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Abstract

In this work, we study offline reinforcement learn-
ing (RL) with zero-shot generalization property
(ZSG), where the agent has access to an offline
dataset including experiences from different envi-
ronments, and the goal of the agent is to train a
policy over the training environments which per-
forms well on test environments without further
interaction. Existing work showed that classical
offline RL fails to generalize to new, unseen envi-
ronments. We propose pessimistic empirical risk
minimization (PERM) and pessimistic proximal
policy optimization (PPPO), which leverage pes-
simistic policy evaluation to guide policy learning
and enhance generalization. We show that both
PERM and PPPO are capable of finding a near-
optimal policy with ZSG. Our result serves as a
first step in understanding the foundation of the
generalization phenomenon in offline reinforce-
ment learning.

1. Introduction
Offline reinforcement learning (RL) has become increas-
ingly significant in modern RL because it eliminates the
need for direct interaction between the agent and the en-
vironment; instead, it relies solely on learning from an of-
fline training dataset. However, in practical applications,
the offline training dataset often originates from a different
environment than the one of interest. This discrepancy ne-
cessitates evaluating RL agents in a generalization setting,
where the training involves a finite number of environments
drawn from a specific distribution, and the testing is con-
ducted on a distinct set of environments from the same or
different distribution. This scenario is commonly referred to
as the zero-shot generalization (ZSG) challenge which has
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been studied in online RL(Rajeswaran et al., 2017; Machado
et al., 2018; Justesen et al., 2018; Packer et al., 2019; Zhang
et al., 2018a;b), as the agent receives no training data from
the environments it is tested on.

A number of recent empirical studies (Mediratta et al., 2023;
Yang et al., 2023; Mazoure et al., 2022) have recognized
this challenge and introduced various offline RL methodolo-
gies that are capable of ZSG. Notwithstanding the lack of
theoretical backing, these methods are somewhat restrictive;
for instance, some are only effective for environments that
vary solely in observations(Mazoure et al., 2022), while
others are confined to the realm of imitation learning(Yang
et al., 2023), thus limiting their applicability to a compre-
hensive framework of offline RL with ZSG capabilities.
Concurrently, theoretical advancements (Bose et al., 2024;
Ishfaq et al., 2024) in this domain have explored multi-task
offline RL by focusing on representation learning. These
approaches endeavor to derive a low-rank representation
of states and actions, which inherently requires additional
interactions with the downstream tasks to effectively formu-
late policies based on these representations. Therefore, we
raise a natural question:

Can we design provable offline RL with zero-shot
generalization ability?

We propose novel offline RL frameworks that achieve ZSG
to address this question affirmatively. Our contributions are
listed as follows.

• We first analyze when existing offline RL approaches
fail to generalize without further algorithm modifications.
Specifically, we prove that if the offline dataset does not
contain context information, then it is impossible for
vanilla RL that equips a Markovian policy to achieve
a ZSG property. We show that the offline dataset from
a contextual Markov Decision Process (MDP) is not dis-
tinguishable from a vanilla MDP which is the average
of contextual Markov Decision Process over all contexts.
Such an analysis verifies the necessity of new RL methods
with ZSG property.

• We propose two meta-algorithms called pessimistic empir-
ical risk minimization (PERM) and pessimistic proximal
policy optimization (PPPO) that enable ZSG for offline
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RL (Jin et al., 2021). In detail, both of our algorithms
take a pessimistic policy evaluation (PPE) oracle as its
component and output policies based on offline datasets
from multiple environments. Our result shows that the
sub-optimalities of the output policies are bounded by
both the supervised learning error, which is controlled by
the number of different environments, and the reinforce-
ment learning error, which is controlled by the coverage
of the offline dataset to the optimal policy. Please refer to
Table 1 for a summary of our results. To the best of our
knowledge, our proposed algorithms are the first offline
RL methods that provably enjoy the ZSG property.

