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Abstract— The Probabilistic Maximum Coverage (PMC) prob-
lem plays a pivotal role in modeling various network applications,
such as mobile crowdsensing, which involves selecting nodes
within a graph that probabilistically cover other nodes. Our
study focuses on PMC within the framework of online learning,
termed the PMC bandit, where the network parameters are
initially unknown. In this scenario, the decision-maker is tasked
with learning these parameters to maximize the cumulative
rewards from covered nodes. Despite prior research on the PMC
bandit, we propose a novel variant, dynamic PMC-G bandit,
which extends the semi-bandit feedback model to represent
applications more accurately. To tackle the complexities of
the time-varying combinatorial arm set rather than traditional
static, we enhance the Combinatorial Upper Confidence Bound
(CUCB) algorithms by developing two innovative variance-aware
strategies: the Variance-Adaptive Combinatorial Upper Confi-
dence Bound (VACUCB) for probabilistically triggered arms,
and the Action-Based Combinatorial Upper Confidence Bound
(ABCUCB) for self-reliant arms, i.e., independent arms with
probabilistically triggered outcomes. Based on variance-aware
properties, our contributions notably reduce the dependence
on the number of nodes K selected per round, demonstrating
that: (i) VACUCB effectively minimizes the regret associated
with_the triggered arms, enhancing the CUCB by a factor
of O(K); (ii) ABCUCB further diminishes the dependence
on K in the leading term. Empirical results from synthetic
and real-world datasets confirm that our proposed algorithms
outperform current benchmarks in three network applications.

Index Terms— Probabilistic maximum coverage, online learn-
ing, combinatorial bandit, network application optimization.
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I. INTRODUCTION

HE probabilistic maximum coverage (PMC) problem [1]

is an effective model widely used in various network
applications, including network content delivery [2], mobile
crowdsensing [3], and channel allocation [4]. This problem
is modeled using a bipartite graph G = (L,V, E), where
L represents the nodes to be selected, V' the nodes to be
covered, and E the edges connecting these nodes. Each edge
(u,v) € E carries an associated probability p(u, v), indicating
the likelihood that node v € L can cover node v € V.
Additionally, each node v € V is assigned a weight w(v),
representing the reward for covering that node. The objective
for the decision-maker is to select no more than K nodes from
L to maximize the sum of the weights of the covered nodes
inV.

In a content delivery network (CDN), contents such as
images and videos are stored across various mirror servers
to ensure rapid accessibility for end users through the nearest
server [2]. The challenge of strategically selecting a subset
of servers (K in number) to enhance user experience can be
effectively represented by the Probabilistic Maximum Cover-
age (PMC) model (see Fig. 1). Here, L denotes the set of
candidate mirror servers responsible for content distribution,
while V' encompasses the users accessing the content. Each
edge (u,v) € E in this model signifies the likelihood (p(u, v))
that server u can deliver content on time to user v (thus, u
covers v), and w(v) represents the probability that user v
will ultimately access the content. The primary objective of
PMC in this scenario is to optimize user satisfaction by max-
imizing the total number of users who successfully access the
content.

In the PMC framework, accurately setting parameters such
as edge probabilities is crucial for making optimal decisions.
Previous studies have assumed these parameters are known
beforehand [5]. However, in real-world network applications,
these parameters are typically unknown and subject to change
dynamically. For example, in network content delivery scenar-
ios [6], user demands and preferences for content, denoted by
w(v), can vary unpredictably. Similarly, the delivery probabil-
ity p(u, v), which reflects the service quality of mirror servers,
is influenced by factors like varying distances and potential
network congestion and thus remains uncertain. These param-
eters must be dynamically estimated by network operators as
they are not known in advance. Additionally, decision-making
in network optimization often involves combinatorial choices,
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Fig. 1. An example of PMC for content delivery: the decision-maker chooses
(orange) servers {wu1,us3,us} which cover users {vq,v3} via successful
(check mark) edges {(1,1), (4,3)}.

where multiple servers, participants, or items are selected
simultaneously. For example, a mobile crowdsensing organizer
may need to select the top participants.

A. Dynamic PMC With General Feedback and Targeted Arms

To address the challenge of unknown parameters, the PMC
problem can be explored within an online learning framework,
termed the PMC bandit [7]. In this model, each edge (u,v)
(or node v) is treated as an arm, with its probability p(u,v)
(or w(v)) unknown and to be learned over T consecutive
decision rounds. During each round ¢, the decision-maker,
functioning as the learning agent, is required to choose a set of
arms, referred to as actions, and observes the results of these
actions as feedback. This feedback is then used to estimate
the unknown probabilities and refine future decision-making
strategies. This type of feedback is categorized as semi-bandit
feedback [1], [7], [8]. The primary objective of the agent is to
maximize the expected rewards over 71" rounds or, equivalently,
to minimize the expected regret. Regret is defined as the
difference in expected rewards between consistently selecting
the optimal actions and following the agent’s actual policy.

For PMC bandit, a good learning algorithm must care-
fully handle the exploration-exploitation trade-off: whether
the agent should explore arms in search of a better action,
or should the agent stick to the best action observed so far
to gain rewards. To deal with this trade-off, combinatorial
upper confidence bound algorithms (CUCB) are proposed [7].
Specifically, CUCB uses the empirical mean as the unbiased
estimator for each arm and constructs a Chernoff-type con-
fidence interval. Such an interval serves as the exploration
bonus to handle the parameter uncertainty and helps to achieve
sublinear regret bounds [7].

Although the PMC bandit has been extensively studied,
the bandit model and its CUCB algorithm have notable
drawbacks that can be substantially improved. Firstly, regard-
ing feedback handling, the traditional semi-bandit feedback,
which focuses solely on direct outcomes from deterministic
arm selections, inadequately addresses feedback contingent
on stochastically varying outcomes. For example, in CDN
scenarios, this feedback model fails to accurately represent the
uncertain user consumption probability w(v), which is only
observable following successful content delivery. Secondly,
most existing CUCB studies assume static combinations of
arms, i.e., fixed action sets [1], [9], [10], an assumption
misaligned with the dynamic nature of real-world networks
where action sets evolve continually. To accommodate these
dynamic network applications, it is essential to further develop
the PMC bandit framework with a general feedback model
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Fig. 2. TIllustrating the dynamic action set on participant availability for task
organizer in mobile crowdsensing.

that supports time-dependent combinations of arms. This is
exemplified in mobile crowdsensing (see Fig. 2), where the
available participants fluctuate due to factors like changing
engagement levels.

