaged results provide a concise overview of the performance
of OLMS and other schedulers in managing bandwidth and
latency in the MPQUIC data connection.

As shown in Fig. 3(a), OLMS achieves 8.42%–18.71% higher
throughput compared to other schedulers. The average band-
width of minRTT is lower than RR, which can be attributed
to the heterogeneity of path characteristics. ECF also has a
lower bandwidth given the heterogeneous path characteristics
as it mainly focuses on minimizing the completion time of
each packet. We also evaluate the bandwidth utilization of
OLMS across four paths, which are 71%, 22%, 98%, and 77%
respectively. It demonstrates that OLMS can effectively select
the high-quality paths. Fig. 3(b) shows the measured RTTs of
different schedulers in the MPQUIC data connection. The RTTs
of our OLMS framework are all around the threshold 50ms
(Cr = 0.5). In contrast, the RTTs of other schedulers (Peekaboo,
ECF, minRTT, and BLEST) have very large fluctuations since
they do not respect the maximum RTT constraint. RR expe-
riences the highest latency with a 90 ms RTT in the maxRTT
constrained multi-path scheduling application. Peekaboo, ECF,
minRTT, and, BLEST also have higher latencies than OLMS.
The reason is that they improperly schedule the heterogeneous
paths and cause queue backlog thereby increasing the latency.
OLMS outperforms other schedulers as it provides more ap-
propriate scheduling than other schedulers with its Constrained
Multi-path Scheduling component using accurate estimates of
bandwidth and RTT from its Path Characteristic Estimation
component.

To put things in perspective, we show the cumulative regret
and cumulative violation of our OLMS framework and other
schedulers in Fig. 3(c) and (d), respectively. Our OLMS frame-
work has 22.50%–38.64% less cumulative regret and 79.52%–
79.98% less cumulative violation than other schedulers.

Overall, the experiments show that our OLMS framework
consistently schedules better paths compared to other sched-
ulers by actively adjusting path scheduling during large file
transfers. This scenario serves as a representative application of
maxRTT constrained multi-path scheduling. The results demon-
strate the effectiveness of OLMS in optimizing path schedul-
ing and improving overall performance in real-world network
environments.

C. Application II: Bandwidth Constrained Multi-path
Scheduling

To investigate the performance of bandwidth constrained
application in OLMS, we initiate a 500 MB file transfer
and run Algorithm 1 with the three components specified in
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Fig. 3. Experiment results of maxRTT constrained multi-path scheduling with with Cr = 0.5 (Maximum RTT is constrained at 50ms).

Fig. 4. Experiment results of bandwidth constrained multi-path scheduling with Cb = 0.4 (Bandwidth throttling threshold is set to 40 Mbps). .

Application II using the network setup in Section VI-A. Similar
to the experiment setup in Application I, we consider scheduling
the optimal paths from 4 (K = 4) paths.

In the bandwidth constrained application, the available band-
widths of the four Ethernet ports are limited to 30 Mbps,
10 Mbps, 40 Mbps, and 60 Mbps, respectively. The bandwidth
throttling threshold is set to 40 Mbps, ensuring that the through-
put of the scheduled path does not exceed this threshold on
average. The delays of the four Ethernet ports at the sender are
configured to be 30 ms, 30 ms, 40 ms, and 10 ms, respectively.
We normalize the available bandwidths and the bandwidth throt-
tling threshold to the range [0, 1], and similarly normalize the
RTTs to the range [0, 1]. Thus, theBbw vector for the four paths is
b = (0.3, 0.1, 0.4, 0.6), theRrtt vector isr = (0.3, 0.3, 0.4, 0.1),
and the bandwidth throttling threshold is Cb = 0.4. We consider
a scenario where a path is selected for each packet randomly from
a set of 2 (L = 2) optimal paths sampled from the 4 candidate
paths using vt. Solving (9) reveals the optimal scheduling vector
v∗ = (1, 1, 0, 0) and the optimal utility OPTmin = 0.3. This in-
dicates that the optimal path scheduling algorithm would always
schedule packets between the first two paths to ensure that the
bandwidth is throttled at the bandwidth throttling threshold.