Notation We use lower case letters to denote scalars, and use
lower and upper case bold face letters to denote vectors and
matrices respectively. We denote by [n] the set {1, . . . , n}.
For a vector x ∈ Rd and a positive semi-definite matrix
Σ ∈ Rd×d, we denote by ∥x∥2 the vector’s Euclidean norm
and define ∥x∥Σ =

√
x⊤Σx. For two positive sequences

{an} and {bn} with n = 1, 2, . . . , we write an = O(bn) if
there exists an absolute constant C > 0 such that an ≤ Cbn
holds for all n ≥ 1 and write an = Ω(bn) if there exists
an absolute constant C > 0 such that an ≥ Cbn holds for
all n ≥ 1. We use Õ(·) to further hide the polylogarithmic
factors. We use (xi)

n
i=1 to denote sequence (x1, ..., xn),

and we use {xi}ni=1 to denote the set {x1, ..., xn}. We use
KL(p∥q) to denote the KL distance between distributions p
and q, defined as

∫
p log(p/q). We use E[x],V[x] to denote

expectation and variance of a random variable x.

The remaining parts are organized as follows. In Section
2, we discuss related works. In Section 3, we introduce the
setting of our work. In Section 4, we analyze when existing
offline RL approaches (Jin et al., 2021) fail to generalize
without further algorithm modifications. In Section 5, we
introduce our proposed meta-algorithms and provide their
theoretical guarantees. In Section 6, we specify our meta-
algorithms and analysis to a more concrete linear MDP
setting. Finally, in Section 7, we conclude our work and
propose some future directions.

2. Related works
Offline RL Offline reinforcement learning (RL) (Ernst et al.,
2005; Riedmiller, 2005; Lange et al., 2012; Levine et al.,
2020; Wang et al., 2024) addresses the challenge of learning
a policy from a pre-collected dataset without direct online
interactions with the environment. A central issue in offline
RL is the inadequate dataset coverage, stemming from a
lack of exploration (Levine et al., 2020; Liu et al., 2020).
A common strategy to address this issue is the application
of the pessimism principle, which penalizes the estimated
value of under-covered state-action pairs. Numerous studies
have integrated pessimism into various single-environment

offline RL methodologies. This includes model-based ap-
proaches (Rashidinejad et al., 2021; Uehara and Sun, 2021;
Jin et al., 2021; Yu et al., 2020; Xie et al., 2021b; Uehara
et al., 2021; Yin et al., 2022), model-free techniques (Kumar
et al., 2020; Wu et al., 2021; Bai et al., 2022; Ghasemipour
et al., 2022; Yan et al., 2023), and policy-based strategies
(Rezaeifar et al., 2022; Xie et al., 2021a; Zanette et al.,
2021; Nguyen-Tang and Arora, 2024). (Yarats et al., 2022)
has observed that with sufficient offline data diversity and
coverage, the need for pessimism to mitigate extrapolation
errors and distribution shift might be reduced. To the best
of our knowledge, we are the first to theoretically study the
generalization ability of offline RL in the contextual MDP
setting.

Generalization in online RL There are extensive empirical
studies on training online RL agents that can generalize
to new transition and reward functions (Rajeswaran et al.,
2017; Machado et al., 2018; Justesen et al., 2018; Packer
et al., 2019; Zhang et al., 2018a;b; Nichol et al., 2018; Cobbe
et al., 2018; Küttler et al., 2020; Bengio et al., 2020; Bertran
et al., 2020; Ghosh et al., 2021; Kirk et al., 2023; Juliani
et al., 2019; Ajay et al., 2021; Samvelyan et al., 2021; Frans
and Isola, 2022; Albrecht et al., 2022; Ehrenberg et al.,
2022; Song et al., 2020; Lyle et al., 2022; Ye et al., 2020;
Lee et al., 2020; Jiang et al.). They use techniques including
implicit regularization (Song et al., 2020), data augmenta-
tion (Ye et al., 2020; Lee et al., 2020), uncertainty-driven
exploration (Jiang et al.), successor feature (Touati et al.,
2023), etc. These works focus mostly on the online RL set-
ting and do not provide theoretical guarantees, thus differing
a lot from ours. Moreover, (Touati et al., 2023) has studied
zero-shot generalization in offline RL, but to unseen reward
functions rather than unseen environments. Addtional re-
lated works that have studied zero-shot RL include (Park
et al., 2024; Jeen et al., 2023).

