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Abstract—Detecting fake accounts (sybils) in online social
networks (OSNs) is vital to protect OSN operators and their
users from various malicious activities. Typical graph-based sybil
detection (a mainstream methodology) assumes that sybils can
make friends with only a limited (or small) number of honest
users. However, recent evidences showed that this assumption
does not hold in real-world OSNs, leading to low detection
accuracy. To address this challenge, we explore users’ activities
to assist sybil detection. The intuition is that honest users are
much more selective in choosing who to interact with than to
befriend with. We first develop the social and activity network
(SAN), a two-layer hyper-graph that unifies users’ friendships
and their activities, to fully utilize users’ activities. We also
propose a more practical sybil attack model, where sybils can
launch both friendship attacks and activity attacks. We then
design Sybil SAN to detect sybils via coupling three random
walk-based algorithms on the SAN, and prove the convergence
of Sybil SAN. We develop an efficient iterative algorithm to
compute the detection metric for Sybil SAN, and derive the
number of rounds needed to guarantee the convergence. We
use “matrix perturbation theory” to bound the detection error
when sybils launch many friendship attacks and activity attacks.
Extensive experiments on both synthetic and real-world datasets
show that Sybil SAN is highly robust against sybil attacks, and
can detect sybils accurately under practical scenarios, where
current state-of-art sybil defenses have low accuracy.

I. Introduction
Online social network (OSNs), such as Twitter, Facebook,

LinkedIn, Google+, are becoming increasingly popular. They
serve as essential platforms for people to make new friends,
share their experiences, and diffuse social influence, etc. How-
ever, due to the innate openness, i.e., allowing users to create
new identities readily, OSNs are particularly vulnerable to
sybil attacks, where an attacker can create multiple pseudony-
mous identities (we call sybils here), to subvert the system. For
example, a sybil may distribute spam or phishing attacks [1],
harvest personal user information [2], gain disproportionate
influence/voting [3], [4], etc. Twitter reported that 10% of
Twitter users are fake [5]. Similarly, Facebook estimated that
about 83 millions of its users are fake [6]. Thus, it is important
to detect sybils in OSNs.

Among various methods, the graph-based sybil detection
is the mainstream one, due to its computational efficiency
and generality to detect sybils with different activity behavior.
Typically, the graph-based sybil detection can be described
as: (1) Model an OSN as a graph, in which nodes represent
user accounts and edges represent users’ friendships. (2) The
objective is to exploit the graph structure to identify those sybil
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(a) Friendship graph

Among honest users
· user v1 mentions user v2
· user v3 retweets a tweet of user v1
· user v3 mentions user v1

Among sybils users
· user v5 replies to user v4

From sybils to honest users
· user v5 retweets a tweet of user v3

(b) Users’ activities

Fig. 1: A motivating example

users given a small set of users with known labels (honest or
sybil). The underlying assumption is that honest users seldom
make friends with sybils, i.e., there are a limited number of
friendship links between honest users and sybil users (a.k.a.
the limited-attack-edges assumption), where an attack edge
means a link between an honest user and a sybil. Under this
assumption, a large number of algorithms have been proposed,
e.g., [7]–[16], just to name a few. However, recent works [17]–
[19] found that sybils are able to create a larger number of
attack edges, i.e., the limited-attack-edges assumption does not
hold in real-world OSNs. Breaking down this assumption does
lead to a very low detection accuracy [20], [21]. This motivates
us to explore practical sybil attack models and design effective
sybil detection algorithms.

Our idea is to explore user activities to refine the attack
model and design new detection algorithms. The intuition is
that luring an honest user to conduct some daily activities, e.g.,
replying a tweet, is far more difficult than luring an honest
user to establish friendship links. This intuition is supported
by some experimental studies in Twitter [22]. Let us use a
simple example to illustrate benefits of exploring activities.

Example 1 (Benefits of exploring activities). Consider the
friendship graph in Figure 1a, where v1, v2, v3 are honest
nodes and v4, v5 are sybil nodes. Each undirected link, e.g.,
(v1, v2), indicates a friendship relationship. Given that v2, v3
are honest nodes, it is difficult to detect the sybils out, i.e.,
v4, v5, because their connectivity to v2 and v3 are as good as
the honest node v1. Figure 1b shows the historical activities
of the users in Figure 1a. Given v2, v3 are honest, we can
easily see that v4, v5 are more suspicious to be sybils than v1,
because the honest nodes v2, v3 did not initiate any activity
to v4 and v5, while v3 actively interacted with v1 twice.

Example 1 uses a simple case to highlight that exploring
users’ activities can help us to detect sybils out, which are
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difficult to be detected from the friendship graph (i.e., the
limited-attack-edges assumption does not hold). The challenge
is that in practice, sybils may also lure some honest users to
conduct some daily activities with them. Furthermore, many
users in real-world OSNs are not very active in interacting with
others, e.g., by analyzing a subnetwork of Twitter, we found
that 113, 214 out of 409, 694 users (around 28% of users)
interact with others at most once only. This increases the risk
of classifying such inactive users as sybils since they also
seldom interact with other honest users, similar with sybils.
This paper aims to explore such general settings and answer:

• How to fully utilize users’ friendships and their activities
to detect sybils and do away with the limited-attack-edges
assumption?

• How to practically model sybils’ attacking behavior on
both friendships and activities, and design effective sybil
detection algorithms with theoretical guarantees?

Our contributions are:

• We develop a two-layer hyper-graph model to fully utilize
users’ friendships and their activities in an OSN. We
propose a new sybil attack model in which sybils can
launch both friendship attacks and activity attacks. Our
attack model relies on empirical findings on real-world
user and sybil behavior. (Section III)

• We design the Sybil SAN to detect sybils, which propa-
gates the trust (distrust) from given honest (sybil) nodes
to other user nodes via coupling three random walks
on SAN, with convergence guarantee. Computing the
converged trust (distrust) score is expensive, we also
design an iterative algorithm to calculate it. (Section IV)

• We apply “Markov chain mixing time” to derive the
number of rounds needed to guarantee that the iterative
algorithm terminates. We also apply “matrix perturba-
tion theory” to bound the error in the detection metric
(i.e., normalized trust scores), when sybils launch more
friendship attacks and activity attacks. (Section V)

• Experiments on both synthetic and real-world sybil
datasets show that under practical scenarios with large
attacks in friendships and activities, Sybil SAN can still
detect sybils accurately, while the compared algorithms
have very low accuracy. Experimental results further
verify that our Sybil SAN is highly robust (in terms
of the detection metric) against sybil attacks on both
friendships and activities. (Section VI and VII)

II. Background and Intuition

In this section, we first introduce the current state-of-the-
art approaches on sybil detection, i.e., graph-based sybil
detection, for online social networks, as well as state the
fundamental limitations of such approaches. Then we highlight
our intuition to develop a practical sybil attack model, which
enables us to design effective detection algorithms to address
these fundamental limitations.