Fig. 4 shows the experiment results of the RTTs, the through-
put of selected paths, the cumulative regret, and the cumulative
violation averaged over 50 times of a 500 MB file transfer.
In Fig. 4(a), OLMS initially violates the bandwidth throttling
constraint Cb before t = 5 as it lacks information of the path
characteristics. After t = 5, the throughput of selected paths of
OLMS constantly adheres to the bandwidth throttling threshold
Cb. In contrast, other schedulers fail to comply with the band-
width throttling constraint and aggressively utilize the available
bandwidth. Thus, their throughput of selected paths exceeds

the threshold Cb. Similarly, the bandwidth utilization of OLMS
across four path is 99%, 76%, 33%, and 25% respectively. It
shows that OLMS can select high-quality paths while adhering
to the bandwidth throttling threshold. As shown in Fig. 4(b), our
OLMS framework achieves the lowest latency with RTTs around
40 ms among all schedulers. Other schedulers have much higher
RTTs, primarily due to the introduction of queue delays at the
paths resulting from inappropriate path scheduling decisions.
This shows the effectiveness of OLMS in maintaining adherence
to bandwidth throttling constraints over time.

Fig. 4(c) and (d) show the cumulative regret and cumulative vi-
olation of different schedulers. OLMS achieves the lowest regret,
and demonstrates a 15.97%–29.12% reduction in cumulative
regret and a 36.14%–44.98% reduction in cumulative violation
compared to other schedulers.

D. Other Experiments

In this subsection, we investigate the effectiveness of OLMS
in web browsing, and study the impact of flow size and network
dynamics on our OLMS framework. At last, we investigate the
effectiveness of OLMS when competing with other flows.

1) Web Browsing: In this experiment, we consider a typical
mobile network scenario where each client can communicate
with the server via both LTE/5G and Wi-Fi networks. Specifi-
cally, the Wi-Fi and LTE links have bandwidths of 20 Mbps and
5 Mbps, RTTs of 20 ms and 60 ms, and packet loss rates of 1.56%
and 0.8%, respectively. We evaluate the performance of different
schedulers in browsing the home pages of Google and YouTube,
respectively. Specifically, we host copies of the home pages,
google.com and youtube.com, on an MPQUIC-enabled web
server by scraping down all the web objects from the websites.
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TABLE I
WEBSITE INFORMATION FOR GOOGLE AND YOUTUBE

Fig. 5. Page load time of Google and YouTube.

The number of objects and the page size for the two websites
are detailed in Table I. Then we deploy a web client to retrieve
the web pages. To assess the effectiveness of OLMS framework
in web browsing, we analyze the page load time (PLT), i.e., the
completion time of all web objects. For brevity, we only present
the experiment results of the maxRTT constrainedmulti-path
scheduling application using the path characteristics setting in
Application I. For each website, we repeat the web browsing 50
times and compare the PLT of OLMS with other schedulers. This
comparative analysis provides insights into the effectiveness of
OLMS in optimizing webpage loading times and enhancing the
browsing experience for users.

As shown in the box plot in Fig. 5, when browsing the Google
home page, OLMS achieves a slightly better PLT, reducing it by
up to 8% compared to other schedulers. It is worth noting that
the relatively small number of objects on the Google home page
limits OLMS’s ability to gather sufficient statistics for accurately
learning the path characteristics. In contrast, for the home page
of YouTube, which features a significantly larger number of
objects, OLMS achieves the shortest PLT with 12.3%–25.9%
reduction compared to other schedulers, as shown in Fig. 5. This
significant improvement can be attributed to OLMS’s ability to
collect more statistics and provide more accurate estimates of
path characteristics when dealing with a larger number of web
objects. In summary, our findings in Fig. 5 show that OLMS
improves web browsing speed for content-rich websites.

2) Impact of Flow Size: As reported in [42], [43], network
traffic exhibits a high variability in terms of the flow sizes.
To study the impact of flow size on OLMS, we use files of
different sizes, including 5 MB, 200 MB, and 1500 MB, in
the file transfers. For brevity, we only present the experiment
results of the maxRTT constrained application using the path
characteristics setting in Application I. For each file size, we
repeat the file transfer process 50 times and compare the flow
completion time of OLMS with that of other schedulers. This
comparative study allows us to assess how OLMS performs
under varying flow sizes and its ability to adapt to different
network traffic.