Moreover, the current CUCB algorithm primarily relies on
a generalized empirical mean of the arms, lacking a tailored
design that accounts for the specific characteristics of different
arm types (e.g., the independence and observability of the
arms) and adaptability to variance changes. This results in
excessively wide confidence intervals for exploration. More
importantly, when selecting K arms in each round, these
enlarged confidence intervals significantly affect the selection,
especially in the boundary regions of the unknown parameters.
Consequently, this introduces an additional factor of K in
the regret calculation, where K can range from hundreds to
thousands, depending on the specific application.

B. Our Contributions

Based on the drawbacks and findings aforementioned, this
article makes four contributions as follows.

(1) Model Formulation: We introduce the PMC-G model
under the dynamic combinatorial arm set, an innovative
PMC bandit framework designed to process general feedback
through the incorporation of an arm observation probability,
also covering the previous volatile combinatorial multi-armed
bandit settings (an arbitrary subset of arms is unavailable at
any given time instant) [11]. This model categorizes arms
into two types: “probabilistically triggered arms” (hereafter
referred to as “triggered arms”) and “self-reliant arms,”
which operate independently under the triggering mechanism.
Our model demonstrates versatility by accommodating three
distinct network applications: mobile crowdsensing, online
content delivery, and dynamic channel allocation. These
applications are characterized by their unique feedback mech-
anisms: probabilistic, semi-bandit, and cascading, respectively.

(2) Algorithm Design: We propose two novel
variance-aware bandit algorithms tailored for the PMC-
G model. The first, a Variance-Adaptive Combinatorial
Upper Confidence Bound algorithm (VACUCB), is designed
specifically for triggered arms. It utilizes the empirical
variance to construct a Bernstein-type confidence interval,
which adaptively narrows the Chernoff-type confidence
interval used by the CUCB when the arm exhibits low
empirical variance. This adjustment significantly reduces
unnecessary exploration, leading to tighter regret bounds. The
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second algorithm, the Action-Based Combinatorial Upper
Confidence Bound algorithm (ABCUCB), is optimized for
self-reliant arms and leverages the variance-aware reward
feature. Unlike traditional approaches, ABCUCB maintains
an upper confidence bound for actions rather than arms and
reduces its dependency on the size of the arm selection.

(3) Theoretical Analysis: For VACUCB, we establish that
it achieves a regret bound of O(3 ;¢ M%ﬂ). It sig-
nificantly improves the regret bound of CUCB by a factor of
O(K) (where O hides logarithmic factors of K'), and matches
the lower bound by logarithmic factors. Compared to [12],
we further remove log K dependency in the regret bound. For

ABCUCB, we achieve a regret bound of O (Zie[m] |VA|,?§,T s
where the leading term totally removes the O(log K') depen-
dency. We overcome several technical challenges to prove the
improved regret bounds for PMC-G, such as dealing with
the non-deterministic observation, associating the triggering
probabilities with the expected random triggering event, and
bounding the arm over-estimation. One of our key strategies
is to use a variance-aware reward sensitivity and smoothness
lemma to distribute the total regret across inaccurate estima-
tions.

(4) Experimental Evaluation: In applying the two pro-
posed algorithms to the aforementioned network applications
(mobile crowdsensing, online content delivery, and dynamic
channel allocation), which are based on specific arm types
relevant to PMC-G network problems, we conduct a com-
prehensive series of experiments. These experiments cover
three network applications, using both synthetic and real-world
datasets to validate our theoretical findings. The empirical
outcomes are compelling, demonstrating that our proposed
algorithms consistently achieve over 15% lower regret com-
pared to benchmark algorithms across these varied contexts
on both static and dynamic network environments.

II. SYSTEM MODEL

The system model of the dynamic PMC bandit with general
feedback (or PMC-G in short) can be described by a tuple
(G,[m],S,D, Dgps, R) as follows: G = (L,V,E) is the
underlying bipartite graph, where L is the set of candidate
nodes, V is the target nodes to be covered by the L, and F
is the set of edges connecting L and V; [m] = {1,2,...,m}
is the set of base arms and each base arm is associated with
an unknown parameter to be learned. Depending on different
application scenarios in Section V, the base arms for PMC-G
could refer to the edge set E, or the edge and target node sets
EUV, therefore we use [m] to cover both cases. Note that the
base arms are “volatile”, meaning that the available arms can
vary over time [13]. Based on these volatile arms, S is defined
as the overall set of all combinatorial arms, i.e., all actions,
and S; C S is the set of dynamic sets of eligible actions at
round t € 7 = {1,2,...,T}, where S € S; is an individual
action. Similar to [m], S; varies with the application, is time-
dependent, and can be either a collection of subsets of [m],
or subsets of L. A specific example of the PMC-G model
is as follows: In the context of a CDN, consider a PMC-G
model where the graph G = (L, V, E)) represents CDN servers
(L) and users (V), connected by potential delivery paths (E).

IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 3, JUNE 2025

The base arms [m] are these edges, each associated with an
uncertain success probability. Actions from S involve selecting
subsets of servers to serve subsets of users, with dynamic
action sets S; reflecting the current network conditions. D is
the set of possible Bernoulli distributions over the outcomes
of base arms with support {0,1}™; Doy is the observation
function to model the general feedback and R is the reward
function, the definitions of which will be introduced shortly.

In PMC-G, the learning agent interacts with the unknown
environment sequentially as follows. First, the environment
chooses a distribution D € D unknown to the agent. At round
t, the environment reveals the time-dependent action set S; €
S, the agent selects an action S; € S, and the environment
draws from the unknown distribution D a Bernoulli outcome
X =(Xtn,.. . Xe.m) € {0,1}™. Intuitively, for e = (u,v) €
E, X;. = 1 means the target node v € V is covered when
u € L is selected and for v € V, X;, = 1 means the target
node yields one unit of reward when v is covered. Similar
to [7], we assume that the outcome X;. on edge e € F
is independent with any other outcomes X, ;, i € [m],i #
e, yet the outcomes X, and X, of nodes v/, v € V could
be dependent or independent, relying on the subsequent arm
types.

When the action S; is played, the agent will receive a
non-negative reward R(S¢, X;). For PMC-G, the reward at
round ¢ is the total rewards received from the covered nodes,

R(St,Xt) = Z’UEV ]I{Elu € St S.t. Xt,(u,v) = 1}Xt,'u~ (1)

Let o = (g1,...,/m) denote the mean vector of base
arms’ outcomes, which are unknown initially. Given the
independence assumption, the expected reward r(S;pu) =

E[R(S, X,)] is

veV uesS

Note that this expected reward function is highly non-linear
and finding the optimal solution S} is NP-hard in general [5],
[7]. Fortunately, using the submodular set function maxi-
mization technique, one can achieve (1 — 1/e)-approximate
solutions [5].

