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a b s t r a c t 

Network embedding aims to learn a low-dimensional representation for each vertex in a 

network, which has recently shown its power in many graph mining problems such as 

vertex classification and link prediction. Most existing methods learn such representations 

according to network structure information, and some methods further consider vertex 

content in a network. Unlike prior works, we study the problem of network embedding 

with two distinctive properties: (1) content information exists on both vertices and edges; 

(2) only a part of vertices and edges have content information. To solve this problem, we 

propose a novel P artially available V ertex and E dge C ontent B oosted network embedding 

method, namely PVECB , which uses available vertex and edge content information to fine- 

tune structure-only representations through two hand-designed mechanisms respectively. 

Empirical results on four real-world datasets demonstrate that our method can effectively 

boost structure-only representations to capture more accurate proximities between ver- 

tices. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

1. Introduction 

Graphs (or networks) are widely used in modeling complex real-world systems such as online social networks (OSNs),

biological networks, and communication networks, where entities in these systems are modeled as vertices, and entity rela-

tions are modeled as edges. Many practical problems are then converted to the corresponding graph mining problems, e.g.,

the friend recommendation in Facebook and the who-to-follow service in Twitter become classic link prediction problems

on graphs [6,12,32] . In recent years, network embedding techniques [3,7,16,20] are gaining popularity and demonstrated to

be effective in solving a wide scope of graph mining problems, including link prediction, vertex classification, and com-

munity detection. The basic idea behind network embedding is to design a mapping that maps vertices in a graph into a

low-dimensional space while preserving meaningful structure information contained in the original graph, and the mapped

vertices, called vertex embedding vectors or vertex representations , allow leveraging off-the-shelf machine learning algorithms

to effectively solve aforementioned graph mining problems 1 . 
∗ Corresponding author. 

E-mail address: phwang@mail.xjtu.edu.cn (P. Wang). 
1 In this paper, we use the term embedding vector and representation interchangeably. 
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Fig. 1. Illustration of a researcher social network. Two researchers are connected if they are friends , follow each other , or have co-authored at least one paper . 

Apart from the fundamental structure information, the network contains vertex content (i.e., text descriptions inside rounded rectangles, which can be 

obtained from a researcher’s profile in ResearchGate or homepage) and edge content (i.e., papers collaborated by two researchers, of which only keywords 

of abstracts are shown inside rectangles for easy reading). The question marks indicate that the corresponding vertex and edge content are non-existent or 

unavailable, which almost always holds in practice. For instance, the incompleteness of vertex content occurs because R 4 and R 5 do not fill out profiles or 

do not have their own homepages, and edge content is non-existent since R 1 and R 2 follow each other but have not yet collaborated papers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the literature, most existing network embedding methods [3,16,20] mainly leverage the network structure information

to design the mapping, and if two vertices are connected or have small shortest-path distance, the embedding methods tend

to map them to two close locations in the low-dimensional space. Although embedding vectors learned by structure-only

methods have been demonstrated to be useful in some applications, they do not consider rich semantic information contained

on vertices and edges and may obtain inappropriate vertex representations. In real-world networks, besides structural infor-

mation, vertices and edges in a network often contain meaningful semantic information such as attributes and tags, and

the semantic information is sometimes important when determining vertex representations. For example, let us consider

a simple researcher social network in ResearchGate in Fig. 1 . Here, a vertex represents a researcher, and two researchers

are connected if they are friends, follow each other, or have co-authored at least one paper. We notice that R 1 is an in-

terdisciplinary researcher, who is interested in both Computer Security and Machine Learning . R 1 has a connection with R 2 
who is interested in Machine Learning , and R 1 has another connection with R 3 who is interested in Computer Security . If we

omit these vertex and edge semantics, and only consider structural information, structure-only embedding methods (such

as the first-order proximity [20] that assumes all neighbors of a vertex are similar) will produce similar representations for

vertices R 2 and R 3 in the low-dimensional space, implying that R 2 and R 3 have similar research interests, which violates our

observation. 

Present work. In this work, we investigate how to leverage structural information and content information to obtain

better vertex representations. Using the example in Fig. 1 , we briefly explain why both vertex content and edge content are

helpful in obtaining better vertex representations. First, the content information on vertices R 2 and R 3 indicates that the two

researchers actually belong to two different research communities, i.e., Machine Learning and Computer Security , respectively.

Thus, their representations in the low-dimensional space should not be too close to each other. Second, although researchers

R 4 and R 5 lack the vertex content, each of them has an edge with R 1 and the edge content indicates that they have a lot

of common research interests, and hence their vertex representations in the low-dimensional space should be close to each

other. 

Inspired by the above observations, we come up with the idea of enhancing structure-only network embedding methods

by leveraging the vertex and edge content information. However, we still face the following challenges. 

• Challenge 1: Missing vertex/edge content. It is very common that some vertices or edges in a network do not have

content in real-world networks. For example, some researchers may not provide their research interests (vertex content

missing). Or, a researcher may follow some researchers but has not co-authored with them yet (edge content missing). How

to handle such missing vertex/edge content remains difficult. 

• Challenge 2: Semantic gaps between vertex and edge content. Usually, vertex and edge content describe characteristics

of vertices within different contexts, and thus there is a semantic gap between them. For example, researchers tend to use

some simple and general words to describe their research interests (vertex content), such as Machine Learning used by R 2 .

On the contrary, researchers need to elaborate their papers (edge content) using more technical and specialized words (e.g.,

Bayesian inference and transductive inference ). The semantic gap between vertex and edge content will give rise to inaccurate

relationships between vertices, and how to solve this issue needs to be further studied. 

In this paper, we develop a novel method that jointly leverages both vertex and edge content. More importantly, our

method allows incomplete vertex and edge content, and hence we refer the method as P artially available V ertex and E dge

C ontent B oosted network embedding, namely PVECB . In particular, we address the above challenges from the following two

perspectives correspondingly: 
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• Fine-tuning with available content information. To address the first challenge, we first initialize embedding vectors of

vertices according to the structure information and then fine-tune structure-only embedding vectors using available content

information on vertices and edges. To some extent, the philosophy of fine-tuning can alleviate the problem of the incom-

pleteness of content information. 

• Different functionalities of vertex and edge content. To address the second challenge, instead of gathering all content

associated with a vertex together, we investigate the functionalities of vertex and edge content, and design two different

objectives to fine-tune structure-only embedding vectors with them respectively. 

Our main contributions are summarized as follows: 

• We propose a novel network embedding method that jointly leverages vertex and edge content to learn vertex repre-

sentations. Our method tolerates missing vertex/edge content which makes it applicable in realistic scenarios. 

• We construct three real-world co-authorship networks, which include rich vertex and edge content that can be used

to characterize relationships between vertices, and empirical results on these networks and another social network

demonstrate that our method achieves a significant performance improvement (up to around 18%) over the best-

performed structure-only method in terms of Micro- F 1 scores. On the contrary, existing content-enhanced methods,

such as TADW [30] and TriDNR [15] , fail to handle the missing content information, and even their performance is

worse than the best-performed structure-only method. 