A. Graph-based Sybil Detection and Limitations
Graph-based sybil detection (or defense) in online social

networks (OSNs) has been an active area of research. The
canonical formulation is that users in an OSN are classified
either into honest nodes and sybil nodes, and the objective is to
identify these sybil nodes by simply relying on the friendship
graph. The mainstream methodologies, e.g., [7]–[16], assume
an attack model that sybils can establish only a limited number
of links (or friendships) with honest nodes (in this work, we
call such links as “attack edges”). We refer to this assumption
as the “limited-attack-edges assumption”, which leads to the
following fundamental limitation: to guarantee an accurate
detection of sybil nodes, each sybil node can launch at most
O(1/ log(|V|)) attack links on average, where V is the set of
all nodes in the network [7].

However, recent studies revealed that the limited-attack-
edges assumption does not hold in real-world OSNs. In
particular, Yang et al. [17] found that in RenRen, a popu-
lar online social network in China, each sybil node could
launch many friend requests to honest users. More importantly,
around 26% of such requests were accepted. In other words,
the number of attack edges is much higher than previously
assumed. Sridharan et al [18] also found that in Twitter, a
large number of spam accounts could attract honest nodes to
be their followers, and these spam accounts (or nodes) become
deeply embedded in Twitter. Moreover, attack edges can be
established automatically. For example in Facebook, socialbots
managed to get an average request acceptance of up to 80%
[19]. Furthermore, as shown by results in recent studies [20],
[21], if one relaxes the limited-attack-edges assumption, it will
lead to low detection accuracy. All the above evidences point
to the fact that sybil attack model based on the limited-attack-
edges assumption is not practical, and purely exploiting the
friendship graph to detect sybils is quite limited in real-world
OSNs. This motivates us to investigate practical sybil attack
models and design effective sybil detection algorithms.

B. Main Intuition
Our intuition is that the social activities (e.g., tweets or

retweets) among users contain rich information, which can
enable us to differentiate the sybil nodes from honest nodes.
For instance, in real life one may exchange business cards with
strangers but people will also be more cautious in selecting
whom to further interact with. This behavior is in line with
users in OSNs, i.e., honest users may be willing to establish
links with sybils, however, they seldom interact with sybils.
In fact, this user behavior in OSNs has been justified by an
analysis of a dataset containing thousands of sybils in Twitter
by Zhang et al. [22], which showed that non-sybil users tend
to be more selective in retweeting/replying to, and mentioning
other users. These observations enable us to develop a practical
sybil attack model, or the “social-and-activity-based sybil
attack model”, which will be presented in Section III.

One naive approach to detect sybils in our social-and-
activity-based sybil attack model is composed of two steps: (1)
First, one can address the limited-attack-edges assumption by

��

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 24,2020 at 01:40:56 UTC from IEEE Xplore.  Restrictions apply. 



using the social activities among users to adjust the weights or
even delete some links on the friendship graph. For example,
one can delete the friendship link between two users when they
interact less than a given number (usually small) of times. (2)
Then, apply the existing graph-based sybil detection algorithm
to detect sybils. However, the drawback of this naive approach
is that in real-world OSNs, there are many users who are
not very active in interacting with others. In particular, by
analyzing a sub-network of Twitter, we found that 113,214
out of 409,694 users (or around 28% of users) interact with
others at most only one time. These users may be misclassified
as sybils, since they also seldom interact with other honest
users, leading to low accuracy of the detection algorithms [23]
(we will further justify this in our experiments). The reason is
that compressing social activities to friendship graph cannot
fully utilize the activity data. This motivates us to explore an
interesting and fundamental question: How to fully utilize the
advantages of both users’ friendship graph and their activities
to detect sybils? We aim to address this question, and refer to
our approach as the social-and-activity-based sybil detection.

III. Sybil Attack Model
In this section, we first formulate a SAN to characterize the

friendships and historical social activities in an online social
network. Then, based on the SAN, we present our sybil attack
model. Finally, we introduce our main objective.

A. The Social and Activity Network Model

v1

v2

v3

v4

v5

(v1, a1): user v1 creates tweet a1
(v3, a2): user v3 creates tweet a2
(v4, a3): user v4 creates tweet a3
(v5, a4): user v5 creates tweet a4
(a2, a1): tweet a2 retweets tweet a1
(a4, a2): tweet a4 retweets tweet a2
(a4, a3): tweet a4 replies tweet a3
(a2, v1): tweet a2 mentions user v1
(a1, v2): tweet a1 mentions user v2

(a) Social network and users’ activities

v1

v2

v3

v4

v5

a1

a2

a3

a4

(b) Constructed SAN

Fig. 2: An example in Twitter for constructing a SAN.

We formulate a two-layer hyper-graph to unify users’
friendships and historical activities. These two layers are:
Layer 1: Friendship graph. We use an undirected1 graph

G ! (V, E)

1For directed OSNs like Twitter, we can transform it to an undirected one
via keeping an edge between two nodes only if they follow each other.

to characterize the friendship between users. The set

V ! {v1, . . . , v|V|}
denotes all users (or nodes) in a social network. The node
set can be partitioned into a subset of honest nodes, which is
denoted by Vh, and a subset of sybil nodes Vs, where Vh ∩
Vs = ∅ and V = Vh ∪ Vs. For example, Figure 2a depicts a
social network of 5 nodes, i.e., V = {v1, . . . , v5}, three honest
nodes Vh = {v1, v2, v3} and two sybil nodes Vs = {v4, v5}.
The set

E ⊆ {(vi, vj)|vi, vj ∈ V, vi < vj}
denotes all the undirected edges in a social network, where
(vi, vj) ∈ E represents friendship between node vi and vj .
For each edge (vi, vj), we assume vi < vj for the purpose of
eliminating the redundancy that (vi, vj) and (vj , vi) represent
the same undirected edge. For example, Figure 2a shows a
social network with eight edges. The edge (v1, v2) represents
a friendship between honest nodes v1 and v2, and (v2, v5)
shows a friendship between an honest node v2 and a sybil v5.
Layer 2: Activity graph. We use a mixed graph (containing
both directed and undirected edges)