There are also some recent works aimed at understanding on-
line RL generalization from a theoretical perspective. Wang
et al. (2019) examined a specific class of reparameteriz-
able RL problems and derived generalization bounds using
Rademacher complexity and the PAC-Bayes bound. Ma-
lik et al. (2021) established lower bounds and introduced
efficient algorithms that ensure a near-optimal policy for
deterministic MDPs. A recent work (Ye et al., 2023) studied
how much pre-training can improve online RL test perfor-
mance under different generalization settings. To the best
of our knowledge, no previous work exists on theoretical
understanding of the zero-shot generalization of offline RL.

Our paper is also related to recent works studying multi-
task learning in reinforcement learning (RL) (Brunskill and
Li, 2013; Tirinzoni et al., 2020; Hu et al., 2021; Zhang
and Wang, 2021; Lu et al., 2021; Bose et al., 2024; Ishfaq
et al., 2024; Zhang et al., 2023), which focus on transferring
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Table 1. Summary of our algorithms and their suboptimality gaps, whereA is the action space, H is the length of episode, n is the number
of environments in the offline dataset. Note that in the multi-environment setting, π∗ is the near-optimal policy w.r.t. expectation (defined
in Section 3). N is the covering number of the policy space Π w.r.t. distance d(π1, π2) = maxs∈S,h∈[H] ∥π1

h(·|s) − π2
h(·|s)∥1. The

uncertainty quantifier Γi,h are tailored with the oracle return in the corresponding algorithms (details are in Section 5).
Algorithm Suboptimality Gap

PERM (our Algo.2)
√
log(N )/n+ n−1

∑n
i=1

∑H
h=1 Ei,π∗

[
Γi,h(sh, ah)

∣∣ s1 = x1

]
PPPO (our Algo.3)

√
log |A|H2/n+ n−1

∑n
i=1

∑H
h=1 Ei,π∗

[
Γi,h(sh, ah)

∣∣ s1 = x1

]
the knowledge learned from upstream tasks to downstream
ones. Additionally, these works typically assume that all
tasks share similar transition dynamics or common represen-
tations while we do not. Meanwhile, they typically require
the agent to interact with the downstream tasks, which does
not fall into the ZSG regime.

3. Preliminaries
Contextual MDP We study contextual episodic MDPs,
where each MDP Mc is associated with a context
c ∈ C belongs to the context space C. Further-
more, Mc = {Mc,h}Hh=1 consists of H different in-
dividual MDPs, where each individual MDP Mc,h :=
(S,A, Pc,h(s

′|s, a), rc,h(s, a)). Here S denotes the state
space, A denotes the action space, Pc,h denotes the transi-
tion function and rc,h denotes the reward function at stage h.
We assume the starting state for eachMc is the same state
x1. In this work, we interchangeablely use “environment"
or MDP to denote the MDPMc with different contexts.

Policy and value function We denote the policy πh at stage
h as a mapping S → ∆(A), which maps the current state to
a distribution over the action space. We use π = {πh}Hh=1
to denote their collection. Then for any episodic MDPM,
we define the value function for some policy π as

V π
M,h(x) := E[rh + ...+ rH |sh = x, ah′ ∼ πh′ ,

rh′ ∼ rh′(sh′ , ah′), sh′+1 ∼ Ph′(·|sh′ , ah′), h′ ≥ h] ,

Qπ
M,h(x, a) := E[rh + ...+ rH |sh = x, ah = a,

rh ∼ rh(sh, ah), sh′ ∼ Ph′−1(·|sh′−1, ah′−1), ah′ ∼ πh′ ,

rh′ ∼ rh′(sh′ , ah′), h′ ≥ h+ 1].

For any individual MDP M with reward r and transition
dynamic P , we denote its Bellman operator [BMf ](x, a) as
[BMf ](s, a) := E[rh(s, a) + f(s′)|s′ ∼ P (·|s, a)]. Then
we have the well-known Bellman equation

V π
M,h(x)

= ⟨Qπ
M,h(x, ·), πh(·|x)⟩A, Qπ

M,h(x, a) = [BMhV
π
M,h+1](x, a).

