
Hybrid Circuit/Packet Network Scheduling with
Multiple Composite Paths

Shih-Hao Tseng⇤, Bo Bai†, and John C.S. Lui‡
⇤School of Electrical and Computer Engineering, Cornell University

†Future Network Theory Lab, 2012 Labs, Huawei Technologies, Co. Ltd.
‡Department of Computer Science and Engineering, The Chinese University of Hong Kong

Email: st688@cornell.edu, baibo8@huawei.com, cslui@cse.cuhk.edu.hk

Abstract—A switching/forwarding fabric with high-bandwidth

one-to-one and low-bandwidth many-to-many data forwarding

can be achieved by combing electronic packet switches (EPS) and

optical circuit switches (OCS). This hybrid solution scales well

but it is not suitable for cloud computing/datacenter applications,

which typically rely on one-to-many and many-to-one communi-

cations. Recently, composite-path switching (cp-switching), which

adds paths between EPS and OCS, is introduced to deal with this

skewed traffic pattern. The state-of-the-art scheduling algorithm

for cp-switches reduces, by heuristics, a cp-switching problem

with one composite path to a hybrid switching problem without

the composite path, and leverages existing scheduling techniques

to tackle the latter problem. Unfortunately, the approach provides

neither performance guarantee nor the support for multiple

composite paths.

In this paper, we systematically study the shortest time cp-

switch scheduling problem with multiple composite paths and

show that the problem can be expressed as an optimization

problem with sparsity constraints. An LP-based algorithm is

derived accordingly which supports multiple composite paths

and more importantly, it provides performance guarantee. Sim-

ulations demonstrate that adding more composite paths can help

shorten the schedule, and our approach outperforms existing

methods by 30% to 70%.

I. INTRODUCTION

Electronic packet switches (EPS) can be combined with op-
tical circuit switches (OCS) to provide low-bandwidth many-
to-many and high-bandwidth one-to-one data forwarding [1],
[2]. This hybrid solution achieves higher throughput with
lower cost [3], which makes it an appealing architecture
for data centers [4]–[6]. However, data center applications
nowadays, such as MapReduce [7], Dryad [8], or more general
coflows [9], require more than just one-to-one high-bandwidth
forwarding. Instead, major applications involve one-to-many
or many-to-one mappings, such as distributed data storage
[10], [11], large-scale graph processing [12], parallel compu-
tation and partition-aggregation workflows [7], [8].

Supporting one-to-many or many-to-one traffic while offer-
ing high-bandwidth by OCS at the same time is challenging.
The high-bandwith of OCS is achieved by establishing a phys-
ical circuit between the inport and the outport. To map from
one inport to multiple outports, OCS needs to reconfigure the
circuits multiple times to perform time division multiplexing
(TDM) among the outports [13]. Each reconfiguration takes

The work was done when Shih-Hao Tseng was a summer research assistant
at The Chinese University of Hong Kong, cooperating with the Future
Network Theory Lab. The work of John C.S. Lui is supported in part by
GRF 14200117 and Huawei’s Research Grant.

from tens of microseconds to few milliseconds [6], [13], which
imposes a significant overhead when mapping to more outports
and limits the use of such hybrid switching system for latency
sensitive data center tasks [14].

To overcome the drawback, the idea of composite paths is
proposed [15]. Since EPS nowadays supports heterogeneous
port bandwidth, with many low-bandwidth ports and few high-
bandwidth ports, one can connect an OCS outport to a high-
bandwidth EPS inport (and vice versa) to create a composite
path. Composite paths help resolve the OCS reconfiguration
overhead by relying on the EPS to do multiplexing. For
instance, because EPS can be reconfigured much faster, a one-
to-many mapping can be established efficiently by mapping
the OCS inport to a composite path through a unicast, then to
the EPS, where the multicast is performed. Therefore, adding
composite paths allows EPS to send more data to the outports
under one-to-many/many-to-one mappings, and avoids OCS
TDM but still provides higher input bandwidth for one-to-
many/many-to-one scenarios.

Nevertheless, composite paths introduce new scheduling
challenges. Without composite paths, EPS and OCS can
be scheduled in parallel [3], [16]; while with composite
paths, EPS and OCS are tangled together. The state-of-the-
art approach CPSwitchSched [15] suggests some heuristics for
translating the demand to be scheduled so that one can sched-
ule switches with composite paths (cp-switches) using existing
hybrid switch (h-switch) schedulers, which schedule EPS and
OCS in parallel. Two technical issues of the translation based
approach are as follows. Firstly, it does not provide any theo-
retical performance guarantee. Also, currently CPSwitchSched
only works for one pair of composite paths. In general, we can
have multiple composite paths especially at the system level.
For example, the control plane of a software-defined network
can control a set of EPS and OPS to function like a giant cp-
switch [17]. To support multiple composite paths, a systematic
generalization of CPSwitchSched is required.

A. Contribution and Organization
In this work, we take an alternative approach to address

the two issues above. Instead of adopting problem translation
philosophy, we include multiple composite paths into the
model and systematically study the shortest time cp-switch
scheduling problem. The main contributions of our work
are the following: First of all, we show that the problem
can be decoupled into several continuous-time control sub-
problems. These subproblems can also be formulated in the

form of mixed integer linear programs (MILP). Although the
subproblems are proven NP-hard, we develop approximation
algorithms with fixed approximation ratio to the original
problem. By relaxing the subproblems in the form of MILP,
a linear programming (LP) based approximation algorithm is
developed. The algorithm uprounds the relaxed solution using
maximum weight matching algorithms. We demonstrate by
simulations under different loading scenarios that the proposed
algorithm outperforms the existing approach.

