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Abstract—The pursuit of high-quality artificial intelligence gen-
erated contents (AIGC) with fast response has prompted the evolu-
tion of natural language processing (NLP) services, notably those
enabled at the edge (i.e., edge NLP). For concreteness, we study
distributed inference for next-word prediction which is a prevalent
edge NLP service for mobile keyboards on user devices. Accord-
ingly, we optimize coupled metrics, i.e., maximize prediction click-
through rate (CTR) for improved quality-of-service (QoS), min-
imize user impatience for enhanced quality-of-experience (QoE),
and keep energy consumption within budget for sustainability.
Moreover, we consider the real-world setting where there is no prior
knowledge of heterogeneous NLP models’ prediction accuracy. Via
an integration of online learning and online control, we propose a
novel distributed inference algorithm for online next-word predic-
tion with user impatience (DONUT) to estimate models’ prediction
accuracy and balance the trade-offs among coupled metrics. Our
theoretical analysis reveals that DONUT achieves sub-linear regret
(loss of CTR), ensures bounded user impatience, and maintains
within-budget energy consumption. Through numerical simula-
tions, we not only establish DONUT’s superior performance over
other baseline methods, but also demonstrate its adaptability to
various settings.

Index Terms—Distributed inference, edge natural language
processing, next-word prediction, online learning, online control.

I. INTRODUCTION

AMIDST the artificial intelligence (AI) revolution, various
user-centric applications have evolved to incorporate natu-

ral language processing (NLP) services to produce high-quality
AI-generated contents (AIGC) [1]. This fusion allows machines
to understand human languages, making AI more accessible
and shaping a future where interactions with AI is as intuitive
as human dialog. Traditionally, end users seeking access to
NLP services have primarily relied on powerful NLP models
located on cloud servers. Despite the high accuracy, cloud-based
services may incur high latency and suffer from intermittent
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Fig. 1. Illustration of edge NLP for next-word prediction. 1) The user input is
generated at the user device; 2) The user device selects a subset of NLP models;
3) Received user input is used as the model input; 4) Inference is performed on
each selected model; 5) Predicted next words from selected NLP models are
sent to the user device; 6) The user device aggregates the words by removing
duplicates and presents the aggregated words to the user; 7) The user selects one
favorable predicted word.

wireless connections, which makes it hard to maintain real-time
guarantees [2]. A promising alternative to this is edge NLP,
which facilitates NLP services on the edge servers. Thanks to the
rich computational resources on edge servers and their proximity
to user devices, end users can enjoy NLP services of both high
quality and fast response [3], [4].

For edge NLP, the majority of works fall within the scope
of distributed training, focusing on “how to train NLP models
across edge servers to facilitate NLP services?” [12] In this
work, we pivot our focus to a different approach by asking
how to utilize trained NLP models (e.g., N-gram [5], BERT [7],
and GPT [11]) deployed on edge servers for edge NLP? This
approach is termed as distributed inference as we aim to exploit
the inference capability of trained models across geographically
distributed edge servers. For concreteness, as shown in Fig. 1, we
study distributed inference for next-word prediction – a typical
and non-trivial NLP service for end users. The goal of next-word
prediction is to improve users’ input efficiency by proactively
suggesting the most probable next-words based on inputs from
mobile keyboards [13].

An insightful observation in distributed inference is the pos-
sibility of leveraging the inference capability from multiple
trained models, rather than restricting to just one. Intuitively, by
distributing user input across various NLP models, we aggregate
diverse predicted next-words, offering a wider selection candi-
dates to the user, thereby enhancing the next-word prediction
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TABLE I
COMPARISON OF INFERENCE CAPABILITY AMONG VARIOUS NLP MODELS IN TERM OF DIFFERENT FACTORS

service. This idea is well justified in the field of ensemble
learning [14] where the adoption of a mixture-of-experts (MOE)
is a common practice, often resulting in superior performance
compared to any single expert model [15]. Nevertheless, the
user device cannot interactive with an unlimited number of NLP
models given increasing overheads (e.g., latency and energy
consumption). This implies a practical model selection prob-
lem, i.e., which subset of trained NLP models should the user
device select for distributed inference. This model selection
problem is challenging and non-trivial due to the following
two reasons.

First, model selection decision depends on NLP models’
inference capability which is evaluated by various factors [16].
Specifically, we consider three factors, i.e., prediction accuracy,
inference latency, and energy consumption, which tend to vary
among different NLP models. As shown in Table I, although N-
gram generally incurs lower inference latency and lower energy
consumption than Transformer-based models [17], its prediction
accuracy tends to be lower. Furthermore, the prediction accuracy
of deployed NLP models is usually user-dependent and unknown
a prior since such models are often not tailored to specific user.
In fact, NLP models deployed on edge servers include a wide
range of pre-trained models [18], whose training corpus may
vary largely from users’ input corpus. To estimate the prediction
accuracy, an online learning procedure is required to collect
feedback via dynamic selections of different models.

Second, model selection problem involves coupled metrics,
i.e., quality-of-service (QoS), quality-of-experience (QoE), and
sustainability of user devices. For QoS, a common criterion is
the prediction click-through rate (CTR), i.e., the rate of whether
predicted words are accepted by the end user. Intuitively, models
with high prediction accuracy may imply high prediction CTR
and high QoS. For QoE, we characterize it with user impa-
tience which is caused by overdue predictions (i.e., latency of
next-word prediction exceeds the maximum tolerance latency).
Consequently, models with high inference latency may induce
high user impatience and low QoE. For sustainability, we should
maintain within-budget energy consumption for user devices
with limited battery capacity. Accordingly, models with high
energy consumption may tend to exceed the energy budget
and threat the sustainability. To balance among these coupled
metrics, an online control procedure is needed to adaptively
adjust their relative importance.

Based on the above discussion, the model selection problem
is essentially a sequential decision-making problem under

uncertainty, which aligns with the setting of bandit learning [19].
However, most bandit learning methods cannot be directly
adopted since the model selection decision requires an effective
integration of online learning (to estimate prediction accuracy)
and online control (to balance among coupled metrics). On one
hand, ineffective online learning with inaccurate estimation
could potentially misguide subsequent control decisions,
leading to biased selection of sub-optimal NLP models. On the
other hand, improperly executed control decisions can result in
poor feedback and hinder learning efficiency, not to mention the
difficulty in balancing among multiple objectives. For instance,
if certain models are infrequently selected, the user device
may underestimate their performances, thereby overlooking
potential optimal choices.

In this paper, we resolve the key model selection problem
with a novel distributed inference algorithm for online next-word
prediction with user impatience, denoted as DONUT. The main
contributions and the key results of our work are summarized as
follows:
� Modeling: We investigate the model selection problem in

distributed inference for next-word prediction. Our ob-
jective is to maximize prediction CTR for high QoS and
minimize user impatience for high QoE under constrained
energy consumption (Section III). Besides next-word pre-
diction, our model can be extended to support other edge
NLP services like emoji prediction [20]. Our approach to
edge NLP also offers insights for the future deployment
of services like ChatGPT-based dialog systems [11] and
Codex-based auto-programming tools [21] at the edge.

� Algorithm Design: From the viewpoint of constrained
bandit learning, we propose DONUT to solve the model
selection problem via an integration of online learning and
online control (Section IV).