For simplicity, we use V π
c,h, Q

π
c,h,Bc,h to denote

V π
Mc,h

, Qπ
Mc,h

,BMc,h
. We also use Pc to denote PMc

,
the joint distribution of any potential objects under the
Mc episodic MDP. We would like to find the near-
optimal policy π∗ w.r.t. expectation, i.e., π∗ :=
argmaxπ∈Π Ec∼CV

π
c,1(xc), where Π is the set of collection

of Markovian policies, and with a little abuse of notation,
we use Ec∼C to denote the expectation taken w.r.t. the i.i.d.

sampling of context c from the context space. Then our
goal is to develop the generalizable RL with small zero-shot
generalization gap (ZSG gap), defined as follows:

SubOpt(π) := Ec∼C

[
V π∗
c,1 (x1)

]
− Ec∼C

[
V π
c,1(x1)

]
.

Remark 1 We briefly compare generalizable RL with sev-
eral related settings. Robust RL (Pinto et al., 2017) aims to
find the best policy for the worst-case environment, whereas
generalizable RL seeks a policy that performs well in the
average-case environment. Meta-RL (Beck et al., 2023)
enables few-shot adaptation to new environments, either
through policy updates (Finn et al., 2017) or via history-
dependent policies (Duan et al., 2016). In contrast, gener-
alizable RL primarily focuses on the zero-shot setting. In
the general POMDP framework (Cassandra et al., 1994),
agents need to maintain history-dependent policies to im-
plicitly infer environment information, while generalizable
RL aims to discover a single state-dependent policy that
generalizes well across all environments.

Remark 2 Ye et al. (2023) showed that in online RL, for
a certain family of contextual MDPs, it is inherently im-
possible to determine an optimal policy for each individual
MDP. Given that offline RL poses greater challenges than
its online counterpart, this impossibility extends to finding
optimal policies for each MDP in a zero-shot offline RL
setting as well, which justifies our optimization objective on
the ZSG gap. Moreover, Ye et al. (2023) showed that the
few-shot RL is able to find the optimal policy for individual
MDPs. Clearly, such a setting is stronger than ours, and
the additional interactions are often hard to be satisfied in
real-world practice. We leave the study of such a setting for
future work.

Offline RL data collection process The data collection
process is as follows. An experimenter i.i.d. samples num-
ber n of contextual episodic MDP Mi from the context set
(e.g., i ∼ C). For each episodic MDP Mi, the experimenter
collects dataset Di := {(xτ

i,h, a
τ
i,h, r

τ
i,h)

H
h=1}Kτ=1 which in-

cludes K trajectories. Note that the action aτi,h selected
by the experimenter can be arbitrary, and it does not need
to follow a specific behavior policy (Jin et al., 2021). We
assume that Di is compliant with the episodic MDPMi,
which is defined as follows.
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Definition 3 ((Jin et al., 2021)) For a dataset Di :=
{(xτ

i,h, a
τ
i,h, r

τ
i,h)

H
h=1}Kτ=1, let PDi be the joint distribution

of the data collecting process. We say Di is compliant with
episodic MDPMi if for any x′ ∈ S, r′, τ ∈ [K], h ∈ [H],
we have

PDi
(rτi,h = r′, xτ

i,h+1 = x′|{(xj
i,h, a

j
i,h)}

τ
j=1,

{(rji,h, x
j
i,h+1)}

τ−1
j=1 )

= Pi(ri,h(sh, ah) = r′, sh+1 = x′|sh = xτ
h, ah = aτh).

In general, we claim Di is compliant with Mi when the
conditional distribution of any tuple of reward and next state
in Di follows the conditional distribution determined by
MDPMi.

4. Offline RL without context indicator
information

In this section, we show that directly applying existing of-
fline RL algorithms over datasets from multiple environ-
ments without maintaining their identity information cannot
yield a sufficient ZSG property, which is aligned with the
existing observation of the poor generalization performance
of offline RL (Mediratta et al., 2023).

In detail, given contextual MDPs M1, ...,Mn and their
corresponding offline datasets D1, ...,Dn, we assume the
agent only has the access to the offline dataset D̄ = ∪ni=1Di,
where D̄ = {(xτ

cτ ,h
, aτcτ ,h, r

τ
cτ ,h

)Hh=1}Kτ=1. Here cτ ∈ C is
the context information of trajectory τ , which is unknown
to the agent. To explain why offline RL without knowing
context information performs worse, we have the following
proposition suggesting the offline dataset from multiple
MDPs is not distinguishable from an “average MDP" if the
offline dataset does not contain context information.

