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Abstract—In this paper, we address the uplink power control
problem for mobile users in a cell-free massive Multiple-Input
Multiple-Output (MIMO) system. The objective is to maximize
the system’s average reward in terms of sum rate, while ensuring
each user’s minimum rate requirement, under heterogeneous
mobility. To tackle this complex sequential decision-making prob-
lem, we leverage a Deep Reinforcement Learning (DRL)-based
approach. In particular, we propose a novel scalable Proximal
Policy Optimization (PPQO)-based Multi-Agent DRL (MADRL)
method with a shared actor network, through which agents can
cooperate and learn from all experiences of all agents. This is
thanks to the nature of the target power control optimization,
whereby user agents are homogeneous with the same state/action
space and can utilize shared policies. Numerical results show
the superiority of the proposed MADRL method over DRL and
non-DRL baseline methods, jointly in terms of overall system
performance, fairness among users, and convergence speed.
Finally, we show that only our proposed MADRL method is
applicable to a practical scalable scenario with varying user
admissions and departures, and exhibits excellent performance.

Index Terms—Cell-free massive MIMO, power control opti-
mization, PPO, MADRL.

I. INTRODUCTION

ASSIVE Multiple-Input Multiple-Output (MIMO)

technology is one of the major component technologies
of Beyond 5G (B5G) to support the ever increasing growth of
the number of connected devices, as well as their demands for
a variety of new services and applications. With a large number
of antennas deployed at the base station, massive MIMO
can provide high multiplexing/diversity gains, while enabling

This work was supported in part by JSPS KAKENHI Grant No.
JP20H00592, JP24K02937, 20H00592, 18KK0279, and 21H03424, in part
by JST ASPIRE Grant No. JPMJAP2325, in part by the Natural Science
Foundation of Shandong Province under Grant ZR2023QF149, and in part by
Qingdao Postdoctoral Science Foundation under Grant QDBSH20230202116.

Xiaoqing Zhang is with the College of Electronic Engineering,
Ocean University of China, Qingdao, 266100, China (e-mail: xiao-
qingzhang @ouc.edu.cn).

Van An Le is currently with the National Institute of Advanced In-
dustrial Science and Technology. This work was conducted when he was
with the National Institute of Informatics, Tokyo, 1018430, Japan. (e-mail:
vananle1993 @ gmail.com).

Megumi Kaneko and Yusheng Ji are with the Information Systems Archi-
tecture Science Research Division, National Institute of Informatics, Tokyo,
1018430, Japan (e-mail: megkaneko@nii.ac.jp, kei@nii.ac.jp).

John C.S. Lui is with the Department of Computer Science and
Engineering, The Chinese University of Hong Kong, Hong Kong (e-
mail:cslui @cse.cuhk.edu.hk).

The first two authors contributed equally to this work.

the support of high data rates [1]. However, even with the
advent of massive MIMO technology, inter-cell interference
and handover issues still limit the performance of cell edge
users and mobile users [2]. Therefore, Ngo et. al in [3]
put forward a new concept called cell-free massive MIMO,
where a large number of distributed Access Points (AP)s are
connected to a Central Processing Unit (CPU) and serve a
smaller number of users, so as to avoid frequent switching
between cells and to support seamless mobility.

In cell-free massive MIMO networks, power control opti-
mization is an essential method to achieve high performance
and eliminate inter-user interference. The power control prob-
lem in cell-free massive MIMO system has been a central
issue, regarding which the main related works are described
in the following.

A. Related Works

1) Traditional optimization and heuristics methods: Ngo
et al. proposed a power control method in [4] aiming at
maximizing the minimum user rate of cell-free massive MIMO
systems. The max-min fairness problem is regarded as a quasi-
convex problem and solved by using the bisection method
to obtain the optimal solution, making the performance of
different users highly balanced. Meanwhile, some studies
regard the same max-min fairness problem as a non-convex
problem and decompose it into several sub-problems [5]
that can be solved efficiently. In addition, considering the
overall system performance, a power optimization algorithm
for maximizing sum-rate is studied in [6], [7], whereby the
original NP-hard problem is transformed into a deterministic
polynomial time problem that can be solved by CVX [6], while
a Successive Convex Approximation (SCA) iterative algorithm
is applied in [7]. However, these traditional optimization-based
algorithms must be solved in an iterative manner, which often
requires high computational costs and cannot be processed in
real time. Therefore, heuristic power control algorithms were
investigated in [8] and [9] for maximizing the minimum user
rate in cell-free networks. Although these heuristic algorithms
reduce complexity, they are not adaptable as they only work
for their specific and pre-defined problems.

2) Deep Learning (DL) methods: The universal approx-
imation theorem of deep neural architectures fundamentally
redefines wireless resource management paradigms, providing
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O(1) inference-time complexity that circumvents the compu-
tational barriers inherent to traditional optimization methods
[10]. Thus, in recent years, DL has become a powerful method
applied in the field of wireless communications [11] and sev-
eral studies have used it for power control in cell-free massive
MIMO systems. Among them, a supervised learning algorithm
using a Convolutional Neural Network (CNN) is proposed in
an uplink cell-free massive MIMO system [12] with which the
relation between the power control strategy and large-scale
fading coefficients of user channels is derived to maximize
the total system rate. A supervised learning method based
on a Long Short-Term Memory (LSTM) network is proposed
for allocating downlink transmission power to mobile users
in [13]. The supervised learning method is also adopted in
[14] to solve two optimization problems: power control for
sum rate maximization and minimum rate maximization. For
the DL algorithm based on supervised learning, the traditional
optimization algorithm needs to be executed in advance to
generate labeled data for learning, thereby resulting in large
costs in data preparation. By contrast, an unsupervised learning
mechanism is investigated in [10], where a large number of
AP nodes and user distribution information data is collected
for training, so as to obtain a power optimization scheme that
maximizes the minimum user rate.

Deep Reinforcement Learning (DRL) combines the strength
of Reinforcement Learning (RL) and DL without data col-
lection cost, as agents are trained to learn from their own
experiences. DRL has been proven to be an effective tool for
resource management in wireless communication areas [15],
especially for dynamic mobile environments [16] [17], since
many related sequential decision problems can be modeled
by a Markov Decision Process (MDP) and efficiently solved
by RL. For example, a DRL-based energy-efficient mode
decision network is proposed to minimize energy consumption
in Ultra-Dense Network (UDN) through power allocation
and active/sleep mode selection [16] and a distributed DQN-
based DRL method is proposed to search for the optimal
user association that maximizes the energy efficiency of UDN
[17]'. However, these methods are not tailored to cell-free
massive MIMO, because they only consider cooperation be-
tween several base stations within a macro cell area and ignore
the interference from other SBSs and all MBSs. Besides,
the DQN methods in [16][17] are off-policy methods that
are not specifically designed to handle mobile scenarios.
For cell-free massive MIMO system, a target optimization
problem that considers both sum-rate and system fairness is
constructed in [18], and a Twin Delayed Deep Deterministic
Policy Gradient (TD3) based DRL algorithm is proposed for
power control optimization. Moreover, a Deep Deterministic
Policy Gradient (DDPG) based DRL method is proposed
in [19] to solve the downlink power control problem under
two optimization objectives: sum-rate maximization and max-
min fairness problem. In addition for mobile users, a power
optimization problem is studied in [20], [21], where Deep

'Note that the DQN-based MA-DRL scheme in [17] is designed to optimize
the user association w.r.t. energy efficiency in a downlink Macrocell/Small cell
ultra-dense network.