As shown in Fig. 6, across all flow sizes, OLMS consistently
achieves the lowest flow completion time compared to other
schedulers. Especially, it has a much lower flow completion time
compared to minRTT for large flow sizes (1500 MB). The reason
is that OLMS has more time to learn the path characteristics
and schedule the optimal paths when the flow size is large.
Another observation is that the advantage of Peekaboo in flow
completion time diminishes as the flow size increases. It can be
attributed to Peekaboo struggling to effectively learn the weights
associated with path characteristics in scenarios. In summary,
Fig. 6 shows that OLMS facilitates lower flow completion times
and is effective across different flow sizes.

3) Impact of Network Dynamics: To study the impact of net-
work dynamics on different schedulers, we conduct experiments
under dynamic network conditions with varying bandwidth and
RTT. Note that we have integrated the Path Characteristic
Measurements Monitor component into OLMS to detect abrupt
changes of path characteristics. We refer to the scheduler OLMS
with Path Characteristic Measurements Monitor enabled as
“OLMS with PM”. Specifically, we set the parameters q = 20,
δ = 3 and h = 3 in Algorithm 2. For brevity, we only present
the results of the maxRTT constrained multi-path scheduling
application using the path characteristics setting in Application I.
We repeat a 200 MB file transfer experiment 50 times and
compare the average file transfer completion times of different
schedulers under the following two dynamic network settings:! Dynamic Bandwidth. Every 10 seconds, the bandwidth

of both path 1 and path 2 drops to 1 Mbps in the first
5 seconds, then restores back to 30 Mbps and 20 Mbps in
the subsequent 5 seconds. Meanwhile, the bandwidth of
path 3 and path 4 remains at 60 Mbps and 40 Mbps for the
first 5 seconds, then both drop to 2 Mbps in the subsequent
5 seconds.! Dynamic RTT. The RTTs of path 1 and path 3 remain
constant throughout the experiment. Every 10 seconds, the
RTT of path 2 increases to 100 ms in the first 5 seconds, then
returns to 30 ms in the subsequent 5 seconds. Similarly, the
RTT of path 4 decreases to 10 ms in the first 5 seconds, then
increases back to 60 ms in the following 5 seconds.

As shown in Fig. 7, OLMS with PM consistently achieves the
shortest file transfer completion time compared to other sched-
ulers in both dynamic bandwidth and dynamic RTT network
environments. Conversely, OLMS without PM demonstrates
poorer performance compared to other schedulers. The reason is
that OLMS without PM heavily depends on historical informa-
tion for estimating path characteristics, which results in slower
responsiveness to dynamic network environments. These results
suggest that the Path Characteristic Measurements Monitor
component can effectively detect abrupt network changes, and
intervene in the learning of path characteristics, thereby improv-
ing the scheduling of multiple paths in dynamic network envi-
ronments. Overall, our findings in Fig. 7 indicates that OLMS
with Path Characteristic Measurements Monitor component can
adapt to dynamic network environments effectively.

4) Multi-Flow Scenarios: To evaluate the effectiveness of
OLMS in multi-flow scenarios, we conduct experiments in a
dumbbell topology, where two client-server pairs, (c1, s1) and
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Fig. 6. Flow completion times of different schedulers under different flow sizes.

Fig. 7. File transfer completion time under different dynamic network settings.

Fig. 8. The dumbbell topology with two paths.

Fig. 9. Flow completion times of OLMS competing with other schedulers.

(c2, s2), each have two transmission paths. The path character-
istics, including bandwidth, RTT, and loss rate, are shown in
Fig. 8. For brevity, we present only the results for the maxRTT
constrained application, with the maximum RTT threshold set
to 50 ms. Each flow transmits a 10 MB file. The scheduler for the
first flow (c1, s1) is varied across all available schedulers, while
the second flow uses OLMS. Each file transfer experiment is
repeated 50 times per flow, and we compare the flow completion
times under different scheduler combinations.

As shown in Fig. 9, when both flows adopt OLMS, they
achieve nearly identical flow completion times due to similar
scheduling decisions. However, when the OLMS flow competes

Fig. 10. Average execution time of selecting paths and average memory usage
of different schedulers.

with the minRTT flow, the flow completion times for both flows
increase compared to other scheduler combinations. This occurs
because both OLMS and minRTT prioritize the Wi-Fi link,
which has a lower RTT, leading to congestion on the Wi-Fi
link. In summary, OLMS reduces flow completion times by
4.22%–10.26% compared to other schedulers. This improve-
ment is attributed to OLMS’s tendency to select the Wi-Fi link,
which satisfies the maximum RTT constraint while offering
higher bandwidth. These results indicate that OLMS achieves
lower flow completion times when competing with other flows.