At the end of round ¢, the agent has the opportunity to
observe the outcomes of certain arms as feedback, which
is critical to improving future decisions. Let us denote the
outcome distribution by D for action S. In this context,
we now introduce two different types of arms respectively.

Triggered Arms: Within a randomly selected set 7z ~
Dobs(St, X¢), the outcomes of arms, denoted as (X;)ier,,
are disclosed to the agent. This process, governed by the
function Dyis, models general feedback and is thus termed
the general feedback function. Typically, the selection of 7
is influenced by S; and X, although it may also incorporate
additional randomness. For ease of reference, we introduce
the term observation probability plp DS \which represents
the probability of observing base arm ¢ given action .S, under
outcome distribution D and feedback function D,. Given
that Dy, remains constant within a particular application,
we simplify our notation to plp 5 moving forward. Define S
as the set of arms that can be triggered by the action S, i.e.,
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S = {2 c [m] : piD 3 > 0} This set represents the target

nodes that can be covered by the selected source node, along
with the edges connecting these target nodes under the PMC-G
model.

Self-Reliant Arm: We define base arms as self-reliant if,
for any distribution D € D, the Bernoulli outcome vectors
X: ~ D are independent across base arms at round f{,
with outcomes that can also be probabilistically triggered.
Specifically, this means that D can be expressed as a tensor
product ®;c[ym D, where each D; has an expected mean
u; = Ex,~p,[X;]. In this context, the time-varying set of
eligible subsets St € S still represents the collections available
of subsets of [m] at round ¢. Similarly, only arms triggered
by the set 7 ~ Dgps(St, X¢), with observation probability
piD"S, are disclosed as feedback. Additionally, the outcome
distribution D; for each arm ¢, with mean p;, is considered
to be Cp;(1 — p;)-sub-Gaussian, where Cy is a coefficient
indicating the variability of each arm’s outcomes [14] (which
will be explained in Section V).

The former arm type can be observed in CDN (see Fig. 1),
where each caching server (i.e., an arm) chooses to distribute
content but may fail to deliver it to the user with a certain prob-
ability. The latter type is typical in crowdsourcing (see Fig. 2),
where participants, who do not know each other, independently
engage in tasks across the crowdsourcing initiative.

Note that the PMC-G model significantly generalizes the
modeling power of previous PMC bandit [7] as it not only
models semi-bandit feedback that is deterministic but can
also model the probabilistic feedback when 7; is randomly
determined or even the partial feedback that depends on certain
stopping criteria under the dynamic environment, which will
be discussed in details in Section V. The goal of PMC-G
is to accumulate as much reward as possible over 7' rounds,
by learning the Bernoulli distribution D, or equivalently the
unknown mean vector p. The performance of an online
learning algorithm A is measured by its regret, defined as the
difference of the expected cumulative reward between always
playing the best action S; £ argmaxgg, 7(S9; p) and playing
actions chosen by algorithm A at each round ¢. As mentioned
before, it could be NP-hard to compute the exact S} even when
p is known, so similar to [1], [7], and [15], we assume that
the algorithm A has access to an offline («, §)-approximation
oracle. This oracle, given the mean vector g, outputs an
action S such that Pr[r(S;u) > «a-r(Sy;u)] > (. For
PMC-G applications with the monotone submodular reward in
Eq.(2), the offline («, 3)-approximation oracle is typically an
(1 —1/e,1)-approximation greedy oracle, as described in [5]
and [16]. Consequently, the T-round (1 —1/e, 1)-approximate
regret is defined as

Reg(T;p) =B | (1 —1/e)-r(Sf;5p) = r(Si;m) |, (3)

t=1

where the expectation is taken over the randomness of out-
comes X1,..., X, the observation sets 7q,..., 7, and the
inherent randomness of the algorithm A under the dynamic
action set.

Algorithm 1 VACUCB: Variance-Adaptive Combinatorial
Upper Confidence Bound With Triggered Arms
1: Input: Base arms [m], offline ORACLE.
2: Initialize: For each arm 4, T ; < 0, fip,; = 0, Vo,i =0.
3fort=1,...,7 do
4 For arm 7, compute p;; according to Eq.(4) and set
UCB value fi¢; = min{fiz—1,; + pr,i, 1}.

5: Select action Sy = ORACLE(fit,1, .. ., ft,m) from
dynamic time-dependent action set Sy C S.

6: Play S; and observe arms 7; with outcome X, ; from
ORACLE, where ¢ € 7, are the available base
arms.

7: For every ¢ € 7, update T;; = Tt,l),ﬁ- + 1,

fri = fe1i + (Xei — fe-14)/Tran Ve =
Ti1,i (¥ [0 ?
7t (Ve 7 G = X0)°).
8: end for

III. ALGORITHM DESIGN

In this section, we design two different algorithms under
two types of arms for the dynamic PMC-G problem. At a
high-level design perspective, VACUCB (Variance-Adaptive
Combinatorial Upper Confidence Bound) and ABCUCB
(Action-Based Combinatorial Upper Confidence Bound ) algo-
rithms share the common goal of optimizing selections in a
variance-aware combinatorial multi-armed bandit framework.
On the other hand, VACUCB focuses on individual arm
variance and updates based on triggered arms, while ABCUCB
computes confidence intervals for entire actions with self-
reliant arms.

A. Triggered Arm Algorithm (VACUCB) for PMC-G

Algorithm 1 maintains the empirical estimate /i, ; and Vm
for the true mean and the true variance of the base arm
outcomes, respectively. As discussed earlier, we follow the
principle of Optimism in the Face of Uncertainty (OFU),
which guides decision-making by favoring actions with the
most optimistic potential outcomes under uncertainty. Specif-
ically, Algorithm 1 computes the upper confidence bound
(UCB) value fi; = fi;; + pt,; as an optimistic estimate of
;. Intuitively, confidence interval p; ; serves as a bonus term
to explore the unknown mean y;: when arm ¢ is not observed
often (i.e., T} ; is small), p; ; will be large and encourages the
algorithm to select arm 3.

