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Abstract—Remote Direct Memory Access (RDMA) suffers
from unfairness issues and performance degradation when mul-
tiple applications share RDMA network resources. Hence, an
efficient resource scheduling mechanism is urged to optimally
allocates RDMA resources among applications. However, tradi-
tional Network Utility Maximization (NUM) based solutions are
inadequate for RDMA due to three challenges: 1) The standard
NUM-oriented algorithm cannot deal with coupling variables
introduced by multiple dependent RDMA operations; 2) The
stringent constraint of RDMA on-board resources complicates
the standard NUM by bringing extra optimization dimensions;
3) Naively applying traditional algorithms for NUM suffers from
scalability and convergence issues in solving a large-scale RDMA
resource scheduling problem.

In this paper, we present distributed and optimal resource
scheduling for RDMA networks to tackle the aforementioned
challenges. First, we propose Distributed RDMA NUM (DRUM)
to model the RDMA resource scheduling problem as a new
variation of the NUM problem. Second, we present a distributed
algorithm based on the alternating directional method of multipli-
ers (ADMM), which has the property of convergence guarantee.
Third, we implement our proposed algorithm in the real-world
RDMA environment, and extensively evaluate it through large
scale simulations and testbed experiments. Experimental results
show that our method significantly improves applications’ per-
formance under resource contention, achieving 1.4�1.7⇥ higher
throughput even under heavy background traffic, and 69.3%
improvement in terms of network utility.

I. INTRODUCTION

Remote Direct Memory Access (RDMA) is a technology of
high speed data transfer among applications across networks
[1, 2]. Based on kernel bypass, RDMA allows applications
to perform data transfers from user-space directly to RDMA
Network Interface Card (RNIC) without the involvement of
the operation system kernel. RDMA can achieve significantly
higher throughput, lower latency, and lower CPU utilization
than traditional TCP/IP based protocols, thus becoming a
promising networking technology for data center applications.

Although the kernel bypassing design of RDMA is efficient
for data transfer, it does not work well in a shared data
center environment as reported in [3–5]. In particular, native
RDMA does not provide efficient resource management across
applications [4]. When multiple applications share the RDMA-
enabled network, one greedy application could monopolize the
resources by issuing a large batch of requests. Thus, RDMA
fails to deliver quality of service (QoS), performance isolation,
or fairness guarantee in the shared environment.

To this end, one urging question is how to design an efficient
resource scheduling mechanism which optimally allocates the
RDMA resources among applications. Existing proposals [3–
6] addressed this issue at the system level, by implementing
RDMA resource scheduling solutions with performance iso-
lation and rate allocation. However, the scheduling policies
were based primarily on engineering heuristics, and they are
far away from the optimality of resource allocation efficiency.
Theoretically, network resource scheduling optimization can
be formulated as a Network Utility Maximization (NUM)
problem [7–10], where the utility provides a metric to measure
the optimality of resource allocation efficiency, such as QoS or
fairness. While previous efforts [11–13] in TCP/IP networks
have been successful in deriving optimal resource scheduling
solutions based on solving some specific NUM, none has
considered RDMA. In this paper, we propose a novel adoption
of NUM to address the optimal RDMA resource scheduling.

However, the aforementioned NUM-based solutions require
a strong assumption on the optimization variables and utility
functions. Specifically, a common assumption used in previous
methods is that there is only one set of optimization variables
(e.g., a rate allocation vector) and the utility function is
dependent on this set of optimization variables only [8, 11–
13]. Because such an assumption contradicts the inherent
complexities in RDMA networks, it is challenging to adopt the
NUM for RDMA resource scheduling. The challenges include
the following three aspects.

Multiple dependent RDMA operations introduce many
coupled variables. RDMA exposes to higher layer applica-
tions multiple low-level hardware primitives such as operations
on multiple queues. These operations, with different function-
alities, can be described by different utility functions. Since
these operations are dependent (Section II-C), the RDMA re-
source scheduling problem can be formulated as a multi-block
optimization problem with coupled variables. Consequently,
the assumption of NUM is invalid and that the standard
algorithms are unable to deal with.

Stringent constraint of RDMA on-board resources
brings one extra dimension in the utility function. RDMA
caches the connection information on the RNIC to achieve
low latency communications. As the on-board RNIC cache is
limited, when the number of connections grows, the total size
of connection states will exceed the RNIC cache size and cause
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Fig. 1: RDMA abstracts resources in the semantics of queues
and allows kernel bypass data transfer for applications.

cache thrashing (Section II-D), impairing the performance of
hosting applications. Standard NUM [7, 8] treats the number
of connections as unconstrained flows. With such a stringent
cache constraint, the active connections in RDMA should
be carefully selected or prioritized. Thus, this is another
optimization dimension which invalidates the assumption of
NUM, making the standard NUM more complicated to solve.

The inherently large RDMA network scale causes the
scalability issue. In a production RDMA network, the number
of hosts is on the order of O(104) to O(105), and the
number of applications on each host is of O(103). Thus the
number of variables can be up to O(108). Naively applying
traditional algorithms for NUM suffers from scalability issues
in solving such a large-scale optimization. Besides, some
standard NUM algorithms such as Dual decomposition are
difficult to tune, resulting in slow convergence. Thus, we are
motivated to consider a more robust distributed optimization,
and an implementation that can provide a fast and scalable
solution.