� Theoretical Analysis: We show that DONUT achieves a
time-averaged regret O(1/V + α/V +

√
log T/T ) and a

bounded time-averaged total user impatience O(1/α+
V/α) where T is the number of rounds and V, α are
finite tunable parameters. Besides, DONUT also guaran-
tees the energy consumption constraint for the user device
(Section V).

� Simulation Results: We conduct extensive simulations to
evaluate the effectiveness of DONUT. They not only ver-
ify our theoretical analysis but also demonstrate the out-
performances of DONUT over other online algorithms
(Section VI).
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II. RELATED WORKS

A. Edge Natural Language Processing

The proliferation of edge computing has significantly ampli-
fied the potential of utilizing edge-based resources to deliver
user-centric services. Riding this trend, edge NLP has emerged
to offer high-quality and real-time services such as next-word
prediction, emoji prediction, text classification, speech recog-
nition, etc [22]. In the following, we primarily discuss related
works on the next-word prediction service.

Most existing works focus on the design and improvement
of training new NLP models directly at the edge (i.e., feder-
ated learning) either from scratch or via fine-tuning pre-trained
models [12]. Work [13] utilizes federated learning to train a
lightweight NLP model called CIFG (i.e., Coupled Input-Forget
Gate) for next-word prediction. Work [23] further addresses the
out-of-vocabulary problem with a character-level recurrent neu-
ral network based on the design of CIFG. Work [24] considers
the training of personalized models, in which three types of
algorithm (i.e., hypothesis-based clustering, data interpolation,
and model interpolation) are proposed to meet various practical
needs. Work [25] proposes to combine advanced model aggre-
gation and attention mechanism to training personalized models
for next-word prediction. Work [26] combines centralized model
pre-training and pretrained word embeddings with federated
fine-tuning to enhance the performance of next-word prediction.

All above works of federated learning center on high-
performance distributed model training. They address the ques-
tion: “how to train new NLP models in a distributed manner for
edge NLP”. Our work takes a different angle to facilitate edge
NLP. Specifically, we aim to exploit the inference capability of
trained models at the edge, i.e., distributed inference. Therefore,
our focus is: “how to utilize trained NLP models in a distributed
manner for edge NLP” [27]. Through distributed inference, user
devices can leverage heterogeneous trained NLP models at the
edge, supporting both next-word prediction service of high QoS
and QoE with sustainability.

B. Distributed Inference at the Edge

Beyond edge NLP, distributed inference has emerged as a
promising approach for providing high-quality and real-time
applications with trained models at the edge.

Existing distributed inference research largely revolves
around partitioning a single trained model to blocks of lay-
ers. Their aim is to distribute inference overheads, such as
computational costs and energy consumption, to edge servers
or devices in a layer-wise manner [28]. Work [29] adaptively
partitions neural models between edge servers and devices,
in order to leverage computation resources in proximity for
real-time inference. Work [30] studies directed acyclic graph
(DAG) structured neural models and partitions their layers
into independent execution units to improve inference latency.
Work [31] focuses on partitioning and deploying neural models
in edge clusters, optimizing both inference latency and through-
put. Applications based on model partitioning have also begun
to emerge. Work [32] studies the partition-based distributed

inference for real-time video analysis in a resource-constrained
Internet-of-Things system. Work [33] performs model partition
to accelerate distributed inference for video streams at the edge.

In our work, we adopt a different approach by utilizing
multiple instead of one trained models deployed at the edge.
Specifically, via model selection, we aim to aggregate prediction
results in a mixture-of-expert approach to potentially enhance
the system performance.

III. SYSTEM MODEL & PROBLEM FORMULATION

In this section, we present the system model and problem
formulation of distributed inference for next-word prediction.
Specifically, we focus on the key model selection problem where
we simultaneously optimize Quality-of-Service (QoS), Quality-
of-Experience (QoE), and sustainability.

In this paper, we focus on a simple but non-trivial setting.
Specifically, we consider an edge NLP system with (N − 1)
edge servers that provides the next-word prediction service to
a single user. Each edge server and the user device is deployed
with only one trained NLP model. This implies a total of N
models with heterogeneous inference capability in terms of
prediction accuracy, inference latency, and energy consumption.
We index these models by the set N � {0, 1, . . . , N − 1} and
the model on the user device is indexed by zero. We assume that
the system operates on a round1 basis with a fixed time horizon,
indexed by t ∈ {0, . . . , T − 1}.

Given the high sensitivity to latency in typical edge NLP
services, it’s essential to account for the end-to-end latency to
access each model for inference [34]. Specifically, the end-to-
end latency for the local model situated on the user device refers
to the model’s inference latency. For models deployed on an
edge server, the end-to-end latency is a composite of the model’s
inference latency and the transmission latency, which includes
the time taken to send prediction requests and receive prediction
results between the user device and edge server.2

We assume the corresponding inference latency and trans-
mission latency can be measured before the execution of model
selection decisions. For example, for inference latency of NLP
models [36], it can be estimated either via data-driven approach
with pre-trained machine learning models on various hardware
configurations [37], [38] or through analytical performance
modeling given prior knowledge on the NLP model [39]. For
transmission latency of wireless communication between the
user device and edge servers, it can be measured by probing
wireless channels using test packages [40], [41] or via latency
prediction with a modeling of channel’s communication proto-
col (e.g., WiFi [42]).

1Round is the discrete-time interval for the user device to make model
selection decisions and receive prediction results from selected NLP models.
In practice, the time length of a round is often fixed and determined by the
maximum tolerance latency.

2The latency of edge-device communication which in our case is considered
as the one-hop (i.e., direct) communication. Such a fact is adopted as a common
practice in edge computing where the edge server and user devices are in
proximity of each other [35].
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Fig. 2. Workflow of distributed inference for next-word prediction at the edge.

Therefore, based on the measurement of end-to-end latency,
we observe whether NLP model i can perform in-time predic-
tion, denoted by a binary random variable si(t). Specifically,
si(t) = 1 if NLP model i can complete the prediction by the
end of round t (i.e., the end-to-end latency falls within the
maximum tolerance latency) and zero otherwise (i.e., overdue
prediction). We assume si(t) is independent and identically
distributed (i.i.d.) over rounds.

A. Distributed Inference for Next-Word Prediction

In each round t, we conduct distributed inference in the edge
NLP system to provide the next-word prediction service for the
user (please refer to Fig. 2). Specifically, the system operates
according to the following steps:3

1) The user input is first generated on the mobile keyboard
of the user device.

2) The user device then executes model selection decisions
for a subset of trained NLP models on edge servers and
itself.

3) The user device sends the user input to such selected
models either locally via hardware-level transmission or
remotely via wireless transmission to the corresponding
edge servers.

4) Each selected model conducts an inference process with
the user input as its model input. Each selected model
then returns the top-k predicted next words to the user
device.4

5) The user device aggregates the predicted next words from
all selected NLP models by removing duplicates and then
presents the aggregated words to the user on the mobile
keyboard.

3We do not emphasize the security and privacy during the transmission of user
input and prediction results. Nonetheless, a series of techniques can be effectively
integrated into our case [43]. For example, text encryption and decryption can
be combined with the message sending and receiving steps in our workflow to
better protect users’ personal information during the server-device interactions.