Compared with the CUCB algorithm [7] which uses con-
3logt
2T 1,

fidence interval p:; = based on Chernoff-type

concentration bound [17] for the PMC problem, the key
difference is that we leverage on the stronger Bernstein-type
concentration bound and use empirical variance Vt—u to con-
struct the following “variance-adaptive” confidence interval:

Gﬂ,lilogt 9logt
i= : + 4
Pt \/ Ti—1, Ti—1,

As we will show in Section IV, adopting a variance-adaptive
interval is crucial for attaining tighter regret bounds. This
is particularly relevant because the expected reward in Eq.
(Eq. (2)) is highly sensitive to arms with means near O or 1.
Overestimations (p; ;) for these arms lead to substantial regret.
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Interestingly, these arms typically exhibit lower variance,
which implies that a variance-adaptive approach effectively
minimizes overestimations, thereby reducing the overall regret.
To select the action S; from the set of available actions
S; at round ¢, the next step is to insert the UCB values into
the offline (1 — 1/e, 1)-approximation oracle. After playing
action Sy, the agent will observe a set of arms 7; as feedback
and update the estimation accordingly. Regarding the time
complexity, the offline process of finding the best action cor-
responds to a typical submodular maximization problem [1],
[16]. The entire online and offline processes can be analyzed
based on the procedure for selecting actions over 7' rounds.
Each round involves a greedy oracle for selecting K arms from
a set of |L| candidate arms. For each arm added to the arm
set .S, the potential reward r(S; u) must be computed, which
requires evaluating combinations from the bipartite graph G =
(L,V,E) and considering all |L| x |V| potential interactions.
The overall time complexity is given by O(TK|L|?|V]).

B. Self-Reliant Arm Algorithm (ABCUCB) for PMC-G

For the PMC-G problem with self-reliant arms, the
Action-Based Combinatorial Upper Confidence Bound
(ABCUCB) algorithm is presented in Algorithm 2. Unlike
works that maintain a single UCB for each base arm i,
ABCUCB maintains a UCB for a super arm S; (i.e., action)
at round ¢. To circumvent the inefficiencies of a brute-force
search through all possible actions [18], we propose a method
that incrementally builds the arm set. At each round ¢,
we initialize a temporary arm set S; and sequentially add
one available base arm at a time until S; comprises K arms,
forming the action S;. The core challenge is devising a
method that can efficiently handle the selection process over
a non-linear set function.

For any set S, the function r(S;u) is observed to be
monotone and submodular. We leverage this property by
designing a confidence interval p;(.S) such that the optimistic
reward 7(S) := r(S; @) + pi(S) retains these properties,
where 1 = {/i;} for any i € S. This allows the use of a greedy
(1 —1/e,1)-approximation oracle, based on the fact that the
sum of two submodular functions remains submodular.

Specifically, with S denoting the set of arms that can be
triggered by action S, let T’ t“iii g represent the minimum
count of triggers for the arm set S by S, ie., Tt‘ﬂiﬁ g =
min, s T;_1,;. We define o;_; as the maximum of the

€S
log(2|S:|T) log(2|S¢|T
i { /5 e P, i
—1,2 t—1,8

Subsequently, the confidence interval in Line 5 is defined as:

following: oy =

G|V
Z#wapmw ®)
— L1,
€S

pe(S) =
where C; is a sub-Gaussian coefficient. Eq. (5) complies
with concentration bounds for sub-exponential random vari-
ables [19], [20], assuming that the estimation error (; for
each base arm 7 € S behaves as independent sub-Gaussian
random variables, influenced by the variance-aware reward
smoothness (see Property 2 in Section IV). This aggregated
approach results in a sub-Exponential distribution that is
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Algorithm 2 ABCUCB: Action-Based Combinatorial Upper
Confidence Bound With Self-Reliant Arms
1: Input: Base arms [m], coefficient C1, offline ORACLE.
2: Initialize: For each arm ¢, Ty ; = 0, fip,; = 0.
fort=1,...,7 do
4: for |S]| < K do
5: For each ¢ € ([m]\S;)NS;, set UCB value 7 (S;N
{i}) = r(SIN{i}: i)+ pe(S) 0 {i}). where
confidence interval p,(S; N {i}) is computed
according to Eq. (5).
Select i* = arg maxe ([m)\s;)ns, 7+ (St N {i}) —
7(S}), and set S; = S; N {i*}.
7: end for
8: Set S; = Sy, play S;, and observe arms 7, with
outcome X;; from ORACLE, where i € 7, are
the available arms.

a

9: For every ¢ € 7, update Ty ; = Ty_1; + 1, flz; =
fi—1i+ (Xei — fe—1,i) /Tt -
10: end for

more concentrated, thus enhancing the estimation’s accuracy
over potentially dependent variables. Importantly, ABCUCB
employs the minimum counter Tt“_‘i{‘, K for constructing the
second segment of the interval, instead of aggregating all
counters T;_; ; for the arm set S. Then, the algorithm selects
the base arm :* that offers the highest incremental reward
(Line 6).

Once S; expands to include K arms, Algorithm 2 selects
S¢ = S; and consults the oracle to observe the outcomes
for round ¢. It then updates the relevant estimates, simi-
lar to Algorithm 1. The design of p:(S) ensures that the
optimistic reward 7 (S) retains its monotone submodular prop-
erty, which facilitates efficient optimization through a greedy
(1 — 1/e, 1)-approximation oracle. Based on this, the time
complexity of ABCUCB mirrors that of VACUCB, which is
also O(TK|L|?|V])). This approach avoids the enumeration
method with O(|S|T"), where |S| can be exponentially large.

IV. PERFORMANCE ANALYSIS

In this section, we present our main theoretical results, the
related analysis, and some discussions for two algorithms. For
ease of exposition, we put the proofs in the Appendix in the
Supplementary Material.

A. Analysis Preliminaries

Initially, we present some definitions in the dynamic action
set. In the following subsections, we primarily present a
distribution-dependent regret analysis based on the subopti-
mality gap defined below. For distribution-independent regret
analysis, please refer to Appendix, available online.

Definition 1 (Suboptimality Gap): Fix a distribution D €
D and its mean vector p, for each action S € S, we define
the (approximation) gap as Aps = max{0,ar(S;;p) —
T(S;p)}, where Sf = argmaxgeg, r(S;p). For each arm
i, we define A" = infSESt,StES,tET:pzD’S>0A, Ays>0 Ats,
AP = SUPges,, S, e8,teT:pP 550, Ay g>0 DS As a conven-
tion, if there is no action S € S such that piD’S > 0 and
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Ayg > 0, then A?li“ = 400, A"** = 0. We define Apmin =
min;e(pm) AP gnd Apax = max;em) Amin,

Our analysis uses several events to filter the total regret and
then bound these event-filtered regrets accordingly. Below we
define the event-filtered regret.