Proposition 4 D̄ is compliant with average MDP M̄ :=
{M̄h}Hh=1, M̄h :=

(
S,A, H, P̄h, r̄h

)
,

P̄h(x
′|x, a) := Ec∼C

Pc,h(x
′|x, a)µc,h(x, a)

Ec∼Cµc,h(x, a)
,

P(r̄h = r|x, a) := Ec∼C
P(r̄c,h = r|x, a)µc,h(x, a)

Ec∼Cµc,h(x, a)
,

where µc,h(·, ·) is the data collection distribution of (s, a)
at stage h in dataset Dc.

Proof See Appendix A.1.

Proposition 4 suggests that if no context information is
revealed, then the merged offline dataset D̄ is equivalent to
a dataset collected from the average MDP M̄. Therefore,
for any offline RL which outputs a Markovian policy, it
converges to the optimal policy π̄∗ of the average MDP M̄.

In general, π̄∗ can be very different from π∗ when the tran-
sition probability functions of each environment are dif-
ferent. For example, consider the 2-context cMDP prob-
lem shown in Figure 1, each context consists of one state
and three possible actions. The offline dataset distributions
µ are marked on the arrows that both of the distributions
are following near-optimal policy. By Proposition 4, in
average MDP M̄ the reward of the middle action is de-
terministically 0, while both upper and lower actions are
deterministically 1. As a result, the optimal policy π̄∗ will
only have positive probabilities toward upper and lower ac-
tions. This leads to Ec∼C [V

π∗

c,1 (x1)] = 0, though we can see
that π∗ is deterministically choosing the middle action and
Ec∼C [V

π∗

c,1 (x1)] = 0.5. This theoretically illustrates that
the generalization ability of offline RL algorithms without
leveraging context information is weak. In sharp contrast,
imitation learning such as behavior cloning (BC) converges
to the teacher policy that is independent of the specific MDP.
Therefore, offline RL methods such as CQL (Kumar et al.,
2020) might enjoy worse generalization performance com-
pared with BC, which aligns with the observation made by
Mediratta et al. (2023).

x1

µv(a1) =
1− ϵ rv(a1) = 1

µv(a2) = ϵ
rv(a2) = 0

µv(a3) = 0 rv(a3) = −1

x1

µw(a1) =
0 rw(a1) = −1

µw(a2) = 0
rw(a2) = 1

µw(a3) = 1 rw(a3) = 1

Figure 1. Two Contextual MDPs with the same compliant average
MDPs. The discrete contextual space is defined as C = {v, w}
and both MDPs satisfies S = {x1},A = {a1, a2, a3}, H = 1.
The data collection distributions µ and rewards r for each action
of each context are specified in the graph.

5. Provable offline RL with zero-shot
generalization

In this section, we propose offline RL with small ZSG gaps.
We show that two popular offline RL approaches, model-
based RL and policy optimization-based RL, can output RL
agent with ZSG ability, with a pessimism-style modifica-
tion that encourages the agent to follow the offline dataset
pattern.

5.1. Pessimistic policy evaluation

We consider a meta-algorithm to evaluate any policy π given
an offline dataset, which serves as a key component in our
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Algorithm 1 Pessimistic Policy Evaluation (PPE)
Require: Offline dataset {Di,h}Hh=1, policy π = (πh)

H
h=1, confi-

dence probability δ ∈ (0, 1).
1: Initialize V̂ π

i,H+1(·)← 0, ∀i ∈ [n].
2: for step h = H,H − 1, . . . , 1 do
3: Let (B̂i,hV̂

π
i,h+1)(·, ·),Γi,h(·, ·)← O(Di,h, V̂

π
i,h+1, δ)

4: Set Q̂π
i,h(·, ·) ← min{H − h + 1, (B̂i,hV̂

π
i,h+1)(·, ·) −

Γi,h(·, ·)}+

5: Set V̂ π
i,h(·)← ⟨Q̂π

i,h(·, ·), πh(·|·)⟩A
6: end for
7: Return V̂ π

i,1(·), . . . , V̂ π
i,H(·), Q̂π

i,1(·, ·), . . . , Q̂π
i,H(·, ·).

proposed offline RL with ZSG. To begin with, we consider
a general individual MDP and an oracle O, which returns us
an empirical Bellman operator and an uncertainty quantifier,
defined as follows.