4In practice, the value of k ranges from 2 to 3 for user devices. Related
simulation results are shown in Section VI.

6) The user selects some favorable predicted next word to
assist his keyboard input.

B. Model Selection in Distributed Inference

We define the number of selected models in each round by
the user device as the model selection number, which is denoted
as a fixed number n (1 ≤ n ≤ N ).5 We use the binary vector
d(t) � {di(t)}i∈N to denote model selection decisions in round
t, where di(t) = 1 if model i is selected by the user device
and zero otherwise. Accordingly, we denote the set of selected
models by S(t) for convenience, S(t) ∈ F (N ) where F (N ) is
the set of all subsets of N with cardinality less or equal to n,
i.e., F (N ) � {S ⊆ N||S| ≤ n}. Main notations of our work
are summarized in Table II.

C. Quality-of-Service: Click-Through Rate

We characterize QoS with the prediction click-through rate
(CTR) [13]. Specifically, in each round t, the prediction CTR is
defined as follows:

CTR(t) � 1

n

∑
i∈S(t)

ai(t)si(t)di(t), (1)

where we denote the click-through indicator for NLP model
i as ai(t) such that ai(t) = 1 if any of the prediction results
of NLP model i is selected by the user and zero otherwise.
We assume ai(t) is i.i.d. which follows a Bernoulli distribution
with an unknown mean μi ∈ (0, 1) and μi is interpreted as the
prediction accuracy of model i.

Therefore, to optimize QoS for next-word prediction, we
maximize the time-averaged prediction CTRs over T rounds.
Accordingly, we have the following objective:

maximize
{d(t)}t

1

T

T−1∑
t=0

E [CTR(t)] . (2)

5Our system model can be readily extended to settings where the model
selection number is at most n, which is not fixed as a constant but is flexible
and upper bounded by n. Comparison between these two settings is shown by
simulations in Section VI.
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TABLE II
SUMMARIZATION OF MAIN NOTATIONS

D. Quality-of-Experience: User Impatience

We adopt user impatience to characterize the QoE [44].
Specifically, the user impatience of an NLP model accumulates
due to infrequent selection and overdue prediction, i.e., the
end-to-end latency exceeds the maximum tolerance latency.
Formally, for each NLP model i, we denote the associated
user impatience in round t as Zi(t). In each round, the user
impatience of model i increases by one if model i is not selected
by the user or the prediction of model i is overdue; otherwise,
the user impatience resets to one. Intuitively, this reset means
that the user’s demand on prediction is satisfied in time and his
accumulated impatience is eliminated. Accordingly, the update
rule of user impatience6 is defined as follows:

Zi(t+ 1) =

{
Zi(t) + 1, si(t)di(t) = 0,

1, si(t)di(t) = 1.
(3)

The initial value is Zi(0) = 0.
Therefore, one essential criterion for high QoE is to ensure

low user impatience and we minimize the time-averaged total
user impatience over a give horizon. Accordingly, we have the
following objective:

minimize
{d(t)}t

1

T

T−1∑
t=0

E

[∑
i∈N

Zi(t)

]
. (4)

Remark 1. If we do not minimize the total user impatience as
formulated in (4), the user device would stick to NLP models
of low user impatience and NLP models with high impatiences
would be rarely selected, and their impatiences would become
unboundedly large, and eventually they would never be selected
for next-word prediction. Thereafter, the user device would
always select from a small subset of NLP models. Consequently,

6User impatience and its updates in (3) are inspired by the concept of age
of information in work [45] which characterizes the freshness of information
during wireless transmission [46], [47].

this may lead to unbalanced utilization of computational re-
sources among edge servers, thus low quality of predicted next-
words. Moreover, such a restriction may lead to unendurable
end-to-end latencies under poor wireless conditions [48].

E. Sustainability: Energy Consumption Constraint

To maintain sustainability for user devices with limited battery
capacity, we keep the energy consumption within budget for
user devices. In each round t, two kinds of energy consumption
are of importance, i.e., energy consumed for inference on local
NLP model (denoted as W0(t)), and energy spent for sending
prediction requests through wireless transmission to edge server
i ∈ N\{0} (denoted as Wi(t)). We assume that {Wi(t)}i∈N
are upper-bounded by positive constant Wmax, and available
at the beginning of each round t. We define the total energy
consumption in round t as

η(t) �
∑

i∈S(t)

Wi(t)si(t)di(t). (5)

To guarantee a within-budget energy consumption, we impose
the following energy consumption constraint with energy budget
b (b > 0):

lim sup
T ′→∞

1

T ′

T ′−1∑
t=0

E [η(t)] ≤ b. (6)

Remark 2. We consider the energy consumption constraint
in a long-term and time-averaged sense. The reason for such
a particular form is that real systems usually run for a long
time, and the horizon T is unfixed or unknown in advance. By
adopting “lim” with infinite rounds, our algorithm ensures the
constraint in a long run without knowing the fixed round T ;
In this paper, guaranteeing such a long-term constraint in (6)
is equivalently transformed to guarantee the stability of some
particularly designed virtual queue (Section IV).
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F. An Online Constrained Optimization Problem With
Multiple Objectives

Considering QoS, QoE, and sustainability, we formulate the
model selection problem in distributed inference as the following
online constrained optimization problem with multiple objec-
tives:

objectives: (2) & (4)

constraint: (6)
(7)

Remark 3. In problem (7), performance metrics (i.e., pre-
diction CTR, user impatience, and energy consumption) are
coupled via the model selection decisions {d(t)}t. Therefore,
how to balance the relative importance among them is non-trivial
and of great importance. For example, while pursuing high pre-
diction CTR and low user impatience jointly, selecting models
with high energy consumption is inevitable.

IV. ALGORITHM DESIGN

In this section, we present a novel distributed inference al-
gorithm for online next-word prediction with user impatience
(DONUT) which integrates bandit learning methods and Lya-
punov optimization techniques.

A. Bandit Learning With Upper Confidence Bound

In this section, we utilize bandit learning methods in online
learning to maximize prediction CTR under unknown model
prediction accuracy.

Under the bandit setting, we define the reward in round t as the
corresponding prediction CTR, i.e., R(t) = CTR(t). Further,
we utilize the time-averaged regret overT rounds to characterize
the loss of prediction CTR during model selection. Formally, we
first denote the optimal time-averaged prediction CTR over T
rounds as R∗ (with optimal decisions {d∗(t)}). We then define
the time-averaged regret as the difference between R∗ and the
time-averaged prediction CTR under {d(t)}t over T rounds

Reg(T ) � R∗ − 1

T

T−1∑
t=0

E[R(t)].

Therefore, objective (2) is reformulated as follows:

minimize
{d(t)}t

Reg(T ). (8)

To minimize regret (i.e., maximize prediction CTR) under the
uncertainty of deployed NLP models’ prediction accuracies, we
exploit the principle of optimism in the face of uncertainty to
conduct proactive online learning [19]. Therefore, we define for
each NLP model i ∈ N in round t ∈ {1, . . . , T − 1}

Ni(t) �
t−1∑
τ=0

si(τ)di(τ),

μ̄i(t) �
t−1∑
τ=0

ai(τ)si(τ)di(τ)
Ni(t)

,

(9)

where Ni(t) denotes the number of selection times and μ̄i(t) is
defined as the estimated prediction accuracy of NLP model i by
round t. We define their initial values as Ni(0) = 0, μ̄i(0) = 0.