In this paper, we present how to optimally schedule ap-
plications under a finite RDMA resource environment with a
distributed algorithm. Specifically, we first model the RDMA
resource scheduling problem as a new variation of the NUM
problem to characterize the complexities of RDMA networks,
called Distributed RDMA NUM (DRUM). DRUM is inher-
ently a multi-block constrained optimization problem, which
jointly optimize the sharing on multiple RDMA resources.
Second, we modify the objective function of DRUM by
applying a top-k applications selector. We then analyze the
tractability of the proposed model by convexity analysis.
Third, we present a distributed solution which splits the
large-scale global optimization problem into many small local
subproblems. We propose a novel distributed algorithm based
on the alternating directional method of multipliers (ADMM)
and prove the convergence guarantee and parallelism of our
ADMM-based algorithms through theoretical analysis.

To demonstrate the applicability of our proposed algo-
rithms, we implement our proposed algorithm in the real-
world RDMA environment and conduct extensive testbed
experiments with a comparison to the state-of-the-art meth-
ods. Experimental results show that DRUM can significantly
improve applications’ performance in the shared RDMA net-

work, achieving 1.4 � 1.7⇥ higher throughput under heavy
background traffic and 69.3% improvement in terms of total
network utility.

To the best of our knowledge, this paper is the first work
to discuss the theory, algorithms and implementation of the
RDMA resource scheduling problem. Our major contributions
are summarized as follows:

• We propose a new variation of the NUM model called
DRUM, addressing the inherent complexities within
RDMA networks.

• We present a distributed and modular algorithm to solve
the problem, and prove the convergence guarantee and
parallelism through theoretical analysis.

• We implement and evaluate our method through large
scale simulations and testbed experiments. The experi-
mental results show that the RDMA network achieves
higher throughput and improved network utility, com-
pared with the state-of-the-art methods.

II. BACKGROUND AND MOTIVATION

A. RDMA and RDMA resource management
RDMA is a technology of high speed data transfer among

applications across a network [1, 2]. Different from traditional
TCP/IP networks, RDMA abstracts the resources as various
queues, and applications implement the communication using
these queues. As Fig. 1 shows, there are primarily three
queues. The “send queue” and “receive queue” are always
created in pairs and are referred to as a Queue Pair (QP).
To perform data transfer, an application creates a QP and
places instructions on the QP. These instructions are small
data structures called Work Queue Elements (WQEs), which
contain the memory location where the data resides and where
it wants to send. The third one is the Completion Queue
(CQ), which is used to notify the applications when the WQEs
have been completed. The completion notifications are called
Completion Queue Entries (CQEs). The applications actively
poll the CQEs to determine the completion of messages sent.

When multiple applications share the network, native
RDMA does not provide efficient management of resources
across applications [4]. As a consequence, one application
can simply post a large batch of WQEs to monopolize the
resources, thereby degrading the performance of other applica-
tions. As a simple illustration in Fig. 2(a), the 80% completion
time of one foreground traffic degrades by 3.9⇥ from 20 µs
to 78 µs when the co-located application increases the WQE
requests batch size from 20 to 100.

B. Network Utility Maximization
NUM is a modeling tool widely used in network resource

management. In the NUM formulation, it captures network
resource management objectives through utility functions and
models various types of resource constraints as the constraint
set. The basic NUM problem has the following formulation

maximize
X

s

Us(xs),

s.t. 8s : xs 2 Xs,
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(a) The 80% completion time of an 1KB RDMA
message degrades from 19.8 µs to 74.3 µs when
the WQE requests batch size of background
application increases from 20 to 100.
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(b) The throughput of applications grows with
the increase of CQ polling rates by different
amounts, when the batch size of WQEs are set
as 1, 5, and 10, respectively.
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(c) Average throughput of RC and UC con-
nections drop drastically when the number of
concurrent connections grows larger than 20.

Fig. 2: Characteristics of RDMA communication: (a) The unfairness issue in the shared network; (b) dependent RDMA
operations; (c) cache thrashing issue under large amount of connections.

where s denotes any source in the network, xs denotes the
source rate such as the bandwidth, Us(xs) denotes the utility
functions, and {Xs} is the constraint set, such as bandwidth
constraints. Previous researches modeled TCP/IP networks and
derived resource scheduling solutions based on solving some
specific NUM with particular utility functions [12, 13].

Assumption of NUM. In a standard NUM model, the rate
allocation vector x = {xs} is usually assumed to be the only
set of optimization variables and utility functions Us(xs) are
often assumed to be dependent on x only [8, 12, 13].

However, such an assumption is not appropriate due to the
inherent complexities in RDMA networks. In the following,
we demonstrate the complexities inherent within RDMA net-
works through experimental results.

C. The dependency of multiple RDMA operations

RDMA resource scheduling involves the management on
multiple queues, e.g., allocating the WQE requesting rates
on QP and deciding the CQE polling rates on CQ. At the
application level, the operations on these queues are inherently
dependent. Specifically, the applications usually implement the
communications through a “WQE requesting-CQE polling-
WQE requesting” loop that an application can only issue a
batch of WQE requests after polling one CQE. The batch
size is controlled by the parameter wr_num. For example,
TensorFlow-RDMA [14] sets wr_num to be 1 when pro-
cessing tensors and Spark [15] sets it dynamically according
to the shuffle data in the buffer. In the experiment, we
manually adjust the CQE polling rate of one application and
measure its throughput. From Fig. 2(b), we observe that the
throughput grows as the CQE polling rate increases, because
the application can issue more WQE requests in one loop.
Therefore, controlling one communication operation in RDMA
affects the other in turn, yielding multiple dependent variables
in the resource scheduling optimization.