The paper is organized as follows. In Section II, We
first introduce the notation and formulate the continuous-time
control problem, followed by its equivalent MILP form. The
NP-hardness of the subproblems is shown in Section III-A,
and the upper bound and the lower bound on the shortest
schedule are given in Section III-B. The bounds help develop
the LP-relaxation based algorithm in Section IV. The online
version of the proposed algorithm is specified in Section
IV-D. We conduct simulations in Section V to explore three
main questions: benefits of multiple-composite-path adoption
(Section V-B), performance under skewed demand (Section
V-C), and effects of OCS reconfiguration overhead (V-D). And
we conclude the paper in Section VI.

II. FORMULATION

We begin with the notation used in the following context
in Section II-A and set up the problem in Section II-B. The
continuous-time formulation of the problem is given in Section
II-C, and its equivalent MILP formulation is in Section II-D.

A. Notation
Let R denote the the set of real numbers and Z the set of

integers. We denote by 0 both the number zero and the all-zero
square matrix. 1 2 RN⇥1 is an all-one vector. en 2 RN⇥1 is
the unit vector with 1 at its nth row. k·k0 counts the number
of non-zero entries of the vector (also called l0-norm in the
literature). [a, b] is an interval between a and b, while {a, b}
is a set having two elements a and b. [a, b]Z is the set of all
the integers within [a, b]. For short, we also write a 2 [1, A]Z
as a 2 A when a is an integer. The name of a problem also
refers to its optimal value, e.g., let S = min f , symbol S can
refer to either the problem itself or its optimal value (min f).

B. Problem Setup
We model the network as a cp-switch consisting of N ports

and P composite paths. As shown in Fig. 1, each port n 2
[1, N]Z connects to both EPS and OCS, and each composite
path is a full-duplex link connecting EPS and OCS. A port can
be both an inport and an outport with symmetric input/output
capacities (bandwidth): Each EPS port has capacity cE ; each
OCS port has capacity cO; and each composite path is assumed
to have capacity cO as well. In general, cO ⇡ 10cE � cE .

EPS supports many-to-many switching, while OCS func-
tions as a crossbar switch: Each OCS inport can map to only
one OCS outport and vice versa. For instance, OCS can switch
from inport i to outport j and from inport j to outport k
simultaneously, but we cannot send from inport i to both
outports j and k at the same time.

We assume no buffer is installed at each composite path.

1

inports outports

EPS

OCS

cE
cO

cO

Fig. 1: A hybrid switch with composite paths (cp-switch).
Composite paths are drawn in thick lines. Port capacities are
marked accordingly. 1

EPS

OCS

t0 tm�1 tm tM

· · · · · ·

⌧m

�

E(t) � 0

U(t) � 0

V(t) � 0

O(t) � 0

Fig. 2: The reconfiguration timeline of a step.

The demand is given by a matrix D 2 RN⇥N , and each
entry Dij refers to the amount of data that should be sent
from port i to port j. By convention, we assume Dnn = 0 for
all n 2 N .

We want to find the shortest time M + 1 step schedule to
satisfy the demand, i.e., to configure the cp-switch such that a
total amount of data Dij is sent from inport i to outport j for
all i, j 2 N . In step 0, only EPS is used, and the remaining
M steps involve the whole cp-switch. Each step m 2 [0,M]Z
is of time length ⌧m. We reconfigure the cp-switch at the
beginning of each step. The reconfiguration time of OCS is
� > 0, and EPS does not need to be reconfigured. Instead,
EPS can change the sending rate between ports freely.

C. Continuous-Time Control Formulation

Finding the shortest time schedule can be viewed as a
continuous-time control problem and formulated as follows.

Without loss of generality, we assume the schedule starts
at time 0 = t�1. The ending time of each step m is tm, and
⌧m = tm � tm�1 for all m 2 [0,M]Z by definition.

Let E(t),U(t),O(t),V(t) 2 RN⇥N be the mapping ma-
trices at time t, which we can control. Eij(t) is the sending
rate from EPS inport i to EPS outport j at time t. Similar
definitions apply to Uij(t) mapping EPS to OCS, Oij(t)
mapping OCS to OCS, and Vij(t) mapping OCS to EPS. The
composite paths are represented implicitly by each column in
U(t) and each row in V(t). Since we have only P composite
paths, we can have at most P non-zero columns in U(t) and
P non-zero rows in V(t).

A step comprises two phases: the reconfiguration phase and
the sending phase. By definition, U(t),O(t) and V(t) are all
zero during step 0. During each step m 2 M , EPS is always
accessible; while U(t), O(t) and V(t) must be zero within
time interval [tm�1, tm�1

+ �] since the OCS is still under
reconfiguration. Fig. 2 demonstrates the timeline of such steps.

With the above definitions, we can formulate the following
continuous-time control problem C(M̂) for M̂ 2 [0,M]Z:

min

M̂X

m=0

⌧m (C(M̂))

s.t. ⌧0 = t0 � 0,

⌧m = tm � tm�1
� � 8m 2 M̂ (1)

E(t) � 0, U(t) � 0,

O(t) � 0, V(t) � 0 8t � 0 (2)
Z

t
M̂

0
E(t) + U(t) +O(t) + V(t) dt = D (3)

capacity constraints (4)-(9)
operation constraints (11)-(14)

where condition (1) describes ⌧m; condition (2) are the
non-negativity constraints; and condition (3) is the demand
satisfaction constraint. The capacity constraints (4)-(9) and the
operation constraints (11)-(14) are elaborated in the following.