The upper confidence bound (UCB) estimate7 μ̂i(t) of predic-
tion accuracy μi is defined as follows:

μ̂i(t) � min {μ̄i(t) + γi(t), 1} ,
γi(t) �

√
log t
Ni(t)

,
(10)

where μ̂i(t) and γi(t) are often referred as the exploitation
and exploration terms and the corresponding initial values are
μ̂i(0) = 0, γi(0) = 0, respectively.

Remark 4. The term μ̄i(t) reflects the acquired knowledge
about the ground true prediction accuracy, which is known as
the exploitation term. The term γi(t) is the corresponding confi-
dence radius for online estimation. It represents the measurement
of how the empirical estimation is close to the ground truth.
Specifically, a larger confidence radius implies more uncertainty
in the estimation of prediction accuracy, i.e., the corresponding
NLP model is under-explored with insufficient samples for
estimation. Therefore, the confidence radius is also called the
exploration term, indicating how much an NLP model should
be explored.

B. Lyapunov Optimization With Virtual Queue

To cope with coupled metrics of prediction CTR, user im-
patience, and energy consumption, we employ Lyapunov opti-
mization techniques [51].

Specifically, we introduce a virtual queue for the user device
whose queue backlog size for each round t ∈ {0, . . . , T − 1} is
denoted as Q(t). Input and output of the queue are equal to the
energy consumption η(t) and the energy budget b, respectively.
Accordingly, the queue backlog size is updated as follows:

Q(t+ 1) � max {Q(t) + η(t)− b, 0} . (11)

When the queue is strongly stable, i.e.,

lim sup
T ′→∞

1

T ′

T ′−1∑
t=0

E [Q(t)] < ∞, (12)

constraint (6) is satisfied. Intuitively, to achieve such stability, the
mean queue input (i.e., time-averaged total energy consumption)
should not be greater than the mean queue output (i.e., energy
budget). Otherwise, the virtual queue will be overloaded, thereby
violating the constraint (6).

To minimize user impatience, we should keep the time-
averaged total user impatience bounded, i.e.,

1

T ′

T ′−1∑
t=0

E

[∑
i∈N

Zi(t)

]
< ∞, (13)

and optimize its value as small as possible. To this end, we define
the Lyapunov function as follows:

L(U(t)) � 1

2
(Q(t))2 + α

∑
i∈N

Zi(t), (14)

7The design of UCB estimation μ̂i(t) follows the classical UCB1 [19]. To
balance exploration and exploitation, one can also resort to other forms of
estimation like MOSS (Minimax Optimal Strategy in the Stochastic case) [49]
and ε-greedy [50]. We investigate them numerically in Section VI.
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with U(t) � {Q(t)} ∪ {Zi(t)}i∈N and α as a positive tun-
able parameter. Then we apply the Lyapunov drift-plus-regret
techniques to transform our problem into a series of per-round
sub-problems. We use the drift-plus-regret term to characterize
the per-round regret

ΔReg(t) �
∑
i∈N

μi (d
∗
i (t)si(t)− di(t)si(t)) , (15)

and variation in the queue backlog size and user impatience
between consecutive rounds, i.e.,

ΔV (U(t)) � E [L(U(t+ 1))− L(U(t))|U(t)]

+ V E [ΔReg(t)|U(t)] , (16)

with positive tunable parameter V . Intuitively, the system in-
duces less regret (higher prediction CTR), user impatience, and
energy consumption given a smaller drift-plus-regret term. By
Lyapunov optimization, we aim to minimize the upper bound of
such a term by solving a per-round sub-problem in each round t

maximize
d(t)

∑
i∈N

ŵi(t)si(t)di(t), (17)

where the model utility ŵi(t) is denoted as

ŵi(t) � V μ̂i(t) + αZi(t)−Q(t)Wi(t), ∀ i ∈ N . (18)

The detailed transformation is shown in Appendix A, avail-
able online.

Remark 5. The model utility (18) is a weighted sum of
estimated prediction accuracy, user impatience, and product
of queue length and energy consumption. To maximize the
total model utility as shown in (17), we intuitively prefer to
execute model selection decisions on models with the following
properties:
� Models possessing high estimated prediction accuracy as

this intuitively leads to a high prediction CTR, which
matches our objective to maximize time-averaged predic-
tion CTR in (2).

� Models characterized by low energy consumption since
this helps maintain the total energy consumption within
budget and guarantee the long-term constraint in (6).

� Models associated with large user impatience. Recall the
dynamics of user impatience in (3), once a model is
selected, its user impatience would reset to the default
value. Accordingly, selecting NLP models with large user
impatience potentially results in a large reduction in the
total user impatience, which aligns with our objective to
minimize time-averaged total user impatience in (4).

C. Integrated Algorithm Design

With an integration of bandit learning methods and Lya-
punov optimization techniques, we propose a novel algorithm
called DONUT. Its computational complexity in each round is
O(Nn), which is attributed to model selection (lines 6 and 7 in
Algorithm 1).

DONUT involves an intricate interplay between learning and
control. On one hand, ineffective online learning may misguide

Algorithm 1: Distributed Inference for Online Next-Word
Prediction With User ImpaTience (DONUT).
Input: Set of NLP models N , model selection number n,
energy budget b, parameters V, α, and total rounds T .

Output: Selected NLP models {S(t)}t over T rounds.
1: Initialize Q(0) = 0 and μ̂i(0) = 0, μ̄i(0) = 0, γi(0) =

0, Ni(0) = 0, Zi(0) = 0, i ∈ N .
2: for t = 0, 1, . . . , T − 1 do
3: Observe si(t) and Wi(t), i ∈ N .

%% Online Learning Procedure
4: Calculate μ̂i(t), i ∈ N according to (10).

%% Online Control Procedure
5: Calculate ŵi(t), i ∈ N according to (18).
6: Select NLP models S(t) (break ties randomly):

S(t) ∈ argmax
S∈F(N )

∑
i∈N

ŵi(t)si(t)di(t).

7: for i ∈ S(t) do
8: Send inference requests to selected model i,
9: conduct inference and receive

10: click-through indicator ai(t).
11: end for

%% Update Impatience, Virtual Queue, and Statistics
Update Zi(t+ 1), Ni(t+ 1), μ̄i(t+ 1), and Q(t+ 1)
according to (3), (9), and (11), respectively.

12: end for

subsequent control decisions towards biased selections of sub-
optimal models. Particularly, with an imprecise estimation of
models’ prediction accuracies, user devices may not figure out
the best models to select and optimize the performance metrics.
On the other hand, wrongly performed control decisions can
beget inferior feedback and disrupt learning efficiency, let alone
minimizing user impatience and reducing energy consumption.

Remark 6. The design of DONUT is not sensitive to specific
characteristics of NLP models, as it only utilizes the prediction
results of trained NLP models. Therefore, DONUT can be
extended to other NLP tasks (e.g., emoji prediction [20]) or
further to other fields like computer vision with modifications
on the preprocessing of prediction results sent to user devices.

V. THEORETICAL ANALYSIS

In this section, we show the theoretical results on regret,
user impatience, and energy consumption. Specifically, we first
justify the satisfaction of the energy consumption constraint
under DONUT by showing the stability of the virtual queue. We
then present the bounds of time-averaged total user impatience
and time-averaged regret under DONUT, respectively. Finally,
we show the effects of tunable parameters on both regret and
user impatience.