Q-Network (DQN) and DDPG-based algorithms are used to
allocate downlink power to maximize the total user rate.

However, most previous studies focus on sum-rate maxi-
mization or minimum rate maximization problems, without
individual user Quality of Service (QoS) constraints, and most
previous works focus on static [4]-[10], [12], [14], [18], [19]
or low mobility scenarios [13], [20], [21]. In our previous work
[22], we have investigated the power optimization problem for
cell-free massive MIMO with the objective to maximize the
uplink sum-rate under individual minimum rate constraints,
for which we designed a DDPG-based Single-Agent DRL
(SADRL) algorithm. Both static and mobile user cases were
studied and a variety of state spaces were investigated. How-
ever, mobile user cases have not been sufficiently investigated
in the literature, while current methods are unable to handle
more practical network scenarios such as dynamically varying
user admissions and departures.

B. Novel Contributions

Therefore, in this work, we aim to design an efficient DRL-
based power control method that is able to cope with practical
network conditions, such as heterogeneous user mobility pro-
files, as well as varying numbers of incoming and departing
users. In our preliminary work [22], although we have con-
sidered user mobility, the major drawback of the proposed
DDPG-based SADRL method is that it is hardly scalable
to larger networks. Indeed, SADRL is a fully centralized
approach, where the CPU interacts with the environment and
makes power allocation decisions for all users, which is hardly
applicable to a large-scale system [23]. To cope with this issue,
we hereby take the distributed Multi-Agent DRL (MADRL)
approach, which is a promising tool for realizing decentralized
scalable systems, subject to competition and cooperation as in
our multi-user cell-free massive MIMO system. In particular,
the parameter sharing technique is adopted on the users’ side to
cope with dynamic and realistic scenarios and enhance system
scalability. The recent line of works [24] [25] also utilizes a
parameter sharing-based learning method for power allocation
in cell-free massive MIMO system, but they target the AP
side in the downlink transmission phase with static users
and implements it in a supervised learning or unsupervised
learning manner which requires either complex or simple pre-
preparation of training data. In addition, although the DDPG
algorithm was used to train the single agent in [22], it also
struggles to work in large-scale networks. Moreover, being an
oft-policy algorithm, learning is based on a replay buffer of
previously experienced state-action pairs, which may not suffi-
ciently represent the current state of the dynamic environment.
By contrast, the Proximal Policy Optimization (PPO) method
is scalable to large models and can be computed in parallel.
Besides, PPO is an on-policy algorithm [26], enabling it to
learn from the most recent experiences, making PPO more
stable than DDPG for the mobile scenario with higher speed
under consideration.

Given the above, we address a practical network scenario
subject to dynamic variations, for which we propose a PPO-
based MADRL method for uplink power control with hetero-
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geneous mobile users in a cell-free massive MIMO system.
The detailed contributions of this paper are listed as follows.

1) We derive the uplink achievable rate for each user and
mathematically formulate the uplink power control opti-
mization problem under minimum user rate constraints.

2) To solve this problem, a PPO-based MADRL approach
that works in a Centralized Training and Decentralized
Execution (CTDE) manner is adopted. In particular, mo-
tivated by the homogeneous nature of user agents for
this problem, each user becomes an agent that can share
the same actor network, enabling them to learn from
all agents’ experiences and improve learning efficiency.
Several observation spaces are designed and tailored to
different mobility scenarios.

3) Extensive computer simulations are conducted under
different scenarios with fixed and dynamically varying
numbers of users. The proposed method is shown to
outperform benchmark schemes, jointly in terms of sum-
rate and number of satisfied users, and with lower com-
plexity compared to non-DRL benchmark methods and
faster convergence speed compared to DRL benchmark
methods.

4) In particular, the proposed CTDE-MADRL method with
a shared actor network has been used for the first time
to cope with the uplink power control problem in cell-
free massive MIMO system under a dynamic and re-
alistic scenario where mobile users can enter and exit
the network at any time, and is shown to be the only
effective method among those under consideration. This
is because it enables any new user entering the system to
immediately exploit the previously trained common actor
policy to make its own decision, without wasting time for
retraining under the new network configuration.

The remainder of this paper is as follows. The system model
is described in Section II along with the uplink data trans-
mission process and achievable rate derivation. The studied
problem is formulated in Section III. Section IV introduces
the background of the PPO algorithm and several PPO-based
DRL methods, followed by the proposed PPO-based MADRL
power control method in Section V. Numerical evaluations are
presented in Section VI and finally, conclusions are drawn in
Section VII.

II. SYSTEM MODEL

We consider a cell-free massive MIMO system for uplink
data transmission in a D x D square area as shown in Fig. 1.
There are M APs, each consisting of one antenna and K single
antenna users that share the same time and frequency resource,
where M is much larger than K such that sufficient spatial
degrees of freedom can be provided to separate users in space
by signal processing. The APs and users are both uniformly
distributed in this area and all APs are connected to a CPU
via backhaul links.

The channel is modeled as follows [22]. Channel g,,; links
the kth user to the mth AP and includes large-scale fading
factor (,,; and small-scale fading factor h,,, which is given
as gmk = VPBmkhme, m=1,--- M, k=1--- K. Itis

AP
AP 1 1 s

L

N
User 1 . . )\

Al
User K

Fig. 1: Cell-free massive MIMO system with all APs con-
nected to a CPU through backhaul links.

noted that the large-scale fading factor 3, includes the effect
of path-loss and shadow fading which changes very slowly and
does not incur much overhead for sporadic feedback, thus 3,,,x
is assumed to be known at the AP side and will be used as
an important parameter for learning. The small scale fading
factor h,,; stays constant during each coherence interval and
follows the CN(0, 1) distribution.