The capacity constraints are

U(t) = 0, O(t) = 0, V(t) = 0 8t 2 [0, t0] (4)
(E(t) + U(t))1  cE1 8t � 0 (5)

(E(t) + V(t))> 1  cE1 8t � 0 (6)
(O(t) + V(t))1  cO1

8t 2 [tm�1
+ �, tm],m 2 M̂ (7)

(O(t) + U(t))> 1  cO1

8t 2 [tm�1
+ �, tm],m 2 M̂ (8)

U(t) = 0, O(t) = 0, V(t) = 0

8t 2 [tm�1, tm�1
+ �],m 2 M̂ (9)

where condition (4) describes the requirements at step 0;
conditions (5) and (6) are the EPS inport/outport capacity
constraints; conditions (7) and (8) are the OCS inport/outport
capacity constraints; and condition (9) requires no data trans-
mission during OCS reconfiguration.

Define Em
2 RN⇥N as the total data sent by E(t) during

[tm�1, tm]:

Em
=

Z
t
m

tm�1

E(t) dt. (10)

Also define Um from U , V m from V , and Om from O in the
same way. And the operation constraints are

��1>Um
��
0
 P 8m 2 M̂ (11)

kV m1k0  P 8m 2 M̂ (12)
��e>

n
V m1

��
0
+
��e>

n
Om

��
0
 1 8m 2 M̂, n 2 N (13)

��1>Umen
��
0
+ kOmenk0  1 8m 2 M̂, n 2 N (14)

where conditions (11) and (12) confine the number of compos-
ite paths; condition (13) requires each OCS inport can send to
only one OCS outport; similarly, condition (14) requires each
OCS outport can receive from only one OCS inport.

The shortest time schedule can be found by solving C(M̂)

for M̂ 2 [0,M]Z and taking the shortest schedule among the
solutions. Mathematically, we want to obtain

OPT = min
M̂2[0,M]Z

C(M̂)

and the corresponding schedule. Notice that C(M̂) is always
feasible for M̂ 2 [0,M]Z. A trivial feasible solution is to
use EPS only by setting U(t) = V(t) = O(t) = 0 for
all t � 0. (Section II-D shows that finding an EPS only
schedule is merely an LP.) However, finding the optimal
solution to C(M̂) is not trivial as it involves continuous-time
constraints (conditions (5)-(8)), integral constraints (conditions
(3) and (10)), and sparsity constraints (conditions (11)-(14)).
We can transform C(M̂) into an equivalent mixed integer
linear program (MILP), which allows us to propose our LP-
based approximation algorithm in Section IV.

D. Mixed Integer Linear Programming Formulation
We first consider one kind of special mapping matrix:

Definition 1 (Piecewise Constant Mapping Matrix). A map-
ping matrix A(t) is piecewise constant if and only if there
exists a countable set {tm}m2Z such that A(t) = A(tm) for
all tm < t < tm+1, m 2 Z.

Inspired by [18], we have the following lemma which
enables us to transform C(M̂) into an MILP.

Lemma 1. There exists a feasible solution to C(M̂) if
and only if there exists a feasible solution to C(M̂) whose
E(t),U(t),O(t) and V(t) are all piecewise constant.

Proof. Similar to the proof of Proposition 1 in [18], given
a solution, we can construct the corresponding piecewise
constant solution to C(M̂) by taking the average over the
intervals [0, ⌧0], [⌧m�1, ⌧m�1

+ �] and [⌧m�1
+ �, ⌧m] for all

m 2 M̂ .

By Lemma 1, the constraint (3) is equivalent to

E0
+

M̂X

m=1

Em
+ Um

+Om
+ V m

= D. (15)

Regarding the constraints (5)-(8), let Emr and Ems be the
data sent by E(t) during the OCS reconfiguration phase and
sending phase of step m, which are given by

Emr
=

Z
t
m�1+�

tm�1

E(t) dt, Ems
=

Z
t
m

tm�1+�

E(t) dt.

We know for m � 1

Em
= Emr

+ Ems.

We can decouple Um, Om and V m in the same way, and
the constraint (5) can be transformed to two constraints
corresponding to the OCS reconfiguration phase and sending
phase:

(Emr
+ Umr

)1  cE�1,

(Ems
+ Ums

)1  cE(⌧
m
� �)1.

Since Umr
= 0 and Ums

= Um, the above constraints are
reduced to

Emr1  cE�1,

(Ems
+ Um

)1  cE(⌧
m
� �)1.

Similarly, we can reduce the two transformed constraints of
constraint (7) to one constraint, and the constraints (5)-(8) are
rewritten as

E01  cE⌧
01, E0>1  cE⌧

01

Emr1  cE�1, Emr>1  cE�1 8m 2 M̂ (16)

(Ems
+ Um

)1  cE(⌧
m
� �)1 8m 2 M̂ (17)

(Ems
+ V m

)
> 1  cE(⌧

m
� �)1 8m 2 M̂ (18)

(Om
+ V m

)1  cO(⌧
m
� �)1 8m 2 M̂ (19)

(Om
+ Um

)
> 1  cO(⌧

m
� �)1 8m 2 M̂ (20)

To replace the sparsity constraints (11)-(14), we introduce
the indicators Ûm

2 {0, 1}N⇥1, Ôm
2 {0, 1}N⇥N , V̂ m

2

{0, 1}N⇥1 such that
• Ûm

n1 = 1 if 1>Umen > 0.
• Ôm

ij
= 1 if Om

ij
> 0.

• V̂ m
n1 = 1 if e>

n
V m1 > 0.