Definition 2 (Event-filtered Regret): For any series of
events (Et)i>0 indexed by round number t, we define
the Regl,(T,(E)i>0) as the regret filtered by
events (E)i>o0, or the regret is only counted in t
if €& happens in t. Formally, Reg;"“(T, ()=o) =

E[Siem M€ @ 1(Siim) = 1(Siw)] . For
we will omit A, o, u, T and rewrite Regi“(T, (&)i>0) as
Reg(T, E:) when contexts are clear.

simplicity,

B. Performance Guarantee of VACUCB

1) Main Result: We first give our main result of
VACUCB, following the given definitions and lemmas.

For a PMC-G problem instance (G,[m],S, D, Dobs, R),
the regret of VACUCB (Algorithm 1) is bounded by
0 ((Zie[m] 'VLI;HEK +log (%)) logT> .

2) Proof Analysis: To give concrete events filtering the
leading regret, we leverage the following property.

Property 1 (Variance-aware Reward Sensitivity): For
PMC-G with semi-bandit, probabilistic, and cascading
feedback model, and any parameter change ¢,m € [0,1]™ s.z.
' = p+ ¢+ mn, the reward sensitivity v(S; u') — r(S; )
satisfies

r(Sipu) = r(S;p) < VIVl + 2l

where x, £ (71)?75@ ) x 2 ( D,s )
U\ VA ie[m]’ L= AP T i€lm]’

Intuitively, this property bounds the reward difference with
the impact of variance considered, by /5 and ¢; norm of each
arm’s over-estimation x, and x; given by VACUCB, and
V/|V] is to bound the non-linearity of (S; ). Notice that
both x, ; and 1 ; are re-weighted by pf)’s which reduces the
regret contribution from unlikely observed arms to handle the
general feedback model.

We have the following lemma for the regret decomposition.
[Regret Decomposition] We define two error terms

(6)

logt 1
et1(S:) = 4V3/|V] Z(ngl - A %)( DStz (1)
ies, "
S,) — IOgt i D,S,
e,2(5¢) = 28 Z(Tt—l A o) i) ®)

1€ESY

and two events E; 1 = {Ag, < 2e,1(S:)}, Er2 = {Ag, <
2e;,2(S;)}. The regret of Algorithm 1, when used with («, 3)
approximation oracle is bounded by

2

2
Reg(T) < Reg(T, Ey1) + Reg(T, Ey2) + ——

3 mAmax-

C))

Our final step is to bound Reg(T, E; 1) and Reg(T, E 5),
which corresponds to the first term and the second term in
Theorem IV-B.1, respectively. By employing a refined reverse

amortization technique originated in [15], we allocate the
regret A; g across base arms using carefully designed thresh-
olds. Furthermore, we establish a probability equivalence to
associate the triggering probabilities with the expected ran-
dom triggering event, which is a highly non-trivial endeavor.
We defer the detailed proofs of Reg(T, E 1) and Reg(T, E; 5)
in Appendix in the Supplementary Material.

3) Discussions: The leading term in the regret bound is
oxn, W‘l‘fﬂ) when gaps are not too large, i.e.,
Al < |V|'=¢/log K, for any € > 0. The dependence over
K is O(log K). For PMC bandit with general feedback, [15]
can only give O3~ %) for PMC-G. Our result is
strictly better than theirs by a factor of O(K/log K). For the
classical PMC bandit with semi-bandit feedback, [21] recently
gives a regret lower bound €( LA‘:‘Z ), which means our regret
bound is near-optimal (by setting m = L|V|, Apin < APID)
and matches the lower bound up to O(log K). Compared
to [10], [12], we have eliminated a factor of O(log K) from
the second main term in the regret upper bound of [10] and the
overall regret upper bound in [12] by minimizing the impact
of observation randomness.

C. Performance Guarantee of ABCUCB
1) Main Results: To state the regret bound, let p?’s be

the probability that the arm set S is triggered when super
. . S .
arm S is selected and p* = ming . 0.5 pg’™. The following
theorem summarizes the regret uppe? bound for ABCUCB.
For a PMC-G problem instance (G,[m],S,D, Dobs, R),
the regret of ABCUCB (Algorithm 2) is bounded by

O (Cicpm) poag losT + K1)

2) Proof Analysis: We use the following lemma to bound
the reward difference. This represents the triggering version
with independent arms of Property 1.

Property 2 (Variance-aware Reward Smoothness): For
PMC-G with independent instance ([m], S, D, R), if for any
action S € S, for any parameter change ¢,m € [—1,1]™ s.t.
p' = p+ ¢+ n, the reward smoothness r(S;p’) — r(S; p)
satisfies

(S 1) = r(S;w)| < VIVIHIZly + 1]l

ey Gi A N : _
where x, = (mleg x1 = (1i);cg for the trigger

ing arm set S of action S.

In contrast to Property 1, Property 2 is unidirectional,
allowing both ¢ and 7 to assume negative values, as empirical
mean reward may not always exceed the unknown true mean
reward of the base arm.

We first define the error term eq(S;) = 2p:(S;) as
in Line 5. We focus on the regret conditioned on the event
{At,s < e;(St)}. The central strategy leverages Property 2,
establishing a bound on |r(S; ) — r(S; u)|. Denoting w; ;
as a sub-Gaussian random variable and Yy 5 = >, 5 ufz,
Y; s behaves as a sub-Exponential random variable. Apply-
ing concentration bounds on Y; g, we derive the specified
form of e;(S;). Next, we dissect the scenario based on the
magnitude of Zieﬁf, n%“ In both cases, we employ the
reverse amortization technique [15]. Moreover, the definition

10)
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TABLE 1

SUMMARY OF FEEDBACK AND ORACLES FOR DIFFERENT PMC NETWORK
PROBLEM APPLICATIONS

Application Feedback (a, B)-Oracle
Mobile Crowdsensing Semi-bandit  Greedy, (1 —1/e, 1)
Online Content Delivery Probabilistic  Greedy, (1 —1/e, 1)
Dynamic Channel Allocation ~ Cascading  Greedy, (1 — 1/e, 1)

of e;(S;) allows us to limit our consideration of regret to
the contributions from the minimum-arm in S;, leading to
eliminating the O(log K') term in the regret upper bound.