A. Channel Estimation

The users and APs are assumed perfectly synchronized as
in [27]-[29] and pilot sequences are transmitted from users
for channel estimation. Let the channel coherence interval be
denoted as 7. which consists of length 7 for sending pilots
and T, — 7 for sending data. Usually, the number of users
K is larger than 7 resulting in pilot contamination. That is,
when each user randomly selects its pilot sequence from the
orthogonal pilot set 77, different users may be using the
same pilot sequence. Initially, each user transmits its 7-length
pilot sequence ¢, € C™*! simultaneously, then the received
pilot signal vector y,, € C™*! from all users at AP m is

K
Ym = > _ VTP gmidi + b, e)

k=1

where pP is the pilot transmission power and nP, € C™*! is

the noise vector with i.i.d. elements following CA/(0, §2).
After receiving pilot signal y,,, each AP correlates it with

¢I]3 and observes a noisy version g, of each channel element,

given as

Gk = S5Ym = Y VTP +pmb, ()

k' €V

where V), is the user set that uses the same pilot sequence ¢y.

Noise after correlation ¢inP, is also distributed as CA/(0, 62).
Then, the channel estimation is performed using Minimum

Mean-Squared Error (MMSE) [30], and the estimated channel

Gmik given ¢,y is obtained as

V Tpp 'mk
52 +7 Zk'evk pp/Bmk’

gmk = gmk~ (3)
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: _ VT PP Bk
To get a more concise form, let i = 57 Swiev, PR

then §,,; can be written as

gmk = O‘mk:&mk- (4)

Assuming Rayleigh fading, channel g,,; between user k
and AP m follows a complex Gaussian distribution g,,; ~
CN(0, Bink), SO Umpx is also a complex Gaussian random
variable, hence the estimated channel g, follows a complex
Gaussian distribution [3] [4], i.e.,

where the variance of estimated channel V. is calculated as
Tppﬁka
Vink = . (6)
(52 + Tzk/evk ppﬁmkr
Recall that the real channel g, follows g¢nr ~

CN (0, B,nx) and according to the property of MMSE estima-
tor, the estimated ¢, and the estimation error g,,x = gmk —
Jmi are independent random variables. Thus, the estimation

ErTor Gy is distributed as Gk ~ CN(0, Bk — Vink), which
is further written as
Bk (0% + 734 PP Bk
e~ e [0, 0TSmO )y g

62 +T Zk’evk ppﬁmk’

where Vy /k is the user set that contains all users in V}, except
user k.

B. Uplink Data Transmission and Detection

In the uplink data transmission phase, the received signal at
AP m from all K users is

K
=Y Gmk/ORTE + N, ®)
k=1

where x;, is the data symbol of user k, p}; denotes the uplink
data transmit power for user k£ and n},, is the additive noise at
AP m side.

Then, the APs perform the Maximum-Ratio Combining
(MRC) for data detection, after which the processed signal
GV in each AP is collected at CPU, which is added up as

Z Z gmkgmk’ pk/xk’ + Z g:nknrn

m= 1k:’*

Z Z Gk Imk \/ Pl Th

+ m= 1k #k

M
u __
Ty = gmkym
1

m=
M
_ Z mk;gmk\/>=71k

m=1

desired signal inter-user interference

Z gmkn

where gy , is the matched filter to decode the signal from
user k.

C. Achievable Rate Derivation

Next, we derive the closed-form of the uplink achievable
rate. Firstly, we compute the Signal-to-Interference-plus-Noise
Ratio (SINR) via calculating the power of each term in Eq.
(9), namely the desired signal, interference signal and noise
terms. The final SINR expression of user k is shown in Eq.
(10).

Secondly, after getting the SINR n;! for the kth user, the
achievable rate of the kth user considering the pilot overhead
can be directly written as

- (1—;) logy (14 1),

where B is the system bandwidth.

For the derivation details of Eq.(10) and Eq.(11), please
refer to Appendix A. Moreover, we would like to notify that
unlike the achievable rate in [4] which makes use of the “use-
then-forget” technique using channel statistics to detect the
desired signal, we use the true effective channel gain to detect
the desired signal since this is a reasonable assumption in our
uplink scenario. Thus, we compute the expected power of the
desired signal term over channel statistics and the power of
the interference plus noise term separately, in order to derive
the achievable rate expression in Eq. (11).

an

III. PROBLEM FORMULATION

The objective is to maximize the average reward, in terms
of the total weighted sum-rate with discount factor v over
policy 7 as shown below, where the policy is the power control
strategy for mobile users. The target optimization problem >
can be mathematically formulated as follows,

max Z'thu (12)
st. 0< p“( ) <p", k=12,.,K (12a)
R}é( ) 2 Rmin7 k = 1727 7K (12b)

Problem (12) is under a hard power constraint (12a) and a min-
imum rate soft constraint (12b) for each user. Therefore, it is
an intricate NP-hard optimization problem with a prohibitively
large solution space, especially for a dynamically changing
mobile network, and minimum rate constraints, for which
there exists no conventional method to solve it. Meanwhile,
since our target optimization problem (12) aims at maximizing

21t should be noted that in realistic conditions, the feasible conditions

+ =1 (9) to guarantee a solution to the formulated optimization problem are not
\W_/ necessarily guaranteed. Therefore, the goal will be to minimize the number
noise of users in an outage, while maximizing sum-rate.
(et Vink)? + Yoy Vit
p k m 1 m=1 4 kVmkPmk

n =

(10)

M M
TZk’EVk p}é’pp (Z’mzl amkﬁmk’) + Zk’;ﬁk Pz/ Zm:l BmkImG + Zm:l mG52
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Fig. 2: SADRL algorithm

the average cumulated rewards over all slots, whereby the
optimization is not independent at each slot, a slot-by-slot
based method is not suitable to solve it either. Given this, we
harness the dependencies between time slots and propose an
MDP formulation for this problem, which can be effectively
solved by a DRL-based method.

In the following, some backgrounds about related PPO-
based DRL algorithms are provided, then a policy-sharing
multi-agent DRL power control method is designed in order
to solve the above problem.

IV. BACKGROUND ON PPO-BASED DRL ALGORITHMS

PPO is a widespread on-policy RL algorithm that is often
adopted in distributed systems and can be computed in a
parallel manner [31][32]. Meanwhile, DRL is a major tool
to solve sequential decision-making problems, shown to be
highly efficient for the considered power control problem [22].
Thus, in this section, we first introduce the principle of the
PPO algorithm and then present an overview of frameworks
for the PPO-based SADRL method and PPO-based MADRL
methods, which will serve as performance benchmarks for our
proposed method.

A. PPO algorithm

PPO only has one actor network and one critic network
which are simple to implement. The actor network takes state
s¢ as input and outputs the probability of the action 7(- |
st), which controls the agent’s action a;. The critic network’s
input is state s; and the output is the value function V(s;)
corresponding to s;, measuring the quality of the action taken.

