
6658 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 7, JULY 2025

Incremental Least-Recently-Used Algorithm: Good,
Robust, and Predictable Performance

Jinbei Zhang , Chunpeng Chen , Kechao Cai , and John C. S. Lui , Fellow, IEEE

Abstract—This paper proposes a replacement algorithm for file
caching in mobile edge computing (MEC) networks. While there
are numerous schemes for file replacement, it remains a challenge to
achieve good, robust, and predictable performance simultaneously.
To address this challenge, we introduce a general scheme called In-
cremental Least-Recently-Used (iLRU), which builds on the classic
Least-Recently-Used (LRU) algorithm. iLRU initially caches only
a “portion” of the file upon the first request and incrementally
caches more when there are more requests for the file. In this
regard, the request frequency can be inferred from the cached size
without incurring additional overhead, where a larger cached size
represents a higher request frequency. We derive the theoretical
hit ratio of iLRU based on the Time-to-Live (TTL) analysis. With
the Time-to-Live (TTL) analysis, we can theoretically derive the hit
ratio and properties of iLRU and notably show that iLRU allocates
more cache space to popular files, resulting in a higher hit ratio than
LRU. Simulation results demonstrate the superior performance of
iLRU and validate the accuracy of the theoretical hit ratio. Fur-
thermore, we conduct simulations over various real-world traces
to show that iLRU outperforms existing schemes across various
real-world traces, defenestrating the robustness of iLRU.

Index Terms—Mobile edge computing, replacement algorithm,
analytical model, performance evaluation.

I. INTRODUCTION

MOBILE Edge Computing (MEC) has attracted significant
attention in recent years for addressing the challenges

of resource-intensive and delay-sensitive applications in mobile
networks [2], [3], [4], [5]. MEC servers provide computing and
caching resources, enabling them to function as cache nodes that
store frequently requested content closer to end users [6]. Many

Received 5 August 2024; revised 16 December 2024; accepted 19 February
2025. Date of publication 3 March 2025; date of current version 5 June 2025.
This work was supported in part by National Key R&D Program of China under
Grant 2022YFB2902700, in part by the NSF China under Grant 62471505, Grant
62071501, and Grant 62202508, in part by Shenzhen Science and Technology
Program under Grant JCYJ20220818102011023, Grant 20220817094427001,
and Grant ZDSYS20210623091807023. An earlier version of this paper was
presented at the 2024 IEEE International Conference on Communications Work-
shops [DOI: 10.1109/ICCWorkshops59551.2024.10615665]. Recommended
for acceptance by C. M. Pinotti. (Corresponding author: Kechao Cai.)

Jinbei Zhang, Chunpeng Chen, and Kechao Cai are with the
School of Electronic and Communication Engineering, Sun Yat-sen
University, Shenzhen 519082, China (e-mail: zhjinbei@mail.sysu.edu.cn;
chenchp6@mail2.sysu.edu.cn; caikch3@mail.sysu.edu.cn).

John C. S. Lui is with the Department of Computer Science and En-
gineering, The Chinese University of Hong Kong,, Hong Kong (e-mail:
cslui@cse.cuhk.edu.hk).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TMC.2025.3547066, provided by the authors.

Digital Object Identifier 10.1109/TMC.2025.3547066

MEC applications, such as video analytics and distributed ma-
chine learning, depend on frequent access to large data resources,
including object databases and trained models [3], [7]. By stor-
ing such data at the edge, MEC significantly reduces backhaul
retrieval between base stations and backend servers, alleviating
network congestion and minimizing end-to-end delays [2], [8],
[9]. Therefore, caching is a fundamental component of MEC
networks [10].

Caching follows a basic hit/miss model. A request is served
from the cache (a “hit”) if the requested file is available; other-
wise, it is retrieved from a remote source (a “miss”), potentially
replacing an existing cached file. The hit ratio, defined as the
proportion of hits to total requests, depends on the effectiveness
of the cache replacement algorithm. While replacing the file least
likely to be requested in the future achieves optimal performance
theoretically [11], [12], predicting future request patterns is
challenging due to the spatiotemporal volatility introduced by
user mobility in MEC networks [8], [13].

Traditional cache replacement algorithms, such as Least Re-
cently Used (LRU) and Least Frequently Used (LFU), may
perform suboptimally under limited cache capacity and dynamic
request patterns [14]. LRU, which evicts the least recently re-
quested file, assumes temporal locality but neglects frequency,
resulting in lower hit ratios under limited cache capacity [15].
In contrast, LFU evicts the least frequently used file based
on historical requests, achieving optimal performance under
the Independent Reference Model (IRM), where requests are
independently drawn from a fixed distribution over all files [16],
[17]. However, LFU is struggling with outdated statistics in
dynamic environments [18], [19], and its high time complexity
makes it less suitable for MEC networks.

Trying to strive for some balance between LRU and LFU,
many replacement algorithms are proposed [15], [18], [19], [20],
[21], [22], [23], [24], [25]. Among them, ARC and TinyLFU
are two representative algorithms. ARC [19] uses two self-
tuning lists for recently and frequently accessed files, which
has low overhead to infer popular files in changing request
patterns. TinyLFU [18] uses a space-efficient data structure
called Counting Boom Filter (CBF) to store the historical
frequency information, resulting in reduced query overhead.
TinyLFU also introduces an aging mechanism to update the
frequency statistics. Hence, ARC and TinyLFU achieve a good
and robust performance. However, these algorithms may rely
on complex structures that complicate theoretical analysis and
increase computational overhead, limiting their applicability in
MEC scenarios.

1536-1233 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 15,2025 at 03:05:36 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: INCREMENTAL LEAST-RECENTLY-USED ALGORITHM: GOOD, ROBUST, AND PREDICTABLE PERFORMANCE 6659

Motivated by the above observations, we introduce a
novel cache replacement framework called Incremental
Least-Recently-Used (iLRU) tailored for MEC networks to
achieve robust, predictable, and high performance. Unlike
traditional cache replacement algorithms, iLRU incorporates
an innovative approach called the incremental caching process.
Initially, iLRU caches only a portion of a requested file and
incrementally increases the cached size with subsequent
requests for the same file. This method is valid as partial
caching of files is common in web caching and has been
investigated by several studies [26], [27], [28], [29], [30],
[31], [32].

Our theoretical analysis is based on the TTL analysis, which
uses the hit ratio of TTL cache to approximate that of LRU
cache [33], [34]. Various studies validate the robustness and
accuracy of the TTL approximation [31], [35], [36], [37], [38],
[39]. Within the iLRU framework, we introduce a Markov
chain to illustrate the transitions between caching states, and
each caching state represents one cached size. These transition
probabilities are deduced through the TTL analysis. By solving
each state probability, we can derive the theoretical hit ratio of
iLRU, thereby making its performance predictable. Notably, we
prove that iLRU allocates more cache space to popular files and
achieves a higher hit ratio than LRU. Moreover, we prove that
it is optimal for iLRU to cache one file wholly at the file’s last
caching state.

We simulate the hit ratios and cache occupancy of LRU and
iLRU, empirically validating our theoretical analysis. Mean-
while, we compare the hit ratios from trace-driven simulations
with the theoretical results to validate our analytical model’s
accuracy and investigate the relationship between the hit ratio
and the number of caching states. We simulated the TTL and
the duration of the content in the cache, demonstrating that our
scheme has a superior performance in retaining popular files.
The performance of iLRU is also simulated when the file sizes
are heterogeneous. Compared with existing works over various
real traces, iLRU shows superior performance, validating its
robustness. Moreover, we further introduce a modified iLRU
scheme (called W-iLRU) to improve its performance when the
requests are burst in a short term.

Our contributions can be summarized as follows:! We introduce a novel cache replacement framework called
Incremental Least-Recently-Used (iLRU), whose perfor-
mance is good, robust, and predictable. And, its time
complexity is O(1).! We derive the theoretical hit ratio of iLRU based on TTL
analysis and theoretically prove that it is better than that of
LRU under the Independent Reference Model (IRM). We
also prove that within the iLRU framework, it is optimal to
cache files wholly for the last caching state.! The trace-driven simulations verify the superior perfor-
mance of iLRU and show that iLRU allocates more cache
space to high-frequency files than LRU under the IRM.
The simulations also demonstrate that iLRU performs well
when file sizes are heterogeneous and that it outperforms
existing schemes over various real traces, verifying its
robustness.

! We develop W-iLRU scheme to enhance the robustness of
iLRU in the scenario of request bursts and find small buffer
size of W-iLRU can perform well in real-world traces.

The remainder of the paper is organized as follows. Section II
introduces related works. Section III presents the system model
and assumptions used in this paper. In Section IV, we present the
iLRU scheme and the corresponding analysis. The simulations
and results are in Section V. Finally, Section VI concludes the
paper.

II. RELATED WORK

In this section, we introduce related works on cache replace-
ment algorithms, TTL analysis, and partial caching.

A. Cache Replacement Algorithm

The key features of cache replacement algorithms include
recency and frequency. Recency captures temporal locality,
assuming recently accessed files are more likely to be accessed
again soon. Frequency leverages historical access patterns, as-
suming frequently requested files in the past are likely to remain
popular.

In Mobile Edge Computing (MEC) environments, user mo-
bility introduces spatiotemporal volatility, resulting in dynamic
request patterns that significantly challenge traditional caching
algorithms [8], [13]. Frequent changes in content popularity
due to user movement across different edge nodes complicate
decisions regarding what files to cache and evict. This mobility-
induced dynamism demands cache replacement algorithms that
can adapt effectively to these changing patterns.