The remainder of this paper will proceed as follows. Section 2 summarizes related work. Section 3 introduces some

background knowledge. Section 4 formulates the studied problem and introduces the proposed method PVECB in detail.

Section 5 presents experimental results, and Section 6 concludes. 

2. Related work 

In this section, we summarize the related literature of network embedding methods from two aspects: methods that

only use network structure information, and methods that also use auxiliary information such as content information and

label information. 

2.1. Methods only using network structure information 

Spectral methods for dimensionality reduction such as MDS [5] , IsoMap [23] , LLE [18] , and Laplacian Eigenmap [2] learn

vertices’ low-dimensional representations by solving the leading eigenvectors of a graph (given in advance or learned from

available data), which is computationally expensive for large networks. Inspired by recent progress in embedding words

in the field of natural language processing (NLP), several methods are recently proposed to learn networks’ vertex embed-

ding vectors. For example, DeepWalk [16] converts network structure into sequences of vertices by a truncated random

walk algorithm and learns vertex embedding vectors with the skip-gram model [13] which has been successfully applied

to learn word embedding vectors. Node2vec [7] modifies DeepWalk to transform graph structure into vertex sequences by

mixing two random walk strategies: breadth- and depth-first searches. LINE [20] learns vertex embedding vectors with the

intention of preserving vertices’ first- and second-step neighborhood information. GraRep [3] investigates k -step subgraph

structure in a graph and further improves LINE by considering different k -step subgraph patterns. SDNE [27] is proposed to

capture highly non-linear network structure using a multi-layer neural network. [28] develops a modularity-based method

to learn vertex embedding vectors preserving network community structure. [17] proposes to model the characteristic of

structure identity in a network during the process of embedding, which captures the proximity between two vertices that

have structurally similar neighborhoods but are far apart in the network (i.e., two vertices have a long distance). In addi-

tion, [14] observes that the above network embedding methods cannot well preserve the asymmetric transitivity in directed

graphs, and develops a method HOPE to solve the problem. However, all the above methods ignore content information in

a network. 

2.2. Methods also using auxiliary information 

Some works are proposed to enhance structure-only embedding methods with content information. TADW [30] learns

vertex representations from both network structure and text information on vertices based on matrix factorization.

TriDNR [15] exploits structure information, vertex content, and vertex labels to jointly learn vertex representations. [11] com-

bines variational auto-encoders [8] and doc2vec [9] to preserve network structure and vertex content simultaneously. How-

ever, these content-enhanced methods assume that the content information is available for each vertex, and their perfor-

mance usually degrades significantly when there is only partially available content information. 

Recently, SINE [31] regards content information as a kind of contextual vertices, and applies the skip-gram model [13] to

learn vertex representations such that vertices with similar content context have similar representations. In effect, SINE uses

embedding vectors of vertices to predict their corresponding content information. To some extent, this way could eliminate

the negative impacts caused by missing content information. However, simply regarding content information (e.g., text) as

separate contextual vertices (e.g., words) ignores high-level similarities (e.g., the semantic similarity) between content infor-

mation. On the contrary, our proposed fine-tuning mechanisms are able to flexibly utilize advanced deep learning techniques

to capture comprehensive content similarities and further guides the learning of vertex representations. 
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On the other hand, to the best of our knowledge, no methods have been developed to investigate how to incorporate

edge content into network embedding. A relevant work [4] considers edge labels in the process of learning representations

and models edge labels in a way similar to SINE. It constructs edge representations by concatenating embedding vectors of

endpoints and then uses edge representations to predict the corresponding edge labels. However, when dealing with edge

content, similar to SINE, it also has the limitation that high-level similarities between edge content cannot be captured. 

3. Preliminaries 

In this section, we first give some background knowledge about structure-only network embedding methods and then

analyze the drawbacks of the existing content-enhanced methods. Finally, we introduce a kind of deep learning technique,

which is employed to extract features from content information in this paper. 

3.1. Structure-only network embedding methods 

We first formally define the problem of network embedding, and then briefly review two state-of-the-art structure-only

network embedding methods, LINE [20] and GraRep [3] , for consistency. 

A network is denoted by G = (V, E ) , where V = { v 1 , . . . , v |V| } is a set of vertices, and E ⊆ V × V is a set of edges. We

assume G is undirected for ease of presenting our idea. We define D = { (v k , v i , v j ) | v k , v i , v j ∈ V, (v k , v i ) ∈ E, (v k , v j ) ∈ E} to

represent all triplets in a network, and define N k = { v i | v i ∈ V, (v k , v i ) ∈ E} as the set of neighbors of v k . The goal of network

embedding is to learn a mapping function f : V �→ R 

d where d � |V| . In the latent space R 

d , graph properties, such as first-

and second-order proximities [20] , are expected to be preserved as much as possible. 

LINE [20] is an effective and efficient network embedding method, which models the first- and second-order proximities

between vertices. Specifically, LINE uses a logistic function to approximate the first-order proximity between two connected

vertices: 

p 1 st (v i , v j ) = 

1 

1 + exp (−u 

T 
i 

u j ) 
, 

where u i , u j ∈ R 

d are embedding vectors of vertices v i and v j respectively. LINE preserves the first-order proximity over the

entire network by optimizing the following objective: 

max 
U 

∑ 

(v i , v j ) ∈E 
log p 1 st (v i , v j ) + 

∑ 

(v i , v j ) / ∈ E 
log 

(
1 − p 1 st (v i , v j ) 

)
, (1) 

where U ∈ R 

| V |×d indicates embedding vectors of all vertices. 

For the second-order proximity, LINE introduces a context representation u 

′ 
k 

for each vertex v k ∈ V, and defines the

probability that a randomly selected vertex v j is connected to vertex v i as: 

p 2 nd (v j | v i ) = 

exp 

(
u 

′ T 
j 

u i 

)
∑ |V| 

k =1 
exp 

(
u 

′ T 
k 

u i 

) . 

Therefore, we can use p 2 nd (·| v i ) to represent the distribution of neighbors of vertex v i . To preserve the neighbor structure

of each vertex v i ∈ V (i.e., the second-order proximity), LINE optimizes the following objective function: 

max 
U 

∑ 

v i ∈V 

( ∑ 

v j ∈N i 
log p 2 nd (v j | v i ) + 

∑ 

v j / ∈ N i 
log (1 − p 2 nd (v j | v i )) 

) 

. (2) 

GraRep [3] extends LINE to investigate high-order proximities in a network, and formulates the process of network em-

bedding as matrix factorization. Specifically, GraRep defines the following probability transition matrix to represent the

first-order proximity between vertices: 

A = D 

−1 S, 

where D and S are the degree matrix and adjacency matrix of a graph respectively. Furthermore, the k th -order proximity

can be represented as a matrix: 

A 

k = A · · · A ︸ ︷︷ ︸ 
k 

. 