G̃ ! (V,A, C,M,F)
to characterize the historical activities. The set

A ! {ai|i = 1, . . . , |A|}
denotes a set of all activity nodes. An activity node can be
interpreted as a tweet (or retweet, etc.) in Twitter, or a post
(or a comment, etc.) in Facebook. Figure 2b shows 4 activity
nodes A = {a1, . . . , a4}. Each activity node is associated with
only one creator, i.e., a node in the friendship graph. We use an
undirected edge (v, a), where v ∈ V and a ∈ A, to represent
that the user v creates the activity a. The set

C ! {(v, a)|v ∈ V, a ∈ A}
denotes a set of edges which reflect the creator-activity rela-
tionships. For example, in Figure 2b, the edge (v1, a1) means
that user v1 creates the activity a1. We use a directed edge
from an activity to a user (a, v), where a ∈ A and v ∈ V ,
to represent that the activity a mentions the user v. In Figure
2b, the directed edge (a2, v1) can be interpreted as that user
v1 was mentioned in the tweet a2. Note that an activity can
mention multiple users. The set

M ! {(a, v)|a ∈ A, v ∈ V}
denotes a set of all directed edges indicating mention relation-
ships. We use a directed edge from ai ∈ A to aj ∈ A, i.e.,
(ai, aj), to represent that the activity ai follows the activity aj .
Here, the following behavior can be interpreted as replying or
retweeting in Twitter, or commenting one’s post in Facebook,
etc. In Figure 2b, the edge (a2, a1) can be interpreted as that
the tweet a2 is a retweet of the tweet a1. The set

F ! {(ai, aj)|ai, aj ∈ A}
denotes a set of all directed edges indicating following rela-
tionships.

Definition 1 (Interaction). We define each directed edge in
M or F as an interaction.
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Namely, each directed edge in M or F corresponds to one
interaction, and the set of all interactions is M∪F . Note that
an activity may involve multiple interactions. For example,
In Figure 2b, the activity a2 involves two interactions, i.e.,
(a2, a1) and (a2, v1).

B. The Sybil Attack Model
In the social-and-activity-based sybil attack model, sybils

can launch both friendship attacks and activity attacks.
Friendship attacks. Let Gh ! (Vh, Eh) denote the hon-
est region, which is the subgraph induced by honest nodes
Vh in G. Likewise, we refer to the subgraph induced
by sybil nodes Vs in G as the sybil region, denoted by
Gs ! (Vs, Es). In Figure 2a, we have Vh = {v1, v2, v3},
Eh = {(v1, v2), (v1, v3), (v2, v3)}, Vs = {v4, v5} and Es =
{(v4, v5)}.

Definition 2. We define friendship attack edges as the friend-
ship links between the honest region and sybil region, i.e.,
E \(Eh∪Es), and define the number of friendship attack edges
as

NA ! |E \ (Eh ∪ Es)|
In Figure 2a, we have NA = 4.

Property 1. NA can take any value in {0, 1, . . . , |Vh|× |Vs|}.

Note that we do not restrict sybils’ capabilities in establishing
friendship attack edges. Property 1 is practical and addresses
the fundamental limitation (as described in Section II) of the
previous graph-based sybil attack model [7]–[14].
Activity attack. Let Ah ⊆ A and As ⊆ A denote a set
of all activities created by honest users (i.e., nodes in Vh),
and created by sybils (i.e., nodes in Vs) respectively, where
Ah∩As = ∅ and Ah∪As = A. In Figure 2b, we have Ah =
{a1, a2} and As = {a3, a4}. Let G̃h ! (Vh,Ah, Ch,Mh,Fh)
denote the subgraph induced by Vh ∪Ah in G̃. Namely, G̃h is
the activity graph restricted to the honest region. In Figure 2b,
we have Ch = {(v1, a1), (v3, a2)},Mh = {(a2, v1), (a1, v2)},
and Fh = {(a2, a1)}. Based on this activity graph, define

Wh ! |Mh|+ |Fh|
as the number of interactions among honest users. In Figure
2b, we have Wh = 1+2 = 3. The larger the Wh is, the more
active the honest users are in interacting with other honest
users. Similarly, let G̃s ! (Vs,As, Cs,Ms,Fs) denote the
subgraph induced by Vs ∪As in G̃. Namely, G̃s is the activity
graph restricted to the sybil region only. In Figure 2b, we have
Cs = {(v5, a4), (v4, a3)},Ms = ∅, and Fs = {(a4, a3)}. We
further define

Ws ! |Ms|+ |Fs|
as the number of interactions among sybils. In Figure 2b, we
have Ws = 1 + 0 = 1.

Property 2. Ws can be arbitrarily large.
Namely, we consider the general scenario that sybils can create
an arbitrary number of interactions among themselves so as to
reduce the chance to be detected.

One type of attack which can be launched by sybil nodes
is the “incoming interaction attack”.

Definition 3. We define the incoming interaction attack as the
directed edges from the honest activity graph G̃h to the sybil
activity graph G̃s, i.e., Fh→s ∪Mh→s , where Fh→s,Mh→s

denote the following edges and mentioning edges respectively:

Fh→s ! {(ah, as)|ah ∈ Ah, as ∈ As, (ah, as) ∈ F},
Mh→s ! {(ah, vs)|ah ∈ Ah, vs ∈ Vs, (ah, vs) ∈M}.

Namely, Fh→s ∪Mh→s contains all the interactions that are
initiated from honest users to sybils. In Figure 2b, we have
Fh→s = ∅ and Mh→s = ∅. We also define the intensity that
honest nodes initiate interactions to sybil nodes as

α ! |Fh→s ∪Mh→s|/Wh

The smaller the α is, the less willing the honest nodes are
in initiating interactions to sybil nodes. As we have discussed
in Section II that honest users are quite selective in initiating
interactions to sybil users. We use the following assumption
to capture this observation.

Assumption 1. The value α is usually small, i.e., α << 1.
According to the experiments in [22], α ≈ 4.2× 10−5.

Another activity attack is the “outgoing interaction attack”.

Definition 4. We define the outgoing interaction attack as the
directed edges from the sybil activity graph G̃s to the honest
activity graph G̃h, i.e., Fs→h ∪Ms→h, where Fs→h,Ms→h

denote the following edges and mentioning edges respectively:

Fs→h ! {(as, ah)|as ∈ As, ah ∈ Ah, (as, ah) ∈ F},
Ms→h ! {(as, vh)|as ∈ As, vh ∈ Vh, (as, vh) ∈M}.