D. RNIC cache thrashing under large concurrent connections

RDMA caches the connection information on the RNIC
to achieve low latency communications. However, since the
RNIC cache is limited, when the number of connections
grows, the total size of QP states will exceed the RNIC cache

size and cause cache thrashing. Cache thrashing significantly
impairs the performance of hosting applications. To better
understand this issue, we vary the number of concurrent
connections in one host and measure the average throughput.
In the experiment, RDMA connections are set with different
types: Reliable Connection (RC), Unreliable Connection (UC),
and Unreliable Datagram (UD). As Fig. 2(c) shows, when
the number of connections using RC and UC exceeds 20,
the RNIC is unable to cache all the connection information
and the average throughput drops significantly. Therefore,
the number of QPs should be constrained to avoid cache
thrashing and thus the active connections should be carefully
selected or prioritized. This one more optimization dimension
on the application selection makes the standard NUM rather
complicated to solve.

III. RDMA RESOURCE SCHEDULING OPTIMIZATION

In this section, we present a new mathematical model for
RMDA resource scheduling with theoretical analysis.

A. Problem formulation

We consider an RDMA-enabled data center network as
illustrated in Fig. 3. It consists of a finite set of connected hosts
and a finite set of applications consuming network resources.
Let hi be the i

th physical host. There are in total n hosts in the
network, i.e., i 2 Zn, where Zn = {1, 2, ..., n}. Any hi runs
up to m RDMA-enabled applications. The scheduler allocates
the WQE requesting rates sj to application j 2 Zm, where
Zm = {1, 2, ...,m}. Define xi 2 Rm

+ as the rate allocation vec-
tor for hi, we have xi,j = sj and xi = {s1, s2, ..., sm}, i 2 Zn.
The problem is how to determine xi for each hi. For a straight
forward adoption of NUM, the model becomes

maximize
nX

i=1

fi(xi), xi 2 Rm
+ ,

s.t. hi(xi)  qi, 8i 2 Zn,

(1)

where fi(·) : Rm ! R is the utility function. In general,
fi(·) could be an arbitrary concave function. For example,
we can use a feasible function that satisfies the definition
of proportional fairness [16], i.e., the summation of ↵-fair
utilities, fi(xi) =

Pm
j=1(1 � ↵)�1

s
1�↵
j , 8sj 2 xi, where
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Fig. 3: RDMA resource scheduling model with n connecting
hosts and m co-located applications

0 < ↵ < 1. The utility function is parameterized by ↵.
If ↵ is set homogeneously for all applications, the solu-
tion will yield a fair resource allocation. The cost function
hi(·) : Rm ! R is an arbitrary convex function, such as
physical bandwidth limitations or resource prices. We refer to
x⇤ = {x⇤

1, x
⇤
2, ..., x

⇤
n} as an optimal rate allocation if it solves

problem (1), i.e.,
P

i fi(x
⇤
i ) �

P
i fi(xi), 8xi. Traditionally,

this problem can be solved via a convex programming solver
or Dual Decomposition method.

However, as described in Section II, the complexities in-
herent in RDMA make the direct transformation from NUM
impractical. First, RDMA abstracts the resources by multiple
queues. In addition to QP and associated WQE requesting
rates, scheduling CQ and associated CQE polling rates should
also not be overlooked. We define another rate vector zi =
{r1, r2, ..., rm}, i 2 Zn, where rj is the allocated CQE polling
rate of each application j and zi,j = rj , j 2 Zm. In RDMA,
the CQE polling rate is closely related to the application-
perceived latency, because the faster one application polls
the CQE, the earlier it is notified the completion of message
transferring. Therefore, the optimization of QP and CQ sharing
should be conducted with different objectives. We hereby
follow the existing work [17, 18] and define a different utility
function for CQ to quantify the latency related utility.

Definition 1. CQ Utility. The function is characterized by a
multiplier gi(zi) = �� ·

Pm
j=1(1/zi,j)

2, where zi 2 Rm
+ .

In this definition, � is the weighting factor that captures the
relative importance of latency-related utility. The application-
perceived latency for application j on hi is captured by
(1/zi,j)2, which is inversely proportional with its CQE polling
rate zi,j . Then the overall utility function gi(·) depends on
the application-perceived latency. Clearly, gi(·) is a concave
function and achieves its maximum value when zi ! +1.

To capture the dependency among operations on multiple
queues, extra constraints should be imposed on xi and zi.
That is, F (xi) = zi where F (·) : Rm ! Rm. Essentially,
the dependency among xi and zi is complicated, because the
CQEs are generated by the completion of WQEs for both
data sending and receiving. In this section, we first assume
that zi only depends on the local WQEs sending rate, and
we will discuss how to extend this model later. As described

in Section II-C, the CQ polling rate and QP requesting rate
have an approximately linear relationship. Then we have
F (xi) = A · xi = zi, A 2 Rm⇥m. We further define that
A = diag{a1, a2, ..., am}, where a1 varies for applications
with different WQE batch size.

In the RDMA design, due to the on-board cache size
limitation, the number k of active connections using QPs on
each hi should be bounded, i.e. k < m. In practice, k is set
at k = 20 and homogeneous across the data center. Therefore,
the selection of k active applications should be considered.
Therefore, we rewrite the original fi(xi) as efi(xi) using the
following definition.

Definition 2. QP Utility. We define the utility as a multiplier
efi(xi), where xi 2 Rm

+ . The multiplier prioritizes k applica-
tions with largest utilities.

efi(xi) =
kX

j=1

(1� ↵)�1
s
1�↵
[j] , 8s[j] 2 xi, (2)

where [j] is the application with j-th largest utility value. Note
that efi(xi) is not restrictive to a top-k utility selection. It can
be formulated to describe any prioritizing mechanism such
as FIFO or smallest job first. Therefore, the utility function
of QP is more complicated by applying the functionality of
application selection. We theoretically analyze the complexity
through convex analysis and derive the following lemma.