Following [10] , GraRep defines a matrix Y k ∈ R 

|V |×|V | to integrate negative sampling, where 

Y k i, j = max 

(
log 

(
A 

k 
i, j ∑ 

t A 

k 
t, j 

)
− log 

(
K 

|V| 
)
, 0 

)
, 

and K is the number of negative samples. To obtain vertex representations U 

k that capture the k th -order proximity in the

graph, we factorize the matrix Y k into two matrices W 

k ∈ R 

|V|×d and H 

k ∈ R 

d×|V| , where the i -th row W 

k 
i, ∗ ∈ R 

d of W 

k is the

low-dimensional representation of v in the context of the k th -order proximity. 
i 
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3.2. TADW Is not good 

As alluded before, the existing content-enhanced methods fail to handle the circumstance where only part of vertices

have content information. Here, we analyze TADW [30] for illustration. Specifically, TADW optimizes the objective 

min 

W,H 
‖ M − W 

T HT ‖ 

2 , 

where M ∈ R 

| V |×| V | is a transition probability matrix derived from the adjacency matrix, T ∈ R 

f t ×| V | is the text feature matrix,

and W ∈ R 

d×| V | and H ∈ R 

d× f t are the expected latent features. The final embedding matrix is the concatenation of W and

HT . In the scenario of missing content information, the columns corresponding to vertices without content will have all zero

entries, which will be problematic during optimization. In particular, for each vertex v i without content, the corresponding

column T ∗ , i has all zero entries. Thus, no matter how W and H are updated, the i -th column M 

′ 
∗,i 

of the reconstructed matrix

M 

′ = W 

T HT will also have all zero entries, which means vertex v i has no connections with other vertices and implies the

learned representation of vertex v i cannot preserve connections between vertex v i and other vertices. Furthermore, the

experimental results in Section 5.4 confirm that the existing content-enhanced methods, especially TADW [30] , will lead to

a severe inconsistency between the multi-label classification performance of vertices with and without content. 

3.3. Stacked denoising auto-Encoders 

In this paper, we apply stacked denoising auto-encoders (SDAE) [25] to learn latent representations from text-related

content. SDAE is an unsupervised deep learning model comprising of “Encoders” and “Decoders”. The “Encoders” is a multi-

layer neural network and aims to map high-dimensional corrupted input signals into a low-dimensional latent space. Given

a K 
2 -layer “Encoders”, we regard the bag-of-words representation of a piece of textual information x T as the input signal,

and obtain the corresponding latent representationq u T as follows: 

y (1) 
T = f 

(
W 

(1) (x T + ε) + b 

(1) 
)
, 

y (k ) 
T = f 

(
W 

(k ) y (k −1) 
T + b 

(k ) 
)
, k = 2 , . . . , 

K 

2 

, 

u T = y 
( K 2 ) 

T , 

where ε is the noise signal, and W 

(k ) 
T , b 

(k ) 
T and y (k ) 

T are the weight matrix, bias term and output of k th neural layer respec-

tively. 

On the other hand, the “Decoders” is also a multi-layer neural network, which reverses the calculation of “Encoders”,

and aims to reconstruct the original input signal according to latent representations learned by the “Encoders” such that the

learned latent representations can preserve the characteristics of the original input signals. Given the latent representation

u T , a 
K 
2 -layer “Decoders” is defined as follows: 

y 
( K 2 +1) 

T = f 

(
W 

( K 2 +1) u T + b 

( K 2 +1) 
)
, 

y (k ) 
T = f 

(
W 

(k ) y (k −1) 
T + b 

(k ) 
)
, k = 

K 

2 

+ 1 , . . . , K. 

The reconstruction loss is calculated by 

L T = ‖ y (K) 
T − x T ‖ 

2 . 

Further, in order to capture the similarities between different pieces of text, we define the following objective function: 

O T = 

∑ 

x T 

‖ y (K) 
T − x T ‖ 

2 . (3)

Although Eq. (3) does not explicitly model the similarity between two pieces of text, the work [19] has shown that

minimizing the reconstruction loss of different input signals can make latent representations of similar input signals locate

close in the latent space. Thus, the latent content representations learned by minimizing Eq. (3) can be used to measure

similarities between text. 

4. Our proposed approach 

In this section, we first formulate our studied problem. Then, we describe PVECB in detail, and discuss the model opti-

mization. 
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Fig. 2. Illustration of our model PVECB. For each triplet (v k , v i , v j ) , where v i and v j are connected with v k , PVECB first employs two stacked denoising 

auto-encoders ( K = 4 for illustration) to extract content embedding vectors from vertex and edge content respectively as shown on two sides of the figure. 

Then, PVECB uses extracted vertex content embeddings u V , k , u V , i , and u V , j to fine-tune structure-only embedding vectors u k , u i , and u j . Similarly, PVECB 

fine-tunes u i and u j with edge content embeddings u E , ki and u E , kj . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1. Our problem 

We denote by G = (V, E, C V , C E ) the network studied in this paper, where C V and C E represent content information on

vertices and edges respectively. Let c v ,i denote the content information on the vertex v i . For each edge (v i , v j ) ∈ E, let c e , ij 
denote the content information on the edge (v i , v j ) . Our goal is to enhance traditional structure-only embedding methods

by leveraging available content information on vertices and edges and learn a better representation u i ∈ R 

d for each vertex

v i ∈ V . 

4.2. Overview of our model PVECB 

As shown in Fig. 2 , PVECB mainly consists of two stages: 1) content embedding vector extraction, i.e., vertex content

embedding vectors and edge content embedding vectors; 2) fusion of structure-only embedding vectors and content em-

bedding vectors. In the former step, we apply a kind of deep learning technique, namely stacked denoising auto-encoder

(SDAE) [25] , to extract latent features from vertex and edge content. In the latter, to alleviate the problem of missing ver-

tex/edge content in reality (as mentioned in Section 1 ), we propose to use vertex content and edge content embedding

vectors to fine-tune structure-only embedding vectors, and regard fine-tuned structure-only embeddings as the final vertex

embedding vectors. The fusing step makes three kinds of information (e.g., structure information, vertex content, and edge

content) complementary to each other, such that the learned vertex embedding vectors can capture more accurate charac-

teristics of vertices and relationships between vertices in a network. Note that the modeling of structure information is not

the key point of our paper, and we just apply two kinds of state-of-the-art methods, LINE [20] and GraRep [3] , to learn

structure-only embedding vectors. 

4.3. Fusion of structure-only and content embedding vectors 

The key point of this paper is to use available content information to assist structure information during the procedure of

network embedding, and thus we next first elaborate how to fuse structure-only embedding vectors and content embedding

vectors in this section. Given a triplet (v k , v i , v j ) ∈ D, where v i and v j are connected with v k , suppose we have obtained the

corresponding structure-only embedding vectors, vertex content embedding vectors, and edge content embedding vectors. 

We propose to use vertex and edge content embedding vectors (i.e., u V,k , u V,i , u V, j , u E,ki , and u E,k j ) to fine-tune structure-

only embeddings (i.e., u k , u i , and u j ), such that the fine-tuned structure-only embedding vectors can characterize vertices

of a network more accurately. 