We call an energy budget feasible if there exist some model se-
lection policies under which the long-term energy consumption
constraint in (6) is satisfied. We define the set of all feasible
energy budgets as the maximal feasible region. Suppose the
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TABLE III
ORDER OF V (LEFT) AND ORDER OF α (RIGHT) VERSUS ORDER OF TIME AVERAGES

energy budget b lies in the interior of the maximal feasible region,
we have the following theorems.

A. Main Theoretical Results

Theorem 1 (Energy Consumption Constraint). Given finite
parameters V and α, the virtual queue satisfies

lim sup
T ′→∞

1

T ′

T ′−1∑
t=0

E [Q(t)] ≤ C +Nα+ nV

ε
< ∞,

where ε is a positive constant which satisfies that (b− ε) is
also an interior point of the maximal feasible region; constant
C � max{(nWmax − b)2, b2}/2 with n as the model selection
number and Wmax as the maximal energy consumption.

Theorem 2 (User Impatience). Given finite parameters V and
α, the time-averaged total user impatience is bounded

1

T

T−1∑
t=0

E

[∑
i∈N

Zi(t)

]
≤

(
N

pmin
+

C + V n

αpmin

)(
1 +

Wmax

ε

)
.

Proof Sketch of Theorems 1 & 2. For queue stability and
bound of user impatience, we leverage Lyapunov optimization
techniques to compose the proof. First, we construct a Lyapunov
drift function to characterize the variation of queue backlog
size and user impatience between successive rounds. Second,
we define the drift-plus-regret term which integrates the ob-
jective of minimizing regret into the Lyapunov drift function,
and we further utilize the finiteness and boundedness of the
time-averaged queue backlog size to get an upper bound of the
drift-plus-regret term. Third, we construct an auxiliary policy
that solely favors minimizing user impatience by selecting NLP
models with current the largest values of user impatience. With
the aid of such an auxiliary policy, we derive an upper bound
of the drift-plus-regret term with respect to any model selection
policies. Finally, we conclude the proof using telescoping sum
and conditional expectation.

The complete proof is shown in Appendix B, available online.
Remark 7. Theorem 1 shows that DONUT achieves strong

queue stability given finite values of parameters V and α, which
means that the constraint (6) is satisfied [51].

Remark 8. Theorem 2 highlights that the time-averaged total
user impatience is bounded with O(1/α+ V/α). With proper
order of V , e.g., O(log T ), the overall user impatience is
bounded sub-linearly.

Theorem 3 (Regret). Under DONUT, the time-averaged re-
gret over T rounds is bounded

Reg(T ) ≤ C +Nα

nV
+

3N + π2N

3nT
+ 4

√
log T

nT
.

Proof Sketch of Theorem 3. First, we introduce the notion of
per-round regret to measure the difference between the expected
optimal compound reward and reward under DONUT. Then, we
define the optimal policy (i.e., the oracle policy given the true
prediction accuracies). Such a policy is a model selection policy
that achieves the optimal total prediction CTR while ensuring
the energy consumption constraint. Based on such a policy, we
derive an upper bound of the drift-plus-regret term. Furthermore,
we divides such an upper bound into three sub-terms by lever-
aging an auxiliary policy that solves a sub-problem similar to
the one defined in (17), expect that the UCB term μ̂i(t) in model
utility ŵi(t) (defined in (18)) is replaced with the true prediction
accuracy μi for each NLP model i ∈ N . Next, we define two
special kind of helper events, i.e., event {μ̂i(t)− μi ≥ 0} and
event {μ̂i(t)− μi ≤ γi(t)} for each NLP model i ∈ N . We then
can eliminate the parts in the three sub-terms that are related
to the complementary events of the helper events. Finally, we
exploit Chernoff-Hoeffding bound and Jensen’s inequality to
bound each sub-term to complete the proof.

The complete proof is shown in Appendix C, available online.
Remark 9. Theorem 3 shows that DONUT achieves a regret

at order O(1/V +
√
log T/T ) which is sub-linear with suitable

values of V . For example, when the value of V is at order
Ω(

√
T/ log T ), the resulting total regret is sub-linear with order

O(T log T ) which matches with the lower bound Ω(
√
T ) up to

the logarithmic factor [52]. This fact shows the sharpness of our
regret bound in online learning.

Remark 10. In the regret upper bound, the first term is in-
curred during the online control procedure, mostly attributed to
the balancing of trade-offs among coupled metrics; the last two
terms are due to the online learning procedure. Regarding nec-
essary exploration in the face of unknown latencies, a sub-linear
time-averaged regretO(

√
log T/T ) is accumulated during such

a procedure.

B. Relationship Between User Impatience & Regret

Both the time-averaged total user impatience and time-
averaged regret are affected by tunable parameters V and α
(shown in Theorems 2 and 3, respectively). To better illustrate
the effects of such parameters on the time averages, we compare
them with different V and α in Table III.

In the left part of Table III, with other parameters fixed,
an interesting observation is that DONUT achieves the same
order of sub-linear regret O(

√
T/ log T ) while retaining dif-

ferent orders of user impatience given parameter V ranging in
[O(1), O(

√
T/ log T )]; In the right part of Table III, with other

parameters fixed, we can see that DONUT can maintain the
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TABLE IV
SUMMARIZATION FOR DEFAULT SIMULATION SETTINGS

same order of regret while achieving different orders of user
impatience given parameter α ranging in [O(1/V ), O(1)].

VI. SIMULATION RESULTS

Our simulations run on a server with the operating system as
Ubuntu 20.04, CPU as Intel(R) Xeon(R) Gold 6230, and GPU
as Quadro GV100 32 GB. Each simulation result is averaged
over 30 independent trials. We consider an edge NLP system for
next-word prediction with one user device and 14 edge servers,
i.e., 15 NLP models. By default, the number of operating rounds
T is set as 105 and the values of parameters V and α are set as
300 and 1, respectively.

The user device is deployed with a DistilBERT [10] model.
For the servers, we adopt three different types of NLP models:
BERT (indexed from 1 to 8), RoBERTa [8] (indexed by 9 and
10), ALBERT [9] (indexed from 11 to 14). All the above models
are pre-trained NLP models from the Transformers library [53]
and their prediction accuracies range from 3% to 30%. The
energy consumption of the user device for model selection on
NLP models range from 7 to 14 J/round. Each NLP model (if
selected for distributed inference) would return top-k prediction
results (the value of k is set as 3 by default.). The probabilities
of in-time prediction for NLP models range from 0.7 to 0.95.
In each round, the user inputs are sampled from a combination
of three corpora,8 i.e., Reuters-21578 [54], Customer Review
Datasets [55], and Amazon Product Review Data [56].

Refer to Table IV for the default simulation settings.

A. DONUT versus Other Online Algorithms

In this section, we compare the performance of DONUT with
the following online algorithms. The main difference between
these algorithms and DONUT lies in the focus on different
performance metrics and long-term constraints.
� UCB1 maximizes prediction CTR while neglecting long-

term constraints [19]. Under UCB1 [19], the utility is set
as ŵi(t) = μ̂i(t) for each i ∈ N , where μ̂i(t) is the UCB
estimate defined in (10).