Since
��1>Um

��
0
 1>Ûm, constraint (11) is satisfied if and

only if there exists Ûm such that 1>Ûm
 P . Therefore, we

can translate the sparsity constraints to

DÛm
� Um>1, DÔm

� Om, DV̂ m
� V m1,

1>Ûm
 P, 1>V̂ m

 P,

V̂ m>en + 1>Ôm>en  1, Ûm>en + 1>Ômen  1 (21)

where D =
P

i,j2N

Dij , so that the MILP equivalent to C(M̂)

is expressed as

min

M̂X

m=0

⌧m (I(M̂))

s.t. time constraints (1)
demand constraints (15)
capacity constraints (16)-(20)
sparsity constraints (21)
E0
� 0, Em

= Emr
+ Ems

Emr
� 0, Ems

� 0,

Um
� 0, Om

� 0, V m
� 0,

Ûm
2 {0, 1}N⇥1, Ôm

{0, 1}N⇥N

V̂ m
2 {0, 1}N⇥1

8m 2 M̂

We refer to this MILP as I(M̂).
We name a set of feasible indicators Ûm, Ôm, and V̂ m

an OCS configuration at step m, as it dictates how the OCS
should be configured at step m.

III. ANALYSIS

We show the NP-hardness of C(M̂) in Section III-A. The
upper and lower bounds are established in Section III-B, which
help derive a fixed approximation ratio for the scheduling
algorithms upper bounded by L(0).

A. NP-hardness

Although C(M̂) is equivalent to I(M̂), it is still in the form
of an MILP instead of a polynomial time solvable form such as
an LP. The following proposition suggests that the scheduling
problem is actually NP-hard.

Proposition 1. C(M̂) is NP-hard.

Proof. In [19], scheduling an OCS with reconfiguration delay
is shown NP-hard, which is a special case of C(M̂) with
cE = 0.

We remark that NP-hardness of C(M̂) does not imply
the problem OPT itself is NP-hard, but it does prevent us
from obtaining the optimal solution by iteratively solving
C(M̂) for all M̂ 2 M (notice that C(0) is a polynomial-
time solvable LP). In Section III-B, we investigate the upper
and lower bounds given by LP relaxations, and show how
an approximation algorithm can be designed with a bounded
approximation ratio.

B. Performance Bounds and Approximation Ratio

We can relax the integer indicators Ûm, Ôm and V̂ m to
take value from interval [0, 1], which yields the relaxed linear
program L(M̂).

min

M̂X

m=0

⌧m (L(M̂))

s.t. constraints in I(M̂) but with

Ûm
2 [0, 1]N⇥1, Ôm

[0, 1]N⇥N

V̂ m
2 [0, 1]N⇥1

8m 2 M̂

Some useful facts about L(M̂) are given in Lemma 2.

Lemma 2. The following inequalities hold:
• cEL(0)  (cE + cO)L(1).
• L(1)  L(k) for all k > 1.

Proof. To show the first inequality, we consider an optimal
solution achieving L(1) with the step interval lengths ⌧̃0 and
⌧̃1. It must satisfies conditions (16)-(20). Summing up those
conditions and we get

D1 
�
cE ⌧̃

0
+ (cE + cO) ⌧̃

1
� cO�

�
1  (cE + cO)L(1),

D>1 
�
cE ⌧̃

0
+ (cE + cO) ⌧̃

1
� cO�

�
1  (cE + cO)L(1),

which implies that E0
= D, ⌧0 =

cE+cO

cE
L(1) is a feasible

solution to L(0). Since L(0) achieves the optimal value, we
know L(0)  cE+cO

cE
L(1).

Second inequality can be shown in a similar way. Consider
an optimal solution Ẽm, Ũm, Õm, Ṽ m to L(k) with step time

length ⌧̃m for all m 2 [1, k]Z. We construct a L(1) solution
as the following

E1s
=

X

m2[1,k]Z

Ẽm
� Ẽ1r, U1

=

X

m2[1,k]Z

Ũm,

O1
=

X

m2[1,k]Z

Õm, V 1
=

X

m2[1,k]Z

Ṽ m,

Û1
=

U1

D
, Ô1

=
O1

D
, V̂ 1

=
V 1

D
.

Summing up conditions (16) for step 2 to k and (17) for step
1 to k and we get

�
E1s

+ U1
�
1  cE

�
L(k)� ⌧̃0 � �

�
1.

Also, summing up conditions (19) from step 1 to k yields
�
O1

+ V 1
�
1  cO

�
L(k)� ⌧̃0 � k�

�
1

 cO
�
L(k)� ⌧̃0 � �

�
1.

The same computation applies to both conditions (18) and
(20). Therefore, combining the steps 1 to k as one step results
in a feasible solution to L(1) with the value L(k), which
implies L(1)  L(k).

Lemma 2 says two things:
• We can upper bound L(0) by a scaled L(1). Since
C(0) = I(0) = L(0), we know OPT is upper bounded
by L(0) and hence also by a scaled L(1).

• L(1) lower bounds L(k) for all k � 1. Since C(k) =

I(k) � L(k), we can lower bound all C(k) by L(1).
Those properties lay the foundation for establishing the upper
and lower bounds on the shortest schedule time OPT in
Lemma 3 and deriving the approximation ratio in Corollary 1.

Lemma 3. If L(0)  �, OPT = L(0) and the shortest time
schedule uses EPS only. Otherwise,

L(0) � C(1) � OPT � L(1).

Proof. Since C(0) = I(0) = L(0), we know

L(0) � OPT = min
M̂2[0,M]Z

C(M̂).

If L(0)  �, since condition (1) implies C(M̂) � � for all
M̂ � 1, we have OPT = L(0).