For updating the actor network, we denote the parameters
of this network as 6 and choose LEVP () as the objective
function, given as [26]

LEYP () = By [min(r(0) Ay, clip(r4(6),1 — €, 1 + €) Ay)],
(13)

where E; is the empirical average over saved samples, and

mo(at|st)

0014 (atlst)

r(0) = (14
denotes the probability ratio measuring whether the action is
more probable or not in the current policy than the old one,
and clip(r¢(0),1 — €,1 + €) limits 7 in interval [1 — €, 1 + €]

local .
observation

Environment

Fig. 3: IL-MADRL algorithm

where € is the clip parameter. A, is the advantage function,
originated from the advantage estimator in [33], given as

Ay =64+ N1 4+ (N ey, (15)

where 0; = reward; +~V (s¢+1) — V (s¢). Besides, an entropy
term H[my(-|s¢)] is often added to the objective function (13)
to prevent the policy from exploring too much and being stuck
in local minima. Thus, the final objective function becomes

LFPO(9) = LY (9) + cHmy(-|s1)], (16)

where c is the entropy coefficient. Then, the objective function
LPPO(0) is maximized through stochastic gradient ascent, for
updating the parameters of the actor network.

For updating the critic network, we denote its parameters as
¢ and use a stochastic gradient descent algorithm to minimize
the mean-squared error E.[(V(s;) — rewardy])?.

B. PPO-based SADRL

For the PPO-based SADRL method, the PPO algorithm
introduced above can be directly performed by the central
agent as shown in Fig.2. The central agent holds all infor-
mation about the environment as (a global) state which is
input to both actor and critic networks for training. After the
training phase, the learned policy is also executed at the central
agent through the actor network. Thus, SADRL works in a
centralized training and centralized execution manner.

C. PPO-based Independent Learning-MADRL (IL-MADRL)

MADRL is extended from SADRL in the form of stochastic
games [34] and is closely tied to game theory, whereby a set of
agents decide upon actions over the environment. An agent’s
behavior will be affected by the actions of other agents and
the long-term reward is decided by the combined actions of
all agents.

In the framework of IL-MADRL as shown in Fig. 3, each
agent has only access to its local observation and optimizes
the policy independently. Hence, each agent treats other agents
as components of the environment, and agents do not engage
in any form of communication nor coordination. The training
process of IL-MADRL remains unchanged from SADRL for
each agent, wherein each agent maintains a local memory that
stores transition data including the observation (same role as
the state in Fig. 2), action, reward and next observation at time
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Fig. 4: CTDE-MADRL algorithm with separate actor networks

step ¢, and then do the learning process as well as the testing
process as in SADRL. 3

D. PPO-based CTDE-MADRL with separate actor networks

CTDE-MADRL is an approach used to train multiple agents
in a coordinated manner while allowing them to execute their
actions independently during deployment, as shown in Fig. 4.
To be specific, the training phase involves a centralized entity
that coordinates the learning process for all agents. The global
critic network receives observations from the environment or
from all agents (the global state) as input to evaluate the quality
of the action taken by all agents, which is measured by a global
value. The centralized entity also updates the agents’ policies
and learning parameters based on the collective experience of
all agents. After the training phase, each agent has its own
actor network (having different network parameters). During
the execution or deployment phase, the trained agents operate
in a decentralized manner. Each individual agent interacts with
the environment independently, without any centralized control
nor coordination, thereby making decisions based on their own
learned policies and observations.

Different from IL-MADRL, when training the CTDE-
MADRL system, each agent maintains a local memory that
not only includes the observation, action, reward, and next
observation but also the global state and next global state for
every time step t. Using this local data, the parameter updating
process, also known as backpropagation, can be performed
in parallel for the actor networks since each agent possesses
different stored data. Consequently, the parameters of the actor
networks among agents are distinct. *

V. PROPOSED POWER CONTROL METHOD

To solve Problem (12), we first show that our target problem
may be modeled as a Markov Game (MG). An MG is a
generalization of an MDP, where multiple agents participate
in the learning process and have their own set of actions.

3The PPO-based IL-MADRL algorithm introduced here is also known as
the Independent PPO (IPPO) algorithm.

4The PPO-based CTDE-MADRL algorithm is also known as Multi-Agent
PPO (MAPPO) algorithm; it will be referred as “CTDE-MADRL-separate”
thereafter.
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Fig. 5: MG model of the considered problem. Given current

state/local observations o} ... of, users take actions a and
obtain rewards T, then all users enter a new state o}, ... of |
with a transition probability P(o},; ... of5 |0} ... of,a).

The problem at hand may be modeled as an MG as shown
in Fig.5. At each scheduling frame, each mobile user, acting
as an agent, observes its local environment information of,
such as the large-scale fading factors of its channels to all
APs, and takes action af, i.e., it selects its transmit power
value through its own actor-network. Each user then receives
an instantaneous reward I'F related to its own rate, which will
be used to obtain a global reward. Then, all users will move
to new locations and get new observations o}, ... of; with
a transition probability P(o},; ... o |0} ... of, a). This
interaction between the agents and the environment is iterated
over time to maximize the expected reward.

A subclass of MG is called homogeneous MG. Intuitively,
it is an MG where agents have the same action space, and
where policy can be shared. A rigorous and formal statement
of homogeneous MG can be found in [35]. It is proved in
[35, Th. 1] that, if an MG is homogeneous, then policy sharing
provably incurs no suboptimality. According to [35], MG is
homogeneous if

(1) The local action spaces are homogeneous and the state
is decomposed into local states with homogeneous local
state spaces.

(ii) The transition function and the joint reward function are
permutation invariant.

(iii) All agents have a common observation space and they
are permutation-preserving with respect to the state.

In our model, although users have different moving paths,
they will act similarly whenever they are in the same situation
to strive for the same optimization target. Specifically, when
users are in the same location and receive the same observa-
tion, the same action should be chosen using the same mapping
rule from observation to action [36] [37], i.e., their policies
would be the same. Hence, the modeled MG for our problem
may be regarded as homogeneous. This will be further justified
based on the three conditions in [35, Th. 1] in Section V-B.
Given the above discussion, we design a PPO-based MADRL
power control approach with a shared actor network, whereby
each agent can not only learn from its local observation but
also make use of the experiences of other agents.

In the following, the framework of the proposed method is
first introduced and then the algorithm design is exposed.
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Fig. 6: Training data collection process.