� UCB-Energy maximizes prediction CTR and guarantee-
ing the energy consumption constraint [57]. Under UCB-
Energy, the utility ŵi(t) is defined as ŵi(t) = V μ̂i(t)−
αQ(t)Wi(t) for each i ∈ N .

8The adopted models are adopted from the widely known Transformers library
and the utilized datasets are created out of real-world applications. Though we
do not run DONUT in a real testbed (which is not our focus in this paper),
our simulations are convincing enough to provide insights for the practical
deployment. Further investigation of DONUT in a real testbed is considered
as an interesting future work.

� UCB-Impatience maximizes prediction CTR and minimiz-
ing the user impatience [45]. Under UCB-Impatience, the
utility is defined as ŵi(t) = V μ̂i(t) + αZi(t) for each
i ∈ N .

Comparison under Different Metrics: We evaluate the perfor-
mances of DONUT and other online algorithms under different
metrics in Fig. 3. Recall that the performance is not simply
measured by an individual metric (e.g., prediction CTR) as it
is also crucial to guarantee long-term constraints with low user
impatience and low energy consumption. Compared with other
online algorithms, DONUT achieves a lower prediction CTR
but less user impatience and energy consumption. Particularly,
compared with UCB1 and UCB-Energy, DONUT achieves up
to 97% reduction in user impatience and up to 16.6% reduction
in the energy consumption.

In Fig. 3(b) and (c), under DONUT, the time-averaged total
user impatience is bounded and the time-averaged energy con-
sumption is kept below the energy budget (denoted as a black
dash line in Fig. 3(c)). The results verify the effectiveness of
DONUT in reducing user impatience and satisfying the energy
consumption constraint.

Comparison Under an Integrated Metric: To better show the
outperformances of DONUT, we propose an integrated metric to
evaluate the comprehensive performances of DONUT and other
online algorithms in terms of prediction CTR, user impatience,
and energy consumption. The integrated metric9 is defined as
follows:

IM � e · Prediction CTR
Energy Consumption

+
Prediction CTR
User Impatience

, (19)

where e is an indicator variable. Specifically, e = 1 if the energy
consumption constraint in (6). is satisfied (i.e., the time-averaged
energy consumption is less than or equal to the energy bud-
get), and zero otherwise. Intuitively, a larger IM an algorithm
achieves, a better performance the algorithm has. The reason is
that a larger IM implies more increases in prediction CTR given
one more unit of energy consumption and user impatience.

In Fig. 4, we evaluate performances of DONUT and other
online algorithms under the integrated metric IM. The model
selection number n is set as 3 and the energy budget b is
set as 20 J. Due to the neglect of either the user impatience
or the energy consumption, UCB1, UCB-Energy, and UCB-
Impatience achieve inferior performances than DONUT in terms
of IM. The result suggests that DONUT can effectively balance
trade-offs among prediction CTR, user impatience, and energy

9The prediction CTR, user impatience, and energy consumption in the inte-
grated metric (19) are all time-averages.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 25,2024 at 06:55:18 UTC from IEEE Xplore.  Restrictions apply. 



5704 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

Fig. 3. Performances of DONUT and other online algorithms.

Fig. 4. Performances of DONUT and other online algorithms in terms of the
integrated metric IM.

consumption and achieve a better performance than other online
algorithms.

B. Effects of Parameters V & α

To investigate the system performance under different learn-
ing strategies, we propose two variants of DONUT by replac-
ing the UCB term in the online learning procedure (line 4 in
Algorithm 1) with other bandit learning algorithms.
� DONUT-Epsilon: In each round t, the UCB estimate in (10)

is replaced with the exploitation term μ̄i(t), i ∈ N . The
user device selects the edge servers with the highest model
utilities (18) with probability (1− ε), ε ∈ {0, 0.01, 0.1}.
Otherwise, it uniformly and randomly selects n of the NLP
models.

� DONUT-MOSS: In each round t, the exploration term γi(t)
is replaced as follows [49]:

γi(t) =
√
log (max {T/(N ·Ni(t)), 1}) /Ni(t).

In the following, we evaluate the performances of DONUT
and its variants under different values of parameters V and α.
Recall thatV andαmeasure the willingness of selection for NLP
models with high prediction accuracies, large user impatiences,
and low energy consumption as shown in (18).

We evaluate the effect of parameter V on performances of
DONUT and its variants in Fig. 5. The value of V ranges from
1 to 500, and the value of α is fixed as 1. From the figure, we
see that given a larger value of V , DONUT and its variants
incur fewer regrets while accumulating higher user impatiences

and more energy consumption. For example, as the value of V
increases from 1 to 500, DONUT incurs 17.0% fewer regrets,
causes 41.4% higher user impatience, and consumes 4.2% more
energy. Particularly, as the value of V grows, the weight of
prediction accuracies in the model utility (18) increases. As
a result, DONUT has a stronger incentive to achieve higher
prediction CTR and inevitably focuses less on reducing user
impatience and energy consumption. In summary, the results in
Fig. 5 illustrate that DONUT and its variants achieve effective
trade-offs among coupled metrics by tuning V .

We evaluate the effect of parameter α on performances of
DONUT and its variants in Fig. 6. The value of α ranges from 1
to 200 and the value ofV is fixed as 300. The figure demonstrates
that as the value ofαgrows, DONUT and its variants incur higher
regrets while causing lower user impatiences and more energy
consumption. In particular, as the value ofα varies from 1 to 200,
DONUT and its variants incur 14.3% more regrets, avoid 7.7%
user impatience and cause 1.5% more energy consumption on
average. Such results show that DONUT and its variants achieve
tunable trade-offs through parameter α.

An interesting result is that even without exploration during
online learning, DONUT-Epsilon with ε = 0 achieves compara-
ble performance against DONUT and other variants. The reason
is that to minimize user impatiences, under-explored models will
be selected when their associated user impatiences increase to
be high. In other words, the online control procedure enforces
exploration implicitly under our algorithm design.

C. Effects of Model Selection Numbers

Different Fixed Model Selection Numbers: In Fig. 7, we com-
pare performances of DONUT under different model selection
numbers. The model selection number n ranges in {1, 3, 4} and
the energy budget b is set as 50 J.

The results show that DONUT with multiple selections (n =
3, 4) is potentially better than a single selection (n = 1) with
higher prediction CTR and lower user impatience while keeping
the energy consumption within budget. For prediction CTR,
multiple selections result in a higher probability of correctly
predicting the user’s favorable next words and more reliable
prediction in face of unstable wireless communications. For
user impatience, multiple selections lead to more chances to
reduce impatience for multiple models as shown in (3). For
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Fig. 5. Performances of DONUT and its variants under different values of V .

Fig. 6. Performances of DONUT and its variants under different values of α.

Fig. 7. Performances of DONUT under different model selection numbers.

energy consumption, though multiple selections give rise to
higher consumption for wireless transmission, DONUT keeps
such consumption within budget by guaranteeing the long-term
energy consumption constraint.

Fixed & Flexible Model Selection Numbers: In Fig. 8, we
compare the performances of DONUT under fixed and flexible
model selection numbers. Under the case of a fixed model
selection number, we set the model selection number as 3; for
the case of a flexible model selection number, we restrict the
model selection number to be no larger than 3.