If L(0) > �, we have L(0) � C(1) since the solution to
L(0) is also a feasible solution to C(1) with zero matrices
U1, O1 and V 1. Also, we know C(M̂) = I(M̂) � L(M̂) for
all M̂ � 1. By Lemma 2, the desired inequality is derived.

Then we have Corollary 1, which provides an approximation
ratio for the algorithms upper bounded by L(0).

Corollary 1. Any cp-switch scheduling algorithm adopting
L(0) as an upper bound is a cE+cO

cE
-approximation algorithm.

Proof. Let the solution given by the cp-switch scheduling
algorithm be S. By the assumption and Lemma 3, we have

L(0) � S � OPT � L(1),

which suggests

S

OPT


L(0)

L(1)
,

and the corollary follows from Lemma 2.

Another corollary from Lemma 3 is stated below. It allows
us to find a solution with shorter time, which sheds light on
our algorithm design in Section IV.

Corollary 2. Given k � 0, if there exists a feasible solution
S to C(k) with ⌧0 > �, we have a feasible solution S0 to
C(k + 1) such that S0

 S.

Proof. We prove by construction. Let step 0 of S be E0. We
can define another L(0) with the demand equals to E0. As
such, we have L(0) = ⌧0 > �. By Lemma 3, we have another
C(1) solution satisfying the demand with C(1)  L(0).
Replacing the step 0 in S with the C(1) solution and we get
a feasible C(k + 1) solution S0 with S0

 S.

IV. PROPOSED ALGORITHMS

We propose our LP-relaxation based approximation algo-
rithm (Algorithm 2) guided by three design features:

• Upper bound L(0).
• Maximum weight matching uprounding procedure.
• Step increment decision.

Firstly, the resulted schedule of Algorithm 2 is upper bounded
by L(0), and hence Corollary 1 gives the approximation ratio.
Since our algorithm is based on LP relaxation, how the relaxed
integer variables are uprounded decides the quality of the
solution. We follow a best-effort heuristic which relies on
the polynomial-time solvable maximum weight matching al-
gorithm. The details are described in Section IV-A. In Section
IV-B, we illustrate when a new step should be introduced. And
Algorithm 2 is presented in Section IV-C. We also show that
Algorithm 2 can be applied to the online scenario, and the
online version Algorithm 3 is given in Section IV-D.

A. Maximum Weight Matching Uprounding Procedure
Upon obtaining an L(1) solution, we have to determine how

to upround the integer variables Û1, Ô1, and V̂ 1. Our idea is
to find an OCS configuration which can send the most data
required by the L(1) solution.

Let 1{N⇥P} be the all-one matrix with N rows and P
columns, we define the OCS forwarding matrix H as

H =


O1 V 11{N⇥P}

1{P⇥N}U
1

0

�
.

The meaning of H is as follows. Consider the OCS switch
ports formed by the rows and the columns of H , with the
demand, or the weights, between inports and outports defined
by the entries of H . A perfect matching defines a possible
OCS configuration, and its corresponding aggregated weight
reflects the maximum amount of data that can be forwarded
under the configuration. So by finding the maximum weight
(demand) matching of H , we can find an OCS configuration
that sends the most parts of U1, O1, and V 1. The uprounding
algorithm is then given by Algorithm 1.

Algorithm 1: Upround(S)
Input: S: the schedule from L(1) based on some demand.
Output: OCS configuration Û1, Ô1, and V̂ 1.

1: Form the OCS forwarding matrix H from S.
2: W 2 {0, 1}(N+P)⇥(N+P) = MaxWeightMatching(H).
3: return OCS configuration:

Ô1
ij
= Wij ,

Û1
j
=

X

k2P

W(N+k)j , V̂ 1
i
=

X

k2P

Wi(N+k),

for all i, j 2 N .

We apply the classical Kuhn-Munkres Algorithm [20] as the
maximum weight matching algorithm in our design. We note
that lower time-complexity algorithms are also available, and
we refer the reader to [21] for a survey.

B. Step Increment Decision
Corollary 2 allows us to check if we can improve a solution

by adding one more step. Suppose we have a feasible C(1)

solution with the time length ⌧ and the OCS configuration Û1,
Ô1, and V̂ 1. We can consider problem Q below.

max ⌧0 (Q)

s.t. constraints in I(1) with given Û1, Ô1, and V̂ 1

⌧0 + ⌧1  ⌧

Solving problem Q yields a feasible solution with the longest
possible ⌧0 within time ⌧ . As suggested by Corollary 2, if
⌧0 > �, we can then further shorten step 0 by adding one
more step.

C. Iterative cp-Switch Scheduling
The three features introduced above are summarized in

Algorithm 2, our proposed algorithm.

Algorithm 2: Iterative cp-Switch Scheduling
1: The residual demand Dres D.
2: The upper bound C L(0).
3: The resulted schedule R ;.
4: for m = 1, . . . ,M do

5: if C  � then

6: Break the loop.
7: end if

8: Solve L(1) based on Dres and store the schedule as S.
9: Get OCS configuration ⇥ Upround(S).

10: Solve L(1) based on ⇥, let ⌧ L(1).
11: Solve Q based on ⌧ and store the schedule as S0.
12: Set C as the ⌧0 in S0.
13: Assign the step 1 in S0 as step m in R.
14: Dres Dres � (Em

+ Um
+Om

+ V m
).

15: end for

16: Solve L(0) based on Dres as step 0 in R.