Lemma 1. The function efi(xi) is strictly concave.

Proof. First, order the element j in vector xi by the value
(1� ↵)�1

s
1�↵
j in the descending order. Then equation (2) is

mathematically equal to sum the top k largest ones up from
m elements, which is

efi(xi) = max{(1� ↵)�1
s
1�↵
[i1]

+ ...+ (1� ↵)�1
s
1�↵
[ik]

|i1, i2, ..., ik 2 N, 1  i1  ...  ik  m}.
(3)

Thus, there are C
k
m combinations of such selection. We

can define a binary vector t 2 Rm, where the corresponding
element of an accepted application is set to 1, while the
others be 0. Transform equation (3) to supt{fi(t ⌦ x[i])|8t}.
This means that we conduct a supremum operation on C

k
m

combinations of fi(·), which is efi(·) = g(fi(xi)), where
g(·) = supt{·}. Because fi(xi) is concave and g(·) is the
operation that maintains concavity, then efi(·) is still a concave
function. Therefore, the lemma is proved.

Other than the objective function, we consider the cost
function hi(·), which should be an arbitrary convex function
that restricts the physical RNIC capabilities. We can use
normalization functions such as the logarithm function, or a
more general piecewise linear function with increasing slopes.
For simplicity, we define h

q
i (xi) =

P
j log(xi,j)  qi as the

physical constraints for xi, and h
c
i (zi) =

P
j log(zi,j)  ci

for zi, where qi and ci are set according to the hardware
specifications.

With the above definitions, we formulate a variant of the
basic NUM from Equation (1) to characterize the resource
scheduling problem in RDMA, denoted as DRUM, the objec-
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tive of which is to jointly optimize the utility of xi and zi.
We rewrite problem (1) as

maximize
nX

i=1

efi(xi) +
nX

i=1

gi(zi), xi, zi 2 Rm
+ ,

s.t. h
q
i (xi)  qi, 8i 2 Zn,

h
c
i (zi)  ci, 8i 2 Zn,

F (xi) = zi, 8i 2 Zn.

(4)

Problem (4) is inherently a large scale multi-block opti-
mization problem with large scale equality and inequality
constraints and dependent optimization variables, which is
hard to solve in a timely manner.

B. Problem analysis
Traditionally, to solve problem (4) is based on the method

of multipliers, in which there is an augmented Lagrangian pa-
rameter ⇢, and Lagrangian dual variable u. The optimal value
x
⇤, z⇤ and dual optimal value u

⇤ are computed iteratively by
solving the following equation:

(xk+1
, z

k+1) := argmax
x,z

L⇢(x, z, u
k),

(uk+1) = u
k + ⇢(Ax

k+1 � z
k+1).

Here, the augmented Lagrangian L⇢(x, z, uk) is maximized
jointly with respect to the two jointly dependent primal
variables, which is inefficient to compute in practice. While
traditional dual decomposition with (sub)gradient methods
solving NUM suffer from the difficulty in parameter tuning
and computational inefficiency, we leverage the Alternating
Direction Method of Multipliers (ADMM) [19] method to
solve problem (4), with zi as an auxiliary variable that assists
iteration. In ADMM, xi and zi are updated in an alternating
fashion; that is, x

k
i is computed as an intermediate result

from the previous state (zk�1
i , u

k�1
i ). The auxiliary variable

z
k+1
i is a function of (xk+1

i , u
k
i ), and the Dual variable u

k+1

is updated from u
k by collecting all the x

k+1
i and z

k+1
i .

Following the ADMM framework, we obtain an iteration on
the order of the x-minimization step, z-minimization step and
u-update step, which we illustrate as:

Step 1, x-minimization step:
min
xi

� efi(xi) + u
k(F (xi)� z

k
i ) + (⇢/2)||F (xi)� z

k
i ||22

s.t. h
q
i (xi)  qi.

(5)
Step 2, z-minimization step:
min
zi

�gi(zi) + u
k(F (xk+1

i )� zi) + (⇢/2)||F (xk+1
i )� zi||22

s.t. h
c
i (zi)  ci.

(6)
Step 3, u-update step:

u
k+1 = u

k + ⇢ · (
nX

i=1

F (xk+1
i ) +

nX

i=1

z
k+1
i ). (7)

By design, the alternating update in ADMM reduces
the computing complexity, and the extra regulation term
(⇢/2)||F (xi) � zi||22 stabilizes the iterations. One important
property of the ADMM-based solution is its theoretical guar-
antee of convergence. The convergence is formally guaranteed
by the following theorem:

Theorem 1. When a feasible solution to the DRUM exists, the
ADMM-based solution converges to the optimal value p

⇤. In
particular, the following are true:
1. The consistency is achieved: xk

i ! F
�1(zki ) as k ! +1.

2. The solution is optimal:
nX

i=1

efi(xk
i ) +

nX

i=1

gi(z
k
i ) ! p

⇤ as

k ! +1.
3. An optimal dual value is found: ⇢uk ! ⇢u

⇤ as k ! +1.