The results show that compared with the case of fixed
model selection number, DONUT under flexible model selec-
tion number achieves higher prediction CTR and less energy
consumption, but higher user impatience. The reason is that
DONUT under flexible model selection number avoids selecting
NLP models with low accuracies and high energy consumption,
thus focusing on only a subset of NLP models. Consequently,

it fails to select models of high impatience to reduce user
impatiences.

D. Effects of Top-k Prediction Results

In Fig. 9, we investigate the performances of DONUT under
cases where NLP models return top-k prediction results with
different values of k. Since the common number of predicted
next-words presented to the user ranges from 5 to 25 and the
model selection number is fixed as 3, we vary the value of k
from 1 to 10 in our simulations [13]. V and α are set as 300 and
1, respectively.

Fig. 9(a) shows the evolvement of prediction accuracies of
NLP models indexed from 0 to 5 when k increases (detailed
prediction accuracies of all NLP models are summarized in
Table V). The results show that the prediction accuracy of each
NLP model increases monotonically as the value of k increases.
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Fig. 8. Performances of DONUT under fixed and flexible model selection number.

Fig. 9. Performances of DONUT under different top-k prediction results.

TABLE V
PREDICTION ACCURACIES OF NLP MODELS WITH DIFFERENT VALUES OF k

Fig. 9(b) and (c) illustrate the performance of DONUT under
different values of k when V increases from 10 to 500. For
example, the blue curves in Fig. 9(b) and (c) show that given
k = 3, as V increases from 10 to 500, the total prediction CTR,
user impatience, and energy consumption increase by 20.3%,
37.0%, and 4.10%, respectively. From Fig. 9(b), we see that
when achieving the same value of total user impatience, DONUT
with a higher value of k reaches a higher total prediction CTR.
For example, when the value of total user impatience is 90, the

total prediction CTR increases by 158.13% as the value of k
increases from 1 to 9. From Fig. 9(c), we observe a similar
trend in the change of total prediction CTR and total energy
consumption when the value of k grows. Specifically, DONUT
achieves higher total prediction results under a higher value
of k (given a fixed value of total energy consumption). For
example, when the value of total energy consumption is 19.6,
the total prediction CTR increases by 166.52% as k increases
from 1 to 9. The reason is that with a larger value of k, more
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prediction results are sent to the user device. As a result, the user
is more likely to find the favorable next words or phrases, hence
a higher prediction CTR. Moreover, under a larger value of k,
the increment in the total prediction CTR decreases under the
same increase in value of k. For example, the total prediction
CTR increases by 73.77% when k increases from 1 to 3, but
only increases by 10.76% when k increases from 7 to 9.

VII. CONCLUSION

In this paper, we studied the distributed inference for edge
natural language processing, focusing on the typical next-word
prediction service. We cast the key model selection problem
as an online constrained optimization problem with multiple
objectives. Specifically, the problem requires simultaneously
maximization of prediction click-through rate, minimization of
user impatience, and guarantee of within-budget energy con-
sumption. From the lens of constrained bandit learning, we
proposed DONUT to solve the model selection problem via
an integration of online learning and online control. Theoretical
analysis showed that DONUT achieves sub-linear regret, ensures
bounded user impatience, and maintains energy consumption
with budget. Simulation results verified the outperformance of
DONUT over other online algorithms in terms of the proposed
integrated metric by an average 160% increase.

REFERENCES

[1] D. W. Otter, J. R. Medina, and J. K. Kalita, “A survey of the usages of
deep learning for natural language processing,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 32, no. 2, pp. 604–624, Feb. 2021.

[2] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637–646, Oct. 2016.

[3] D. Liu, H. Kong, X. Luo, W. Liu, and R. Subramaniam, “Bringing AI to
edge: From deep learning’s perspective,” 2020, arXiv:2011.14808.

[4] M. Chen et al., “Distributed learning in wireless networks: Recent progress
and future challenges,” IEEE J. Sel. Areas Commun., vol. 39, no. 12,
pp. 3579–3605, Dec. 2021.

[5] M. Chen et al., “Federated learning of n-gram language models,” in Proc.
23rd Conf. Comput. Natural Lang. Learn., 2019, pp. 121–130.

[6] M. E. Peters et al., “Deep contextualized word representations,” in Proc.
Annu. Conf. North Amer. Chapter Assoc. Comput. Linguistics: Hum. Lang.
Technol., 2018, pp. 2227–2237.

[7] J. D.M.-W. C. Kenton and L. K. Toutanova, “BERT: Pre-training of deep
bidirectional transformers for language understanding,” in Proc. Annu.
Conf. North Amer. Chapter Assoc. Comput. Linguistics: Hum. Lang.
Technol., 2019, pp. 4171–4186.

[8] Y. Liu et al., “RoBERTa: A robustly optimized bert pretraining approach,”
2019, arXiv:1907.11692.

[9] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut,
“ALBERT: A lite bert for self-supervised learning of language represen-
tations,” 2019, arXiv:1909.11942.

[10] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “DistilBERT, A distilled ver-
sion of bert: Smaller, faster, cheaper and lighter,” 2019, arXiv:1910.01108.

[11] T. Brown et al., “Language models are few-shot learners,” in Proc. 34th
Int. Conf. Neural Inf. Process. Syst., 2020, Art. no. 159.

[12] Z. Zhang, Y. Yang, Y. Dai, L. Qu, and Z. Xu, “When federated learning
meets pre-trained language models’ parameter-efficient tuning methods,”
2022, arXiv:2212.10025.

[13] A. Hard et al., “Federated learning for mobile keyboard prediction,”
2018, arXiv:1811.03604.

[14] X. Dong, Z. Yu, W. Cao, Y. Shi, and Q. Ma, “A survey on ensemble
learning,” Front. Comput. Sci., vol. 14, no. 2, pp. 241–258, 2020.

[15] Y. Zhou et al., “Mixture-of-experts with expert choice routing,” in Proc.
Int. Conf. Neural Inf. Process. Syst., 2022, pp. 7103–7114.

[16] Q. Cao, Y. K. Lal, H. Trivedi, A. Balasubramanian, and N. Balasubrama-
nian, “IrEne: Interpretable energy prediction for transformers,” in Proc.
Annu. Meeting Assoc. Comput. Linguistics, 2021, pp. 2145–2157.

[17] A. Vaswani et al., “Attention is all you need,” in Proc. 31st Int. Conf.
Neural Inf. Process. Syst., 2017, pp. 6000–6010.

[18] K. Liao, Y. Zhang, X. Ren, Q. Su, X. Sun, and B. He, “A global past-
future early exit method for accelerating inference of pre-trained language
models,” in Proc. North Amer. Chapter Assoc. Comput. Linguistics, 2021,
pp. 2013–2023.

[19] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Mach. Learn., vol. 47, no. 2, pp. 235–256,
2002.

[20] S. Ramaswamy, R. Mathews, K. Rao, and F. Beaufays, “Federated learning
for emoji prediction in a mobile keyboard,” 2019, arXiv:1906.04329.

[21] M. Chen et al., “Evaluating large language models trained on code,”
2021, arXiv:2107.03374.

[22] M. Liu, S. Ho, M. Wang, L. Gao, Y. Jin, and H. Zhang, “Federated learning
meets natural language processing: A survey,” 2021, arXiv:2107.12603.