4.3.1. Fine-tune with vertex content embedding vectors 

Vertex content can be used to fine-tune structure-only embeddings from two aspects: ( aspect a ) For two connected

vertices v k and v i , the similarity between their vertex content can reflect the connection weight between them. That is, the

more similar vertex content two connected vertices show, the closer their embedding vectors should be in the latent space;

( aspect b ) For two vertices v i and v j connecting to the same vertex v k , the similarity between their vertex content identifies
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whether they are similar or not. Based on the above principles, we first define the similarity between two vectors as: 

s (m , n ) = 

m 

T n 

‖ m ‖‖ n ‖ 

. (4)

Consider the above aspect (a), for each triplet (v k , v i , v j ) , we define the following loss function: 

L S, V ,a = ‖ s ( u k , u i ) − s 
(
u V,k , u V,i 

)‖ 

2 + ‖ s 
(
u k , u j 

)
− s 

(
u V,k , u V, j 

)‖ 

2 . (5)

On the other hand, the loss function of the aspect (b) is defined as: 

L S, V ,b = ‖ s 
(
u i , u j 

)
− s 

(
u V,i , u V, j 

)‖ 

2 . (6)

Furthermore, structure-only embedding vectors can be fine-tuned with all available vertex content by minimizing the fol-

lowing objective function: 

O S, V = O S, V ,a + αO S, V ,b 

= 

∑ 

(v k , v i , v j ) ∈D 
1 

(
c v ,k & c v ,i 

)‖ s ( u k , u i ) − s 
(
u V,k , u V,i 

)‖ 

2 

+ 1 

(
c v ,k & c v , j 

)‖ s 
(
u k , u j 

)
− s 

(
u V,k , u V, j 

)‖ 

2 

+ α1 

(
c v ,i & c v , j 

)‖ s 
(
u i , u j 

)
− s 

(
u V,i , u V, j 

)‖ 

2 , (7)

where α is a hyper-parameter that balances the effects of two aspects of fine-tuning with vertex content, and 1 (x ) is the

indicator function that equals one when the predicate x is true (e.g., 1 (c v ,k ) equals one when the vertex content of v k is

available, and 1 (c v ,k & c v ,i ) equals one if the vertex content of both v k and v i is available) and equals zero otherwise. 

4.3.2. Fine-tune with edge content embedding vectors 

Edge content represents characteristics of pair-wise interactions (preferences) between vertices. For two vertices v i and

v j , each of which is connected with v k , if v k has similar preferences with v i and v j , we can infer that v i and v j also have

similar preferences. On the contrary, it is more possible that v i and v j belong to different social circles of v k , and the

preferences of v i and v j are different. 

Based on the above principle, given a triplet (v k , v i , v j ) , it is expected that the embedding vectors of v i and v j should

locate close in the latent space if v k has similar edge content with them (i.e., c e , ki and c e , kj are similar), and vice versa. Thus,

for each triplet (v k , v i , v j ) , we define the following loss function: 

L S, E = ‖ s 
(
u i , u j 

)
− s 

(
u E,ki , u E,k j 

)‖ 

2 . (8)

Further, we define the following objective function: 

O S, E = 

∑ 

(v k , v i , v j ) ∈D 
1 

(
c e,ki & c e,k j 

)‖ s 
(
u i , u j 

)
− s 

(
u E,ki , u E,k j 

)‖ 

2 , (9)

where 1 (c e,ki & c e,k j ) equals one if edge content of both (v k , v i ) and (v k , v j ) are available and equals zero otherwise. By

minimizing Eq. (9) , we can further fine-tune structure-only embeddings with available edge content. 

In order to fine-tune structure-only embeddings with available vertex and edge content embeddings simultaneously,

combining Eqs. (7) and (9) , we define the following objective function: 

O F usion = O S, V + βO S, E , (10)

where β is a hyper-parameter that balances the effects of vertex content and edge content during the fusing phase. 

4.4. Content embedding vector extraction 

Here, for the sake of completeness, we give a brief introduction to the extraction of content embedding vectors. As de-

scribed above, the more similar content two vertices have, the more similar the embedding vectors of them should be, and

vice versa. Likewise, the more similar content the edges (v k , v i ) and (v k , v j ) have, the more similar the learned representa-

tions of v i and v j should be. Therefore, we need to be capable of capturing similarities between content information. 

We employ two SDAEs to extract content embedding vectors from vertex and edge content respectively. Specifically, let

c i and c ij denote vertex content c v ,i ∈ C V and edge content c e,i j ∈ C E respectively, and substitute x T = c i and x T = c i j into

Eq. (3) successively, the objective function of extracting content embeddings can be defined as 

O C = O V + O E 

= 

∑ 

(v i , v j ) ∈E 
‖ y (K V ) 

i 
− c i ‖ 

2 + ‖ y (K V ) 
j 

− c j ‖ 

2 + γ ‖ y (K E ) 
i j 

− c i j ‖ 

2 , (11)

where K V and K E are the number of layers of two SDAEs for vertex and edge content respectively, and γ is a hyper-parameter

that balances the effects of vertex content and edge content during content embedding phase. 

By minimizing Eq. (11) , we learn the vertex content embedding vectors { u V,i | v i ∈ V, 1 (c v ,i ) = 1 } and the edge content

embedding vectors { u E,i j | (v i , v j ) ∈ E, 1 (c e,i j ) = 1 } . 
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4.5. Model optimization 

In this section, we summarize how to learn an embedding vector for each vertex v i ∈ V by taking account of structure

information, vertex content, and edge content. A simple and effective way is to consider the process of learning content em-

beddings and the fusion of three kinds of embeddings simultaneously, and jointly train the objective functions (10) and (11) .

After refactoring hyper-parameters, the final objective function is defined as: 

O = O S, V ,a + αO S, V ,b + βO S, E + γO V + ηO E + λO reg 

= 

∑ 

(v k , v i , v j ) ∈D 

∑ 

v m ∈{ v i , v j } 
1 

(
c v ,k & c v ,m 

)‖ s ( u k , u m 

) − s 
(
u V,k , u V,m 

)‖ 

2 

+ α1 (c v ,i & c v , j ) ‖ s 
(
u i , u j 

)
− s 

(
u V,i , u V, j 

)‖ 

2 

+ β1 

(
c e,ki & c e,k j 

)‖ s 
(
u i , u j 

)
− s 

(
u E,ki , u E,k j 

)‖ 

2 

+ γ
∑ 

v m ∈{ v k , v i , v j } 
1 (c v ,m 

) ‖ y (K V ) 
m 

− c m 

‖ 

2 

+ η
∑ 

e mn ∈{ e ki ,e k j } 
1 (c e,mn ) ‖ y (K E ) 

mn − c mn ‖ 

2 

+ 

λ

2 

( ∑ 

k v 

‖ W 

(k v ) 
V 

‖ 

2 + 

∑ 

k e 

‖ W 

(k e ) 
E 

‖ 

2 

) 

, (12) 

where u i ∈ R 

d is the final embedding vector of vertex v i , W 

(k v ) 
V 

and W 

(k e ) 
E 

denote weight matrices of SDAEs for extract-

ing features from vertex content and edge content respectively, and α, β , γ , η and λ are hyper-parameters that balance the

effects of different com ponents of our model (i.e., two aspects of fine-tuning with vertex content, fine-tuning with edge con-

tent, reconstructions of vertex and edge content, and regularization terms). In this paper, although we just employ structure-

only representations to initialize u i for each vertex, experimental results show that this simple way still achieves significant

performance gains. A more principled way is to incorporate the objectives of structure preserving (e.g., Eqs. (1) and (2) of

LINE) into the above objective function, which can be easily extended and we do not elaborate here. 