Least Recently Used (LRU) is a classic recency-based al-
gorithm that always evicts the least recently used file [19],
[23]. LRU is commonly implemented using a doubly linked
list with a hash table, known as the LRU list, which enables
its time complexity O(1) [40]. LRU performs well in changing
request patterns, but it does not store any frequency information,
resulting in LRU allocating a considerable amount of cache
space to low-frequency files, as shown in our simulations. Hence,
its hit ratio is low when the request pattern is stable.

Furthermore, LRU shows poor performance in scenarios with
files of heterogeneous sizes. The most typical example is that
caching a large file will result in the eviction of many small files,
which may result in a rapid drop in the hit ratio. [41] introduced
this issue and proposed AdaptSize, a self-tuning algorithm based
on a probabilistic, size-aware admission policy. This algorithm
tends to cache the smaller objects and dynamically tunes its
parameters to achieve better object hit ratios.

Least Frequently Used (LFU) is a frequency-based algorithm,
which is known to be optimal under the Independent Reference
Model (IRM) [16], [17]. In common, LFU maintains a frequency
table with counters for each file. When there is insufficient
space to accommodate new files, LFU searches the file with
the minimum frequency count and evicts it from the cache. The
time complexity of LFU is O(log n), where n is the number of
files in the frequency table.

Although LFU achieves the highest hit ratio under the IRM,
its frequency estimates can become outdated in changing request

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 15,2025 at 03:05:36 UTC from IEEE Xplore. Restrictions apply.

6660 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 7, JULY 2025

patterns, and the logarithmic time complexity presents a signif-
icant overhead in practical environments [18]. To mitigate this
overhead, [18] proposed the TinyLFU scheme, which utilizes
Bloom Filter and Sketch structure [42], [43], [44] to store the
historical frequency information. TinyLFU always keeps the
item with the higher frequency between the new item waiting
to be cached and the candidate for eviction, which reduces
time complexity to O(1) and enables efficient caching of the
frequently accessed files.

Many caching algorithms have been proposed to improve
performance by combining recency and frequency, including
LRU-K, SLRU, 2Q, MQ, ARC, FB-FIFO, TinyLFU, LHD,
S3-FIFO and others [15], [18], [19], [20], [21], [22], [23], [24],
[25]. Among them, ARC and TinyLFU are two representative
algorithms.

Adaptive Replacement Cache (ARC) is a self-tuning and
low overhead cache replacement algorithm [19]. ARC employs
two lists: L1 for recently accessed items and L2 for frequently
accessed items and equips ghost cache for historically deleted
items of each list. ARC dynamically adjusts the lengths of these
lists to tune the ratio of cached recently accessed and frequently
accessed files according to the changing request patterns. This
mechanism allows ARC to remove outdated items and contain
the currently popular items. Moreover, ARC has low overhead,
and its time complexity is O(1).

TinyLFU [18] has an aging mechanism to keep the frequency
statistics fresh. [18] also proposed a novel framework called
W-TinyLFU, which uses an LRU buffer ahead of the TinyLFU
to cache the recently accessed files. Therefore, it can adapt to
the recent request pattern changes.

Although these algorithms work well across a wide range of
workloads, they rely on the complex structures that complicate
their theoretical analysis and increase computational overhead,
limiting their applicability in MEC scenarios.

B. TTL Analysis

Time-to-Live (TTL) analysis is a method for estimating a file’s
expiration time, representing the expected duration a cached file
remains useful before eviction [36], [45], [46]. This approach
commonly utilizes the TTL concept to estimate the stationary
hit ratio of LRU and its variants. TTL analysis was initially intro-
duced in [33] and later refined using mean field approximation
and stochastic process theory in [34] and [35]. This method has
been extensively utilized in numerous studies [31], [36], [37],
[38], [39].

TTL analysis approximates the hit ratio of an LRU cache with
the hit ratio of a TTL cache. TTL cache sets a deterministic TTL
timer with an initial value, denoted as T , for each cached file.
When the timer expires, the corresponding file is removed from
the cache. If a file is requested before its timer expires, the timer
is reset. This approximation adjusts the T to guarantee that the
expected number of cached items in the TTL cache is equal to
the cache capacity S of the LRU cache. Assume there are n files
with size one, and the request probability for file i is pi, the cache
capacity is

S =
n∑

i=1

(
1− e−piT

)
. (1)

Additionally, [38] extends TTL analysis to evaluate the per-
formance of two classes of cache replacement algorithms with
multiple LRU lists under the Independent Reference Model
(IRM). Meanwhile, [41] applies TTL approximation to scenarios
with variable LRU list lengths, demonstrating its efficacy when
the LRU list length changes over time.

C. Partial Caching

The topic of partial caching or chunked caching has been
studied extensively in various works, including [26], [27], [28],
[29], [30], [31], [32]. Among these, the works by [26], [27], [31]
are closely related to ours.

In the context of multimedia scenarios, [26] introduced the
performance benefits of partial caching. Building upon this
work, [27] extended the investigation to three types of partial
caching policies: fixed, pyramid, and skyscraper. In these stud-
ies, a media file is divided into multiple equal-sized blocks,
which serve as the smallest unit of transfer. Multiple chrono-
logically adjacent blocks are then grouped into segments. The
sizes of these segments are either fixed, increase exponentially,
or resemble a skyscraper from the beginning of the video. Fur-
thermore, the cache is divided into two portions corresponding
to two LRU stacks: the first portion is dedicated to the initial
segments, while the second portion handles the later segments.
These later segments use an admission policy determined by the
relative popularity and size of each segment.

[31] proposed the GiLRU, which also divides videos into
blocks/chunks and caches them progressively in a fixed pattern
upon request. The eviction policy of GiLRU is similar to the
LRU policy: it moves the hitting file with all its chunks to the
head of the cache but allows partial chunks of the file at the tail
to be evicted to free up space for new file chunks. Before all
blocks of a file are evicted, the file can still append blocks and
be moved to the head of the cache with subsequent requests.

The differences between our work and previous studies are as
follows.

Scope of Content: The works by [26], [27], [31] primarily
focus on video transmission, where typically only a portion of
the video is delivered because most users do not watch videos
in their entirety. Specifically, [26], [27], [31] aim to cache the
initial segments or chunks to enable immediate playback for
more user requests. These works prioritize caching portions
at critical positions within the original file. In contrast, our
approach targets mobile edge computing (MEC) applications
that require complete files to support data-intensive tasks, where
the positions of individual segments are not prioritized. MEC
environments increasingly rely on applications driven by Big
Data and machine learning models, which typically demand
access to the full dataset or model. For such applications, caching
whole files is essential to minimize data transfer overhead and
improve service quality. Therefore, our scheme manages the size
of cached portions solely by file popularity and overall cache
capacity constraint without emphasizing its position within a
file.

Algorithm Flexibility: Existing works [26], [27], [31] specify
fixed increments in the size of files cached between nearby
requests. Our approach allows for arbitrary increments, making

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 15,2025 at 03:05:36 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: INCREMENTAL LEAST-RECENTLY-USED ALGORITHM: GOOD, ROBUST, AND PREDICTABLE PERFORMANCE 6661

Fig. 1. Network model.

our scheme a generalization of these previous methods. More-
over, our scheme fully evicts the candidate file when space is
insufficient, adhering to a pure LRU policy, which makes it easy
to deploy on existing cache systems.

Performance Evaluation: Most importantly, we provide
theoretical analysis to show that iLRU outperforms LRU,
whereas [26], [27], [31] rely solely on simulations to evaluate
performance. To our knowledge, this is the first work to theo-
retically demonstrate the superior performance of incremental
caching. We also prove that it is optimal to cache files wholly
for the last caching state and discuss how the design of the
incremental caching process impacts performance. Finally, we
investigate the robustness of the iLRU scheme in real-world
scenarios and propose W-iLRU to enhance its robustness further.

III. SYSTEM MODEL AND ASSUMPTIONS

In this paper, similar to the classic model of cache replacement
schemes in the scenarios of MEC [47], we consider a model
consisting of one server, one base station (BS) with a cache,
and one user with multiple requests, as shown in Fig. 1. When
a user request arrives at the BS, a hit occurs if the file is cached.
Otherwise, a miss occurs, and the BS requests the file from the
server. After receiving the request, the server sends the file to the
user via the reverse path. When the file arrives at the BS, the BS
cache can store a partial file according to the cache replacement
scheme.

Our model follows the independent reference model (IRM),
which assumes that user requests arriving at the cache are inde-
pendent and identically distributed (i.i.d.) random variables [33],
[38]. In this context, users request files from the server at discrete
time slots t = 0, 1, 2, . . ., with each request treated as an i.i.d.
random variable, independent of previous requests.

User mobility is a critical factor in MEC networks, as it influ-
ences cache performance through request patterns and content
popularity [2], [47], [48], [49]. Mobility causes fluctuations in
local content demand as users move across different network
regions, leading to dynamic changes in observed content pop-
ularity at edge caches. This variability impacts caching per-
formance by introducing challenges in maintaining an optimal
cache hit ratio and efficient resource utilization. While this study
focuses mainly on optimizing caching mechanisms rather than
predicting content popularity or mobility patterns, we account
for the impact of mobility through the average content popularity
observed at the target cache, similar to prior work [47].