Algorithm 2 keeps track of the residual demand Dres and
the upper bound C on ⌧0. In each iteration it finds a two

1

10 20 30 40 50

1

2

3

Step

Ti
m

e
(m

s)

C + ⌧R

C + ⌧R

Fig. 3: Algorithm 2 shrinks the bounding interval.

step LP-relaxed schedule L(1), and upround it to get the OCS
configuration for step 1. Given the OCS configuration, L(1)
is solved to obtain the minimum possible time ⌧ . Within time
length ⌧ , we find the schedule with the longest ⌧0 via solving
Q. The solution to Q is a feasible solution to C(1), which is
stored as the two step schedule S0. The step 1 in S0 is then
assigned as a new step of the resulted schedule, and we update
Dres and C respectively.

Let C be the length of S and ⌧R be the length of the
assigned steps in R. The interval [C+ ⌧R, C+ ⌧R] bounds the
length of the final schedule given by Algorithm 2. Algorithm
2 actually shrinks the interval at each iteration as in Fig. 3.

Since Algorithm 2 is upper bounded by L(0) in line 2, the
proposition below follows from Corollary 1.

Proposition 2. Algorithm 2 is a cE+cO

cE
-approximation algo-

rithm.

D. Online cp-Switch Scheduling
Each iteration in Algorithm 2 depends on only the current

state of Dres and C. Thus we can generalize Algorithm 2 to
the online scenario, i.e., the algorithm keeps only one step and
some necessary states in the memory, instead of computing
the whole schedule with M + 1 steps and applying them
sequentially.

The online version Algorithm 3 schedules whenever the
switch is not IDLE, and it keeps only the current step in
its memory. Notice that if the demand D is given at time
0, Algorithm 3 is equivalent to Algorithm 2.

Algorithm 3: Online cp-Switch Scheduling
1: Update D to be the data left to send.
2: if the switch is not IDLE then

3: Wait until new demand arrives.
4: end if

5: if L(0)  � then

6: Schedule E0.
7: else

8: Line 8 - 11 in Algorithm 2.
9: Schedule the step 1 in S0 and set the switch BUSY.

The switch is set back to IDLE after time ⌧1 in S0.
10: end if

V. SIMULATION

We implement and compare Algorithm 2 with the state-of-
the-art scheduling algorithm CPSwitchSched [15]. Simulations

are conducted to explore three issues: the benefits of adopting
multiple composite paths (Section V-B), the performance
under skewed demand (Section V-C), and the effects of OCS
reconfiguration overhead (Section V-D).

A. Simulation Setup
CPSwitchSched converts the cp-switch scheduling problem

with one composite path to an augmented hybrid switch (h-
switch) scheduling problem without the composite path. The
converted problem is then solved by existing h-switch schedul-
ing algorithms. Here we implement two h-switch scheduling
algorithms to compare with: Solstice [3] and Eclipse [16].

Solstice assumes the demand matrix is sparse and skewed,
and hence it stuffs the demand matrix to make each row and
column sum to the same value. The stuffed demand matrix
is then iteratively sliced by finding an OCS configuration that
sends a large portion of the demand. Slicing involves finding
a perfect matching of a bipartite graph, which is done by
Hopcroft-Karp Algorithm [22] in our implementation.

Eclipse also schedules in a greedy manner but with a more
sophisticated idea of matching. Instead of just finding a perfect
matching, it tries to find a maximum weight matching which
maximizes the average utilization of OCS. As in Algorithm 2,
we use Kuhn-Munkres Algorithm [20] to find the maximum
weight matching.

In the simulations, the cp-switch has N = 32 ports. The
EPS port capacity cE is set to 10 Gbps, and the OCS port
capacity is 100 Gbps. The number of scheduling steps is upper
bounded by M = 15.

The demand D is generated based on four loading con-
ditions: meshed multicast, skewed multicast, lighter loading
, and heavier loading. Under meshed multicast, we generate
for each i, j 2 N , i 6= j, a demand Dij uniformly random
over [100, 130] (kB); while for skewed multicast, we pick
each inport with probability 0.5 and let each picked inport
i send random demand Dij to the outport j with probability
1
3 . The skewed multicast depicts the case when the network
is dominated by several one-to-many traffic. Lighter loading
and heavier loading are just the meshed multicast with the
demand Dij distributed uniformly random over [1, 1.3] (Mb)
and [100, 130] (Mb), respectively. As the original design in
[15], CPSwitchSched operates under Rt = 0.7N , Bt = 2

(Mb) for the multicast settings and the lighter loading, and
Bt = 200 (Mb) for the heavier loading.

B. Benefits of Multiple-Composite-Path Adoption
We first examine if more composite paths may help to

find a shorter schedule. 250 random demand D are generated
under meshed multicast and skewed multicast with OCS
reconfiguration time � = 20 (µs). Given each demand, we
apply Algorithm 2 with P = 1, 3, . . . , 15 composite paths.
The results are collected and their percentiles are plotted in
Fig. 4. From the bottom to the top lines represent the 30

th to
the 70

th percentiles.
Fig. 4 shows that having more composite paths helps reduce

the resulted schedule length. The performance improvement
is more significant under meshed multicast (Fig. 4(a), the
50

th percentile reduces 6.5%) than under skewed multicast

1

1 3 5 7 9 11 13 15
275

280

285

290

295

300

305

Number of Composite Paths P

Sc
he

du
le

Le
ng

th
(µ

s)

(a) Meshed multicast: random demand Dij is generated for
each i, j 2 N , i 6= j.

1

1 3 5 7 9 11 13 15

115

120

125

130

Number of Composite Paths P

Sc
he

du
le

Le
ng

th
(µ

s)

(b) Skewed multicast: each inport i initiates a one-to-many
demand with probability 0.5.