3) Discussions: Examining the regret bound presented
above, the leading term eliminates the O(log K) dependency,
in contrast to Theorem IV-B.1. [10] considers a simpler
scenario involving independent but non-triggering arms, a case
that our work can address by setting pZD’ =1 for arm ¢ and
p? S = 0 for the others. Compared to the findings in [22], our
regret bound shows an improvement by a factor of O(log2 K).
Regarding the applications of PMC-G, Theorem IV-C.1 pro-

. - log T
vides an improvement of O(>_ ‘VA‘,:E )
i

i€[m)]

V. APPLICATIONS FOR PMC-G

We consider three applications with semi-bandit, proba-
bilistic, and cascading feedback to illustrate the utility of
our PMC-G framework: mobile crowdsensing, online content
delivery, and dynamic wireless channel allocation. We com-
pare the regret of our VACUCB and ABCUCB algorithms
to two baselines: CUCB [1], a state-of-the-art combinatorial
bandit algorithm that does not use variance-adaptive confi-
dence intervals; and e-greedy, which explores new actions
with fixed probability € and otherwise greedily chooses the
empirically optimal action. In the context of mobile crowd-
sensing, we extend our comparison to include ESCB [18],
which is notable for its efficient exploitation strategy within
the semi-bandit feedback. Moreover, risk-averse multi-armed
bandit, which also incorporates the variance term and is
popular in financial portfolio selection [23], [24], [25], is com-
pared on reward outcomes in Appendix in the Supplementary
Material, given its different regret definition from Eq. (3).
In our theoretical analysis, ABCUCB Algorithm (2) addresses
the self-reliant arms, which are independent and can be
probabilistically triggered. Under the network applications of
mobile crowdsensing, online content delivery, and dynamic
wireless channel allocation, where the dependence of arms
increases from semi-bandit to probabilistic to cascading feed-
back, we still explore the performance of ABCUCB.

A. Mobile Crowdsensing

1) Problem Description: Mobile devices today, including
smartphones, tablets, and wearables, come equipped with
advanced sensors like GPS, accelerometers, and gravity sen-
sors. These sensors enable the devices to gather and analyze
environmental data based on the users’ locations. Mobile
crowdsensing leverages this capability, organizing individuals
to collect data across various locations using their personal
mobile devices as they move around an area. This approach is
particularly beneficial for large-scale sensing projects, allow-
ing for the aggregation of diverse data points across a broad
geographic area [26]. For example, a task organizer may want

IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 3, JUNE 2025

to organize a group of participants and use their cameras,
gravity sensors, and GPS as sensors to monitor dust levels
or a possible earthquake in a large city [27]. However, the
quality of data obtained through mobile crowdsensing can
be inconsistent, influenced by factors like the different paths
participants travel and the variable quality of sensors across
devices. Additionally, participant availability can fluctuate due
to personal obligations or device constraints [3]. The goal of
the mobile crowdsensing task organizer is to select a group
of individuals to maximize the amount of high-quality data
collected from different locations in the city.

The mobile crowdsensing application can be modeled by
our PMC-G problem. Consider a bipartite graph G(L,V, E),
where L is the set of candidate participants, V' is the set of
locations in a city, and £ models the data collection process.
At each time ¢, the agent (or the task organizer) wants to
choose at most K participants to conduct the sensing task. For
example, K may be chosen based on a budget for paying fixed
recruitment incentives to each chosen participant. However,
note that the availability of participants varies, with not all
being accessible for tasks at any given time. Each selected
participant © € S; independently uploads their sensor data
at location v € V, which is modeled as a Bernoulli random
variable Xy () € {0,1} with probability s, that the data
can be used as valid information to cover location v. In this
case, we know the arms are exactly E. The agent can get
semi-bandit feedback, i.e., observe whether the uploaded data
is valid or not for (u,v) s.t. u € S;. Using the PMC-G
formulation, the observation probability p%i‘ =1ifu e S
or 0 otherwise. The reward is the Weighte(i total number of
locations that are covered with valid information: r(S; pu) =
>vev to (1= [Tues(l = f(uv))), where the known weight
14, represents the importance of covering location v to the
crowdsensing task. Busy areas, for example, may have higher
sensing importance as their environmental conditions affect
more people.

2) Performance Evaluation: Fixed Action Set. To simulate
the mobile crowdsensing problem, we employ a complete
bipartite graph comprising 17 candidate nodes (represent-
ing participants) and 30 target nodes (denoting locations).
The significance of each location is determined by weights
drawn from a uniform distribution U(0,0.5), with these
weights being known to the task organizer. Selecting K =
15 participants, we model the success probability fi, . for
each participant-location pair using a uniform distribution
U(0,0.15). According to [14] where the value of C; can
be set as Cy — 122 for Bernoulli
2In(— ) (A—pi)pi
arms with mean p;, we utilize a sub-Gaussian parameter
of C7 = 3 for the ABCUCB algorithm. Fig. 3a displays
the cumulative regret observed across different algorithms
throughout 500,000 rounds (we choose € = 0.2 for the e-
greedy algorithm in all experiments). The performance of the
VACUCB algorithm is notably superior to other strategies,
outstripping the ESCB by 50%, the CUCB by 63%, and the
e-greedy by 79%. ABCUCB further showcases remarkable
improvement percentages, which eclipses VACUCB by 47%.

To verify how K would affect the regret, we then generate
each p,, with U(0,0.05) and show the total regret for

= aX;c[m)
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Fig. 4. Total regret after 100000 rounds in static settings.

different K after 100,000 rounds with |L| = 20 in Fig. 4a.
Note that with the change of K, the optimal reward will
also change, which explains why the regret of a small K
is larger than that of a large K. We find that with the
increase of K, VACUCB’s improvement over the CUCB
baseline also increases (25% for K = 5 and 50% for
K = 15), which is consistent with our theoretical result
in Theorem IV-B.1. Additionally, we observe a diminishing
return in regret improvement for ABCUCB as K escalates to
15, diverging from the trends noted at K = 5 and K = 10.
This trend indicates that ABCUCB’s sensitivity to variations
in K is less pronounced than that of VACUCB, corroborating
with the findings in Theorem 2. Fig. 4b compares the total
regret of CUCB and VACUCB when varying the value of 1, .
We set K = 10 and generate each p,,, with U(0,z), where
z € {0.05,0.1,0.15}. As x enlarges, the regret for ABCUCB,
VACUCB, and CUCB escalates correspondingly. This incre-
ment is attributed to the widening gap between the rewards
from the algorithm-selected participants and those selected
based on unknown optimal action as U (0, )’s range broadens.
Nevertheless, even at the minimal regret increment, ABCUCB
and VACUCB manifest notable performance enhancements
of 19% and 50%, respectively, when benchmarked against
CUCB.