Assume that the file set on the server is L = {l1, l2, . . . , ln},
where |L| = n. The file li with size si is requested with prob-
ability pi, where

∑n
i=1 pi = 1. Without loss of generality, we

assume that pi ≥ pi+1 for 1 ≤ i ≤ n− 1. The cache capacity

of the base station (BS) is S, and assume that
∑n

i=1 si $ S,
i.e., the cache of the base station cannot store all files.

Assume that each file li has a series of request states Ii(t)
for t = 0, 1, 2, If file li is requested at time t, Ii(t) = 1, and
Ij(t) = 0 for other files j %= i. Otherwise, Ii(t) = 0. Let ri(t)
denote the cached size of file li at time t where 0 ≤ ri(t) ≤ si,
and the total cached size must satisfy

∑n
i=1 ri(t) ≤ S.

Additionally, we assume that each request is fully processed
before the next one arrives. This means that any changes to the
cache contents, whether due to a hit or a miss, are completed
before the next request begins processing. Thus, there is no
overlap or interference between the processing of consecutive
requests.

The main performance metric is the average hit ratio
over time, which is the ratio between the number of hit
file portions and the total number of requested files and is
expressed as

H = lim
m→+∞

∑m
t=0

∑n
i=1 ri(t)Ii(t)∑m

t=0

∑n
i=1 siIi(t)

, (2)

where m is the total number of observed time slots.

IV. ILRU SCHEME AND PERFORMANCE ANALYSIS

In this section, we introduce the iLRU caching scheme and
conduct its performance analysis.

A. iLRU Scheme

In contrast to the classic Least Recently Used (LRU) scheme,
Incremental Least Recently Used (iLRU) scheme employs an
incremental caching approach. Initially, iLRU caches a portion
of the requested file and incrementally caches additional portions
upon subsequent requests until the file is fully cached.

1) Caching State: We define the caching state by the cached
size and order it by the cached size. We define Ri,K as
an ordered set of caching states for file li, where Ri,K =
{ri,1, . . . , ri,k, . . . , ri,K}. Here, ri,k is the k-th caching state
for file li, and K is the total number of states.

For initial caching state of file li, ri,1 = 0, indicating that the
file is not cached. As requests arrive, the file li changes to the next
caching state, and the scheme increments the cached size of the
requesting file such that ri,k+1 > ri,k. The final caching state,
ri,K = si, indicates that the file is fully cached when receiving
sufficient requests.

Note that iLRU scheme has two constraints for the caching
states. First, the initial state must be zero, which is straightfor-
ward as it represents an uncached file. Second, the final state
must correspond to the file being fully cached, which will be
shown to be optimal in Section IV-C.

2) Procedures of iLRU: The iLRU scheme involves two main
phases: the request phase and the update phase, as illustrated in
Fig. 2. The pseudo code of iLRU is presented in Algorithm 1.

Request Phase: iLRU manages file requests, including request
querying and caching state determination. When a request xt

arrives at time t, if xt is in the LRU list, a (partial) hit occurs,
and xt is moved to the head of the LRU list, as in line 3 of
Algorithm 1. Otherwise, if a miss occurs, iLRU inserts xt to the
head of the LRU list (Line 5).

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 15,2025 at 03:05:36 UTC from IEEE Xplore. Restrictions apply.

6662 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 7, JULY 2025

Fig. 2. Procedure of iLRU scheme.

Algorithm 1: iLRU Scheme.
Input: Sequence of requests x1, x2, . . . , xt,
Set of caching states Ri,K = {ri,1, ri,2, . . . , ri,K}.
Empty LRU list L.
Initial cache occupancy C = 0.
Cache capacity S.
Output: Cached files in LRU list L.
Caching states of cached files.
1: for all xt do
2: if xt is in L then
3: A cache hit has occurred, move xt to the head of L.
4: else
5: A cache miss has occurred, insert xt to the head of

L.
6: end if
7: CACHING(xt).
8: end for
9: SubFunction CACHING(xt):

10: if xt is not fully cached then
11: Retrieve the remaining file of xt from the server.
12: Obtain the current caching state rxt,k, and calculate

the required cache space d = rxt,k+1 − rxt,k.
13: while C + d > S do
14: Remove xtail from L, delete the linked file in

cache, and update C.
15: end while
16: Perform incremental caching of xt with the

increased cached size d, and update C.
17: end if

Update Phase: iLRU manages file caching operations, in-
cluding incremental caching and eviction of the least recently
used (LRU) files when cache space is insufficient. If the cache
has not stored the whole file (partial hit or miss occurs), the
remaining portions of file are retrieved from the server (Line
11). Then, the caching state transitions from rxt,k to rxt,k+1,
increasing the cached size by rxt,k+1 − rxt,k (Line 12). If the
cache fully caches the file, no further caching occurs during this
period. When the cache has insufficient space to accommodate
new file contents, it evicts the least recently used file (Lines
13–15).

3) Advantages: iLRU scheme comprises two modules: an
incremental caching admission module and an LRU eviction
module, as illustrated in Fig. 2. This design facilitates seamless
integration with existing LRU caches, enhancing their function-
ality by addressing some inherent limitations.

Traditional LRU algorithm prioritizes the most recently used
items but overlooks access frequency, while LFU algorithms
track access frequency but suffer from an aging problem. Com-
pared to both, iLRU can infer file request frequencies from the
cached file sizes by the incremental caching mechanism, thereby
addressing the limitation of LRU algorithms that do not track
frequency. Additionally, iLRU ensures a similar lifetime for all
recently requested files to maintain the freshness of frequently
requested files using the LRU eviction policy, thus alleviating
the aging problem observed in LFU algorithm.

On the other hand, schemes like ARC and TinyLFU, which
use more complex mechanisms, tend to retain older frequently
used files in the cache for a longer time, potentially leading to
lower cache efficiency. Consequently, iLRU effectively caches
recent frequently accessed files, outperforming both traditional
LRU and LFU algorithms.

More importantly, the performance of iLRU is theoretically
guaranteed due to its simple caching behavior. The theoretical
model and analysis are provided in the next subsection.

B. Performance Metrics of iLRU

Since each request in the independent reference model (IRM)
is independent, we model the changes in caching states for each
file as a Discrete Markov Chain (DMC).

The DMC involves two types of transitions, i.e, one type is
triggered by a request arrival, and the other type is triggered
by a file eviction. When a request for file li arrives, its state
advances to the next state with a transition probability, called the
incremental caching probability, denoted as Pi,in. We assume
that the next state of the last state ri,K is itself, indicating that
once a file is fully cached, it remains in that state upon subsequent
requests. Upon eviction of the file, its state resets to the initial
state, with the transition probability referred to as the eviction
probability, denoted as Pi,ev . The DMC is shown in Fig. 3.

Under the Time-to-Live (TTL) analysis, the time that a file
remains in the cache is known as the characteristic time [34],
which is deterministic and independent of the file itself, denoted

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 15,2025 at 03:05:36 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: INCREMENTAL LEAST-RECENTLY-USED ALGORITHM: GOOD, ROBUST, AND PREDICTABLE PERFORMANCE 6663

Fig. 3. Discrete Markov Chain of incremental caching process for file li.

as T . If a request for a cached file does not arrive before the
time expires, the cache evicts the file, and this probability is
Pi,ev = (1− pi)T . Otherwise, the remaining time is updated to
T , and the probability is Pi,in = 1− (1− pi)T .

We then derive the hit ratio of iLRU with K caching states.
The transition matrix for the caching process of file li denoted
as Pi,K is





(1− pi)T
(
1− (1− pi)T

)
· · · 0 0

(1− pi)T 0 · · · 0 0
...

...
. . .

...
...

(1− pi)T 0 · · · 0
(
1− (1− pi)T

)

(1− pi)T 0 · · · 0
(
1− (1− pi)T

)




.

This matrix represents the transition probabilities between
caching states. Specifically, the entry at position (i, i+ 1) rep-
resents the incremental caching probability. The entries in the
first column uniformly indicate the eviction probability from any
state to the initial state. All other entries are zero.

According to the Poisson Arrival See Time Averages (PASTA)
theorem [50], the probability of each state, denoted as Fi,k, k =
1, 2, . . . ,K, is equal to the steady state probability of the
DMC, which can be solved from equations π = πPi,K and∑K

k=1 πk = 1.
Lemma 1: For K-state iLRU, the probability of state k (k =

1, 2, . . . ,K) for file li can be expressed as

Fi,k(T) =

{(
1− (1− pi)T

)k−1
(1− pi)

T , k ≤ K − 1(
1− (1− pi)T

)K−1
, k = K

.

(3)

Note that ri,k is the cached size of file li in caching state
k (k = 1, 2, . . . ,K) in the K-state iLRU scheme. The cache
occupancy of the iLRU scheme is the sum of each file’s expected
cached size, which is

CK(T) =
n∑

i=1

K∑

k=1

ri,kFi,k(T). (4)

Then, the hit ratio of iLRU can be readily derived as follows.
Theorem 1: The hit ratio of K-state iLRU is

HK(T) =

∑n
i=1 pi

∑K
k=1 ri,kFi,k(T)∑n
i=1 pisi

. (5)

Fig. 4. Duration of file li in the cache.

Proof: The average hit ratio defined in (2) describes a hit ratio
on a request sequence, which is

H = lim
m→+∞

∑m
t=0

∑n
i=1 ri(t)Ii(t)∑m

t=0

∑n
i=1 siIi(t)

.

Since each request is independent, we can express H as

H = lim
m→+∞

∑n
i=1

∑K
k=1 ri,k

∑m
t=0 Ii,k(t)∑n

i=1 si
∑m

t=0 Ii(t)
,

where Ii,k(t) = 1 when file li is requested at time t and its
caching state is k before this request. Otherwise, Ii,k(t) = 0.