E. Discussions

1) Overhead in OLMS: In this subsection, we evaluate the
overhead introduced by solving LP problems during path se-
lection for each packet. The evaluation focuses on the delay
caused by solving the LP problems and the memory usage of
the MPQUIC connection. The experiments are conducted using
the network topology shown in Fig. 8.

LP solving time: We evaluate the average execution time of
theselectPath() function for each scheduler, with the result
presented in Fig. 10. While OLMS requires more time to solve
LP problems than other schedulers, this does not negatively
impact overall data transmission performance, provided the LP
solving speed exceeds the data transmission speed (see the
discussion in Section VI-E3). In typical scenarios, the scale of
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Fig. 11. Average execution time of selecting paths in OLMS under different
decision cycle lengths.

LP problems is small, as only 2–4 paths are usually involved.
Additionally, hardware acceleration techniques, such as those
described in [44], [45], [46], can efficiently solve LP problems,
thereby mitigating the impact of LP solving overhead on trans-
mission performance. To further reduce delays associated with
LP solving, we propose a periodic solving technique detailed in
Section VI-E2.

Memory usage: We measure the memory usage of different
schedulers implemented in Golang using the menstats tool.
Fig. 10 shows that OLMS has slightly higher memory usage than
other schedulers, mainly due to solving LP problems. However,
this does not affect the overall performance of OLMS, as modern
terminal devices and smart NICs generally have enough memory
to accommodate these requirements.

2) Cyclic LP Solving: To mitigate the potential extra delay
and memory usage caused by frequent LP solving in OLMS, we
propose a cyclic LP solving mechanism to reduce the number
of LP computations. Instead of solving an LP problem for every
packet, this mechanism allows multiple decision-making (path
selection) steps to share a single LP solution across several
packets. Specifically, LP problems are solved cyclically for
a fixed number of packets, referred to as the decision cycle,
with the solution reused for all decisions within that cycle. For
instance, a decision cycle of 5 applies the same LP solution to
the decisions for five consecutive packets.

We evaluate the impact of different decision cycle lengths
on the average execution time for path selection and the average
completion time of OLMS using the network topology described
in Section VI-E1. The results, averaged over 50 experiments
with varying file sizes from 10 MB to 50 MB, are presented
in Figures 11 and 12. The results demonstrate that the Cyclic
LP solving mechanism effectively reduces the delays caused by
LP solving. When the decision cycle length is less than five,
the mechanism significantly reduces delays while maintaining
performance comparable to the optimal solution. However, as
the decision cycle length increases, performance may degrade
due to the suboptimal reuse of LP solutions.

3) Impact of the Overhead: To evaluate the impact of over-
head on OLMS’s overall performance, we analyze the gain of
OLMS, defined as the ratio of the completion time of min-
RTT to that of OLMS. A gain greater than 1 indicates that

Fig. 12. Average completion time in OLMS under different decision cycle
lengths.

Fig. 13. Gain of OLMS under different available bandwidth.

OLMS achieves a smaller completion time, whereas a gain
less than 1 indicates better performance by minRTT. Using
the network topology in Fig. 8, we conduct experiments under
varying network conditions. The delay and loss rates for the
two paths are consistent with those in Fig. 8. The available
bandwidth is limited to 40 Mbps to 400 Mbps for one path and
20 Mbps to 200 Mbps for the other. The results are presented
in Fig. 13. OLMS outperforms minRTT when bandwidth is low
(below 200 Mbps). In these scenarios, the benefits of solving
the LP problem outweigh the overhead introduced. However,
as bandwidth exceeds 200 Mbps, the difference in comple-
tion time becomes negligible. At higher bandwidths, the delay
caused by solving the LP problem begins to hinder OLMS’s
data transmission efficiency. Nevertheless, in current mobile
network, available bandwidth is typically below 200 Mbps,
making OLMS both practical and advantageous in real-world
scenarios. Additionally, advancements in hardware acceleration
are expected to reduce LP solving time, further mitigating the
overhead and enhancing the performance of OLMS in high-
bandwidth networks.