A. Framework of the proposed method

The proposed PPO-based CTDE-MADRL algorithm with
a shared actor network can be seen as a variant of the
above CTDE-MADRL algorithm. However, it follows an
actor network’s parameter-sharing principle where all agents’
actor networks utilize the same set of parameters. Similar
to CTDE-MADRL with separate actor networks, users are
cast as distributed learning agents and the CPU acts as the
central expert agent during the training phase for each episode.
The interactions between the agent and the environment to
collect training data (global state, local observation, action, and
reward) are represented in Fig. 6. As detailed in the following
subsection, global states and local observations both include
channel large-scale fading coefficients and user rates, where
the user rate can be measured locally at each user side as
local observation and then transmitted to the CPU through a
common control channel as global state, whereas the channel
large-scale fading coefficients required by users and the CPU
will be sent from AP side. This is reasonable and feasible
since the large-scale fading factors typically vary slowly, and
AP nodes can easily obtain and transfer this information to
learning agents and the CPU agent simultaneously, through the
user wireless access channel and the backhaul link. After that,
each user receives their channel information towards all APs
as local observation, whereas, the CPU receives the channel
information between all users and all APs as global state. After
obtaining local observations, users get the action policy from
the existing actor network, and transmit their uplink data signal
using the power dictated by the policy. Then, APs perform
MRC for data detection and the CPU gathers all users’ uplink
signals and compute the common global reward, which is
basically the same process as described in Section II. Thus, the
training data collection process does not incur much additional
overhead.

After the training data collection process, each agent stores
the training data into their local memory independently. How-
ever, compared with the above CTDE-MADRL algorithm,
instead of training the actor network separately using local
memory, the actor network is sequentially trained using shared
parameters with their respective local memory as shown in
Fig.7. To elaborate, the network parameters are firstly up-

Environment

Fig. 7: Proposed CTDE-MADRL algorithm with shared actor
networks

dated using agent 1’s data, then the updated parameters are
shared with agent 2 through, e.g., Device-to-Device (D2D)
communications working in overlay mode, thereby facilitating
parameter updates using agent 2’s data. This process continues
until all agents’ datasets have been utilized and at the end, the
parameters of the last trained agent are transmitted to the CPU
through the common control channel, and then broadcasted
to all agents through the broadcast control channel, resulting
in a unified set of parameters for the actor network. For
the training process, regarding the feasibility of the method,
parameter sharing among agents inevitably costs additional
resources, but it is worth noting that it is helpful for improving
learning efficiency and for new users to quickly get current
policy as discussed in the following Remark. Besides, during
the testing or execution phases, these agents possess the
shared parameters, enabling them to operate autonomously
and independently without incurring any message exchange
cost as in the testing phase in CTDE-MADRL with separate
actor networks.

Remark: The utilization of shared parameters serves two
primary advantages. Firstly, in dynamic systems where users
can enter or leave the system, a global model is required to
accommodate new users. By employing shared parameters,
newly introduced users can directly employ the existing model
without requiring retraining. Secondly, in scenarios where
all agents are homogeneous, the agents can learn from the
experiences of other agents, leading to enhanced convergence
speed and improved performance.

From the above, we can see that the proposed method is
feasible and can be implemented in practice, however, it may
require substantial signaling exchanges for parameter sharing,
in order to obtain the desired benefits. Compared to other
MADRL frameworks, message exchanges are unavoidable,
similarly to [38][39] where some implementation aspects,
especially about message exchanges, are illustrated. Therein,
authors in [38] provide a system coordination method to
decrease the latency caused by message exchanges in an Inte-
grated access and backhaul (IAB) network, and a decentralized
critic network for each agent is adopted in [39] to reduce the
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amount of message exchanges considering a network including
a single BS serving N users. As for this work, the channel
hardening effect of massive MIMO makes the channel stable
in the scale of coherence time, thereby reducing the frequency
of message exchanges. Besides, the cell-free massive MIMO
system’s CPU as the data collection processing center presents
itself as a natural central expert agent without inducing much
additional signaling overhead.

B. Algorithm design

According to the problem formulated above, the observation
space, global state, action space, and reward function of the
proposed MADRL method are designed below.

1) Observation Space Definitions: For mobile users, their
locations at each time step have a significant impact on se-
lecting the power level, since they mostly determine the large-
scale channel fading coefficients towards each AP. Therefore,
in designing the observation space, we consider utilizing the
large-scale fading gain matrix as the primary source of infor-
mation for each agent. 3 Furthermore, an enhanced version
composed of the variance of the estimated channels including
extra pilot contamination information, and a simpler version
only containing part of large-scale fading factors to decrease
learning complexity are also considered. Additionally, taking
advantage of autocorrelations between a user’s trajectory that
is unique to mobile users, we consider incorporating some his-
torical information including the user’s past transmission rate
and the past large-scale fading coefficients matrix. Besides,
given the information-sharing characteristics of the proposed
method, one observation space involving common average
information of large-scale fading coefficients for all users is
designed. Given the above, five different settings for the local
observation space oy at each agent are designed as follows.

(1) The basic setting oF is given as
g0 188

o (1) = [Br(t)],

where vector B (t) = [Bik, Bok, ..., Bnk]T contains the
large-scale channel fading coefficients from user £ to all
M APs in the current time step ¢.

a7

(2) The enhanced version of 0B, written as o), is given as

oy (t) = [Vi(1)], (18)

where vector Vi (t) = [Vig,, Vark, ..., Varr] T contains the
variance of the estimated channels between the kth user
and all M APs in the current time step ¢.

(3) To decrease the observation space dimension, a simpler
version of 01,?, written as OEL, is given by the limited large-
scale channel coefficients,

op"(t) = [Br.L(t)],

where Br.1(t) = [Bik, B2k, - Brr]T rtepresents the L-
largest large-scale fading factors between user k and M

(19)

SWhen users switch their locations, their observations, i.e., the large-scale
fading factors to APs, are also exchanged, thus satisfying condition (iii) for
homogeneous MG.

APs at current time ¢. Notably, L < M reduces the
observation space dimension.

(4) Specially for mobile scenarios, an observation setting OER
is defined as the large-scale channel coefficients of the
previous and current time steps as well as the past user
rate,

opR(t) = [Bk(), Br(t — 1), Rp(t—1)].  (20)

(5) Finally, an observation setting OE including a common
information for all agents is defined as

oP(t) = [Br(1), B(t)],

where B(t) = [B1,B2, - ,Bu]. and element 3, rep-
resents the average value of large-scale channel fading
coefficients between all users and each AP m, i.e., Bm =
% Zszl Bmk, Where K is the total number of users. It
should be noted that the average large-scale channel fading
vector B will be calculated at CPU and then broadcasted
to all users (agents).

21

2) Global State: The global state is a key component
in training multiple agents using the CTDE approach. It
represents a comprehensive view of the system and contains
information that individual agents cannot directly observe.
We propose a global model constructed by concatenating the
observations of all agents, i.e., s(t) = [01(t), 02(t), -+ , 0k (t)]
6. By sharing the global state among agents during the training
phase, it enhances stability, improves performance and conver-
gence of the training process.

3) Action Space: Given the current observation of each
agent oy (t), each agent can obtain the power control policy
through its own actor-network. Then, according to the policy,
the action taken by each agent k is its power transmission level
represented by ay € [0, p"], where p" denotes the maximum
power level for uplink transmit power.