Assume mi is the number of time slots requested for file li.
Let mi,k be the number of time slots requested for file li when
its caching state is k, where mi =

∑
k mi,k.

Then, we have

H = lim
m→+∞

∑n
i=1

∑K
k=1 ri,kmi,k∑n

i=1 simi
.

By dividing both the numerator and the denominator by m,
we have

H = lim
m→+∞

∑n
i=1

∑K
k=1 ri,k · (mi,k/m)∑n

i=1 si · (mi/m)
.

As m → +∞, mi,k/m converges to piFi,k(T) and mi/m
converges to pi, where Fi,k(T) represents the steady-state prob-
ability of file li being in state k.

H =

∑n
i=1

∑K
k=1 ri,k · piFi,k(T)∑n

i=1 si · pi
.

Therefore, the expected hit ratio of K-state iLRU has been
derived. !

(4) and (5) are both related toT . WhenS, pi and si are known,
letting C = S, we can obtain the value of T via (4), and finally
calculate the hit ratio of iLRU via (5).

Additionally, we derive the mean duration of file li in the
cache, denoted as di. This duration represents the interval be-
tween the insertion of a file into the cache and its subsequent
eviction, as shown in Fig. 4. Assume that there are a series of
requests for file li, where the first request results in a cache
miss and the file is cached incrementally. Let Xi,j denote the
interval between the j-th request and the j + 1-th request, where
j = 1, 2, Assume that the file is evicted after Ni requests,
and the (Ni + 1)-th request causes another cache miss. Thus,
we have Xi,j ≤ T for j < Ni and Xi,j > T for j = Ni.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 15,2025 at 03:05:36 UTC from IEEE Xplore. Restrictions apply.

6664 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 7, JULY 2025

Thus, the mean duration di can be represented as

di = E




Ni−1∑

j=1

Xi,j



+ T, (6)

where T is the characteristic time of the cache, and E[·] repre-
sents the expected value of random variable.

Lemma 2: Under the IRM, the mean duration of file li in the
cache is given by

di =
1

pi(1− pi)T
− 1

pi
. (7)

Proof of Lemma 2: Since the request interval Xi,j follows
geometric distribution with success probability pi, we have

E[Xi,j |Xi,j ≤ T] =
1− (T + 1)(1− pi)T + T (1− pi)T+1

pi (1− (1− pi)T)
.

(8)

Similarly, the random variable Ni also follows geometric
distribution with success probability (1− pi)T , representing the
file li is not requested for time T , thus we have

E[Ni] =
1

(1− pi)T
. (9)

Since Xi,j ≤ T for j < Ni, applying Wald’s equation, we
obtain

E




Ni−1∑

j=1

Xi,j



 = E[Xi,j |Xi,j ≤ T]E[Ni − 1]

=
1

pi(1− pi)T
−

(
1

pi
+ T

)
. (10)

Substituting (10) into (6), we can obtain

di =
1

pi(1− pi)T
− 1

pi
. (11)

Therefore, the lemma is proved. "

C. Properties of iLRU

In this section, we theoretically prove the superior perfor-
mance of iLRU and its optimality in fully caching at the final
state. Additionally, we analyze the complexity of iLRU.

First, we introduce two lemmas before proving that the Three-
state iLRU (TiLRU) outperforms LRU in hit ratio when file sizes
are equal. Assume the file size of all files be s. The set of caching
states for TiLRU is Ri,3 = {0, r, s} for any file li, where the
second caching state ri,2 = r ∈ (0, s). Note that if iLRU has
two states, it is equivalent to LRU, and its set of caching states
is Ri,2 = {0, s} for any file li.

Next, we analyze the cache occupancy across different files.
Let the TTL of LRU be T2 and ui,2 = (1− pi)T2 . Denote the
cache occupancy of LRU for file li as hi,2. Then, based on
Lemma 1, we can easily derive that

hi,2 = si(1− ui,2). (12)

Similarly, for iLRU, let the TTL be T3 and ui,3 = (1− pi)T3 .
The cache occupancy of TiLRU for file li is

hi,3 = rui,3(1− ui,3) + s(1− ui,3)
2. (13)

Then, we have the following lemma.
Lemma 3: When hi,2 = hi,3, the inequality holds, i.e.,

dhi,3

dpi
≥ dhi,2

dpi
, where pi ∈ (0, 1).

The proof of Lemma 3 is presented in Appendix A. Lemma 3
shows that when the cache occupancy is equal, the cache oc-
cupancy of TiLRU increases more rapidly with the request
probability than that of LRU. Under a constant cache capacity,
this means TiLRU allocates more cache space to high-frequency
files, enhancing the hit ratio since it favors more frequently
requested files.

After analyzing the cache occupancy, we focus on the hit
ratio of TiLRU. The hit ratio of TiLRU can be derived from (5)
as follows.

H3(r) =
1

s
·

n∑

i=1

pi
(
r · ui(1− ui) + s(1− ui)

2
)
, (14)

where ui = (1− pi)T , and T can be solved from (4) given the
cache capacity.

Lemma 4: For a given cache capacity, we have

dH3(r)

dr
< 0.

The proof of Lemma 4 is in Appendix A. Lemma 4 shows that
the hit ratio H3(r) decreases as the cached size of the second
state r increases. With Lemma 4, we are ready to prove the
following theorem.

Theorem 2: Under the IRM, the performance of TiLRU is
superior to that of LRU when the file sizes are equal.

Proof: Denote H2 as the hit ratio of LRU, where

H2 =
1

s
·

n∑

i=1

pi
(
1− (1− pi)

T
)
, (15)

where T can be solved from (4) given the cache capacity.
When r converges to s, iLRU degenerate into LRU. Thus,

when the cache capacity is constant, H3(s) = H2. From
Lemma 4,

dH3(r)

dr
< 0.

Since 0 < r < s, we have H3(r) > H2, indicating that the
hit ratio of TiLRU is higher than that of LRU.

Therefore, Theorem 2 is proved.
When the file sizes are heterogeneous, we consider a variant

of Three-state iLRU, referred to as a h-TiLTU, and assume that
the second caching state ri,2 = αsi ∈ (0, si), where α is the
ratio between cached size and total file size.

Similarly, the hit ratio of h-TiLRU can be derived as

H3,h(α) =

∑n
i=1 pisi

(
α · ui(1− ui) + (1− ui)2

)
∑n

i=1 pisi
. (16)

Then, we have the following lemma.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 15,2025 at 03:05:36 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: INCREMENTAL LEAST-RECENTLY-USED ALGORITHM: GOOD, ROBUST, AND PREDICTABLE PERFORMANCE 6665

Lemma 5: For a given cache capacity, we have

dH3,h(α)

dα
< 0.

The proof of Lemma 5 is also presented in Appendix A.
Lemma 5 shows that the hit ratio H3,h(α) decreases as α
increases.

Analogous to Theorem 2, based on Lemma 5, we can derive
that H3,h(α) > H2, indicating that the hit ratio of h-TiLRU
is higher than that of LRU. Therefore, we have the following
theorem.

Theorem 3: Under the IRM, the performance of h-TiLRU is
superior to that of LRU when the file sizes are heterogeneous.

Until now, we have theoretically shown that TiLRU performs
better than LRU. Additionally, we can derive the optimal config-
uration of TiLRU. As Lemmas 4 and 5 indicate, the smaller the
portion of the cached size at the second caching state, the higher
the hit ratio. Thus, for an optimal hit ratio, TiLRU only needs
to cache a portion of a file as small as possible as an “indicator”
upon the first request.

Then, we intuitively analyze the mechanism behind this im-
provement. TiLRU decides whether to cache a whole file based
on its last request interval. If the request intervals are shorter than
T , indicating high popularity, the incremental caching process
admits the file, acting like a high-pass filter before the LRU list.
Meanwhile, iLRU remains sensitive to low-frequency files. If
the file becomes unpopular, i.e., the request interval becomes
larger than T , iLRU evicts it.

For iLRU with any number of caching states, we theoretically
illustrate why the iLRU scheme selects the whole caching as its
last caching state.

Theorem 4: For an optimal iLRU scheme, no matter how
many states it has, its last caching state must be whole caching.

The proof is presented in Appendix B. The intuition is that
when a file transitions to the last caching state, the popularity of
the file should be high. Caching these popular files can increase
the total hit ratio.

Finally, we analyze the time complexity of iLRU.
Lemma 6: The time complexity of iLRU is O(1).
Proof: In our framework, iLRU comprises two modules: an

incremental caching admission module and an LRU eviction
module. Let Tin denote the time complexity of the incremental
caching admission module, and Tev denote the time complexity
of the LRU eviction module.

First, consider Tin. This module involves two main oper-
ations: accessing the current caching state and deciding the
next caching state. Accessing the current caching state requires
querying the LRU cache for the cached size of the current
request. Given that this operation can be implemented efficiently,
its time complexity is O(1). The decision for the next caching
state can be facilitated using a hash structure, which also ensures
O(1). Therefore, we have Tin = O(1) + O(1) = O(1).

Next, considerTev . This module performs the same operations
as the traditional LRU eviction algorithm. The time complexity
of the LRU algorithm is well-established as O(1) [19]. Therefore,
we have Tev = O(1).