Fig. 4: From the bottom to the top are the lines corresponding
to the 30

th, 40
th, 50

th, 60
th, and 70

th percentiles of the
schedule length given by Algorithm 2. Having more composite
paths reduces the resulted schedule time.

(Fig. 4(b), the 50
th percentile reduces 4.4%). The reason

is simple: The skewed multicast has a less denser demand
matrix than the meshed multicast. When the number of the
composite paths exceed the number of multicast inports,
adding more composite path does not help reduce the length
of the schedule. We can also see the phenomenon in Fig. 4(b).
The marginal improvement of adding an additional composite
path decreases.

C. Performance under Skewed Demand
Another issue we are interested in is how well the algo-

rithms perform under skewed multicast loading. Since Algo-
rithm 2 and CPSwitchSched are both designed for one-to-
many and many-to-one traffic, we expect the algorithms would
perform better under the skewed setting. The expectation is
confirmed in Fig. 5, which summarizes the results from 100

random demand. Under meshed multicast, the 50
th percentile

of Algorithm 2 schedule is 75.5% and 53.1% faster than CP-
SwitchSched with scheduler Solstice and Eclipse, respectively.
Under skewed multicast, it is 31.2% and 62.2% faster.

Under skewed multicast, Algorithm 2 is relatively closer to
the upper bound L(0). That is because the skewed multicast
demand is sparser, which leads to shorter schedule. When the
schedule is shorter, using OCS would be less efficient than
using EPS which does not suffer the reconfiguration delay.

An interesting result from Fig. 5(b) is that CPSwitchSched
with scheduler Solstice outperforms the one with Eclipse. It
results from the facts that the performance of CPSwitchSched

1

2.5 3 3.5 4

L(0) Algorithm 2 Eclipse Solstice

1

300 400 500 600

1,205 1,210 1,215

Time (µs)

(a) Meshed multicast with � = 20 (µs).
1

100 150 200 250 300

Time (µs)

(b) Skewed multicast with � = 20 (µs).

Fig. 5: The 1
st
� 5

th
� 50

th
� 95

th
� 99

th percentiles of the
schedule length given by each algorithms. Under both loading
conditions, Algorithm 2 outperforms CPSwitchSched with h-
switch scheduler Solstice or Eclipse.

greatly depends on its h-switch scheduler [15], and that
Solstice is developed under the sparse demand assumption [3].
Therefore, the performance of Solstice improves under skewed
multicast.

D. Effects of OCS Reconfiguration Overhead

The third issue we investigate is how OCS reconfiguration
overhead � affects the length of the resulted schedule. 100

random demand matrices are generated under lighter loading
setting. The generated demand is multiplied by 10 to create a
heavier load. We vary � under different loading conditions and
Fig. 6 shows the percentiles of the resulted schedule length.
L(0) is also plotted, which is the shortest time schedule using
only EPS.

The results suggest that Algorithm 2 outperforms CP-
SwitchSched under all circumstances. In Table I, we compute
the performance improvement of Algorithm 2 on the 50

th

percentile over CPSwitchSched with different schedulers. The
improvement is indicated by the ratio of the length difference
between the Algorithm 2 schedule and the CPSwitchSched
schedule to the CPSwitchSched schedule length. CPSwitch-
Sched using Eclipse as its h-switch scheduler performs better
than using Solstice, which results from the fact that Eclipse
finds a matching with maximum weight instead of just finding
a perfect matching as in Solstice.

CPSwitchSched can perform relatively better (closer to
L(0)) when � is shorter. It results from the fact that the two
h-switch schedulers Solstice and Eclipse tend to greedily put

TABLE I: Performance improvement of Algorithm 2 on the
50

th percentile over CPSwitchSched with different schedulers.

Loading, � Solstice Eclipse

Lighter, 20 (µs) 70.2% 27.2%

Lighter, 200 (µs) 75.0% 54.4%

Heavier, 2 (ms) 71.4% 27.8%

Heavier, 20 (ms) 75.8% 54.4%

more demand on OCS. As the reconfiguration overhead �
decreases, more data can be sent through OCS within the same
period, and hence the performance is improved.

However, there is a major design drawback of CPSwitch-
Sched demand reduction, which prevents it to fully enjoy the
advantage of introducing a composite path. A composite path
has asymmetric port capacity: On one side it respects to EPS
port capacity cE , and on the other side it is constrained by
OCS port capacity cO. During the CPSwitchSched demand
reduction, CPSwitchSched greedily aggregates the demand
that might be sent through the composite path as OCS demand.
The h-scheduler schedules the converted OCS demand with
respect to the only the OCS port capacity cO. As such, the
demand that is allocated to composite paths may exceed how
much the composite paths can support due to EPS constraints.
CPSwitchSched then allocates the excess demand to EPS,
which normally takes much longer time to deliver the surplus
than OCS.

Algorithm 2 takes a conservative approach. Every maximum
weight matching in Algorithm 1 is a feasible solution to
both the OCS and the composite paths. As such, it avoid
overloading the composite paths and losing throughput by
involving EPS.

VI. CONCLUSION

We study the shortest time cp-switch scheduling problem
with multiple composite paths, which can be applied to
hybrid networks consisting of EPS and OCS. The problem
is formulated and shown to have an MILP form. Due to NP-
hardness, the shortest schedule cannot be obtained by solving
the subproblems for each step. However, we can still establish
upper and lower bounds on the shortest schedule, which leads
to an LP-relaxation based approximation algorithm with fixed
approximation ratio. The proposed algorithm can work online,
and simulations demonstrate that it outperforms the existing
algorithm, which leverages only one composite path.