Proof. Let (x⇤
i , z

⇤
i ) be the primal optimal solution to problem

(4). In particular, A · x⇤
i = z

⇤
i . Let u

⇤ be a dual optimal
solution. Because of the condition that a feasible solution
to the DRUM exists, along with the strong duality theorem,
u
⇤ exists. Then we have (xk

i , z
k
i , u

k) as an arbitrary set
of results generated in iteration k. Let v

k = u
k
/⇢ and

z
k
i = Ax

k
i + v

k�1 � v
k, so we have

V
k =

nX

i=1

(||zki � z
⇤
i ||22 + ||vk � v

⇤||22). (8)

This equation leads to convergence if 9", Dk = V
k+1 �

V
k
< ". [19] has proved that Dk is Lipschitz continuous and

" exists 8k with any start point {x0
i , z

0
i , u

0}, so " is

" = ⇢||rk+1||22 + ⇢||A�1(zk+1 � z
k)||22, (9)

where r
k is the primal residual after k-th iteration. Equation

(9) holds with the saddle point theorem when the objective
functions efi(·) and gi(·) are closed, proper, and convex. Note
that it does not require the combination efi(·) + gi(·) to be
convex. With Lemma 1, efi(xi) =

Pk
j=1(1 � ↵)�1

s
1�↵
[j]

is strictly concave, so � efi(xi) is a convex function. By
definition, gi(zi) = �q ·

P
j(1/zij)

2. gi(·) is concave when
dom(gi) 2 Rm

+ . Since zi 2 Rm
+ , �gi(zi) is a convex function.

When the above conditions hold, we can derive the conver-
gence of Vk. Along with the fact that A is a diagonal matrix
and its inverse A

�1 exists, we can derive that A�1(zk+1�z
⇤)

is bounded and both r
k+1 and A

�1(zk+1� z
k) go to 0, when

k ! +1. Thus F
�1(z⇤i ) = x

⇤
i , and Theorem 1.1 holds.

Since the inequality holds that pk+1 � p
⇤  u

⇤T
r
k+1, we

have limk!+1p
k � p

⇤ = 0, i.e., the objective convergence.
Thus Theorem 1.2 is proved.

Finally, as the Slater’s condition holds, the dual gap is 0, so
u
k ! u

⇤ when p
k ! p

⇤. Thus Theorem 1.3 is proved.

Theorem 1 indicates that the ADMM-based method will
converge to the optimality with enough k. We then analyze
how to solve the local subproblem on each host hi efficiently.
We computed xi guided by the following theorem.

Theorem 2. 8hi, the solution for x-minimization step is

x
k+1
i =

8
>>><

>>>:

xi,j = � 1
2 cj + (c2j � 4bjdj)

1/2b�1
j , 8xi,j /2 I

{x1/2
i,j |bjx4

i,j + cjx
2
i,j + xi,j + dj = 0},

8xi,j 2 I,↵ = 1
2

{xi,j |xi,j = (bjx
2
i,j � cjxi,j � dj)

1/3},
8xi,j 2 I,↵ 6= 1

2

,

(10)
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where bj = �⇢a
2
j , cj = ⇢ajz

k
i,j + aju

k
j and dj = �

q
i .

Proof. For the x-minimization subproblem, the Lagrangian
for the subproblem is

Lxi,�
q
i
= � efi(xi) + u

k(F (xi)� z
k
i )+

(⇢/2)||F (xi)� zi||22 + �
q
i (hi(xi)� qpi).

(11)

Based on this, we can derive the dual problem as

maximize Dxi(�
q
i ) = inf

xi2D
{Lxi,�

q
i
},

�i � 0, 8i.
(12)

As Dxi(�
q
i ) is always convex, the solution of optimization

problem (12) is based on the Karush-Kuhn-Tucker (KKT)
conditions. Define p

⇤
i as the primal optimal value, x⇤

i and �
q⇤
i

as the primal and dual optimal solution, respectively, then we
have the following set of equations.

8
>><

>>:

�
q⇤
i · (hi(x⇤

i )� qi) = 0
@Lxi,�

q
i

@xi
|xi=x⇤

i
= 0

�i > 0

. (13)

For the second term of equation(13), it can be rewritten as
@Lxi,�

q
i

@x
|xi=x⇤

i
= 0

, �r efi(x⇤
i ) +Au

k + ⇢(AT
Ax

⇤
i �Az

k
i ) + �

q
irhi(x

⇤
i ) = 0

, �x
⇤
i
�↵|I +Au

k + ⇢(AT
Ax

⇤
i �Az

k
i ) + �

q
ix

⇤
i
�1 = 0,

(14)

where I 2 Rm and I contains element Ij 2 {0, 1}. For
example, I = {1, 1, 0, 1, ..., 0}. x⇤

i
�↵|I works as a filter that

the vector x
⇤
i
�↵ is partially selected by I , i.e., x

⇤
i
�↵|I =

diag{I} · x⇤
i
�↵. I is derived by efi(·) that the corresponding

item Ij of selected applications are set to be 1. Arranging the
equation (14), we have

�x
⇤
i
�↵|I + ⇢A

T
A · x⇤

i + �ix
⇤
i
�1 � ⇢A · zi �Au

k
i = 0

, x
⇤
i
1�↵|I +B · x⇤

i
2 + C · x⇤

i +D = 0,
(15)

where B 2 Rm⇥m,C,D 2 Rm. B = �⇢A
T
A, C =

⇢Az
k
i + Au

k, and D = ��
q
i 1. To solve this equation, we

conduct element-wise computation to calculate the xi,j . Then
the calculation of xi,j becomes a scalar computation, which
is divided into the following three cases:
Case 1: If xi,j /2 I . In this case, x1�↵

i |I is eliminated from
equation (15), and we have

�⇢a
2
jx

2
i,j + (⇢ajz

k
i,j + aju

k
j )xi,j + �

q
i = 0. (16)

Equation (16) is a quadratic function of xi,j and its root can
be calculated directly by xi,j =

1
2 � cj + (c2j � 4bjdj)1/2b

�1
j ,

where bj = �⇢a
2
j , cj = ⇢ajz

k
i,j + aju

k
j and dj = �

q
i .