Combining the complexities of these two modules, the total
time complexity of the iLRU algorithm is

TiLRU = Tin + Tev = O(1) + O(1) = O(1). (17)

Therefore, we conclude this lemma. "
The O(1) time complexity of the iLRU algorithm ensures

that the operations implemented within the incremental caching
admission module and the LRU eviction module can be executed
in constant time, regardless of the cache size or the number of
cached files. This efficiency is achieved through a doubly linked
list combined with a hash table [40]. The doubly linked list
allows quick updates to the cache order, while the hash table
enables fast lookups of file positions within the list. Specifically,
when a file is accessed, the algorithm retrieves its position via
the hash table in O(1) time and then moves it to the head of the
list by adjusting finite pointers, also in O(1) time.

On the other hand, this design introduces a memory trade-off.
Each node in the doubly linked list requires additional memory to
store two pointers (previous and next), and the hash table incurs
extra memory overhead for storing key-value pairs [51], [52].
Compared to the traditional LRU algorithm, the iLRU algorithm
consumes more memory due to the incremental caching of
partial file items. This additional memory usage is a trade-off for
achieving higher caching efficiency, where the partial caching
size reflects the historical request frequency of each file. These
design choices are critical for maintaining high performance in
Mobile Edge Computing (MEC) networks.

D. Robustness and W-ILRU Scheme

In real-world scenarios, request patterns change over time.
The iLRU scheme dynamically adapts to these changes by in-
heriting the recency characteristic of LRU, enabling it to update
cached content as request patterns evolve. This adaptability
contributes to the robustness of the iLRU scheme, which we
will illustrate in our simulations.

However, the iLRU scheme has some limits. iLRU caches
a file incrementally, resulting in multiple requests being only
partially served. This limitation may lead to deviate perfor-
mance, especially during bursts of short-term requests, such
as those following a Pareto-like distribution. In such scenarios,
a sequence of requests often targets a small number of files,
and in extreme cases, all requests may focus on a single file.
During these bursts, the most recently accessed files will likely
be requested again, regardless of frequencies. In this scenario,
iLRU may experience deviated performance because it requires
some time to adapt to the changes in request patterns through
the incremental caching process. Thus, although incremental
caching can be beneficial for inferring the frequencies, it also
poses challenges for iLRU in the scenarios with request bursts.

To address these issues, we developed the W-iLRU scheme,
which incorporates a small LRU buffer ahead of the iLRU cache.
This design is inspired by the W-tinyLFU scheme [18] and aims
to enhance performance by better handling short-term request
bursts.

In W-iLRU, when a request arrives and the requested file is
not found in either the LRU buffer or the iLRU cache, the file is

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 15,2025 at 03:05:36 UTC from IEEE Xplore. Restrictions apply.

6666 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 7, JULY 2025

inserted at the head of the buffer. If the requested file is found
in the buffer, it is moved to the head of the buffer. If the file is
located in the iLRU cache, it is incrementally cached and moved
to the head of the iLRU cache. When there is insufficient cache
space in either the buffer or the iLRU cache, a file is evicted from
the tail of the respective cache. Upon eviction from the buffer,
the file transitions to the iLRU cache and begins the incremental
caching process from the initial state by caching an “indicator”.

The advantages of W-iLRU are as follows. If a file experiences
a burst of requests, the buffer temporarily stores it while it
remains popular. Once its popularity wanes, the iLRU cache
prevents it from occupying excessive cache space. Conversely, if
the file has stable request patterns, it will be effectively captured
by the iLRU cache based on frequency. Additionally, the buffer
proportion, a hyper-parameter of W-iLRU that represents the
ratio between the buffer size and the total cache capacity, can
be manually adjusted based on the workload requirements. The
performance and efficiency of W-iLRU will also be evaluated in
our simulations.

E. Complexity in MEC Networks

Then, we discuss the complexity and potential implemen-
tation challenges of the iLRU scheme in MEC networks,
particularly for resource-constrained environments. The iLRU
scheme requires dividing files into chunks to support incre-
mental caching, which introduces computational overhead. For
example, in a three-state iLRU mechanism, a file is cached
in portions across two requests, necessitating its division into
at least two chunks. Although these chunks can be divided in
advance and stored on remote servers to reduce initial overhead,
reassembling them into whole files increases the computational
overhead on base stations or user devices. This increased over-
head may impact the efficiency and practicality of the iLRU
scheme.

To address these challenges, there are several strategies
that could be introduced. First, iLRU can adjust the number
of caching states based on available computational resources.
When computational resources become scarce, iLRU reduces
the number of caching states to decrease the number of chunks.
Second, the system can be deployed with dedicated edge servers
at the base station to handle the chunk reassembly process. When
all requested chunks are available at the cache of the base station,
dedicated edge servers reassemble them into a whole file and
then send the file back to the user.

V. SIMULATION RESULTS

In our simulations, we compare iLRU (with its variants of
TiLRU, DiLRU, and EiLRU) and W-iLRU with several ex-
isting caching schemes, including Random, LRU, LFU, ARC,
TinyLFU, LHD, S3-FIFO, and Sieve. Specifically, TiLRU ini-
tially caches only one unit of a file and fully caches it upon the
subsequent request for the same file. DiLRU increases the cached
file size exponentially until the file is fully cached, while EiLRU
increases it linearly. To accelerate the incremental caching pro-
cess for large files, we limited the maximum number of states
to five, ensuring the entire file is cached when the caching

TABLE I
SUMMARY OF REAL-WORLD TRACES

state transitions to the fifth state. ARC and TinyLFU have been
introduced in Section II. Least hit density (LHD) is an eviction
policy based on hit density using conditional probability [25].
S3-FIFO is characterized by its efficient FIFO-queue-only evic-
tion policy [15]. Sieve is an easy, fast, and surprisingly efficient
cache eviction algorithm [53].

We evaluate the performance of these algorithms using var-
ious traces. Also, we validated the accuracy of our analytical
model and examined the impact of changes in the number of
states. Our simulations confirmed the good and robust perfor-
mance of iLRU.

A. Simulation Setting and Traces

Our simulation involves both numerical and trace-driven
simulations. We implement numerical simulations using the
equations detailed in Section IV-B, focusing specifically on the
hit ratio. Our trace-driven simulations utilize libCacheSim [54],
a high-performance cache simulator designed for running cache
simulations and analyzing cache traces. It supports various
state-of-the-art eviction algorithms, including ARC, TinyLFU,
LHD, S3-FIFO, and Sieve.

Web cache workloads typically follow Power-law (gener-
alized Zipf) distributions [53], [55], where a small subset of
objects accounts for a large proportion of requests. To mimic
user behavior in MEC networks, we assume that file popularity
is drawn from the Zipf distribution, with the request probability
defined as

pi = Q · 1

R(i)β
, (18)

where β is a constant value. Larger β results in a more skewed
distribution. Here, R(i) represents the rank of file frequency,
and Q =

∑n
i=1 1/i

β , where n is the total number of files.
We also collected real-world traces to test more complex

request patterns, such as time-varying file popularity and request
bursts, drawn from different production scenarios [19]. These
patterns are typical as they reflect the dynamic nature of user
requests in MEC environments. Table I summarizes the basic
information about these traces.

The OLTP trace captures references to a CODASYL database
over one hour, reflecting typical database access patterns com-
mon in MEC environments. The traces P1-P14 were collected

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 15,2025 at 03:05:36 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: INCREMENTAL LEAST-RECENTLY-USED ALGORITHM: GOOD, ROBUST, AND PREDICTABLE PERFORMANCE 6667

from Windows NT workstations using Vtrace, a tool that cap-
tures disk operations through device filters, providing insights
into user behavior and workload characteristics in desktop en-
vironments. Additionally, we tested a trace formed by concate-
nating these 14 traces in sequence to simulate request mutation
scenarios, representing changing user access patterns due to user
mobility in dynamic MEC contexts. The trace DS1 was obtained
from a commercial database server running an ERP application,
showcasing the transactional workloads often encountered in
enterprise applications. The SPC1-like trace contains long se-
quential scans and random accesses, while traces S1-S3 repre-
sent disk-read accesses initiated by a large commercial search
engine in response to various web search requests, reflecting
the diverse and unpredictable request patterns typical in MEC
systems.

Lastly, the MergeS trace was created by merging the S1-S3
traces using timestamps of each request to simulate multi-user
request environments, which is crucial for assessing cache
performance in MEC networks where multiple users access
shared resources concurrently. Together, these traces provide a
comprehensive evaluation of iLRU’s performance across various
scenarios, which can also reflect the request patterns in MEC
networks.

All file sizes are uniformly set to 64 units in our simulations
unless otherwise specified. The file sizes depend on the divid-
ing strategy used in the iLRU scheme. In MEC applications,
this strategy can be adjusted based on specific requirements
and resources, such as computational resources and data types.
Additionally, we use the term “normalized cache capacity” to
represent the maximum number of complete files that can be
cached.

Note that our simulations begin measuring hit ratios once the
cache is full, a state referred to as “transient free” by [56] or
“warm start” by [57]. Starting measurements from an empty
cache would result in biased misses during initial requests.

B. Performance in IRM Synthetic Traces

The IRM synthetic traces can represents stationary and peri-
odic request pattern in the MEC networks. When the parameter
β of Zipf distribution is large, only few files are popular, and
most requests focus on these files.