VII. RELATED WORK

In the pioneering work [2] on MPTCP, Raiciu et al. propose
the minRTT scheduler for path scheduling. Since then, minRTT
has been the de facto path scheduler of MPTCP and MPQUIC
as it helps to reduce delays for general applications. Recently,
there have been many studies on the improvement of the path
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scheduler of multi-path transport protocols from different as-
pects. Lim et al. [47] design the Earliest Completion First
(ECF) scheduler to manage heterogeneous paths and improve
the utilization of the fastest path. Ferlin et al. [48] propose the
Blocking Estimation-based Scheduler (BLEST) which aims to
avoid the head-of-line blocking by reducing the usage of slow
path. Later on, Shi et al. [8] propose the Slide Together Multipath
Scheduler (SMTS) that pre-allocates packets to send over the fast
path to improve the throughput of MPTCP under heterogeneous
networks. [49] shows that MPTCP does not handle asymmetric
paths well and the data scheduler cannot provide low-latency
transmission. Ferlin et al. [50] incorporates the forward error
correction (FEC) into the MPTCP scheduler to support latency-
sensitive applications under lossy links. Paasch et al. [10] con-
duct an extensive study on different schedulers and suggest that
RTT-based path schedulers have limitations. Peng et al. [51],
[52] propose a fluid model to analyze path scheduling in MPTCP
and design an algorithm to balance among the TCP-friendliness,
responsiveness, and window oscillation. Above studies on path
schedulers of multi-path transport protocols are all conducted
for applications without any constraints. In our work, we fill
the void by designing the OLMS framework where users can
specify different requirements for network applications.

Attracted by the effectiveness of learning algorithms, many
works try to incorporate learning models to optimize the per-
formance of network protocols. For example, PCC [22], PCC
Vivace [19], PCC Proteus [20] apply online learning techniques
to improve the performance of single-path TCP congestion
control. Additionally, works like MPCC [53] and MPLibra [54]
focus on online learning multi-path transport design for MPTCP.
Some studies explore the use of deep neural networks [55] or
reinforcement learning techniques (SmartCC [56]) to address
challenges in MPTCP congestion control. Furthermore, there are
works that employ online learning techniques in the design of
multi-path scheduler, such as Peekaboo [36], OLAPS [57], and
others leveraging contextual bandit approaches [58]. Although
these works can achieve high performance using different learn-
ing algorithms, they neglect the user-defined requirements and
have no theoretical guarantee, which are essential for network
applications.

In the online learning literature, our OLMS framework is
related to the multi-armed bandit (MAB) models first proposed
in [59]. The classical MAB models [14], [15] mainly focus on
minimizing the regret and finding the single optimal arm. Our
OLMS framework differs from these models by considering the
constraints in selecting the arms and introducing both the regret
and violation metrics for performance measurement. OLMS
provides theoretical guarantees on both sublinear regret and
sublinear violation. In this context, OLMS is related to the
algorithms introduced in [24], where the authors address long-
term constraint satisfaction and propose UCB-based algorithms
capable of cancelling violations during the learning process.
However, OLMS adopts a stricter violation definition where the
constraint violations are considered in each time slot without
any cancellations. Besides, OLMS is developed from Thompson
Sampling [18] and offers a more versatile approach without
relying on any prior distributions.

VIII. CONCLUSION AND FUTURE WORK

To our best knowledge, we are the first to present an online
learning multi-path scheduling (OLMS) framework with user-
defined requirements for multi-path transport protocols. In our
OLMS framework, we have designed a general online learning
algorithm capable of scheduling paths to meet different require-
ments in the maxRTT constrained, and bandwidth constrained
multi-path scheduling applications. We have proved that OLMS
achieves both sublinear regret and sublinear violation for the two
applications. Through extensive experimentation conducted on
a prototype system built upon MPQUIC, we have demonstrated
the effectiveness of our OLMS framework in multi-path schedul-
ing for various applications while satisfying different require-
ments. Moreover, our experiments have highlighted OLMS’s
efficacy in web browsing, its adaptability to different flow sizes,
and its robust performance in dynamic network environments,
without incurring large overhead.

Our future work should continue to improve the design of our
OLMS framework. Specifically, our research should integrate
additional path information, such as buffer size and out-of-order
degree, into OLMS for more refined path scheduling strate-
gies, and deploy OLMS on smart NICs to further optimize
performance.
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