Namely, Fs→h ∪Ms→h contains all the interactions that are
initiated from sybils to honest users. In Figure 2b, we have
Fs→h = {(a4, a2)},Ms→h = ∅. Similarly, we define the
intensity that sybils initiate interactions to honest nodes as

β ! |Fs→h ∪Ms→h|/Wh

The larger the β is, the more aggressive the sybils are in
initiating interactions to honest users.

Property 3. The value of β can be arbitrarily large.

Namely, we consider the general case that sybils can initiate
arbitrarily number of interactions to honest users.

C. Our objective

Given G, G̃ and a small set of labelled seed nodes S, design
an algorithm to detect the sybil nodes. The S can contain both
honest nodes and sybil nodes, or only one type of them.

IV. Sybil Detection Algorithm Design

Here, we present our Sybil SAN algorithm, which propa-
gates the trust (distrust) from honest (sybil) seed nodes to other
nodes through social and activity network via coupling three
random walks [24], We also design an iterative algorithm to
compute the trust scores and distrust scores.
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A. Design Overview
We first consider the case that S contains honest nodes only.

Then we extend to consider that S contains sybil nodes only,
and finally the both honest nodes and sybil nodes case.

Given a small set S of known honest users, our objective
is to evaluate the trustworthiness (i.e., numerical trust scores)
of other user nodes, which may be honest or sybil nodes,
based on the seeds S and the SAN graph G, G̃. We rank the
user nodes according to their trustworthiness in a descending
order, and take users with low rank as suspects of sybils. In
particular, we apply the “random walk framework” to evaluate
the trust score for each node, because this framework is easy
to implement, computationally efficient and easy to interpret.
More precisely, at the beginning of the random walk, the total
trust score for the seeds S is normalized to be one, and each
seed evenly shares the trust score, i.e.,

si =

{
1/|S|, if vi ∈ S,
0, otherwise.

(1)

where i = 1, . . . , |V| and si denotes the trust score for node
vi ∈ V . Here si = 0, ∀vi /∈ S models that we assign the
minimum trust score for the users outside the seed set. Let
s|V|+i, where i = 1, . . . ,A, denote the trust score of activity
ai. Initially, we set s|V|+i = 0, for all i = 1, . . . ,A, capturing
that the initial trust score for each activity is zero. We denote
the initial trust score vector as s ! [s1, . . . , s|V|+|A|]

T . From
the random walk perspective, the initial trust score vector s
corresponds to initial probability distribution, i.e., the walk
starts from user node vi with probability si. Walking on the
SAN graph corresponds to the propagation of trust.

Definition 5 (Trust score). We define the stationary probabil-
ity distribution (or landing probability) of the random walk,
which starts from seeds nodes, as nodes’ trust score.
There are two challenges: (1) How to design the walking
strategy to capture the trust propagation on SAN graph? (2)
How to prove the convergence of the random walk and derive
the number of rounds needed to converge?

Our design of random walk strategy is motivated by the
mutual reinforcement relationship between users and activities:
the activities of a trusted user can be trusted, while an activity
with high trust score can certify the trustiness of its creator.
Thus, we first decompose the SAN into three subnetworks. For
each subnetwork, we design a random walk to propagate trust
independently on it. Finally, we present a unified algorithm
to couple these three random walks to capture the mutual
reinforcement relationship between users and activities.

B. Decomposed Random Walk
We decompose the SAN network into three subgraphs: (1)

the friendship graph (V, E); (2) the activity-following graph
(A,F); (3) the user-activity graph (V,A, C,M). For example,
Figure 3 presents a decomposition of the SAN network in
Figure 2b. Figure 3 also presents the one-step transition
probabilities, which correspond to the random walk strategies
in each subgraph (presented in Algorithm 1).

v1

v2

v3

v4

v5

1−γ
2

1+γ
2

(a) friendship graph

a1

a2

a3

a4

1
1−γ
2

1+γ
2

1

(b) activity-following graph

v1

v2

v3

v4

v5

a1

a2

a3

a4

1

1

1
21

2

(c) user-activity mapping graph

Fig. 3: Decomposed random walks in toy example

Algorithm 1: Decomposed random walks
1 Procedure WalkOnFriendGraph(V, E , s, γ, vi):
2 Given the walker is at the node vi

3 Walk to vj with prob. (1−γ) {(vi,vj)∈E}∑
v!∈V {(vi,v!)∈E}

+ γsj

4 Procedure
WalkOnActivityFollowingGraph(A,F ,SA, γ, ai):

5 Given the walker is at the activity ai
6 Outdeg(ai)← |{aj |(ai, aj) ∈ F}|
7 If Outdeg(ai) ≥ 1, walk to activity aj with

probability (1− γ)
{(ai,aj)∈F}

Outdeg(ai)
+ γ

{aj∈SA}

|SA| ,
8 else walk to aj with probability {aj∈SA}/|SA|
9 Procedure

WalkOnUserActivityGraph(V,A, C,M):
10 if The walker is at user node vi then
11 deg(vi)← |{aj |(vi, aj) ∈ C}|
12 If deg(vi) = 0, stays at node vi, else walks to aj

with probability {(vi,aj)∈C}/deg(vi)

13 if The walker is at activity node ai then
14 deg(ai)← |{vj |(vj , ai)∈C}|+|{vj |(ai, vj)∈M}|
15 Walks to vj with probability

{(vj ,ai)∈C}/deg(ai) + {(ai,vj)∈M}/deg(ai)

Random walk on the friendship graph (V, E). Note that
we need to make a balance between exploiting the trust seeds
and exploring nodes with unknown trust score, i.e., vi /∈ S .
We use the naive random walk to do the exploration, i.e., the
walker jumps to one of its neighbor with equal probability, i.e.,
{(vi,vj)∈E}/