Dynamic Action Set. Furthermore, consistent with the
above setting, for the tasks distributed by the task organizer,
each crowdsensing participant now has a certain participation
probability p (set as 0.8) to decide whether they can engage
in the mobile crowdsensing task. Additionally, to facilitate the
seamless execution of the crowdsensing tasks, a maximum
non-participation threshold is established at T, = 22.7%,
applicable to the overall count of 22 participants. Concisely,
as shown in Fig. 6a, the VACUCB algorithm demonstrates
superior performance relative to other strategies, achieving
improvement percentages of 47% over CUCB and 18% over
ESCB. In a similar vein, ABCUCB registers even more

0
27.3%

0.9 22.7%

18.1%
Maximum Non-participation Threshold Ty

0.8 0.7
Participation Probability p
(a) Varying p

Total regret after 100000 rounds in dynamic settings.

(b) Varying T}
Fig. 5.

pronounced improvements: 72% over CUCB, 56% above
ESCB, and outperforming VACUCB by 46%.

We then explore the impact of the probability of participant
engagement and the maximum non-participation threshold
under the number of candidate participants L = 23. As shown
in Fig. 5, with a decrease in participation probability p
or an increase in the maximum non-participation threshold
T}, the number of available participants decreases. In other
words, both the arm and action search space are reduced,
leading to a decrease in regret. Moreover, it is observable that
under variations in either p or 7}, our proposed algorithms,
ABCUCB and VACUCB, outperform the benchmark ESCB,
demonstrating the robustness of our algorithms.

B. Online Content Delivery

1) Problem Description: We investigate the challenge of
online content delivery within content delivery networks
(CDNs), a critical component of web services such as video
streaming, web browsing, and software distribution, as docu-
mented in existing literature [2], [6], [28]. Unlike traditional
approaches that rely on a single central server, CDNs distribute
and cache content across multiple mirror servers, enabling end
users to retrieve data from the nearest available source. This
architecture significantly improves the speed and reliability
of content delivery. Our proposed model and algorithm are
designed to assist content providers, such as media firms
or e-commerce platforms, in selecting an optimal set of
mirror servers to maximize user satisfaction. Furthermore,
we acknowledge the dynamic nature of CDN environments,
where the availability of mirror servers can fluctuate due to
maintenance, high traffic, failures, or other network disrup-
tions.

The above application scenario naturally fits into our
PMC-G problem with a bipartite graph G(L,V, E), where L
models the set of candidate servers, V' are the end users, and
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algorithms via the solid line. Only in mobile crowdsensing, each arm operates independently.

FE models the user-server interactions as follows. At each time
slot ¢, the agent (or the content owner) needs to choose S; C L
mirror servers that can send contents to users via the CDN
network. We assume the number of selected servers at each
round is less than K, i.e., |S;| < K, since the maintenance
of each server usually incurs certain costs, and the content
owner has a limited budget. The selected servers u € S;
then independently send contents for each user v € V with
unknown success rates fi(,,.), depending on varying geometric
distances and the network congestion [29]. By “success,” we
mean the content is delivered in time, which can be modeled
by a Bernoulli random variable X;,, € {0,1} with mean
H(u,v)- We suppose that each user v attempts to preload content
from the selected servers to its device, and we use a Bernoulli
random variable with unknown mean p, to represent whether
this preloaded content is ultimately consumed (e.g., video is
viewed) by the user [2], [30]. To this end, we can see that arms
correspond to the success probability iy, for (u,v) € E and
the consuming probability ., for users v € V. The question is
how to select K mirror servers for content delivery to maxi-
mize the total number of users that consume the contents with
unknown success rates and consuming probabilities. Every
server is subjected to a certain probability of either becoming
unavailable or resuming availability. Moreover, server avail-
ability is variable, with each facing a distinct likelihood of
downtime or reactivation. A strategic server selection policy
must, therefore, aim to optimize content delivery to those users
with higher propensities for content utilization, accounting for
uncertain success rates and varying server availability.
Regarding feedback, the agent can observe whether the
content is successfully delivered from the selected servers, i.e.,
Xy (uw) for u € Sy, v € V. We know that the observation
probability paif) equals 1 if u € Sy and 0 otherwise, which
is known as semi-bandit feedback. If user v successfully
receives the content, the agent (i.e., the content owner or
CDN provider) can observe whether the user consumes the
content, i.e., X;, is observed when Jv s.t. X, , = 1. This
feedback is called probabilistic feedback since it depends on
other random outcomes and the probability of observation
D,S: 1 — [Tues, (1 = ptuw). In Table I, the result of

a =1 —1/e for the dynamic channel allocation application

represents the worst-case scenario for algorithms based on
base arm selection and action selection, where the arm-based
algorithm can achieve an optimal solution with o« = 1. The
expected reward is essentially Eq. (2) and the agent’s goal is
to minimize the total regret in Eq. (3).

2) Performance Evaluation: Fixed Action Set. For the
online content delivery experiments, we consider 10 mir-
ror servers located at some of the point-of-presence (POP)
locations of Microsoft Azure CDN in North America.! We
assume the users are distributed in 20 POP locations (including
the servers’ locations). We extract the average latency data
between these locations,? and assume the realized latency
at each round is the average latency plus a random delay
ranging from Oms to 30ms, which is 76% of the average
observed delay. We simulate the random delivery deadlines of
the contents with the range from 10ms to 20ms. The users will
successfully receive the content if their latencies to the mirror
servers are less than the delivery deadline. The probability that
user v will consume content, p,, is sampled from U(0,0.5)
and is unknown to the server selector. Fig. 4b shows the
cumulative regret of different algorithms for 100,000 rounds
when all servers are operational. Notably, VACUCB demon-
strates a 32% and 65% reduction in regret compared to CUCB
and e-greedy, respectively. Moreover, ABCUCB and VACUCB
exhibit similar overall performance.

Dynamic Action Set. In the setting of the dynamic com-
binatorial arm set, the availability of the server depends
on its load levels. Monitoring these conditions allows the
identification of servers under heavy loads, which are more
likely to be unavailable. Accordingly, each round is designed
to account for up to two servers becoming unavailable, while
a selection of no more than six servers is made from the
pool for content delivery purposes. As shown in Fig. 6a,
the VACUCB algorithm outperforms comparative strategies,
registering a 33% improvement over CUCB and a 77%
enhancement relative to the e-greedy approach. As the fre-
quency of observations decreases and the dependency among
arms increases relative to the mobile crowdsensing context, the
estimation errors for each base arm deviate from behaving as
independent sub-Gaussian random variables. Under these con-
ditions, VACUCB exhibits a 27% performance improvement
over ABCUCB.