We conducted tests using synthetic traces with various βs,
each consisting of 10,000 files. Since the results showed consis-
tent trends across different parameters, we only present results
of β = 0.9 in Fig. 5. As the trace distribution becomes more
skewed, the plots become steeper. Fig. 5 shows that DiLRU and
TiLRU outperform LRU, with DiLRU consistently performing
better than TiLRU. The performance improvement of iLRU
is significant when cache space is limited. For example, at a
normalized cache capacity of 100 and β = 0.9, the hit ratio
gap between DiLRU and LRU can reach 11.69%. LFU shows
the best performance. DiLRU performs similarly to TinyLFU,
but it has lower complexity. The primary reason for this is that
TinyLFU requires maintaining and periodically updating a fre-
quency table, while DiLRU only manages the cached size within
an LRU list. DiLRU also outperforms ARC, LHD, and S3-FIFO.

Fig. 5. Hit ratios of various algorithms in the synthetic traces with parameter
β = 0.9.

Fig. 6. Cache occupancy variation: iLRU vs. LRU with zipf distribution across
files.

We observe that Sieve outperforms iLRU and other algorithms
when the cache size is small. This advantage can be attributed
to Sieve’s capability to quickly evict unpopular files, whereas
other algorithms necessitate a longer process for eviction due
to their structural design. All tested algorithms, except Random,
perform better than LRU, with Random demonstrating the worst
performance.

We then analyzed cache occupancy differences across 1,000
files in the synthetic trace with β = 0.5 and a normalized cache
capacity of 100. Fig. 6 shows the results for selected files: files
0 to 9 (most popular) and files 500 to 509 (less popular). The
results indicate that iLRU allocates more cache space to popular
files and less to unpopular files compared to LRU, verifying
Lemma 3.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 15,2025 at 03:05:36 UTC from IEEE Xplore. Restrictions apply.

6668 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 7, JULY 2025

TABLE II
RELATIVE ERROR (%) OF THE HIT RATIOS BETWEEN THE

TRACES AND THE MODEL

Fig. 7. Validation of theoretical results.

These results demonstrate that iLRU is superior to classic
caching algorithms such as Random, LRU, and ARC, as well as
some more recent algorithms like LHD and S3-FIFO. Addition-
ally, iLRU’s performance is close to the LFU algorithm under
the IRM.

C. Model Accuracy Verification

We validated the theoretical hit ratio via simulations. First,
we compare the hit ratios obtained from the numerical simula-
tion and the trace-driven simulation. The simulated traces are
synthetic and contain 10,000 files requested following a Zipf
distribution with parametersβ = 0.7 and 0.9. We ran tests across
various cache capacities and calculated the relative difference
between the theoretical and simulated values, which is

Er =
|Hsim −HK |

HK
, (19)

whereEr is the relative error,Hsim is the hit ratio from the trace-
driven simulation, and HK is the theoretical hit ratio calculated
by (5).

Table II displays the relative errors. These values show a good
match between the estimated hit ratios and the simulated hit
ratios. In particular, the highest relative error between predicted
and simulated values is 1.28%, and most values are lower than
1%, indicating that the theoretical hit ratio is valid.

Second, we validate both Che’s approximation (assuming a
constant TTL) and the theoretical mean duration of files in the
cache. To achieve this, we simulate both LRU and TiLRU cache
with 1,000 files with popularity following a Zipf distribution
(parameter β = 0.5) and a capacity of 100. Fig. 7(a) shows that

Fig. 8. Comparison of hit ratio for variants of EiLRU schemes.

although some variability exists, the Coefficient of Variation
(CV) of the TTLs for all files is small, where the CV is the ratio
of standard deviation to the mean. Hence, Che’s approximation
performs well in the performance evaluation of both LRU and
iLRU schemes.

Additionally, Fig. 7(b) demonstrates that the simulated mean
duration closely matches the theoretical values and is bounded
below by the TTL, validating the accuracy of our theoretical
results. The results also show that iLRU achieves a larger mean
duration over LRU due to the incremental caching mechanism.
This difference in mean duration provides an intuitive explana-
tion for iLRU’s superior performance. By retaining popular files
longer, iLRU improves their occupancy and the hit ratio in the
cache.

D. Performance and Caching States

To study the relationship between performance and the num-
ber of caching states, we tested a series of EiLRUs with different
numbers of states, where the whole file is cached in the last
caching state. The simulation includes 10,000 files, which fol-
low the Zipf distribution with β = 0.3. The normalized cache
capacity is 1000. We then calculated the predicted hit ratios
across various numbers of caching states, as shown in Fig. 8. The
results show that the hit ratio first increases and then decreases
as the number of states increases. Specifically, the hit ratio is
highest when the number of states is 16, and lowest when the
number of states is 2.

Therefore, the hit ratio does not increase monotonically as the
number of cache states increases. The underlying reason could
be that too many states consume cache space with less popular
content, resulting in performance degradation.

E. Heterogeneous File Sizes

Different types of objects, such as videos, images, and ma-
chine learning models, vary significantly in file sizes, which
impacts cache performance in MEC networks. We tested two
types of size distributions, Gently and Antergic, representing
two extreme situations. In the simulations, the sizes are random

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 15,2025 at 03:05:36 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: INCREMENTAL LEAST-RECENTLY-USED ALGORITHM: GOOD, ROBUST, AND PREDICTABLE PERFORMANCE 6669

Fig. 9. Hit ratios in the scenario of heterogeneous file sizes.

in [16, 1024]. Gently means that the more popular the file, the
larger its size, while Antergic is the opposite. The simulated IRM
synthetic trace contains 10,000 files with parameterβ = 0.7. We
show the results in Fig. 9.

For both distributions, DiLRU and LFU consistently out-
perform LRU and Random; however, the improvement is less
pronounced in the Antergic case. In the Gently scenario, LRU’s
hit ratio is slightly higher than that of Random, while in the An-
tergic scenario, LRU’s hit ratio is nearly identical to Random’s.
These findings indicate that heterogeneous file sizes negatively
impact the performance of cache algorithms. Notably, the results
demonstrate the consistently superior performance of iLRU over
LRU, even in heterogeneous file sizes.

F. Robustness of iLRU in the Real Traces

To demonstrate the robustness of iLRU, we compared its
performance with existing schemes using real-world traces sum-
marized in Table I. Fig. 10 presents representative hit ratio
curves, while Fig. 11 depicts the relative difference in hit ratios
between iLRU and ARC across traces P1-P14 and ConCat.
The results show that iLRU consistently outperforms the other
schemes in almost all tested cases. This superior performance is
attributed to iLRU’s ability to cache recent frequently accessed
files effectively and the timely eviction of less popular files in
response to changes in request patterns. Specifically, Fig. 10
shows that Sieve performs worse than iLRU algorithm in the
real-world traces although it has a slight performance advantage
in IRM synthetic trace when the cache capacity is limited (shown
in 5). This is because Sieve takes time to initialize its eviction
mechanism before evicting outdated popular files, which results
in lower adaptability to dynamic request patterns. In contrast,
iLRU maintains a similarly simple implementation structure but
demonstrates greater robustness across various real-world traces
by leveraging the LRU eviction mechanism, which ensures the
timely removal of outdated files.

The traces in Table I encompass various work scenarios,
including databases, long sequential scans, workstations, disk
access patterns, request mutation scenarios due to user mo-
bility, and multi-user request environments. Therefore, these
tests demonstrate the robustness of iLRU across various work
environments.

We also simulated the W-iLRU scheme introduced in
Section IV-D, testing it with a buffer that occupies 20% of the
total cache capacity and a DiLRU cache on the OLTP trace. Our

results in Fig. 10–(a) show that W-iLRU outperformed other
algorithms, while DiLRU only performs better when the cache
capacity is smaller. These results demonstrate that W-iLRU can
enhance the robustness of our scheme.

G. Impact of Request Burst

Although iLRU performs well with periodic requests, espe-
cially under IRM, it exhibits instability during bursty request
patterns, as discussed in Section IV-D. To illustrate the impact,
we generate Pareto-like traces, where the request intervals of
individual files follow the Pareto distribution instead of the
Exponential distribution used in the IRM setting. The Pareto
distribution, reflecting the “80/20 rule”, models burst traffic by
assigning high access frequencies to a few files while most others
have low frequencies [58]. To test different levels of burstiness,
we configure two scenarios with severe and mild bursts. The se-
vere burst scenario represents the requests concentrated in short,
intense bursts, with intervals of successive requests following a
typical Pareto distribution with a pronounced heavy tail. Con-
versely, the mild burst scenario spreads the requests more evenly
over time with slight burstiness, and the intervals are distributed
like an exponential shape. Additionally, the popularity of the
files follows the Zipf distribution with parameter β = 0.5.

The simulation results are shown in Fig. 12, where the relative
difference in hit ratio is defined as the difference between the hit
ratios of (W)-DiLRU and LRU, divided by the hit ratio of LRU.
Fig. 12 demonstrates that iLRU outperforms LRU in most test
cases, particularly when cache capacity is limited. However, in
the severe burst scenario, iLRU’s hit ratio is slightly lower than
LRU’s as the cache capacity increases. Thus, the impact of the
Pareto model is limited, and iLRU adapts well to this bursty
patterns. Additionally, Fig. 12 also shows that the hit ratios of
W-iLRU are between iLRU and LRU. This indicates that it is
more robust than iLRU. Overall, the results demonstrate that
iLRU and its variants can maintain good and robust performance
in scenarios with request bursts.

H. Impact of Buffer Size of WiLRU

We examined the impact of buffer size on the performance of
the W-iLRU scheme. Fig. 13 presents the instantaneous hit ratios
with a normalized capacity of 800 for the OLTP trace and 300
for the Zipf trace, using 10, 000 files drawn from a distribution
parameter of 0.9. The instantaneous hit ratios are calculated over
a window of size 5, 000. Fig. 14 illustrates the changes of hit
ratios with varying buffer proportions that represent the ratio
between the buffer size and the total cache capacity, where a
buffer proportion of zero corresponds to iLRU, and a proportion
of one corresponds to LRU.