∑
v!∈V {(vi,v!)∈E}. The physical interpretation

is that each node distributes its trust score equally to its
neighbors. To exploit the trust of the seeds, the walker jumps to
one of the seed nodes with equal probability, i.e., 1/|S|. This
captures that the node distributes all its trust score to one of the
seeds, which can be further used to assign more credits to those
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nodes that the seed trusts more. With probability γ ∈ [0, 1]
the walker walks according to the naive random walk, and
with probability 1 − γ the walker jumps to one of the seeds.
We present the detail of this walking strategy in Algorithm 1.
Figure 3a illustrates the one-step transition probability of the
walker on node v1 with one seed node v3.
Random walk on the activity-following graph (A,F). The
trust can be propagated from ai to aj only if ai follows
aj , i.e., aj is an outgoing neighbor of ai. Recall that ai
follows aj can be interpreted as that ai is a retweet of aj
in Twitter. Then propagating trust from ai to aj captures
the behavior that a user retweets aj only when he trusts
the tweet aj . For the activities having at least one outgoing
neighbors, the walking strategy is the same as that on the
friendship graph. The activity a4 in Figure 3b illustrates this
case, where a2 is the trust seed, i.e., created by the seed
node v3. It may happen that an activity does not have any
outgoing neighbor. For such activities, the walker jumps to
one of the activity seeds with equal probability, i.e., 1/|SA|,
where SA denotes the activities created by the seed nodes, i.e.,
SA ! {a|a ∈ A, (v, a) ∈ C, v ∈ S}. The activity a3 and a1
in Figure 3b illustrate this case. We present the detail of this
walking strategy in Algorithm 1.
Walking on the user-activity graph (V,A, C,M). This is
a mixed graph, i.e., containing directed edges and undirected
edges. The trust can be propagated from a user node to an
activity node only if this user creates this activity, i.e., there is
an undirected edge between them. The trust can be propagated
from an activity node to a user node only if the user is its
creator or there is a directed edge from the activity to the
user (capturing that the activity mentions the user out of trust).
Thus, we interpret each undirected edge as two directed edges.
If a node (user or activity) has at least one outgoing neighbors,
the walker walks to one of these neighbors uniformly at
random. The node v4 and node a2 in Figure 3c illustrate this
case. If a node (user or activity) does not have any outgoing
neighbor, the walker remains at this node. The node v2 in
Figure 3c illustrates this case. We present the detail of this
walking strategy in Algorithm 1.

C. Coupling the Random Walks
Now, we couple these three random walks together to

capture the mutual reinforcement relationships between users
and activities. Recall that the walker starts with node vi with
probability si. Then at each step, we couple the random walk
as Algorithm 2. We will show in Section V, the coupled
random walk converges to a unique landing probability distri-
bution, or the trust scores converge.

Let s∗ denote the converged trust score. To compute it,
we need to derive the transition matrix associated with the
coupled random walk. Let the square matrix P = [Pi,j ] with
order |V| denote the one-step transition matrix associated with
the random walk on the friendship graph, where the i-th
column (or row) corresponds to user node vi. For example,
in Figure 3a, P1,2 = (1 − γ)/2. Let the square matrix
P̃ = [P̃i,j ] with order |A| denote the one-step transition matrix

Algorithm 2: Coupling random walk
1 The walker starts with node vi with probability si.
2 repeat
3 if The walker is at a user node vi ∈ V then
4 With probability λi it walks one step on the

friendship graph according to the
WalkOnFriendGraph algorithm.

5 With probability (1− λi), it walks 2k + 1 steps
on the user-activity graph according to the
WalkOnUserActivityGraph algorithm.

6 if The walker is at an activity node ai ∈ A then
7 With probability λ|V|+i, the walker walks n steps

on the activity-following graph according to the
WalkOnActivityFollowingGraph algorithm.

8 With probability (1− λ|V|+i) it takes 2k + 1
steps on the user-activity graph according to the
WalkOnUserActivityGraph algorithm.

9 until converge

associated with the random walk on the activity-following
graph, where the i-th column (or row) corresponds to activity
ai. In Figure 3b, P̃4,2 = 1+γ

2 . Let P̂ = [P̂i,j ] denote the
one-step transition matrix associated with the random walk
on the user-activity graph, which is a square matrix of order
(|V| + |A|). We index the element of P̂ such that in each
column (and each row) the indexes from 1 to |V| correspond
to users, i.e., index i corresponds to vi, and the indexes from
|V| + 1 to (|V| + |A|) correspond to activities, i.e., index i
corresponds to ai−|V|. For example, in Figure 3c, we have
P̂2,2 = 1, P̂7,3 = 1/2, P̂4,8 = 1. Note that from Algorithm 1
one can easily write down the closed form of Pi,j , P̃i,j , P̂i,j .
Here we omit them for brevity. Let Pcr denote the transition
matrix associated with the coupled random walk. Then,

Pcr =

[
PT 0

0 (P̃T )n

]
Λ+ (P̂T )2k+1(I−Λ)

where Λ = diag(λ1, . . . ,λ|V|+|A|). As we will show in
Section V, the converged trust score s∗ is a unique solution
of the following linear system: Pcrs∗ = s∗, ||s∗||1 = 1. Note
that we will set λi, i = 1, . . . , |V| as a small number, since
users’ activities are more trustful than users’ friendships. More
details can be seen in Section VI.

Solving the linear system is computationally expensive, thus
we develop an iterative algorithm to calculate s∗ (step 6 −
13 in Algorithm 3). We need to normalize the trust score of
users. This design tries to prevent from mistaking honest users
with few sources as sybils, and also mistaking sybils with
large sources as honest users. Let Ni denote vi’s friendships,
i.e., Ni = {(u, vi)|(u, vi) ∈ E or (vi, u) ∈ E}. And let Ii
denote paths where user vi receives interactions, i.e., Ii =
{(a, vi)|(a, vi) ∈M}∪ {(am, aj , vi)|(am, aj) ∈ F , (vi, aj) ∈
C}. Apparently, Ii and Ni forms the sources where vi receives
trust. We normalize the trust score for each user by the number
of sources, i.e., by |Ni|+|Ii|. Finally, we rank users according
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to the normalized trust in a descending order, and take users
with low rank as suspects of sybils.

Algorithm 3: Sybil SAN

Input: G, G̃, S , P, P̃, P̂
Output: users’ normalized trust scores

1 ŝ← CoupleWalk(P, P̃, P̂, s)
2 Get q: qi = ŝi/(|Ni|+ |Ii|), ∀i = 1, . . . , |V|
3 return q

4 Procedure CoupleWalk(P, P̃, P̂, s):
5 s(0) ← s, t = 0
6 repeat
7 s(t+1) = Pcrs(t)

8 until ||s(t+1) − s(t)|| ≤ ε
9 return s(t+1)

D. Extensions to sybil seeds
Recall that for an honest user u, if he actively initiates

activities to user v, we say that u trusts v, so Sybil SAN
distributes trust from u to v. However, given a known sybil,
we should not punish (i.e., propagate distrust score to) who
he sends activities to, but rather who actively sends activities
to the sybil. Thus, for the case that S contains sybil nodes
only, we assign a score of 1/|S| to each sybil, and apply
Algorithm 3 on reversed SAN (i.e., reverse the link directions
of SAN), to get the distrust vector sdis. For the case that S
contains both honest nodes and sybil nodes, we decompose
it into two disjoint subsets each containing only one type of
nodes. We then compute the corresponding s and sdis for these
subsets accordingly. Finally, we compute the trust score vector
as (s − sdis). Note that the calculation of s and sdis can be
easily paralleled to reduce computational cost.