For action space, action ay(t) for each user is selected
from a predefined power level set [pl,---,p"V]7, where N
corresponds to the total number of power levels. Additionally,
the lowest power level is denoted as p* = 0, while the highest
power level is represented by p™ = p". Hence, the dimension
of the discrete action space is N .

4) Reward Function: The reward function follows a similar
formulation as in [22]. For the local reward function I';, at each
agent, it is defined as

U}Rkv if Rk: 2 Rmin

Fk: ’

22
(1 — w)(Rmin — Rk), otherwise @2)

where w € (0,1) is utilized to control the trade-off be-
tween incentivizing satisfied users when their minimum rate
requirement is satisfied, and penalizing unsatisfied users in the
opposite case.

Subsequently, the global reward I" for the system is obtained
by averaging the rewards across all agents as I’ = % Zszl T'x

The second half of condition (i) for homogeneous MG is satisfied.
"The first half of condition (i) for homogeneous MG is satisfied.
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Fig. 8: Simulation environment.

8, The shared global reward T is then disseminated among the
agents after each training step.

It is also worth noting that, this reward definition enables
grasping the simultaneous cooperative and competitive inter-
actions among users while using the same actor networks, by
means of the SINR expression in (10) which is a function of
the uplink power resulting from all users’ actions.

VI. NUMERICAL EVALUATIONS
A. Simulation Settings

Our proposed method is evaluated under various user mobil-
ity schemes in a cell-free massive MIMO network. Moreover,
according to the characteristics of user movement in the
network, we divide the experiments into two cases, i.e., firstly
with a fixed number of users where no users enter or exit,
and secondly with a dynamically varying number of users
where users can enter or exit the network. Detailed simulation
parameters are shown in Table I.

For both cases, the number of APs M is 49, distributed
within an evenly spaced grid structure to ensure perfectly
uniform distribution in a 0.5 x 0.5 km? square area as shown
in Fig. 8, hence there are 7 APs on each row and each column.
We assume that each user moves in a random direction (left,
right, up, and down) from a random initial location with a
velocity uniformly distributed between 0 and 40 km/h.

We record the mobility patterns of the users over a duration
of 10 seconds which is set as one scenario. Given a power
scheduling period of 0.1 seconds, this yields a total of 100
steps per scenario. Both the actor and critic networks are com-
posed of 2 hidden layers, each layer with 64 neurons and the
Rectified Linear Unit (ReL.U) as activation function. Moreover,
the simulation results are collected after each episode using the
trained actor network with the testing dataset. In the testing
phase, we do not update the parameters of the actor network.

8We can see that the joint (global) reward function is irrelevant to the
order of users. Besides, the transition function in our problem is related to
the mobility statistics of each user, which are assumed to be the same and
the transition function is also permutation invariant, thus satisfying condition
(i) for homogeneous MG.

TABLE I: Simulation Parameters

Parameters Value Parameters Value
Carrier frequency 1.9 GHz Bandwidth 20 MHz
Pilot transmit 100 mW Max1mpm data 100 mW
power transmit power
Number of APs 49 Standard dev'latlon of 8 dB
(M) shadow fading 4,
. 0~ 40 .
User velocity km/h Max/min power 100/0 mw
noise power —122dB Power Sc.h cduling 0.1s
period
Number of power 20 Number of scenarios 200
level (N)
Number of steps 100 Training scenarios 70%
per scenario
Testing scenarios 30% L for 0B 20%
Discount factor ~y 0.99 Hidden la}'/e_:r size for 64
for rewards critic
Hlddfen layer size 64 Learning rate 5x 1074
or actor
Clipping valuer € 0.2 Entropy coefficient ¢ 0.01
Reward’s weight w 0.1
Parameters for fixed number of users
Number of users ‘ Number of users for
.. 20 . 20
for training testing
Parameters for dynamically varying number of users
Number of users ‘ 10 ~ 30 ‘ Number of users for 5~ 40
for training testing

Specifically for the case of a fixed number of users, 200
scenarios all involving K = 20 users are generated, resulting
in 200 different user moving trajectories, among which 70%
of trajectories are used for training and 30% for testing.

In the second case with a dynamically varying number of
users, we also generate a total of 200 scenarios. The difference
is that 70% of the scenarios where the number of users varies
between 10 and 30 are used for training. Then during the
testing phase, we use additional 30% scenarios with varying
numbers of users ranging from 5 to 40. It should be noted
that, as a CTDE framework is employed in this work, we test
the system with new scenarios not seen during training. In
the deployment phase, agents do not need to be frequently
retrained which reduces the DRL time complexity.

All channels were generated under the Rayleigh fading
model for small-scale fading. In addition, shadow fading &°
between user £ and AP m at time ¢t was modelled by a log-
normal distribution, namely, ank ~ LN (us,ds), which can
be represented as

t
SshSmp

G, =101,

mk —

(23)

where sfnk ~ N(0,1) is a normal distribution and d, is the
standard deviation of the corresponding normal distribution for
shadow fading &! .

Unlike in [22] based on an uncorrelated shadow fading
model, here, we adopt a correlated shadow fading model.
Whenever the user moves from time step ¢ to the next time
step ¢/, this results into a correlated sample sj:lk, which is
captured by the state transition probability.

By definition, the spatial correlation represented by R,
can be modelled as [40]

’ d
Rt = Elshysiue] = op(— - 2),  24)

cor
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Fig. 9: Performance comparison of different methods in terms of reward, sum-rate and percentage of satisfied users.

where dj, is the moving distance of user k£ and d., is the
decorrelation distance related to the environment at which the
correlation value is 0.5.

According to the above correlation model and given an
uncorrelated random shadow fading variable s’ ~ AN(0,1),
st . is modelled as

Sﬁnk = Rmksf;kl + [1 - (Rmk)z}siv (25)
where at ¢t = 0, the shadow fading value s, for the initial
location of user k is directly generated by a Gaussian random

variable with mean 0 and variance 1.

B. Benchmark Methods

Benchmark methods: Six benchmark methods are adopted
for comparison which are listed as follows:

1) Uniform max: All users transmit data at the maximum
power value.

2) Max-min: As in [3], this approach employs a traditional
bisection optimization algorithm to maximize the mini-
mum user rate in the network.

3) Weighted Minimum Mean Squared Error (WMMSE) [41]:
this approach aims to maximize the sum-rate and solves
the problem based on iterative minimization of weighted
mean-squared error.

4) SADRL: PPO-based single-agent DRL approach detailed
in Section IV.

5) IL-MADRL: PPO-based multi-agent DRL approach with-
out any communication nor coordination between agents.

6) CTDE-MADRL-separate: CTDE-MADRL with separate
actor networks introduced in Section IV.