Fig. 13 shows the instantaneous hit ratios of W-iLRU with
various buffer proportions in the OLTP and Zipf traces, while
Fig. 14 shows the hit ratio changes by the buffer proportions.
The plots in Fig. 13(a) show significant fluctuations, reflecting
changing request patterns over time. The results of Figs. 13 and
14 indicate that W-DiLRU, with a small buffer proportion of 0.2,
achieves the highest hit ratio on the OLTP trace but performs
poorly on the Zipf trace. This indicates that the buffer of 0.2

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 15,2025 at 03:05:36 UTC from IEEE Xplore. Restrictions apply.

6670 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 7, JULY 2025

Fig. 10. Hit ratios in some real traces.

Fig. 11. Relative difference (%) of hit ratios between iLRU and ARC in the
P1-P13 and Cancat traces.

Fig. 12. Performance comparison in the Pareto-like traces.

Fig. 13. Instantaneous hit ratios of W-DiLRU with various buffer proportions
in the OLTP and Zipf traces.

Fig. 14. Impact of buffer size of WiLRU.

is just enough to absorb the request bursts in the OLTP trace.
Notably, the hit ratio decreases as the buffer size increases on
the Zipf trace. Thus, the buffer can enhance iLRU’s robustness
in dynamic request patterns but sacrifice performance under
IRM conditions, which is a trade-off. Therefore, the buffer
proportion should be dynamically adapted to the changes of
request patterns.

VI. CONCLUSION

In this paper, we introduced Incremental Least-Recently-
Used (iLRU), an enhancement of the traditional LRU algo-
rithm, and developed an analytical model to calculate its cache
occupancy and hit ratio. We theoretically proved that iLRU
allocates more cache space to high-frequency files and achieves
a higher hit ratio than LRU in scenarios with homogeneous
and heterogeneous file sizes. We discussed the robustness and

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 15,2025 at 03:05:36 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: INCREMENTAL LEAST-RECENTLY-USED ALGORITHM: GOOD, ROBUST, AND PREDICTABLE PERFORMANCE 6671

limits of iLRU in the MEC networks and developed the W-iLRU
scheme to enhance its robustness.

Our simulation results demonstrated that iLRU performs close
to the optimal algorithm LFU and outperforms other existing
algorithms under the IRM. We validated the accuracy of our an-
alytical model and highlighted the importance of appropriately
setting the number of states. Our findings also revealed iLRU’s
robustness, showing its superior performance compared to ex-
isting algorithms in multiple real-world traces. Moreover, we
conducted simulations to validate the effectiveness of W-iLRU
and to investigate the impact of its buffer size. Our simulation
results indicated that burst requests can negatively affect the
performance of iLRU; however, the W-iLRU scheme effectively
mitigates this issue.

For future work, it would be interesting to investigate a
self-tuning mechanism to dynamically adjust the configuration
of iLRU and W-iLRU for optimal performance. Exploring the
cooperative consideration of both segment priority and content
popularity could also be an insightful direction. Furthermore,
extending iLRU to more general settings, such as multi-cache
environments and delay-sensitive scenarios, would provide valu-
able avenues for further research.

REFERENCES

[1] C. Chen, J. Zhang, and K. Cai, “Incremental least-recently-used algorithm:
Good, robust, and predictable performance,” in Proc. Int. Conf. Commun.
Workshops, Denver, USA, 2024, pp. 514–519.

[2] T. X. Tran and D. Pompili, “Adaptive bitrate video caching and process-
ing in mobile-edge computing networks,” IEEE Trans. Mobile Comput.,
vol. 18, no. 9, pp. 1965–1978, Sep. 2019.

[3] V. Farhadi et al., “Service placement and request scheduling for data-
intensive applications in edge clouds,” IEEE/ACM Trans. Netw., vol. 29,
no. 2, pp. 779–792, Apr. 2021.

[4] A. Lekharu, M. Jain, A. Sur, and A. Sarkar, “Deep learning model for
content aware caching at MEC servers,” IEEE Trans. Netw. Serv. Manage.,
vol. 19, no. 2, pp. 1413–1425, Jun. 2022.

[5] Z. Jin, T. Song, and W.-K. Jia, “An adaptive cooperative caching strategy
for vehicular networks,” IEEE Trans. Mobile Comput., vol. 23, no. 10,
pp. 9502–9517, Oct. 2024.

[6] M. Reiss-Mirzaei, M. Ghobaei-Arani, and L. Esmaeili, “A review on the
edge caching mechanisms in the mobile edge computing: A social-aware
perspective,” Internet Things, vol. 22, Jul. 2023, Art. no. 100690.

[7] L. Chen et al., “Multi-MEC collaboration for VR video transmission:
Architecture and cache algorithm design,” Comput. Netw., vol. 234,
pp. 109864, Oct. 2023.

[8] H. Hu, W. Song, Q. Wang, R. Q. Hu, and H. Zhu, “Energy efficiency and
delay tradeoff in an MEC-enabled mobile IoT network,” IEEE Internet
Things J., vol. 9, no. 17, pp. 15942–15956, Sep. 2022.

[9] I.-H. Hou, T. Zhao, S. Wang, and K. Chan, “Asymptotically optimal
algorithm for online reconfiguration of edge-clouds,” in Proc. 17th ACM
Int. Symp. Mobile Ad Hoc Netw. Comput., 2016, pp. 291–300.

[10] Y. Zhang, Mobile Edge Computing, 1st ed. cham, Switzerland:
Springer, Oct. 2022. [Online]. Available: https://doi.org/10.1007/978-3-
030-83944-4_3

[11] M. Dehghan, L. Massoulie, D. Towsley, D. S. Menasche, and Y. C. Tay,
“A utility optimization approach to network cache design,” IEEE/ACM
Trans. Netw., vol. 27, no. 3, pp. 1013–1027, Jun. 2019.

[12] J. Yang, Z. Mao, Y. Yue, and K. V. Rashmi, “GL-Cache: Group-level learn-
ing for efficient and high-performance caching,” in Proc. 21st USENIX
Conf. File Storage Technol., Santa Clara, USA, 2023, pp. 115–133.

[13] D. Xenakis, N. Passas, L. Merakos, and C. Verikoukis, “Mobility manage-
ment for femtocells in LTE-advanced: Key aspects and survey of handover
decision algorithms,” IEEE Commun. Surv. Tut., vol. 16, no. 1, pp. 64–91,
First Quarter 2014.

[14] G. Hasslinger, M. Okhovatzadeh, K. Ntougias, F. Hasslinger, and O.
Hohlfeld, “An overview of analysis methods and evaluation results for
caching strategies,” Comput. Netw., vol. 228, Jun. 2023, Art. no. 109583.

[15] J. Yang, Y. Zhang, Z. Qiu, Y. Yue, and R. Vinayak, “FIFO queues are all
you need for cache eviction,” in Proc. 29th ACM Symp. Operating Syst.
Princ., 2023, pp. 130–149.

[16] E. G. Coffman and P. J. Denning, Operating Systems Theory. Hoboken,
NJ, USA: Prentice-Hall, 1973.

[17] A. V. Aho, P. J. Denning, and J. D. Ullman, “Principles of optimal page
replacement,” J. ACM, vol. 18, no. 1, pp. 80–93, Jan. 1971.

[18] G. Einziger, R. Friedman, and B. Manes, “TinyLFU: A highly efficient
cache admission policy,” ACM Trans. Storage, vol. 13, no. 4, pp. 1–31,
Nov. 2017.

[19] N. Megiddo and D. S. Modha, “ARC: A self-tuning, low overhead re-
placement cache,” in Proc. 2nd USENIX Conf. File Storage Technol., San
Francisco, USA, Mar. 2003, pp. 115–130.

[20] E. J. O’Neil, P. E. O’Neil, and G. Weikum, “The LRU-K page replacement
algorithm for database disk buffering,” ACM SIGMOD Rec., vol. 22, no. 2,
pp. 297–306, Jun. 1993.

[21] T. Johnson et al., “2Q: A low overhead high performance buffer manage-
ment replacement algorithm,” in Proc. 20th VLDB Conf., San Francisco,
USA, 1994, pp. 439–450.

[22] R. Karedla, J. Love, and B. Wherry, “Caching strategies to improve disk
system performance,” Computer, vol. 27, no. 3, pp. 38–46, Mar. 1994.

[23] Y. Zhou, J. Philbin, and K. Li, “The multi-queue replacement algorithm for
second level buffer caches,” in Proc. USENIX Annu. Tech. Conf., Boston,
USA, 2001, pp. 91–104.

[24] H. Gomaa, G. G. Messier, C. Williamson, and R. Davies, “Estimating
instantaneous cache hit ratio using Markov chain analysis,” IEEE/ACM
Trans. Netw., vol. 21, no. 5, pp. 1472–1483, Oct. 2013.

[25] N. Beckmann, H. Chen, and A. Cidon, “LHD: Improving cache hit rate
by maximizing hit density,” in Proc. 15th USENIX Symp. Netw. Syst. Des.
Implementation, Renton, WA, 2018, pp. 389–403.

[26] K.-L. Wu, P. S. Yu, and J. L. Wolf, “Segment-based proxy caching of
multimedia streams,” in Proc. 10th Int. Conf. World Wide Web, New York,
USA, 2001, pp. 36–44.