V. Convergence and Sensitivity Analysis
In this section, we first prove the convergence of Algorithm

2, then we derive the number of rounds needed to guarantee
that Algorithm 3 terminates. Finally, we apply the Matrix
perturbation theory to bound the detection error of Sybil SAN.
Due to page limit, please refer to [25] for detailed proofs. Note
that for brevity, we only analyze the algorithm for the case that
S contains only honest nodes. This is because the analysis can
be easily extended to the case that S contains only sybil nodes
or both honest nodes and sybil nodes.

A. Convergence Analysis
We first apply Markov chain techniques to show the con-

vergence of Algorithm 2.

Theorem 1. Suppose the friendship graph G is connected,
0 < γ < 1, and if i > |V| or user vi has activities ({a|(vi, a) ∈
C} -= ∅), 0 < λi < 1. Then Algorithm 2 converges to a unique
stationary probability (or landing probability) distribution,
which is a unique solution of Pcrs∗ = s∗, ||s∗||1 = 1.

Remark. Theorem 1 states sufficient conditions under which
Algorithm 2 converges to a unique landing probability distri-
bution, i.e., each user will have a unique trust score.

It is not practical to compute the exact converged landing
probability. Algorithm 3 approximates it in an iterative manner.
We next derive the number of rounds needed to guarantee that
Algorithm 3 hits the stopping condition.

Theorem 2. Suppose ||s(t+1) − s(t)|| in Algo. 3 is measured
by 1-norm, then Algo. 3 stops in at most 1+ 1

ν ln (4/(εs∗min))
rounds, where s∗min ! mini s∗i and s∗ denotes the stationary
landing probability distribution. Here ν denotes the spectral
gap of the Markov chain with transition matrix Pcr.

Remark: Theorem 2 states that Algo. 3 stops in a finite
number of rounds, which is linear in 1/ν (ν is spectral gap)
and ln (4/(εs∗min)) (s∗min denotes the minimum converged
landing probability). For other norms besides the 1-norm, we
can derive the number of rounds needed similarly.

B. Sensitivity Analysis
Let q∗ ! Cs∗ denote the normalized trust score associated

with the converged landing probability s∗, where C is a |V|×
(|V|+ |A|) matrix with

Cij =

{
1/(|Ni|+ |Ii|), if i = j = 1, · · · , |V|,
0, otherwise.

Namely, q∗ is the asymptotically limit of the output of
Algorithm 3 when ε goes to zero. Note that q∗ is calculated
under sybil attacks. To understand more about the detection
accuracy of Algorithm 3, we compare q∗ with the normalized
trust score without sybils attacks, denoted by q̃∗. Ideally, when
sybils do not launch any attacks, we can easily distinguish
sybils from honest users with the normalized trust score vector
q̃∗, because q̃∗i > 0 if i ∈ Vh, and q̃∗i = 0 if i ∈ Vs.
We use a generic metric to quantify the detection error, i.e.,
||q∗−q̃∗||/||q̃∗||. The smaller ||q∗−q̃∗||/||q̃∗|| is, the smaller
error the detection algorithm has.

Let P̃cr denote the transition matrix associated with the
coupled random walk, when sybils do not launch any at-
tacks. We define the error matrix caused by sybil attacks as
E ! P̃cr −Pcr. We next apply matrix perturbation theory to
quantify the impact of E on the converged trust score.

Theorem 3. Let s̃∗ denote the converged trust score under
P̃cr. We have

||s∗ − s̃∗||/||s̃∗|| ≤ εsd (2)
where εsd is defined as

εsd !||[(Pcr − I)(PT
cr − I) + eT e]−1×

(
E(Pcr − I+ET ) + (Pcr − I)ET )

)
||

(3)

the notation ||·|| denotes a general matrix norm, e ! [1, . . . , 1]
denotes a |V|+|A| dimensional row vector with all 1 elements
and I denotes an identity matrix with order |V|+ |A|.
Remark. Theorem 3 states an upper bound on the error in
converged landing probability (i.e., trust score) caused by E
(i.e., sybil attacks). It states that the error will be small when
the norm of E is small (i.e., sybils launch few attacks).

We next apply Theorem 3 to quantify the impact of E, i.e.,
sybil attacks, on the normalized trust score.
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Corollary 1. We can bound the error between q∗ and q̃∗ as

||q∗ − q̃∗||/||q̃∗|| ≤ εsd||C||||s̃∗||/||q̃∗|| (4)

Remark. Corollary 1 states an upper bound on the detection
error caused by sybil attacks (i.e., E). It states that the
detection error will be small when the norm of E is small
(i.e., few sybil attacks).

VI. EXPERIMENTS ON SYNTHETIC DATA

In this section, we conduct experiments on synthetic data to
extensively evaluate the impact of various factors, e.g., number
of attack edges, on the accuracy of our Sybil SAN algorithm.

A. Experimental setups
Datasets: We use a real-world social network as the honest
region, while synthesizing the sybil region. This method has
been used in previous works [7], [9], [12], [13], [21], Our hon-
est region is a public Twitter dataset [26] with 543, 785 nodes,
28, 397, 413 reciprocal following edges and 214, 267, 09 inter-
actions among users, i.e., Wh = 214, 267, 09. Two types of
interactions exist: 1) user vi retweets user vj’s tweets; 2) user
vi mentions user vj . Given a set of configuration parameters
(Ns, NA,α,β,M), we synthesize the sybils as follows.

• Sybil region: Instead of focusing on one connected sybil
region, here we consider a more practical scenario where
sybils region is formed by several disconnected clusters,
since in reality attackers at different company/country
create their own sybil region and such regions may not
always be connected to other sybils region. Specifically,
we create M identical clusters, and all together Ns ∈ N+

sybil nodes are created. In each cluster, we synthesize
their friendship network using the Preferential Attach-
ment (PA) model [27], which is a widely used method to
generate networks. The number of interactions between
any two sybils is a random number in [0, w], where
w ∈ N+. And the type of each activity is randomly
chosen from two types existed in honest region.