REFERENCES

[1] K. J. Barker, A. Benner, R. Hoare, A. Hoisie, A. K. Jones, D. K.
Kerbyson, D. Li, R. Melhem, R. Rajamony, E. Schenfeld et al., “On the
feasibility of optical circuit switching for high performance computing
systems,” in Proc. ACM/IEEE Supercomputing. IEEE Computer
Society, 2005, p. 16.

[2] C. M. Gauger, P. J. Kuhn, E. V. Breusegem, M. Pickavet, and P. De-
meester, “Hybrid optical network architectures: Bringing packets and
circuits together,” IEEE Commun. Mag., vol. 44, no. 8, pp. 36–42, 2006.

[3] H. Liu, M. K. Mukerjee, C. Li, N. Feltman, G. Papen, S. Savage,
S. Seshan, G. M. Voelker, D. G. Anderson, M. Kaminsky, G. Porter,
and A. C. Snoeren, “Scheduling techniques for hybrid circuit/packet
networks,” in Proc. CoNEXT. ACM, 2015, pp. 41:1–41:13.

1

2.5 3 3.5 4

L(0) Algorithm 2 Eclipse Solstice

1

2.5 3 3.5 4

8.9 8.95 9.0 9.05
Time (ms)

(a) Lighter loading, � = 20 (µs).

1

2.75 3 3.25 3.5 3.75

6 6.25 6.5 6.75

11.6 11.65 11.7 11.75
Time (ms)

(b) Lighter loading, � = 200 (µs).
1

250 300 350 400

930 935 940 945 950

Time (ms)

(c) Heavier Loading, � = 2 (ms).

1

275 300 325 350 375

600 625 650 675

1200 1205 1210 1215
Time (ms)

(d) Heavier Loading, � = 20 (ms).

Fig. 6: The 1
st
� 5

th
� 50

th
� 95

th
� 99

th percentiles of the resulted schedule length under different loading conditions.
Algorithm 2 is always bounded by the upper bound L(0) and it outperforms CPSwitchSched with either Solstice or Eclipse
as its h-switch scheduler.

[4] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Sub-
ramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: A hybrid
electrical/optical switch architecture for modular data centers,” ACM
SIGCOMM CCR, vol. 40, no. 4, pp. 339–350, 2010.

[5] G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. Ng,
M. Kozuch, and M. Ryan, “c-Through: Part-time optics in data centers,”
ACM SIGCOMM CCR, vol. 40, no. 4, pp. 327–338, 2010.

[6] G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun,
T. Rosing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating
microsecond circuit switching into the data center,” ACM SIGCOMM
CCR, vol. 43, no. 4, pp. 447–458, Aug. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2534169.2486007

[7] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[8] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
Distributed data-parallel programs from sequential building blocks,” in
ACM SIGOPS operating systems review, vol. 41, no. 3. ACM, 2007,
pp. 59–72.

[9] M. Chowdhury and I. Stoica, “Coflow: A networking abstraction for
cluster applications,” in HotNets. ACM, 2012, pp. 31–36.

[10] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in Proc.
USENIX NSDI. USENIX Association, 2012, pp. 2–2.

[11] Apache hadoop project. [Online]. Available:
http://hadoop.apache.org/

[12] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: A system for large-scale graph processing,”
in Proc. ACM SIGMOD. ACM, 2010, pp. 135–146.

[13] H. Wang, Y. Xia, K. Bergman, T. Ng, S. Sahu, and K. Sripanidkulchai,
“Rethinking the physical layer of data center networks of the next
decade: Using optics to enable efficient⇤-cast connectivity,” ACM SIG-
COMM CCR, vol. 43, no. 3, pp. 52–58, 2013.

[14] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better never

than late: Meeting deadlines in datacenter networks,” ACM SIGCOMM
CCR, vol. 41, no. 4, pp. 50–61, 2011.

[15] S. Vargaftik, K. Barabash, Y. Ben-Itzhak, O. Biran, I. Keslassy,
D. Lorenz, and A. Orda, “Composite-path switching,” in Proc. CoNEXT.
ACM, 2016, pp. 329–343.

[16] S. Bojja Venkatakrishnan, M. Alizadeh, and P. Viswanath, “Costly
circuits, submodular schedules and approximate carathéodory theorems,”
in ACM SIGMETRICS, vol. 44, no. 1. ACM, 2016, pp. 75–88.

[17] M. Shirazipour, W. John, J. Kempf, H. Green, and M. Tatipamula, “Real-
izing packet-optical integration with SDN and openflow 1.1 extensions,”
in Proc. IEEE ICC. IEEE, 2012, pp. 6633–6637.

[18] A. Gushchin, S.-H. Tseng, and A. Tang, “Optimization-based network
flow deadline scheduling,” in Proc. IEEE ICNP, nov 2016.

[19] X. Li and M. Hamdi, “On scheduling optical packet switches with
reconfiguration delay,” IEEE J. Sel. Areas Commun., vol. 21, no. 7,
pp. 1156–1164, 2003.

[20] J. Munkres, “Algorithms for the assignment and transportation prob-
lems,” SIAM J. Appl. Math., vol. 5, no. 1, pp. 32–38, 1957.

[21] R. Duan and H.-H. Su, “A scaling algorithm for maximmum weight
matching in bipartite graphs,” in Proc. SODA. SIAM, 2012, pp. 1413–
1424.

[22] J. E. Hopcroft and R. M. Karp, “An n5/2 algorithm for maximum
matchings in bipartite graphs,” SIAM J. Comput., vol. 2, no. 4, pp. 225–
231, 1973.