[27] K.-L. Wu, P. S. Yu, and J. L. Wolf, “Segmentation of multimedia streams
for proxy caching,” IEEE Trans. Multimedia, vol. 6, no. 5, pp. 770–780,
Oct. 2004.

[28] L. Wang, S. Bayhan, and J. Kangasharju, “Optimal chunking and partial
caching in information-centric networks,” Comput. Commun., vol. 61,
pp. 48–57, May 2015.

[29] L. Maggi, L. Gkatzikis, G. Paschos, and J. Leguay, “Adapting caching
to audience retention rate,” Comput. Commun., vol. 116, pp. 159–171,
Jan. 2018.

[30] V. C. L. Narayana, S. Jain, and S. Moharir, “Caching partial files for content
delivery,” in Proc. Nat. Conf. Commun., Bangalore, India, 2019, pp. 1–6.

[31] E. Friedlander and V. Aggarwal, “Generalization of lru cache replacement
policy with applications to video streaming,” ACM Trans. Model. Perform.
Eval. Comput. Syst., vol. 4, no. 3, pp. 1–22, Aug. 2019.

[32] A. Ali-Eldin, C. Goel, M. Jha, B. Chen, K. Nahrstedt, and P. Shenoy,
“CAVE: Caching 360◦ videos at the edge,” in Proc. 32nd ACM Workshop
Netwo. Operating Syst. Support Digit. Audio Video, New York, USA, 2022,
pp. 50–56.

[33] R. Fagin, “Asymptotic miss ratios over independent references,” J. Com-
put. Syst. Sci., vol. 14, no. 2, pp. 222–250, Apr. 1977.

[34] H. Che, Z. Wang, and Y. Tung, “Analysis and design of hierarchical web
caching systems,” in Proc. 20th Annu. Joint Conf. IEEE Comput. Commun.
Soc., Anchorage, USA, Apr. 2001, pp. 1416–1424.

[35] C. Fricker, P. Robert, and J. Roberts, “A versatile and accurate approxi-
mation for LRU cache performance,” in Proc. 24th Int. Teletraffic Congr.,
Krakow, Poland, 2012, pp. 1–8.

[36] N. C. Fofack, P. Nain, G. Neglia, and D. Towsley, “Performance evalua-
tion of hierarchical TTL-based cache networks,” Comput. Netw., vol. 65,
pp. 212–231, Jun. 2014.

[37] V. Martina, M. Garetto, and E. Leonardi, “A unified approach to the
performance analysis of caching systems,” in Proc. IEEE Conf. Comput.
Commun., Toronto, Canada, 2014, pp. 2040–2048.

[38] N. Gast and B. Van Houdt, “Asymptotically exact TTL-approximations
of the cache replacement algorithms LRU (m) and h-LRU,” in Proc. 28th
Int. Teletraffic Congr., Germany, 2016, pp. 157–165.

[39] G. Hasslinger, K. Ntougias, F. Hasslinger, and O. Hohlfeld, “Analysis of
the LRU cache startup phase and convergence time and error bounds on
approximations by Fagin and Che,” in Proc. 20th Int. Symp. Model. Optim.
Mobile Ad hoc Wireless Netw., Torino, Italy, Sep. 2022, pp. 254–261.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 15,2025 at 03:05:36 UTC from IEEE Xplore. Restrictions apply.

6672 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 7, JULY 2025

[40] H. Dai, B. Liu, H. Yuan, P. Crowley, and J. Lu, “Analysis of tandem PIT
and CS with non-zero download delay,” in Proc. IEEE Conf. Comput.
Commun., Atlanta, USA, May 2017, pp. 1–9.

[41] D. S. Berger, R. K. Sitaraman, and M. Harchol-Balter, “Adaptsize: Or-
chestrating the hot object memory cache in a content delivery network,”
in Proc. 14th USENIX Symp. Netw. Syst. Des. Implementation, Boston,
USA, 2017, pp. 483–498.

[42] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,”
Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.

[43] S. Cohen and Y. Matias, “Spectral bloom filters,” in Proc. ACM SIGMOD
Int. Conf. Manage. Data, New York, USA, 2003, pp. 241–252.

[44] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
The count-min sketch and its applications,” J. Algorithms, vol. 55, no. 1,
pp. 58–75, Apr. 2005.

[45] Y. T. Hou, J. Pan, B. Li, and S. S. Panwar, “On expiration-based hierarchical
caching systems,” IEEE J. Sel. Areas Commun., vol. 22, no. 1, pp. 134–150,
Jan. 2004.

[46] H. Gomaa, G. G. Messier, and R. Davies, “Hierarchical cache performance
analysis under TTL-based consistency,” IEEE/ACM Trans. Netw., vol. 23,
no. 4, pp. 1190–1201, Aug. 2015.

[47] J. Gao, S. Zhang, L. Zhao, and X. Shen, “The design of dynamic proba-
bilistic caching with time-varying content popularity,” IEEE Trans. Mobile
Comput., vol. 20, no. 4, pp. 1672–1684, Apr. 2021.

[48] Y. Li, H. Ma, L. Wang, S. Mao, and G. Wang, “Optimized content
caching and user association for edge computing in densely deployed
heterogeneous networks,” IEEE Trans. Mobile Comput., vol. 21, no. 6,
pp. 2130–2142, Jun. 2022.

[49] K. Poularakis and L. Tassiulas, “Code, cache and deliver on the move: A
novel caching paradigm in hyper-dense small-cell networks,” IEEE Trans.
Mobile Comput., vol. 16, no. 3, pp. 675–687, Mar. 2017.

[50] R. W. Wolff, “Poisson arrivals see time averages,” Operations Res., vol. 30,
no. 2, pp. 223–231, Apr. 1982.

[51] J. P. Schmidt and A. Siegel, “The spatial complexity of oblivious k-probe
hash functions,” SIAM J. Comput., vol. 19, no. 5, pp. 775–786, 1990.

[52] J. E. Hopcroft, J. D. Ullman, and A. V. Aho, Data Structures and Algo-
rithms. Boston, MA, USA: Addison-wesley, 1983.

[53] Y. Zhang, J. Yang, Y. Yue, Y. Vigfusson, and K. Rashmi, “SIEVE is simpler
than LRU: An efficient turn-key eviction algorithm for web caches,” in
Proc. USENIX Conf. Networked Syst. Des. Implementation, Santa Clara,
USA, Apr. 2024, pp. 1229–1246.

[54] J. Yang, “Libcachesim: A high-performance library for building cache
simulators,” 2024, Accessed: Nov. 4, 2024. [Online]. Available: https://
github.com/1a1a11a/libCacheSim

[55] J. Yang, Y. Yue, and K. V. Rashmi, “A large-scale analysis of hundreds
of in-memory key-value cache clusters at Twitter,” ACM Trans. Storage,
vol. 17, no. 3, pp. 1–35, Aug. 2021.

[56] R. Fagin and M. C. Easton, “The independence of miss ratio on page size,”
J. ACM, vol. 23, no. 1, pp. 128–146, Jan. 1976.

[57] M. C. Easton and R. Fagin, “Cold-start vs. warm-start miss ratios,”
Commun. ACM, vol. 21, no. 10, pp. 866–872, Oct. 1978.

[58] B. C. Arnold, Pareto Distribution.Hoboken, NJ, USA: Wiley, Sep. 2015.

Jinbei Zhang received the BS degree in electronic
engineering from Xidian University, Xi’an, China,
in 2010, and the PhD degree in electronic engineer-
ing from Shanghai Jiao Tong University, Shanghai,
China, in 2016. From 2016 to 2018, he worked as a
postdoc with the Chinese University of Hong Kong.
Since 2018, he is an associate professor with Sun
Yat-sen University, Shenzhen, China. His current re-
search interests include network information theory
and quantum networks.

Chunpeng Chen received the BS degree in commu-
nication engineering from Sun Yat-sen University,
Shenzhen, China, in 2022. He is currently working
toward the PhD degree with the School of Electronics
and Communication Engineering, Sun Yat-sen Uni-
versity. His research interests include cache replace-
ment algorithm and mobile edge computing.

Kechao Cai received the PhD degree from the Chi-
nese University of Hong Kong, in 2019. He is cur-
rently an assistant professor with the School of Elec-
tronics and Communication Engineering, Sun Yat-
sen University in China. His current research inter-
ests include distributed network protocol design and
online learning algorithms for network systems.

John C. S. Lui (Fellow, IEEE) received the PhD
degree in computer science from University of Cali-
fornia, Los Angeles. He is currently the Choh-Ming
Li chair professor with the Department of Computer
Science and Engineering, Chinese University of Hong
Kong. His current research interests include com-
munication networks, system security (e.g., cloud
security, mobile security, etc.), network economics,
network sciences, large-scale distributed systems and
performance evaluation theory. He serves in the edi-
torial board of IEEE/ACM Transactions on Network-

ing, IEEE Transactions on Computers, IEEE Transactions on Parallel and
Distributed Systems, Journal of Performance Evaluation and International
Journal of Network Security. He was the chairman of the CSE Department from
2005-2011. He received various departmental teaching awards and the CUHK
vice-chancellors Exemplary Teaching Award. He is also a corecipient of the
IFIP WG 7.3 Performance 2005 and IEEEIFIP NOMS 2006 Best Student Paper
Awards. He is an elected member of the IFIP WG 7.3, fellow of the ACM, and
Croucher senior research fellow. His personal interests include films and general
reading.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 15,2025 at 03:05:36 UTC from IEEE Xplore. Restrictions apply.