• Attacks on friendships and activities: For each sybil
cluster, we randomly attach .NA

M / friendship attack edges
between honest region and the sybil cluster. We also
initiate .αWh

M / interactions from honest region to the
sybil cluster, as well as .βWh

M / interactions from the sybil
cluster to honest region.

Unless we state otherwise, we use the following default
parameters to synthesize the data: Ns = 10000, w = 2, NA =
200000,α = 0.00001,β = 0.0001,M = 5. We set w = 2
by default because we find that the number of interactions
between any two sybils in our crawled subnetwork of Twitter
is no more than 2.
Performance Metric Follow previous works [15], [16], [21],
we use Area Under the Receiver Operating Characteristic
Curve (AUC) to evaluate the generated rank of users in
sybil detection algorithms, which ranks users in a descending
order according to users’ trustworthiness (i.e., normalized trust
score). In essense, AUC is the probability that a randomly
selected honest user is ranked higher than a randomly chosen

sybil. Let q ! [q(vi) : i = 1 . . . , |V|] denote the vector of
users’ trustworthiness. Formally, the AUC is defined as:

AUC(q)=

∑
vi∈Vh,vj∈Vs

(
q(vi)>q(vj) + 0.5× q(vi)=q(vj)

)

|Vh|× |Vs|
Higher AUC indicates a higher accuracy of the sybil detection
algorithm. The case AUC= 1.0 (100%) indicates a perfect
classifier, i.e., all sybils are ranked lower than honest users.
On the other hand, AUC= 0 indicates that all sybils are ranked
higher than honest users. AUC= 0.5 means a random ranking
of honest users and sybils.
Compared methods: We compare Sybil SAN algorithm with
the following five state-of-the-art detection methods:

• SR-U: SybilRank [7] on the friendship graph G = (V, E).
• SR-W: The first simple way to leverage both friendships

and social activities to detect sybils: (1) Construct the
weighted friendship graph via using users’ activities to
adjust the weights of links; (2) Apply SybilRank on the
constructed weighted friendship graph to detect sybils.
To illustrate, Figure 4a shows the weighted friendship
graph constructed from the social-and-activity network
in Figure 2. In Figure 2, v2 and v1 are friends and v2
doesn’t initiate any interaction to v1, thus in Figure 4a,
the edge v2 → v1 has a weight of 1, represented by the
black and thinner edge. Meanwhile, since v3 and v1 are
friends and v3 initiates 2 interactions to v1 ((a2, a1) ∈
F , (a2, v1) ∈ M), thus the edge v3 → v1 has a weight
of 3 in Figure 4a.

• Inter: The second way to leverage both friendships
and social activities to detect sybils: (1) Construct a
strong friendship graph via deleting some friendship links
based on users’ activities; (2) Apply SybilRank to the
constructed strong friendship graph to detect sybils. To
illustrate, Figure 4b shows the strong friendship graph
constructed on the social-and-activity graph in Figure 2.
Here, we use the directed version, i.e., we take each undi-
rected friendship link as two directed links and determine
whether to remove each directed link. In Figure 2, v2
initiates no interaction to v1, thus the edge v2 → v1 is
deleted in Figure 4b. Furthermore, v3 actively initiates
2 > 0 interactions to v1, thus the edge v3 → v1 with
a weight of 2 exists in Figure 4b. We like to remark
that this directed version is better than the undirected
version, where we will remove all links and get five
isolated nodes, since none of two nodes initiates ≥ 1
interactions to each other.

• SScar: The best belief-propagation-based detection
method so far [16].

• SWalk: A recent robust random-walk-based detection
method [15].

Parameters of our Sybil-SAN algorithm. Our seed selection
strategy follows previous works [7], [15], [16]. And in each
run, all the methods use the same selected seed set. The
parameters (n, k,λi, ∀i = 1, . . . , |V|+ |A|) stay fixed in each
run of the simulations, more details are described in our
technical report [25].
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Fig. 4: An illustrative example of Twitter

B. Impact of Friendship Attack Edges NA

We consider the default setting as described in Section
VI-A, except that we vary the number of friendship attack
edges (NA). Figure 5a shows the AUC for six algorithms as
NA varies. One can observe that Sybil SAN has the highest
AUC. Namely, it has the highest accuracy. As we increase
NA, the AUC of Sybil SAN drops slightly, while the AUC
for other algorithms drop drastically. Namely, our Sybil SAN
is much more robust against friendship attack edges than other
algorithms. It is interesting to observe that when the number
of friendship attack edges is around 3× 106 (300 attack edge
per node), the AUC of our Sybil SAN algorithm is still above
0.8 (i.e., a high accuracy), while the AUC for SWalk, SSCAR,
SR-U, SR-W are below 0.4 (i.e., a low accuracy). The accuracy
of Inter algorithm is roughly stable under different NA around
0.7, because Inter mistakes those users, who are not active in
interacting with others as sybils. The low accuracy of SR-W
and Inter also shows that naively incorporating the activities
into state-of-the-art algorithm does not work.
Lessons learned. Sybil SAN has the highest accuracy, and
is robust against a large number of friendship attack edges.

C. Impact of Incoming Interaction Attack α

We consider the default setting described in Section VI-A,
except that we vary the α from 10−6 to 10−3. Recall that
authors in [22] found that α ≈ 4.2×10−5 in real-world OSNs,
thus above range can show the robustness of Sybil SAN
in a more general scenario. Remark that a larger α means
that a larger number of incoming interaction attack edges
exist. Figure 5b shows as α increases, Sybil SAN always
outperforms the other algorithms and its AUC drops slightly
as α increase. This shows that Sybil SAN is also highly robust
against incoming interaction attacks. The accuracy of Inter and
SR-W drops since more trust will be propagated to sybils as α
increase. The AUC for the SR-U and SScar algorithm is flat,
because the α does not influence the underlying friendship
graph. SWalk is not sensitive to α, but its accuracy is much
lower than Sybil SAN. This again shows that: (1) Naively
incorporating users’ activities doesn’t work (SR-W, Inter);
(2) Friendship based detection algorithms are quite limited
(SScar, SR-U); (3) Sybil SAN works well to combine the
users’ friendships and their activities.
Lessons learned. Sybil SAN has the highest accuracy, and
is robust against incoming interaction attacks.