To assess the effectiveness of all methods, we employ three
metrics to evaluate their performance, namely,

o Reward: I defined in Section V-B4.

« Percentage of satisfied users in terms of their minimum
required rates.

o Network sum-rate: 1, RY.

All metrics are averaged over all steps and scenarios.

C. Simulation results of the case of fixed number of users

The proposed method is evaluated under a fixed number of
users with different parameters and compared with benchmark
methods.

1) Perfomance evaluation of different methods: Different
power control methods are compared in Fig.9 with regard
to reward, sum-rate and percentage of satisfied users using
the basic observation setting o®. The x-axis represents the
training episode, where a training episode is defined as the
process of learning all the data in the training set, consisting
of 70% x 200 x 100 = 14000 steps, where 200 is the number
of scenarios and 100 is the number of steps per scenario.
After each episode, we conduct tests on all scenarios in the
testing set and calculate the average metrics. It is shown that
both the Max-min method and the proposed CTDE-MADRL-
shared method yield comparable results in terms of average
reward. However, the Max-min method sacrifices the overall
benefits of the system with poor performance in terms of
sum-rate, while the proposed CTDE-MADRL-shared method
also achieves a high sum-rate. It is worth noting that the
Max-min method is not scalable to larger systems due to the
extensive computational time caused by the iterative convex
optimization for every step required to solve the associated
optimization problem, while the proposed DRL method with
a well-trained network only requires a limited number of
operations (multiplications and additions). Besides, although
the WMMSE method has a significant advantage over other
methods in terms of sum-rate, it performs the worst in terms of
reward and percentage of satisfied users. That is, the WMMSE
method severely sacrifices the QoS of some users to achieve
the overall performance. By contrast, our goal is to maximize
the total system rate while meeting the rate requirements of
each user as much as possible.

When comparing different DRL-based methods, it becomes
apparent that the MADRL methods, especially the proposed
method consistently outperform the SADRL method across
all metrics and convergence speed. Moreover, the extensive
exploration space involved in SADRL requires a prolonged
training duration to achieve a comparable reward value as that
of IL-MADRL and CTDE-MADRL-separate. The reason for
this phenomenon is that SADRL suffers from the most severe
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limitation of training data. The generated 200 scenarios for
SADRL is relatively small when considering the numerous
possible combinations of all users’ locations, speeds, and
directions. In contrast, the proposed CTDE-MADRL-shared
method leverages the shared parameter technique to train deep
neural networks using data from all agents. This approach
allows for the effective utilization of experiences gained by
each agent to train significantly reduced training parameters
of actor network and alleviates the constraints imposed by the
limited training dataset. Consequently, the proposed CTDE-
MADRL-shared method demonstrates superior performance
compared to other methods in the context of limited training
data availability. Beside, compared with IL-MADRL method,
the CTDE-MADRL-separate has a certain degree of coopera-
tion among agents, thus the network performance is slightly
higher than the IL-MADRL method.

Expectedly, the Uniform max method without power control
policy performs the worst yet has the highest power consump-
tion.

Remark: the proposed CTDE-MADRL-shared method per-
forms the best from these three network performance per-
spectives (reward, sum-rate, and percentage of satisfied users).
Although it is slightly inferior to the Max-min method regard-
ing the percentage of satisfied users, it has a much higher
sum-rate. On the contrary, WMMSE method achieved the
highest sum rate but with the lowest reward and the lowest
percentage of satisfied users. Thus, Max-min and WMMSE
methods are two extremes, one tries to maximize the benefit of
individual users while ignoring the performance of the entire
network, and the other one tries to maximize the total system
performance while ignoring the experience of individual users.
Therefore, the proposed method combines the advantages of
both and can achieve a more flexible compromise between
the overall system performance and the QoS of a single user.
Besides, the proposed method is much less computationally
complex compared to Max-min and WMMSE. Moreover, the
MADRL methods have better network performance and faster
convergence speed than the SADRL method because MADRL
can effectively explore all users’ experience data but with
more complex implementation (i.e., the cooperation among
various agents during the training process), especially the
proposed MADRL method is always the best in terms of
network performance and learning speed. However, these
benefits come at the cost of increased communication overhead
for parameter sharing among users in the training phase. The
amount of required signaling overhead is proportional to the
number of parameters of one actor network and the number
of users which is limited since the number of users and actor
network parameters is limited. Therefore, we can conclude that
more information exchange among agents can lead to better
network performance and faster convergence speed, but also
induces higher communication overhead and implementation
complexity.

2) Proposed method with different observation settings:
As explained in Section V-B1, five different observation spaces
are designed, serving as the input to the actor network for each
agent to compute its action. They are compared in Fig. 10 with
our proposed CTDE-MADRL-shared method which shows the
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Fig. 10: Average reward of different observation space settings.

best performance in the above experiment.

All observation settings demonstrate similar results in terms
of average reward, but observation OER is slightly better than
others since it provides some additional historical information,
meanwhile, OEL achieves the lowest reward with minimal
observation space dimension. Thus, more information often
results in better performance, but also requires higher compu-
tational complexity.” Moreover, among the different settings,
the case of OE stands out with the fastest convergence speed by
sharing common information among users, namely the average
large-scale fading coefficients of all users to each AP, defined
in Section V-B1 as j3. This is equivalent to each user having
coarse global information that induces very limited additional
overhead, yet enables tangible benefits in terms of convergence
speeds.

3) Performance of different methods with different mini-
mum required rates: Since IL-MADRL and CTDE-MADRL-
separate method have similar performances, for clarity, in
Fig. 11, only six distinct power control schemes are compared
with various minimum required transmission rates, specifically
8, 12, and 16 Mbit/s. It is shown that as the minimum
required rate increases, the metric of reward and percentage of
satisfied users of all methods show a downward trend, while
the sum-rate does not change much. Furthermore, the proposed
CTDE-MADRL-shared method consistently performs well in
all metrics for different values of minimum required rates.
Although WMMSE method is far ahead in terms of sum-rate
for different minimum required rates, it severely sacrifices the
service quality of some users as already explained in Section
VI-C1. Besides, for the Max-min method in terms of the
percentage of satisfied users shown in Fig. 11c, the proposed
method is slightly lower than Max-min with required minimum
rates of 8 and 12 Mbits/s but outperforms it when the minimum
required transmission rate is increased to 16 Mbits/s, for which
most users hardly satisfy the minimum rate requirement for
Max-min method.