Case 2: If xi,j 2 I and ↵ = 1/2. In this case, rewrite equation
(15) and substitute xi,j by x

1/2
i,j , we have

x
1/2
i,j � ⇢a

2
jx

2
i,j + (⇢ajz

k
i,j + aju

k
j )xi,j + �

q
i = 0

, ⇢a
2
jx

4
i,j + (⇢ajz

k
i,j + aju

k
j )x

2
i,j + xi,j + �

q
i = 0.

(17)

Equation (17) is a biquadratic formula, and its root can be
calculated in a close form.

Case 3: If xi,j 2 I and ↵ 6= 1/2. In this case, xi,j can not be
calculated directly from any formula, so we rewrite xi,j as

x
1�↵
i,j � ⇢a

2
jx

2
i,j + (⇢ajz

k
i,j + aju

k
j )xi,j + �

q
i = 0

, xi,j = (⇢a2jx
2
i,j � (⇢ajz

k
i,j � aju

k
j )xi,j � �

q
i )

1/3
.

(18)

After converting the transcendental equation algebraically
into the form x = g(x), xi,j can be solved using the iterative
scheme with the Fix Point Method of iteration.

Finally, testing all the solutions using the Complementary
Slackness condition �i · (hi(xi) � qi) = 0 to derive xi.
Therefore, the theorem is proved.

Guided by Theorem 1, we have calculated x
k+1
i , and now

we consider the CQ polling strategy part gi(zi), with the
following theorem to guide the update of vector zk+1

i .

Theorem 3. 8hi and 8zi,j 2 zi, the solution for z-
minimization is

z
k+1
i = {zi,j |zi,j = �

c
i ((⇢+ u

k
j )zi,j � 2z�3

i,j � ⇢ajx
k+1
i,j )�1}.

(19)

Proof. For the z-minimization step, the Lagrangian and dual
problem are

Lzi,�c
i
= �gi(x

k+1
i ) + u

k(F (xk+1
i )� zi)+

(⇢/2)||F (xk+1
i )� zi||22 + �

c
i (hi(zi)� cqi)

(20)

and
maximize Dzi(�

c
i ) = inf

zi2D
{Lzi,�c

i
},

�
c
i � 0, 8i.

(21)

The derivation for CQ polling rate is similar to the proof of
Theorem 2 with a different utility function gi(·). Therefore,
for the stationarity of KKT conditions, the optimal solution
for z⇤i should satisfy

@Lzi,�c
i

@zi
|zi=z⇤

i
= 0

, �rgi(z
⇤
i )� u

k
z
⇤
i + ⇢(A · xk+1

i � z
⇤
i ) + �

c
irh

c
i (z

⇤
i ) = 0

, 2z⇤
�3

i � u
k
z
⇤
i + ⇢(A · xk+1

i � z
⇤
i ) + �

c
iz

⇤�1

i = 0.
(22)

It is difficult to find the exact roots of the equation, we
rewrite the equation (22) in the form

z
⇤
i = �

c
i · ((⇢1 + u

k)z⇤i � 2z⇤
�3

i � ⇢A · xk+1
i )�1

. (23)
Therefore, we use the Fixed Point Method to find an

approximate solution to z
⇤
i with element-wise computation on

zi,j . Thus, the theorem is proved.

C. Distributed algorithm for DRUM
We discuss in this section how to implement a distributed

and modular algorithm to efficiently solve the DRUM prob-
lem. The proposed algorithm performs the iterations of the
decomposition-coordination procedure. As described in Algo-
rithm 1, at each iteration k, the DRUM-decomposition algo-
rithm solves small local subproblems via the x-minimization
and z-minimization steps. It maintains two important internal
variables x

k
i and z

k
i and calculate x

k+1
i and z

k+1
i based on

Theorems 2 and 3.
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Algorithm 1 DRUM-decomposition

1: procedure DRUM-DECOMPOSITION(zki , uk)
2: input: zki , uk

3: output:xk+1
i , z

k+1
i

4: for j in {1, 2, ...,m} do
5: Calculate xi,j using Theorem 2
6: Test xi,j with the condition �

q
i ·(hi(xi,j)�qpi) = 0

7: end for
8: Update all xi,j into x

k+1
i

9: for j in {1, 2, ...,m} do
10: Calculate zi,j using Theorem 3
11: Test zi,j with Complementary Slackness condition
12: end for
13: return x

k+1
i , zk+1

i
14: end procedure

For steps 4-7 and 9-12 in Algorithm 1, because the com-
putations of xi,j and zi,j (m variables of xi) are independent
with each other, this iteration can be implemented using multi-
thread parallel processing, improving computation efficiency.
Algorithm 1 works independently to calculate x

k+1
i , zk+1

i in
each iteration k. Between iterations, it reports the updated
values to a coordinator, which collects all the x

k+1
i , z

k+1
i ,

conducts a simple summation and then broadcasts a message
with updated u

k+1. The DRUM-coordination algorithm is
described as in Algorithm 2.

Algorithm 2 DRUM-coordination

1: procedure DRUM-COORDINATION(xk+1
i , zk+1

i , uk)
2: input: xk+1

i , zk+1
i , uk

3: output: uk+1

4: for j in [1�m] do
5: compute u

k+1
j by u

k+1
j = u

k
j +⇢·(

Pn
i=1 ajx

k+1
i,j +Pn

i=1 z
k+1
i,j )

6: end for
7: Update and return u

k+1

8: end procedure

Algorithm 1 and 2 runs iteratively to find the global utility
optimality of the network, thus the large scale DRUM problem
can be solved efficiently in a distributed manner.