To optimize the aforementioned objective in Eq. (12) , we adopt the stochastic gradient descent (SGD) algorithm. For

each iteration, we first uniformly sample a batch of triplets from D and then perform parameter updating according to the

gradients of Eq. (12) . The parameters involved in our method include embedding vectors of all vertices { u i } i =1 , ... , |V| , and

the weight matrices (i.e., W 

(k ) 
V and W 

(k ) 
E ) and bias terms (i.e., b 

(k ) 
V and b 

(k ) 
E ) of two SDAEs. The gradients of Eq. (12) with

respect to them can be easily determined through backpropagation algorithm. For a sampled triplet (v k , v i , v j ) , we update

embedding vectors of these three vertices according to the following function: 

u m 

= u m 

− μ
∂O 

∂u m 

, m = k, i, j, (13) 

where μ> 0 is the learning rate. 

It is notable that the above naive sampling strategy will be problematic during optimization. Particularly, in a social

network, some users have many co-followers (e.g., a thousand), while some users only have few co-followers (e.g., ten). In

this case, the number of times vertices with high degrees appear in D will be dozens of times larger than that of vertices

with low degrees. For example, consider two vertices v i and v j , of which degrees are 1,0 0 0 and 10 respectively. The number

of times v i appears in D is around 

(
10 0 0 

2 

)
/ 
(

10 
2 

)
≈ 100 times as large as that of v j . That is, the embedding vector of v i will be

updated 100 times according to Eq. (13) while the embedding vector of v j is updated one time during an epoch. Therefore,

it is hardly possible to find a good learning rate μ which is suitable to both vertices with high and low degrees. A large

learning rate, which is suitable to low-degree vertices, will result in the explosion of updating of high-degree vertex vectors,

while a small learning rate, which is suitable to high-degree vertices, cannot optimize embedding vectors of low-degree

vertices effectively. 

To solve the above optimization problem, we adopt a new sampling strategy, such that a global unique learning rate

can adjust to both high-degree and low-degree vertices. To be specific, instead of sampling a batch of triplets from

D directly, we first use the alias method [26] to sample a batch of vertices according to the probability distribution

Pr (v k ) = 

(|N k | 
2 

)
/ 
∑ 

v i ∈V 
(|N i | 

2 

)
. Then, for each sampled vertex v k , we uniformly sample two different vertices v i and v j to gen-

erate the triplet (v k , v i , v j ) . 
Since the time complexities of both sampling a vertex v k from the alias table and sampling a vertex v i uniformly from

the set N k are O (1), the overall time complexity of sampling is O ( m ) time, where m is the number of sampled triplets

in each iteration. For each sampled triplet, the procedure of parameter updating is composed of two parts (i.e., SDAE and

fine-tuning), and takes O (d 2 c h max + d u h c ) where d c is the dimension of content information, h max is the maximum size of

hidden layers of SDAE, d u is the dimension of vertex representations, and h c is the dimension of latent content embeddings

learned by SDAE. Therefore, the overall time complexity of our method is O (m (d 2 c h max + d u h c )) for each iteration. Note that

the major computation cost comes from matrix multiplications in SDAE, which can be greatly accelerated by GPUs. 
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Table 1 

Statistics of datasets. 

Dataset RSRnet-S RSRnet-M RSRnet-L Flickr 

#Vertices 42,069 86,850 132,400 30,386 

#Edges 253,155 651,230 1,393,362 443,333 

#Labels 5 8 14 9 

#Vertices with content 11,139 22,685 37,773 17,959 

#Edges with content 56,614 106,469 187,491 N/A 

Dim. of vertex content 4,767 8,161 10,926 6,379 

Dim. of edge content 7,447 11,367 15,094 N/A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Experiments 

In order to validate the effectiveness of our model, we compare our method with several state-of-the-art methods on

multi-label vertex classification. The empirical results demonstrate that our proposed method can effectively enhance the

performance of structure-only network embedding methods with partially available vertex and edge content. Let us first

briefly introduce the datasets and experimental settings. 

5.1. Datasets 

5.1.1. Co-authorship network 

AMiner [21,22] is a large-scale publicly available co-author network, which consists of 1,712,433 authors, 2,092,356 pa-

pers, and 4,258,615 collaboration relationships. In addition, this dataset contains rich content information, such as author

information (e.g., affiliations and research interests) and paper information (e.g., authors, paper title, abstract, and publica-

tion venue). Note that only a part of authors and papers have content information. 

We construct a researcher network RSRnet based on the above dataset. Specifically, we first draw 14 research areas in

terms of some popular conferences: Data Mining (KDD, ICDM, SDM, PAKDD, and SIGKDD), Computer Network (MOBICOM,

SIGCOMM, and INFOCOM), Machine Learning (ICML, NIPS, ECML, AAAI, and IJCAI), Database (SIGMOD, ICDE, VLDB, EDBT,

and PODS), Information Retrieval (WWW, WSDM, ECIR, CIKM, and SIGIR), Software Engineering (FSE/ESEC, OOPSLA, SOSP, and

ICSE), Computer Graphics (SIGGRAPH, VR, SCA, and SGP), Information Security (CCS, S&P, USENIX, NDSS, and RAID), Computer

Architecture (HPCA, ISCA, and FAST), Computer Theory (STOC, FOCS, and LICS), Multimedia (ACM MM, ICMR, and ICME), Com-

puter Vision (CVPR, ICCV, and ECCV), Natural Language Processing (ACL, EMNLP, and COLING), and Human Computer Interaction

(CHI, IUI, ITS, and MobileHCI). Then, we filter out all researchers who have papers published in the above conference pro-

ceedings and regard the corresponding research areas as their labels. Note that each researcher could have multiple labels.

Further, two researchers are linked by an edge if they belong to the same affiliation or have collaboration relationships. 

On the other hand, in order to construct vertex content, we collect all words that appear in research interests of selected

researchers and build a word vocabulary V v after the words are stemmed and the stop words and meaningless words are

removed. For each researcher whose research interests are available, we filter out in-vocabulary words in its research inter-

ests and regard these words as vertex content. Likewise, to construct edge content, we collect all words in the titles and

abstracts of chosen papers and build a word vocabulary V e . For each edge of which two endpoint researchers have collab-

orated papers, we filter out in-vocabulary words in the titles and abstracts of all their co-authored papers and use these

words as edge content. 

Following [24] , to better investigate the effectiveness of different methods on datasets with different scales, we construct

three datasets: RSRnet-S (Small) with only researchers from 5 research fields including Data Mining , Computer Network , Ma-

chine Learning , Database , and Information Retrieval , RSRnet-M (Middle) with researchers from 3 additional fields (i.e., Software

Engineering , Computer Graphics , and Information Security ) compared to RSRnet-S , and RSRnet-L (Large) with researchers from

all 14 research fields. The statistics of the three datasets in our experiments are summarized in Table 1 . 