4) The impact of the reward’s weight w: The parameter w
in the reward function serves to regulate the balance between
rewarding satisfied users and penalizing unsatisfied users. In

9Even though actions taken do not affect future observation OE, we still
set it as basic observation given the trade-off benefits between performance
and cost (i.e., state space dimension).
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Fig. 12: Impact of different weights w with proposed CTDE-MADRL-shared method to sum-rate and percentage of satisfied

users.

this experiment, we assess the influence of w on two key
metrics: the sum-rate and the percentage of satisfied users.
We explore a range of values for w, specifically from 0.1 to
0.9. Notably, lower values of w correspond to higher penalties
imposed when a user fails to meet the required minimum rate,
thereby incentivizing users to strive to achieve the minimum
rate and seek feasible solutions.

Fig. 12 presents the results for the transmission rate and the
percentage of satisfied users across different values of w with
our proposed CTDE-MADRL-shared method. It is observed
that increasing the value of w leads to a decrease in the
percentage of satisfied users which is consistent with the above
analysis. However, according to Fig. 12a, increasing the value
of w does not effectively increase the sum-rate, and even
decreases it slightly. The reason is that for MADRL, a higher
value of w encourages each agent to select higher power level
to achieve a higher rate. Then, when all users simultaneously
opt for higher power levels, it introduces interference issues
and degrades the overall transmission rate of the system. Thus,
a lower value of w between 0.1 and 0.3 is a good choice for
our system.

D. Simulation results of the case of dynamically varying

number of users
For the case of a dynamically varying number of users,

only the proposed CTDE-MADRL-shared method is evaluated

against Uniform-max, Max-min, and WMMSE benchmarks, as
this approach was shown to offer the best performance among
all DRL-based methods in the previous section. Besides,
among all DRL approaches considered, only the proposed
CTDE-MADRL-shared method is suitable for handling this
dynamic system. This is because its shared actor-network can
be extended to new users upon their entry into the system. To
see the effect of the training scenario and observation setting
with our proposed method for this case, the following four
settings are employed in this experiment for comparison.

o Fixed with of: The CTDE-MADRL-shared method is
trained with a fixed number of users (K = 20) using
observation of.

o Fixed with OE: The CTDE-MADRL-shared method is
trained with a fixed number of users () = 20) using
observation OE.

o Dynamic with 01,3: The CTDE-MADRL-shared method is
trained with a dynamic number of users (K = 10 ~ 30)
using observation setting OE.

« Dynamic with of: The CTDE-MADRL-shared method is
trained with a dynamic number of users () = 10 ~ 30)

using observation of.

Fig. 13 presents the testing results (KX = 5 ~ 40) of the
above settings in terms of reward, percentage of satisfied
users, and sum-rate. Overall, it is evident that the proposed
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Fig. 13: Performance comparison of different settings for a dynamic number of users.

method with shared parameters performs exceptionally well
when considering the overall performance of the system and
the service quality of individual users in the system with users
entering and exiting. Among the above settings, training with
a dynamic number of users proves beneficial for improving the
performance of this dynamic system. In addition, for the role
of observation setting, recalling the results of the experiment
in Section VI-C2, where we compared the performance of
the proposed MADRL-CTDE-shared method with different
observation settings, it can be seen that different observation
settings yielded similar performance. However, in the dynamic
case, the choice of observation setting significantly contributes
to enhancing the reward and the network performance. Specif-
ically, observation setting OE incorporating information of the
average large-scale fading coefficients results in approximately
a 15% improvement compared to observation setting OE using
only the local large-scale fading, from which we can infer that
the observation setting has a greater effect than the training
scenario. The reason for this performance enhancement from
observation OE is that the average of large-scale fading co-
efficients can reflect user layout around each AP, especially
the user density, which is much different across scenarios
with varying numbers of users and can tell the agents which
scenario they are facing with, while in the fixed number of
user case, the observation setting of 0}]3 does not provide
such valuable information for differentiating the various fixed
scenarios.

VII. CONCLUSION

We have investigated the uplink power control optimization
problem for mobile users in a cell-free massive MIMO system,
aiming at network sum rate maximization under individual
user QoS constraints. To solve this intricate problem, we pro-
posed a PPO-based CTDE-MADRL-shared method, where the
actor network is shared among all agents, thereby enabling all
users to learn from each others’ local experiences. Numerical
results show that the proposed MADRL method can largely
outperform the benchmark SADRL method as well as conven-
tional optimization methods, namely the max-min and uniform
max schemes, jointly in terms of system performance, user
fairness, convergence speed, and computational complexity. In

particular, the proposed CTDE-MADRL-shared method solely
is able to cope with the scalable dynamic scenario of admitted
and departing users.

In future work, more involved dynamic scenarios with
higher user speeds, more realistic user movement patterns,
and more complex system models with multiple types of
receivers will be considered, as well as the case of massive
user connectivity.

APPENDIX A
THE DERIVATION PROCESS FOR THE ACHIEVABLE RATE

We reproduce below the results in Eq. (9) for the received
signal from user k. There are three terms, i.e., desired sig-
nal, inter-user interference, and noise terms. To calculate the
achievable rate, the power of each term needs to be obtained,

M M K
N Ak
D B Gme R D D Grmi /O
Tk = m=1 + m=1k'£k

desired signal

M
2 : ~ % u
Imkm

+ m=1 .
| ——

inter-user interference

noise

A. Power calculation of the first term

For the power of the first term P1, i.e., the power of
the desired signal, given orthogonality between the estimated
channel §,,; and the channel estimation error §,,x, we can
write

M 2
E 1D Grgmi/Ph
m=1

Pl =
M
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B. Power calculation of the second term

For the power of the second term P2, i.e., the power of the
interference from other users, it can be written as,

M K 2
P2=EF ||> > Ghrrgmm/Plaw
m=1k'#k
2
= Z E Z N 27)
k' #£k

Next, we consider two cases. Firstly, if user &’ uses different
pilot from user k, i.e., k' ¢ Vy, then g, is independent with
g.s» thus we have

2
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Secondly, if ¥’ € V4, i.e., the interfered user uses the same
pilot as user k, we have

(28)
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Combining these two cases, we can write the power of
interference term into one formula as

P = Z Tpk/ Zamkﬁmk’ +Z pk/ Zﬁmk’ mk-
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Fig. 14: CDF of the achievable rate over different random user
locations in Cell-free massive MIMO system.
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C. Power calculation of the third term

For the third noise term, we have,

M 2 M
P3=E ||Y_ grumm| | = D Vinrd®. (31)
m=1 m=1
Finally, the SINR for the k-th user can be obtained as 7;} =
ijp;; and its expanded form is shown in Eq.(10) with the

corresponding achievable rate shown in Eq. (11).

To corroborate the validity of the achievable rate we derived,
we compare it with Monte Carlo-based simulations. The
simulation parameters used for this experiment are listed in
Table I. In Fig. 14, we plot the CDF of the achievable rate of
all users in a cell-free massive MIMO system under these two
methods. We observe that our derived closed-form expression
approximates well the Monte Carlo-based simulation results.
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