C. Dynamic Channel Allocation

1) Problem Description: We consider a centralized dynamic
channel allocation problem where a central controller chooses
K channels from the candidate channel set L and allocates
them to a group of users V. Each channel 7+ € L can be viewed

Ihttps://docs.microsoft.com/en-us/azure/cdn/cdn-pop-locations
Zhttps://wondernetwork.com/pings
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as a base arm with unknown Bernoulli availability. Similarly
to the centralized online channel allocation setting in [4] and
[31], where users are assigned predetermined disjoint channel
lists to avoid collisions, the controller allocates a specific
sublist of these channels to each user. A user will receive
a reward only if at least one of the allocated channels is
available in a given round. The expected total reward of
all users is then >,y (1 _Hiesj,t(l —ui)), where S ¢
is the set of channels assigned to the user j in round ¢
and p; is the expected availability of the channel ¢. Unlike
the offline NP-hard problem in [4], the offline optimization
problem with such a reward function can be exactly solved by
a greedy algorithm that sequentially allocates channels with
the maximum marginal returns to users. As shown in Fig. 7,
each user j will have an ordered list of allocated channels
0% = (0}, 0k, -+ -) with length |S; +|. We consider cascading
feedback in this application, as each user will sequentially
check the availability of allocated channels and stop when
finding the first available one to send data. More specifically,
only the outcomes of 0§- ; forall I < L; are observed, where L,
is the index of the first channel available in the list (L; = |S; |
if all channels in the list are unavailable).

In addition, certain channel allocation scenarios, such as
those in cognitive radio networks, differentiate between pri-
mary and secondary users. Primary users, having licensed
access to specific spectrum bands, are prioritized in chan-
nel allocation and remain unaffected by secondary user
activities [32], [33]. The necessity to avoid interference
with high-priority primary users introduces the challenge
of opportunistic spectrum access for secondary users [34].
This challenge entails secondary users accessing the available
spectrum solely when it is not in use by primary users,
necessitating consideration of channel unavailability in the
allocation process for secondary users.

2) Performance Evaluation: Fixed Action Set. Following
in [4], we utilize a real wireless data trace [35] that contains the
availability of 16 channels. We choose the most competitive
4 channels among them with average available probabilities
w; less than 0.1, and consider 4 copies of each to build the
candidate channel set with |L| = 16. Also, there is no real
optimal online policy, so we adjust our regret to compare with
the optimal policy when assuming the channel availability is
uniformly sampled from the whole data trace, i.e., the expected
availability is equal to the average availability. We consider
a central controller that chooses K = 8 channels from the
16 candidate channels and allocates them to |V| = 4 users.
Fig. 3b shows the cumulative regret of different algorithms,
where VACUCB achieves 13%, 57%, and 68% less regret than
the ABCUCB, CUCB, and e-greedy algorithms, respectively.

Dynamic Action Set. Expanding on the above dynamic
channel allocation problem, we establish a more complex
setting in a cognitive radio network scenario, informed by
the same wireless data trace [35], but with a configuration
of 20 channels. While maintaining the selection of 8 chan-
nels for 4 secondary users, the scenario now includes four
primary users who favor channels with higher availability
according to the data traces. Should any primary user choose
a channel, the availability probability for that channel drops
to O for the secondary users. Fig. 6b shows that the VACUCB
algorithm achieves a 62% improvement over CUCB and a
66% improvement over e-greedy, respectively. Despite the
strong dependency between arms due to cascading feedback
impacting the observability of outcomes, ABCUCB manages
to outperform CUCB by 50% and the e-greedy strategy by
55%.

VI. RELATED WORK

There has been vast literature focusing on online learning
problems under the multi-armed bandit (MAB) model, which
was first studied by [36] and then extended by many other
works (cf. [37], [38], [39], [40]). The principle of Optimism
in the Face of Uncertainty (OFU) [41] is one of the most
fundamental concepts in MAB, and has been widely used
in MAB algorithms [39]. While most algorithms rely on
Hoeffding-type concentration bounds to build the upper con-
fidence bound (UCB) of an arm, a few works [22], [42], [43],
apply Bernstein-type bounds and successfully show superior
performance, both in theory and in experiments.

Probabilistic maximum coverage (PMC) problem [1] is a
widely studied topic with many applications in computer sci-
ence, especially in the area of network optimization. Besides
the three applications mentioned in this article, PMC also
covers many other applications, including wireless sensor
placement [44] and social network advertising [43], [45]. The
online learning version of the PMC problem (or PMC bandit)
is first proposed by [7], and then followed by [1] and [22].
Different from these works that only consider the semi-bandit
feedback, we propose a new PMC-G model that generalizes
the semi-bandit feedback and can model broader applications
with the general probabilistic feedback and the cascading
feedback.

The classic variance-aware algorithms can be traced back
to [42]. In contrast to reinforcement learning (RL) works
with variance considered [46], [47], our study examines a
different setting, as we do not account for state transi-
tions. Regarding variance-aware bandits, [48] concentrates
on distribution-independent regret bounds for cascading ban-
dits. Reference [10] explores the smoothness condition that
incorporates variance information. Our research focuses on
the context of specific network applications within the novel
dynamic PMC-G model, successfully reducing the dependence
on K on regret upper bounds.

The stochastic combinatorial MAB (CMAB) has received
much attention recently [1], [7], [15], [21], [22], [49], [50],
and PMC bandit fits into the CMAB framework. For CMAB
with semi-bandit feedback, [49] is the first study on stochastic
CMAB, and its regret bound has been improved by [8]
and [18]. Later, [1], [15] considered probabilistic feedback
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to generalize the semi-bandit feedback model. However, all
CMAB frameworks above suffer an additional O(K) factor
in their regret bound and the best of them only achieve
O igm) (K logT )/AL. ), since they use combinatorial
upper confidence bound (CUCB) algorithms that ignore the
variance of the arm. Reference [12] presents initial results
for the CMAB model in the static combinatorial arm set
scenario. Reference [11] examines the CMAB with volatile
arms and submodular rewards. Our article provides a more
comprehensive analysis including both triggered and self-
reliant arms.

VII. CONCLUSION

In this article, we propose a general variance-aware PMC
bandit model, which is equipped with a general feedback
mechanism designed to cater to a wide array of network
applications under both static and dynamic action set settings.
We develop variance-aware online learning algorithms specifi-
cally developed for two distinct arm types: triggered arms and
self-reliant arms. We establish that each algorithm consistently
outperforms in terms of regret minimization. To corroborate
our theoretical claims in network problems, we embark on
empirical studies across three applications: mobile crowdsens-
ing, content delivery, and channel allocation. The results from
these experiments demonstrate our model’s superior efficacy.
Exploring the removal of dependency p* for independently
probabilistically triggered arms can be an interesting direction
for our future research.
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