[23] M. Chen, R. Mathews, T. Ouyang, and F. Beaufays, “Federated learning
of out-of-vocabulary words,” 2019, arXiv:1903.10635.

[24] Y. Mansour, M. Mohri, J. Ro, and A. T. Suresh, “Three ap-
proaches for personalization with applications to federated learning,”
2020, arXiv:2002.10619.

[25] S. Ji, S. Pan, G. Long, X. Li, J. Jiang, and Z. Huang, “Learning private
neural language modeling with attentive aggregation,” in Proc. Int. Joint
Conf. Neural Netw., 2019, pp. 1–8.

[26] J. Stremmel and A. Singh, “Pretraining federated text models for next word
prediction,” in Proc. Future Inf. Commun. Conf., 2021, pp. 477–488.

[27] C.-J. Wu et al., “Machine learning at facebook: Understanding inference at
the edge,” in Proc. IEEE Int. Symp. High Perform. Comput. Architecture,
2019, pp. 331–344.

[28] W. Ren et al., “A survey on collaborative DNN inference for edge intelli-
gence,” 2022, arXiv:2207.07812.

[29] E. Li, L. Zeng, Z. Zhou, and X. Chen, “Edge AI: On-demand accelerating
deep neural network inference via edge computing,” IEEE Trans. Wireless
Commun., vol. 19, no. 1, pp. 447–457, Jan. 2020.

[30] C. Hu and B. Li, “Distributed inference with deep learning models across
heterogeneous edge devices,” in Proc. IEEE Conf. Comput. Commun.,
2022, pp. 330–339.

[31] A. Parthasarathy and B. Krishnamachari, “Partitioning and deployment of
deep neural networks on edge clusters,” 2023, arXiv:2304.11941.

[32] M. A. Khan, R. Hamila, A. Erbad, and M. Gabbouj, “Distributed inference
in resource-constrained IoT for real-time video surveillance,” IEEE Syst.
J., vol. 17, no. 1, pp. 1512–1523, Mar. 2023.

[33] J. Cao, B. Li, M. Fan, and H. Liu, “Inference acceleration with adaptive dis-
tributed DNN partition over dynamic video stream,” Algorithms, vol. 15,
no. 7, pp. 244–261, 2022.

[34] B. Islam and S. Nirjon, “Zygarde: Time-sensitive on-device deep inference
and adaptation on intermittently-powered systems,” in Proc. ACM Inter-
active Mobile Wearable Ubiquitous Technol., vol. 4, 2020, Art. no. 82.

[35] Q. Luo, S. Hu, C. Li, G. Li, and W. Shi, “Resource scheduling in
edge computing: A survey,” IEEE Commun. Surv. Tuts., vol. 23, no. 4,
pp. 2131–2165, Fourth Quarter 2021.

[36] A. E. Eshratifar, M. S. Abrishami, and M. Pedram, “JointDNN: An efficient
training and inference engine for intelligent mobile cloud computing
services,” IEEE Trans. Mobile Comput., vol. 20, no. 2, pp. 565–576,
Feb. 2021.

[37] Z. Li, M. Paolieri, and L. Golubchik, “Inference latency prediction at the
edge,” 2022, arXiv:2210.02620.

[38] L. L. Zhang et al., “nn-Meter: Towards accurate latency prediction of
deep-learning model inference on diverse edge devices,” in Proc. 19th
Annu. Int. Conf. Mobile Syst. Appl. Serv., 2021, pp. 81–93.

[39] H. Qi, E. R. Sparks, and A. Talwalkar, “Paleo: A performance model for
deep neural networks,” in Proc. Int. Conf. Learn. Representations, 2017.

[40] C. Zhu and M. S. Corson, “A distributed channel probing scheme
for wireless networks,” in Proc. IEEE Conf. Comput. Commun., 2001,
pp. 403–411.

[41] M. A. A. Careem and A. Dutta, “Real-time prediction of non-stationary
wireless channels,” IEEE Trans. Wireless Commun., vol. 19, no. 12,
pp. 7836–7850, Dec. 2020.

[42] B. I. Teigen, N. Davies, K. O. Ellefsen, T. Skeie, and J. Torresen, “A model
of WiFi performance with bounded latency,” 2021, arXiv:2101.12512.

[43] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge com-
puting: A survey,” IEEE Internet Things J., vol. 5, no. 1, pp. 450–465,
Feb. 2018.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 25,2024 at 06:55:18 UTC from IEEE Xplore.  Restrictions apply. 



5708 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

[44] F. Guillemin, S. E. Elayoubi, P. Robert, C. Fricker, and B. Sericola,
“Impatience in mobile networks and its application to data pricing,” in
Proc. IEEE Int. Conf. Commun., 2015, pp. 6104–6109.

[45] B. Li, “Efficient learning-based scheduling for information freshness
in wireless networks,” in Proc. IEEE Conf. Comput. Commun., 2021,
pp. 1–10.

[46] E. Altman, R. El Azouzi, D. S. Menasché, and Y. Xu, “Poster: Aging
control for smartphones in hybrid networks,” ACM SIGMETRICS Perform.
Eval. Rev., vol. 39, no. 2, pp. 68–68, 2011.

[47] E. Altman, R. El-Azouzi, D. S. Menasche, and Y. Xu, “Forever young:
Aging control for hybrid networks,” in Proc. 20th ACM Int. Symp. Mobile
Ad Hoc Netw. Comput., 2019, pp. 91–100.

[48] D. Tse and P. Viswanath, Fundamentals of Wireless Communication.
Cambridge, U.K.: Cambridge Univ. Press, 2005.

[49] J.-Y. Audibert et al., “Minimax policies for adversarial and stochastic
bandits,” in Proc. Annu. Conf. Learn. Theory, 2009, pp. 1–122.

[50] J. Vermorel and M. Mohri, “Multi-armed bandit algorithms and
empirical evaluation,” in Proc. Eur. Conf. Mach. Learn., 2005,
pp. 437–448.

[51] M. J. Neely, “Stochastic network optimization with application to commu-
nication and queueing systems,” Synth. Lectures Commun. Netw., vol. 3,
no. 1, pp. 1–211, 2010.

[52] T. Lattimore and C. Szepesvári, Bandit Algorithms. Cambridge, U.K.:
Cambridge Univ. Press, 2020.

[53] T. Wolf et al., “Transformers: State-of-the-art natural language pro-
cessing,” in Proc. Conf. Empir. Methods Natural Lang. Process., 2020,
pp. 38–45.

[54] F. Debole and F. Sebastiani, “An analysis of the relative hardness of reuters-
21578 subsets,” J. Amer. Soc. Inf. Sci. Technol., vol. 56, no. 6, pp. 584–596,
2005.

[55] M. Hu and B. Liu, “Mining and summarizing customer reviews,” in
Proc. 10th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2004,
pp. 168–177.

[56] N. Jindal and B. Liu, “Opinion spam and analysis,” in Proc. Int. Conf. Web
Search Data Mining, 2008, pp. 219–230.

[57] F. Li, J. Liu, and B. Ji, “Combinatorial sleeping bandits with fair-
ness constraints,” in Proc. IEEE Conf. Comput. Commun., 2019,
pp. 1702–1710.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 25,2024 at 06:55:18 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