D. Impact of Number of Sybils Ns

Similar as above, we vary the number of sybils under default
settings. One can have two main observations from Figure 5c:
(1) Sybil SAN has the highest AUC, i.e., it outperforms the
other methods; (2) As NS increase, the AUC of each algorithm
increases, because the number of friendship attack edges is
fixed, and the friendship attack edges become sparse as the
number of sybils increases.
Lessons learned. Under different number of sybils, our
Sybil SAN algorithm always has the highest accuracy.

E. Impact of Outgoing Interaction Attack β:
We vary the value of β to see the impacts of outgoing

interaction attack. Note that larger β suggests that sybils
initiate more interactions to honest users. From Figure 5d,
one can observe that Sybil SAN has the highest AUC, i.e., it
outperforms other algorithms under different β. Furthermore,
the AUC for Sybil SAN, SR-W and Inter increase in β. This is
a good property, which can prevent some sybils from sending
too many spam messages to honest users for advertising. On
the opposite, SWalk may fail to detect such advertising sybils.
Lessons learned. Sybil SAN significantly outperforms the
other algorithms under different number of outgoing interac-
tion attacks. Meanwhile, the more spam messages sybils send
to honest users, the more easily sybils will be detected.

F. Impact of Structure of Sybil Region
Figure 5e shows that the AUC decreases in M . In other

words, it would be more difficult to detect sybils out, if the
sybil region is split into a larger number of disconnected clus-
ters. Note that Sybil SAN still outperforms other algorithms.

We also investigate the effect of number of interactions
among sybils (w). For more details, one can refer to our
technical report [25].

VII. EXPERIMENTS ON REAL DATASET

We conduct experiments on a real-world dataset (from
Twitter) and show that our Sybil SAN algorithm improves
the accuracy of the state-of-art algorithms by at least 17.7%.

A. Experimental Setting
Datasets. Starting from 991 public sybils [28] in Twitter,
we crawled a network of 450, 242 users and 222, 944, 310
links, which contains 409, 694 honest users, 40, 548 sybils and
17, 581, 069 friendship attack edges. There are 102, 693, 769
interactions among users, containing 714, 392 incoming in-
teraction attacks. More details about crawling process, seed
selection and parameter settings can be seen in [25].

B. Results and Implications
We run six algorithms described in Sectioin VI on our real

dataset. Table I presents the AUC for each algorithm. One
can observe that the AUC of our Sybil SAN algorithm is
the highest, i.e., around 0.73. The AUC of the SR-W, SR-U,
SScar and SWalk algorithm are lower or around 0.5, i.e., low
accuracy in practice. The Inter algorithm has a higher accuracy
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Fig. 5: Experiments on synthetic datasets

compared to the other four algorithms, and our Sybil SAN
improves the AUC over the Inter by 17.7%. These results
again suggest that in practice, detecting sybils solely based
on the friendship only can have a very low accuracy, and
naively incorporating users’ activities does not work well. One
remark is that the groundtruth labels of real dataset have some
noises. We took those users that are still active in Twitter as
honest users, however, there exist some sybils who haven’t
been suspended and are still active. This may be the possible
reason why the detection accuracy in real dataset is not as
good as the one in synthetic datasets.

TABLE I: AUC on real datasets
SR-W SR-U Inter SScar SWalk Sybil SAN

AUC 0.48 0.52 0.62 0.15 0.44 0.73
improved ratio 52.08% 40.38% 17.74% 386% 66% –

Lessons learned. Our Sybil SAN has a high accuracy in the
real world dataset, and improves the AUC over the state-of-art
algorithms by at least 17.7%.

VIII. Related Work
Feature-based sybil detection uses machine learning tech-

niques to classify users into sybils and honest users according
to the features extracted from user-level activities and account
details (e.g., profiles, user logs). And this line of works are
divided into two branches: unsupervised detection and super-
vised detection. Unsupervised detection usually clusters sybils
according to different features, such as loosely synchronized
actions [29], activity patterns [30], users’ profiles and tweets
[31], click-streams [32], etc. Supervised detection usually uses
features of labelled users (e.g., users’ profiles, fraction of
accepted requests, etc.) to train classifiers to identify sybils
[17], [33]. However, sybils can easily evade the detection by
adversely changing their behavior accordingly, since classifiers
depend on features of known sybils to identify unknown one.

Compared to feature-based detection, graph-based detection
is more general to detect sybils with various behaviors. Usu-
ally, an OSN is modelled as a graph, with nodes representing
users and edges representing users’ friendships. Given the
assumption that sybils can only befriend with a small number
of honest users (i.e., establish few attack edges), the graph is
partitioned into honest region and sybil region, with a narrow
passage between two regions. A large number of methods

leveraged the narrow passage between two regions to detect
sybils, for example, [7]–[16], just to name a few. However,
recent works [17]–[19] found that sybils are able to befriend
with a large number of honest users in real OSNs, which
makes sybils in real OSNs easily evade the typical graph-
based detection [20], [21]. Our work in this paper is to explore
activities among users to handle the sybil detection in real
OSNs with a large number of attack edges.

Some recent works also dealt with a large number of attack
edges from other aspects. Algorithms in [34], [35] enhanced
sybil detection by detecting victims, honest users who befriend
with sybils. Effendy et. al. [21] pruned attack edges by
exploiting the structure of mutual friendship in OSNs. And
Cao et.al [36] and Xue et. al [37] used acceptance and rejection
of friend requests to enhance sybil detection. However, above
methods still have their own drawbacks. For example, sybils
can evade Integro by randomly selecting victims, or degenerate
the other two methods by sending friend requests to already
established victims to increase mutual friends or probability of
requests to be accepted. Different from these works, our work
explores activities among users to enhance sybil detection in
OSNs. And our work can work in line with above methods
for more accurate sybil detection.

IX. Conclusion

In this paper, we present a practical sybil attack model and
design algorithms to detect sybils with performance guaran-
tees. We first develop a SAN to characterize users’ friendships
and historical activities. Our sybil attack model is based on
the SAN and it allows sybils to launch both friendship attacks
and activity attacks. We design Sybil SAN to detect sybils via
coupling three random walk-based algorithms on the SAN,
and prove the convergence of Sybil SAN. We develop an
iterative algorithm to calculate detection metric for Sybil SAN
and apply Markov chain mixing time to derive the number
of rounds needed to guarantee the termination of iteration.
We also use matrix perturbation theory to bound the detection
error when sybils launch more attacks. Extensive experiments
on both synthetic and real-world datasets show that Sybil
SAN can detect sybils accurately under practical scenarios,
where current state-of-art sybil defenses have a low accuracy.
Furthermore, Sybil SAN is robust against sybil attacks.
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