5.1.2. Social network 

Flickr is an online content sharing platform, where users can share their content, upload their tags, and join different

interest groups. We use a publicly available dataset [29] crawled from this site, where each vertex represents a user in Flickr

and each edge indicate the friendship and/or the commentship (i.e., who comments on whose photos) between two users.

This dataset includes user-generated content (i.e., tags aggregated on their photos) which is regarded as vertex content, and

includes users’ joined groups for classification. We randomly select a portion of vertices and drop their content to simulate

the missing of content information. Since there is no edge content in this dataset, we only use available vertex content to

perform fine-tuning. The statistics of this dataset are also summarized in Table 1 . 

5.2. Experimental settings 

We use several state-of-the-art network embedding methods as baselines: 

Structure: 
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Table 2 

The structures of SDAE. 

(a) SDAE for vertex content. 

Dataset Neural network structure 

RSRnet-S 4767-512-128-512-4767 

RSRnet-M 8161-512-128-512-8161 

RSRnet-L 10926-1024-128-1024-10926 

Flickr 6379-512-128-512-6379 

(b) SDAE for edge content. 

Dataset Neural network structure 

RSRnet-S 7447-512-128-512-7447 

RSRnet-M 11367-1024-128-1024-11367 

RSRnet-L 15094-2048-1024-128-1024-2048-15094 

Flickr N/A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• LINE [20] learns vertex embedding vectors from 1- and 2-step neighborhood information separately, and then con-

catenates two kinds of vertex embedding vectors in a direct manner. 

• GraRep [3] further generalizes LINE to k -step neighborhood information and formulates k -step proximity preserva-

tion as matrix factorization. The concatenation of different steps of representations is regarded as the final vertex

embedding vectors. 

• Node2vec [7] proposes two kinds of strategies of random walks based on DeepWalk [16] , such that high-order prox-

imities between vertices could be explored more effectively and efficiently. 

Structure and content: 

• Naive Combination (NC) concatenates the best-performed structure-only embedding vectors and the low-dimensional 

vectors of content information learned by SDAE. 

• TADW [30] incorporates text content into the processing of network embedding via matrix factorization. 

• TriDNR [15] exploits structure, textual vertex content, and vertex labels for network embedding. It has two kinds of

learning modes: unsupervised and semi-supervised manners. For a fair comparison, the unsupervised manner is used

in our experiments. 

• SINE [31] regards content information as a kind of contextual vertices and applies the skip-gram model [13] to learn

vertex representations. In other words, SINE uses the embedding vector of each vertex to predict the corresponding

content information. 

For content-enhanced baselines, we use the suffix “-V” to refer that we only consider vertex content (i.e., research inter-

ests) as content information. The suffix “-VE” denotes that both the original vertex content (i.e., research interests) and the

pseudo vertex content (derived from the aggregation of all edge content associated with a vertex, i.e., titles and abstracts of

co-authored papers) are considered as content information. 

For LINE, we set the initial learning rate to 0.025, and the number of negative samples to 5 as suggested in [20] . For

GraRep, as mentioned in [3] , we set the maximum step K = 5 . For Node2vec, the best in-out and return hyper-parameters

are selected with a grid search over p , q ∈ {0.25, 0.50, 1, 2, 4} on validation sets as the original paper. For TADW, as selected

by [30] , we set T ∈ R 

200 ×| V | , k = 80 , and λ = 0 . 2 . For TriDNR, we set window size to 8, and the text weight α to 0.8 as the

original papers. The rest of parameters are set as defaults. 

For our model PVECB, we use the suffix “-L” (resp. “-G”) to denote that the embedding vectors learned by LINE (resp.

GraRep) are employed as the structure-only representations in our experiments. The structures of two SDAEs for extracting

vertex and edge content embedding vectors are set empirically as listed in Table 2 . To stabilize the learning process, we

first pre-train SDAEs using available content information and RMSprop optimizer with the learning rate set to 0.01. When it

comes to fine-tuning (i.e., optimizing the objective function (12) ), we set the learning rate to μ = 0 . 1 . Following the original

paper of node2vec [7] , we randomly sample 10% labeled vertices as the validation set and tune other hyperparameters with

Bayesian optimization over α, β , γ , η ∼ U (0.1, 10) and λ∼ U (0.001, 0.1) on the validation set. The maximum number of trials

of Bayesian optimization is set to 100. Table 3 lists the best set of hyperparameters on each dataset. 

5.3. Multi-label vertex classification 

In this section, we evaluate the effectiveness of different vertex embedding vectors through the task of multi-label vertex

classification on three co-authorship networks and one social network. We take vertex embeddings as features to train a

one-vs-rest logistic regression classifier with L2 regularization. We randomly sample a portion of labeled vertices to train the

classifier during the training phase and predict the labels of the rest of vertices during the test phase. With the percentage of

training vertices p % varying from 10% to 90%, Tables 4 , 5 , 6 , and 7 report the Micro- F 1 scores and Fig. 3 shows the Macro- F 1 
scores on four networks. All of the results are averaged over 10 different trials. 
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Table 3 

The best sets of hyperparameters on four datasets. 

(a) PVECB-L. 

Dataset α β γ η λ

RSRnet-S 0.1598 8.6729 6.7242 3.5265 0.02041 

RSRnet-M 0.1327 8.9495 3.4778 0.4902 0.01296 

RSRnet-L 0.2817 9.0051 4.6419 7.1676 0.03676 

Flickr 0.1639 N/A 2.4719 N/A 0.01020 

PVECB-G. 

Dataset α β γ η λ

RSRnet-S 0.1743 9.5474 1.6053 4.8667 0.01927 

RSRnet-M 0.2561 8.3144 8.7058 9.8542 0.03047 

RSRnet-L 0.2618 9.7414 6.0233 1.9424 0.05583 

Flickr 2.0266 N/A 2.1713 N/A 0.01689 

Table 4 

Results of multi-label vertex classification on RSRnet-S . Gain-L and Gain-G refer to the gains of PVECB-L and PVECB-G 

over LINE and GraRep respectively. 

Metric Algorithm 10% 20% 30% 40% 50% 60% 70% 80% 90% 

Micro- F 1 (%) LINE 42.29 43.72 44.24 44.52 44.66 44.83 44.91 44.89 45.00 

GraRep 47.90 49.16 49.59 49.84 50.03 50.23 50.33 50.45 50.76 

Node2vec 44.25 44.68 44.67 44.75 44.86 44.86 44.72 44.75 44.82 

NC-V 48.66 49.90 50.36 50.57 50.76 50.93 51.03 51.18 51.36 

TADW-V 30.09 30.43 30.52 30.68 30.92 31.27 31.55 32.09 32.51 

TriDNR-V 44.43 44.69 44.59 44.65 44.65 44.69 44.69 44.70 44.81 

SINE-V 49.16 49.62 49.73 49.78 49.80 49.83 49.83 49.77 49.86 

NC-VE 49.36 50.51 50.93 51.18 51.38 51.51 51.65 51.77 51.90 

TADW-VE 41.34 41.79 42.05 42.22 42.51 42.74 42.97 43.38 43.65 

TriDNR-VE 44.81 45.09 45.03 44.96 45.01 44.99 44.88 44.83 45.09 

SINE-VE 50.50 51.04 51.14 51.13 51.13 51.25 51.27 51.23 51.07 

PVECB-L 48.17 49.20 49.53 49.71 49.77 49.84 49.85 49.89 49.97 

PVECB-G 51.48 52.34 52.71 52.76 52.83 52.88 52.90 52.90 52.95 

Gain-L (%) 13.91 12.55 11.96 11.65 11.45 11.17 10.99 11.14 11.05 

Gain-G (%) 7.48 6.47 6.29 5.84 5.59 5.27 5.12 4.84 4.31 

Table 5 

Results of multi-label vertex classification on RSRnet-M . Gain-L and Gain-G refer to the gains of PVECB-L and PVECB-G 

over LINE and GraRep respectively. 