D. Simulations
To illustrate the basic behavior of the proposed algorithms,

we report the simulation results for some large scale instances
of the DRUM problem. In the simulation, the parameters are
set as k = 20, ci = 15, qi = 25, and aj in A are randomly
generated in the normal distribution in [1, 10]. We empirically
set the penalty parameter ⇢ = 10�3. The variables u

0 and z
0

are initialized to be a zero vector. The problem scale is set as
n 2 {102, 103, 104}, m 2 {50, 5⇥ 102, 5⇥ 103}. Algorithms
1 and 2 are implemented in Matlab and embedded in Python
to execute in parallel threads. The evaluation metric is the
number of iterations, which is platform-independent.
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Fig. 4: Convergence analysis when n = 100, m = 50.
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Fig. 5: Convergence analysis when n = 103, m = 500.

For comparison, we also implement the conventional Dual
Decomposition approach with gradient methods to solve the
standard NUM described in problem (1). The step size ⇢k

is chosen following the commonly accepted diminishing step
size rule [18], with ⇢k = 10�3

/
p
k.

Convergence We first evaluate the convergence of the
DRUM algorithm under varying n and m. From Figs. 4(a)
and 5(a), we observe that our algorithm converges very fast in
less than 20 iterations for all cases. Figs. 4(b) and 5(b) depict
the trajectory of the primal residual defined as

Pn
i ||xi� zi||22

and D
k used in the proof of Theorem 1. From the figures, we

observe that the primal residual becomes less than 1 when
n = 100, m = 50, and less than 10 when n = 103,
m = 500 after 10 iterations. We also observe that D

k is
indeed non-increasing and Lipschitz continuous. We also find
out that the convergence rate is independent of the problem
size by the fact that the convergence behaviors of the proposed
algorithm are the same in all cases when n 2 {102, 103, 104},
m 2 {50, 5⇥ 102, 5⇥ 103}. This means that our algorithm is
scalable for solving large-scale problems. The blue dotted line
in Fig. 4(a) and Fig. 5(a) is an 99.5% approximated optimal
value for the objective. The algorithm stops at 17-th iteration
when n = 103, m = 500. These results confirm that our
algorithm generates a solution with high accuracy even faster.

Compared to the Dual Decomposition method, we observe
from Figs. 4(a) and 5(a) that Dual Decomposition yields
fluctuating results. The objective values are still not close to
its convergence after 60 iterations. Furthermore, the observed
objective values generated by Dual Decomposition are on
average 69.3% less than that of DRUM. The reason is that
DRUM considers multiple queues and their dependencies in
RDMA, yielding better utilities for the RDMA network.

Discussion Though the above description, we have demon-
strated that how our proposed ADMM-based method is able
to solve a large-scale DRUM problem optimally and in a
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distributed manner. It is worth noticing our proposed method
can also adapt to a number of variations of DRUM problem.
First, the utility functions for CQ and QP are not restricted to
Definition 1 and 2. The functions can be any convex utility
functions and they are not required to be strongly convex.
Although the effectiveness of current convex functions are
evaluated and the optimization results significantly outperform
the state-of-the-art methods, we are still exploring novel func-
tions to better describe the utility of CQ.

Another important variation of the DRUM problem is the
function to describe the dependency among CQ and QP
operations. We have demonstrated that our ADMM-based
method can solve the problem when xi and zi are dependent
and derive close form solutions. In a more generalized case,
zi is dependent on WQEs requesting rates for sending to and
receiving data. In this case, zi is dependent on xi on all other
hosts, and we can rewrite the last constraint in equation (4) as

nX

i=1

F (xi) = zi0 , 8i0 2 Zn, (24)

where F (·) can be more complex than an affine function.
For example, F (·) = Ti · xi, where Ti is a traffic matrix to
denote the traffic distribution of all applications on hi. With
this variation, our ADMM-based method is still able to solve
it. Moreover, the variation of DRUM has close form solutions
in most cases. We will introduce the extension of our method
to solve the variations of DRUM in the future work.

IV. IMPLEMENTATION AND EXPERIMENT

A. Implementation
We implement the proposed DRUM algorithm in the DRUM

agent, which is a software module inserted between applica-
tions and the RDMA driver. One DRUM agent decides the
rates of fetching WQEs for different applications according
to the DRUM algorithm. Meanwhile, it maintains one ingress
completion queue of CQEs with one dedicated thread actively
polling CQEs. Distributed DRUM agents are deployed on each
host in the RDMA network. They first work independently to
schedule the local applications and then coordinates iteratively
to update the network information, which is similar with the
most network protocols such as TCP/IP congestion control.

B. Experiment settings
We evaluate DRUM’s performance in real-world RDMA

network environment through extensive testbed experiments.
Testbed. The testbed is built with 7 nodes, each of which is
equipped with two 2.2GHz Intel Xeon E5-2650 v4 processors
and 64 GB of memory. All these servers are installed with
Ubuntu 16.04 and are equipped with a Mellanox ConnectX
Series RNIC (40 Gbps over InfiniBand) to enable RDMA.
Application. We implement an RDMA-enabled Key-Value
(KV) store service, and then run several clients concurrently
requesting the server. In client nodes, each client creates
multiple connections requesting data in the KV store through
RDMA network. Each connection requests for data with
random data size ranging between [32B, 1MB].
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Fig. 8: Comparison on 32B packet completion time.
Benchmark. For comparison, we have implemented the fol-
lowing mechanisms:
(1) RAW: Represents the raw RDMA-based primitives and the
standard operation in the RDMA (same as in FaRM [20]).
(2) SHARE: Denotes the connection grouping mechanism
proposed in [3, 4], where the connections designated for the
same host share one QP for resource multiplexing. As the
authors suggest, the multiplexing ratio of QP is set as 5.
(3) DRUM: The implementation of our method.