Metric Algorithm 10% 20% 30% 40% 50% 60% 70% 80% 90% 

Micro- F 1 (%) LINE 26.45 27.48 27.98 28.05 28.22 28.30 28.32 28.42 28.44 

GraRep 35.71 36.65 37.10 37.40 37.62 37.79 37.90 38.13 38.35 

Node2vec 30.88 30.85 30.90 30.92 30.96 30.98 30.97 31.04 31.16 

NC-V 36.26 37.23 37.67 37.92 38.10 38.28 38.42 38.60 38.85 

TADW-V 23.19 23.27 23.33 23.45 23.50 23.55 23.61 23.72 23.73 

TriDNR-V 24.54 24.19 24.03 24.03 24.03 24.06 24.02 24.00 24.05 

SINE-V 31.66 31.80 31.80 31.88 31.86 31.84 31.87 31.88 31.93 

NC-VE 36.74 37.70 38.13 38.39 38.57 38.74 38.87 39.07 39.32 

TADW-VE 34.57 34.66 34.70 34.77 34.83 34.88 34.88 34.95 35.21 

TriDNR-VE 27.37 27.11 27.00 27.00 26.98 26.90 26.90 26.74 26.88 

SINE-VE 35.54 35.75 35.84 35.93 35.96 35.99 35.99 35.95 36.13 

PVECB-L 35.43 36.10 36.35 36.49 36.60 36.66 36.62 36.72 37.03 

PVECB-G 40.05 40.80 41.09 41.31 41.43 41.52 41.60 41.78 42.00 

Gain-L (%) 33.94 31.35 29.93 30.11 29.66 29.53 29.28 29.19 30.21 

Gain-G (%) 12.15 11.32 10.74 10.44 10.14 9.87 9.74 9.59 9.50 

 

 

 

 

 

 

From the results on three co-authorship networks, we have the following observations: 

1. Our method PVECB consistently and significantly outperforms all baselines on all three datasets, which demonstrates

that PVECB can effectively utilize available content information to improve structure-only representations. Specifically,

our method achieves an average gain of around 12% (resp. 30%, and 29%) over LINE in term of Micro- F 1 on RSRnet-S

(resp. RSRnet-M , and RSRnet-L ). On the other hand, PVECB can increase the performance of GraRep by around 6%, 10%,

and 15% on average on RSRnet-S , RSRnet-M , and RSRnet-L respectively. 

2. The naive combination concatenates the best-performed structure-only embeddings (i.e., GraRep) and the latent con-

tent embeddings as the final vertex embedding vectors. Both of NC-VE and PVECB-G use vertex and edge content to
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Table 6 

Results of multi-label vertex classification on RSRnet-L . Gain-L and Gain-G refer to the gains of PVECB-L and PVECB-G 

over LINE and GraRep respectively. 

Metric Algorithm 10% 20% 30% 40% 50% 60% 70% 80% 90% 

Micro- F 1 (%) LINE 23.68 24.87 25.37 25.63 25.83 25.88 25.96 26.05 26.10 

GraRep 30.81 31.83 32.30 32.58 32.81 32.97 33.07 33.11 33.26 

Node2vec 26.45 26.82 26.93 27.00 27.04 27.01 27.02 27.00 27.02 

NC-V 31.43 32.38 32.84 33.09 33.28 33.43 33.54 33.59 33.65 

TADW-V 21.69 21.71 21.81 21.86 21.97 22.00 22.06 22.08 22.08 

TriDNR-V 18.39 18.20 18.15 18.09 18.17 18.18 18.24 18.23 18.17 

SINE-V 24.30 24.54 24.67 24.70 24.80 24.79 24.82 24.77 24.73 

NC-VE 32.19 33.09 33.56 33.81 34.01 34.14 34.22 34.26 34.36 

TADW-VE 34.83 34.86 34.93 35.00 35.11 35.16 35.18 35.19 35.37 

TriDNR-VE 22.42 22.26 22.33 22.37 22.40 22.32 22.34 22.27 22.31 

SINE-VE 28.75 29.37 29.64 29.84 29.93 30.05 30.11 30.15 30.27 

PVECB-L 31.64 32.50 32.88 33.07 33.22 33.28 33.30 33.27 33.15 

PVECB-G 36.30 37.00 37.35 37.56 37.76 37.87 37.93 37.96 37.90 

Gain-L (%) 33.62 30.67 29.60 29.02 28.62 28.59 28.28 27.74 27.04 

Gain-G (%) 17.81 16.24 15.62 15.30 15.08 14.85 14.69 14.66 13.93 

Table 7 

Results of multi-label vertex classification on Flickr . Gain-L and Gain-G refer to the gains of PVECB-L and PVECB-G over 

LINE and GraRep respectively. 

Metric Algorithm 10% 20% 30% 40% 50% 60% 70% 80% 90% 

Micro- F 1 (%) LINE 20.59 24.27 26.33 27.37 27.59 27.98 28.74 28.96 29.54 

GraRep 27.00 29.35 30.60 31.21 31.15 31.24 31.72 31.67 31.98 

Node2vec 24.37 26.37 27.26 27.82 27.76 27.50 27.88 28.05 27.93 

NC-V 27.40 29.52 30.73 31.31 31.35 31.33 31.89 31.77 32.02 

TADW-V 18.64 20.92 22.54 23.47 23.88 24.15 24.74 24.10 24.75 

TriDNR-V 17.58 18.19 18.21 18.10 17.90 17.89 17.92 17.92 18.22 

SINE-V 17.80 18.45 18.91 18.98 19.07 18.65 18.68 18.76 19.10 

PVECB-L 21.05 24.62 26.70 27.95 28.33 28.89 29.44 29.75 30.36 

PVECB-G 27.50 29.80 30.94 31.77 31.82 31.98 32.22 32.45 32.80 

Gain-L (%) 2.22 1.45 1.40 2.10 2.66 3.26 2.42 2.75 2.78 

Gain-G (%) 1.86 1.54 1.12 1.79 2.14 2.38 1.60 2.46 2.57 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

improve structure-only representations learned by GraRep. As we can see, the performance of NC-VE is only slightly

better than the original GraRep, and specifically NC-VE only achieves on average about 2.6% performance gains for

RSRnet-S and RSRnet-M , and 3.7% for RSRnet-L . The main reason why the gain of NC-VE is quite smaller than that of

PVECB-G is that the former just aggregates all content information associated with a vertex and does not explicitly

model how vertex content and edge content should be employed during the process of learning vertex representa-

tions. 

3. TADW and TriDNR do not perform well on all three datasets, and the performance of them is worse than that of

NC, especially on RSRnet-S and RSRnet-M . The reasons are twofold: (a) The imprecision caused by the straightforward

aggregation of all content information as explained above; (b) Both of two methods assume that content information

of each vertex is available. To make these two methods suitable to the studied scenario where a part of vertices have

no available content, it will bring in a lot of noise to feed zero vectors for vertices without content, which we will

analyze in detail in Section 5.4 . On the other hand, although SINE shows competitive performance on RSRnet-S , our

method significantly outperforms SINE on other datasets. The reasons could be also two-fold: (a) SINE fails to capture

high-level semantic similarities between content information as we mentioned in Section 2 ; (b) SINE directly uses

available content information to manipulate the embedding vectors of the corresponding vertices, which has a bad

impact on the structure of the latent space and the embedding vectors of vertices that do not have content, just like

TADW. 

In addition, our method PVECB also achieves better performance than baselines on the social network Flickr . We observe

that the gains of PVECB over LINE and GraRep on Flickr are smaller than the gains on the three co-authorship networks.

The reasons could be twofold: (a) The text on social networks is noisy [1] since people usually use informal expressions

when uploading content. However, for co-authorship networks, content information (e.g., titles and abstracts of papers) is

well organized and formal. Therefore, it is easier to improve vertex embeddings by comparing similarities between content

information; (b) The social network Flickr only contains vertex content, while the three co-authorship networks contain both

vertex and edge content. In general, edge content exhibits the characteristics of pairwise interactions rather than individual

vertices, and thus can be used to more accurately calibrate embeddings of a pair of vertices (e.g., for (v k , v i , v j ) , using c e , ki 

and c e , kj to adjust u i and u j ). 
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Fig. 3. The Macro- F 1 scores of multi-label vertex classification on three datasets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.4. Analysis: Performance on vertices with and without content 

To further investigate the consistency of PVECB in incorporating content information into the process of embedding,

we define a vertex with content as a vertex of which either vertex content or associated edge content is available, and

evaluate the performance of PVECB and content-enhanced baselines with suffix “-VE” on vertices with and without content

respectively. In particular, we randomly select a portion of vertices to train a one-vs-rest logistic regression classifier. Then,

the rest of vertices are split into two parts: vertices with and without content. Fig. 4 reports the Micro- F 1 scores with respect

to two parts of testing vertices on the three co-authorship networks. From the results, we have the following observations: 

1. PVECB vs. TADW-VE: The performance of TADW-VE is extremely biased towards vertices with content. As shown on

the left side of Fig. 4 , TADW-VE achieves very high Micro- F 1 scores on vertices with content for all three datasets.

Specifically, the average Micro- F 1 scores over different training ratios of TADW-VE are 75.9%, 67.8% and 63.3% for

predicting labels of vertices with content on RSRnet-S , RSRnet-M , and RSRnet-L respectively. However, TADW-VE fails to

predict labels of vertices without content, and the average Micro- F 1 scores are only 1.60%, 0.09%, and 0.01% on RSRnet-

S , RSRnet-M , and RSRnet-L respectively as shown on the right side of the figure. On the contrary, our proposed method

achieves the best trade-off between the performance on vertices with and without content. Specifically, PVECB-G and

PVECB-L obtain the best performance, except for TADW-VE, for predicting labels of vertices with content. On the other

hand, PVECB-G and PVECB-L significantly outperform TADW-VE and TriDNR-VE when it comes to vertices without

content. 

2. PVECB-G vs. NC-VE: Both PVECB-G and NC-VE exploit vertex and edge content on the basis of vertex representations

learned by GraRep. Compared with NC-VE, PVECB-G obtains almost the same performance in predicting labels of

vertices without content. On the other hand, the performance of PVECB-G in predicting labels of vertices with content

is much better than that of NC-VE. Specifically, the differences between the average Micro- F 1 scores of PVECB-G and

NC-VE are 3.70%( ↑ ) and −0 . 45%(↓ ) for predicting labels of vertices with and without content respectively on RSRnet-

S . The corresponding values are 7.08%( ↑ ) and −0 . 83%(↓ ) on RSRnet-M , and 8.45%( ↑ ) and −1 . 27%(↓ ) on RSRnet-L .

The empirical results demonstrate that PVECB-G can effectively make use of available vertex and edge content to

improve embedding vectors of vertices with content, with little loss of qualities of representations of vertices without
content. 
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Fig. 4. The Micro- F 1 scores of multi-label vertex classification on vertices with and without content. 

 

 

 

 

On the other hand, NC-VE achieves good performance gains on vertices with content, while maintaining the performance

on vertices without content. However, although existing content-enhanced network embedding methods have better perfor-

mance than NC-VE on vertices with content, their performance on vertices without content dramatically degrades, especially

for TADW (as we discussed in Section 3.2 ). These results account for why NC-VE is almost always among the best performing

baseline methods in Section 5.3 . 
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Fig. 5. Parameter sensitivity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.5. Parameter sensitivity 

In what follows, we discuss the parameter sensitivity with respect to four hyper-parameters: the weight of the aspect (b)

of fine-tuning with vertex content α, the weight of fine-tuning with edge content β , the weight of reconstruction of vertex

content γ , and the weight of reconstruction of edge content η. We fix the training ratio to 50% and investigate how different

choices of parameters affect the performance of our proposed method on the dataset RSRnet-M . Except for the examined

parameter, all other hyper-parameters are set to 1. Fig. 5 shows the Micro- F 1 scores over different choices of parameters. 

From Figs. 5 (a) and 5 (b), we observe that the hyper-parameters α and β have opposite influences on the performance

of our method. Specifically, the performance of PVECB improves as α decreases and β increases. It is reasonable because

edge content represents specific pair-wise interactions and can be used to guide the learning of embedding vectors more

effectively. On the other hand, the Micro- F 1 scores of our method fluctuate in a very small range (less than 1%) with γ and

η varying from 0.25 to 16 as shown in Figs. 5 (c) and 5 (d). This demonstrates that PVECB can stay relatively stable when the

weights of reconstruction terms vary within a reasonable range, which benefits from the powerful capability of SDAE as we

pre-train two SDAEs for extracting content embedding vectors before fine-tuning. 

6. Conclusion 

In this paper, we propose a novel method PVECB to boost the existing structure-only network embedding method with

available vertex and edge content. PVECB employs two kinds of mechanisms to fine-tune structure-only embedding vectors

with vertex content and edge content respectively. Its attractive property is to allow us to implicitly diffuse content infor-

mation over the network and learn effective vertex embedding vectors even when only a small portion of vertices and edges

have content information. Experiments on four real-world datasets demonstrate the capability of PVECB to boost structure-

only network embedding methods. Recent research has shown that deep convolutional neural networks are powerful for



950 L. Lan, P. Wang and J. Zhao et al. / Information Sciences 512 (2020) 935–951 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

learning features from multimedia data (e.g., images and speeches), which is prevalent in networks such as online social

networks. In the future, we plan to extend PVECB with deep learning techniques for learning networks with multimedia

data on vertices and edges. 
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