C. Experimental Results
Test Case 1 (Packet level performance). To evaluate whether
our model could provide fine-grained resource scheduling, we
test the completion time of a WQE to continuously request for
a 32B data from the KV store server, while the background
connection varies its WQE batch size from 20 to 100. Fig.
6 demonstrates the distribution of the WQE completion time.
We observe that the single WQE completion time is unaffected
by the background traffic.

We then compare DRUM with the benchmarking mech-
anisms. In this case, we adjust the number of concurrent
connections cc in the host. cc is set as {20, 50, 100}. The
evaluation results are depicted in Fig. 8. When cc = 20, the
80% completion time of the single WQE are 7.1 µs, 7.2 µs,
8.8 µs under RAW, SHARE and DRUM, respectively. When cc

increases, RAW does not work properly. For example, the 80%
completion time under RAW degrades from 26.5 µs to 90.4 µs,
when cc increases from 50 to 100. Although SHARE performs
better than RAW, it suffers from the long tail distribution of the
completion time. From our analysis, this is because of the lock
contention on the shared QP, causing performance fluctuation.
On the contrary, DRUM accesses QP by the single DRUM
agent in a lock-free manner. It completes the WQE in 14.5 µs
and 24.0 µs, when cc = 50 and cc = 100. It is worth noting
that when cc = 100, DRUM completes the WQE 3.1⇥ faster
than RAW and 1.7⇥ than SHARE.
Test Case 2 (Flow level performance). In this test case,
we evaluate the performance of DRUM when transferring a
large data file. The foreground traffic transmits 1MB message
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Fig. 11: Average latency.

through one WQE and continuously to transfer 1GB data
in total. The background connections request for the data
at random sizes between [1KB, 10MB] and the batch size
parameter is set between [20, 100]. From Fig. 7, we see that
the completion time of foreground traffic is unaffected by the
background traffic. The reason is that DRUM jointly controls
the resource scheduling on CQ and QP, providing an enhanced
resource scheduling.

We then evaluate DRUM’s performance by transferring a
1MB flow that is composed by a sequence of 32B WQEs.
The evaluation results are depicted in Fig. 9. When cc = 20,
the 80% completion time of the WQEs to send 1MB data are
53.1 ms, 82.8 ms, 62.9 ms under RAW, SHARE and DRUM,
respectively. When the number of concurrent connections
increase, where the contention on CQ polling is more severe,
DRUM outperforms all other mechanisms. When cc = 100,
DRUM completes the WQE 3.75⇥ faster than RAW and 1.4⇥
than SHARE.
Test Case 3 (Overall system performance). We evaluate
DRUM by collecting both the average throughput and latency
of all connections in the network. In this case, we vary the
concurrent number of clients requesting data from the KV
store from 20 to 400. The clients request for data at random
sizes between [32B, 1MB]. As shown in Fig. 10, DRUM
significantly outperforms all other mechanisms in terms of
the average throughput. SHARE performs better than RAW,
but when connections increase, the lock contention on shared
QP becomes the bottleneck, thus hurting the performance of
applications. Note that, when the total number of connections
is larger than 300, the average throughput under DRUM is
1.8⇥ greater than SHARE.

Fig. 11 shows the average latency of messages. We record
the latency of each batch of WQEs. From the results, we
observe that DRUM is capable of keeping most of the requests
within extremely low latency less than 18 µs. When the
connections increase, the network is fully saturated and the
performance of SHARE degrades, the average latency is 67.3%
higher than DRUM when the total number of connections is
larger than 300.

V. RELATED WORK

RDMA suffers from the unfairness issue and performance
degradation in the shared data center network as reported in
[3–5, 21]. Addressing this issue, various resource management
mechanisms for RDMA are proposed. Freeflow [22] proposed
a virtualization based software solution to isolate the perfor-
mance of RDMA-enabled applications. Youmin Chen et al.
[3] designed the connection grouping mechanism, allowing
multiple applications to share one QP. LITE [4] allowed ap-
plications to share resources by establishing a shared memory
pool in the kernel. Haonan Qiu [5] el al. proposed a pooling
mechanism between applications and RNIC driver to manage
RDMA resources. FaRM [20] applied QP sharing in the
kernel. Existing proposals lack sufficient theoretical analysis,
and they are far from the optimality of resource scheduling.

Theoretically, the network resource scheduling optimization
was modeled as a NUM problem [9, 11, 12]. Previous efforts
[11–13] in resource management for TCP/IP networks have
been successful in deriving NUM-based resource scheduling
solutions. For example, Jian Guo et al. [23] proposed an in-
stance of NUM to optimize the bandwidth allocation. Also, [8]
provided a relaxation-based approach to solve the NUM with
non-convex utility functions. However, none of prior methods
considered RDMA. We have proposed a new variation of
NUM model and designed a distributed and optimal solution
based on ADMM [11, 19].

VI. CONCLUSION

In this paper, we have introduced a distributed solution to
optimal RDMA resource scheduling. Characterizing the com-
plexities inherent in RDMA networks, we have abstracted the
problem as a multi-block utility maximization problem with
coupling variables. To efficiently solve it, we have presented a
distributed and modular algorithm, and demonstrated the paral-
lelism and convergence guarantee through theoretical analysis.
Through large scale simulations and testbed experiments, we
have shown that, compared with the state-of-the-art methods,
our method has a number of unique advantages, such as
achieving higher network utility and higher overall throughput
when multiple applications share the RDMA network. We
believe such advantages are highly desirable for the resource
management in large-scale shared RDMA networks.
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