Definition 5 (Jin et al. 2021) For any individual MDP M ,
a dataset D ⊆ S ×A×S × [0, 1] that is compliant with M ,
a test function VD ⊆ [0, H]S and a confidence level ξ, we
have an oracle O(D, VD, ξ) that returns (B̂VD(·, ·),Γ(·, ·)),
a tuple of Empirical Bellman operator and uncertainty quan-
tifier, satisfying

PD

(∣∣(B̂VD)(x, a)− (BMVD)(x, a)
∣∣

≤ Γ(x, a) for all (x, a) ∈ S ×A
)
≥ 1− ξ.

Remark 6 Here we adapt a test function VD that can de-
pend on the dataset D itself. Therefore, Γ is a function that
depends on both the dataset and the test function class. We
do not specify the test function class in this definition, and
we will discuss its specific realization in Section 6.

Remark 7 For general non-linear MDPs, one may employ
the bootstrapping technique to estimate uncertainty, in line
with the bootstrapped DQN approach developed by (Osband
et al., 2016). We note that when the bootstrapping method
is straightforward to implement, the assumption of having
access to an uncertainty quantifier is reasonable.

Based on the oracle O, we propose our pessimistic policy
evaluation (PPE) algorithm as Algorithm 1. In general,
PPE takes a given policy π as its input, and its goal is to
evaluate the V value and Q value {(V π

i,h, Q
π
i,h)}Hh=1 of π on

MDPMi. Since the agent is not allowed to interact with
Mi, PPE evaluates the value based on the offline dataset
{Di,h}Hh=1. At each stage h, PPE utilizes the oracle O and
obtains the empirical Bellman operator based on Di,h as
well as its uncertainty quantifier, with high probability. Then
PPE applies the pessimism principle to build the estimation
of the Q function based on the empirical Bellman operator
and the uncertainty quantifier. Such a principle has been
widely studied and used in offline policy optimization, such
as pessimistic value iteration (PEVI) (Jin et al., 2021). To

Algorithm 2 Pessimistic Empirical Risk Minimization
(PERM)
Require: Offline dataset D = {Di}ni=1,Di :=
{(xτ

i,h, a
τ
i,h, r

τ
i,h)

H
h=1}Kτ=1, policy class Π, confidence

probability δ ∈ (0, 1), a pessimistic offline policy evaluation
algorithm Evaluation as a subroutine.

1: Set Di,h = {(xτ
i,h, a

τ
i,h, r

τ
i,h, x

τ
i,h+1)}Kτ=1

2: πPERM = argmaxπ∈Π
1
n

∑n
i=1 V̂

π
i,1(x1),

where [V̂ π
i,1(·), ·, . . . , ·] =

Evaluation
(
{Di,h}Hh=1, π, δ/(3nHNΠ

(Hn)−1))
)

3: Return πPERM.

compare with, we use the pessimism principle in the policy
evaluation problem.

Remark 8 In our framework, pessimism can indeed facili-
tate generalization, rather than hinder it. Specifically, we
employ pessimism to construct reliable Q functions for each
environment individually. This approach supports broader
generalization by maintaining multiple Q-networks sepa-
rately. By doing so, we ensure that each Q function is robust
within its specific environment, while the collective set of Q
functions enables the system to generalize across different
environments.

5.2. Model-based approach: pessimistic empirical risk
minimization

Given PPE, we propose algorithms that have the ZSG abil-
ity. We first propose a pessimistic empirical risk minimiza-
tion (PERM) method which is model-based and conceptu-
ally simple. The algorithm details are in Algorithm 2. In
detail, for each dataset Di drawn from i-th environments,
PERM builds a model using PPE to evaluate the policy π
under the environmentMi. Then PERM outputs a policy
πPERM ∈ Π that maximizes the average pessimistic value,
i.e., 1/n

∑n
i=1 V̂

π
i,1(x1). Our approach is inspired by the

classical empirical risk minimization approach adopted in
supervised learning, and the Optimistic Model-based ERM
proposed in Ye et al. (2023) for online RL. Our setting
is more challenging than the previous ones due to the RL
setting and the offline setting, where the interaction be-
tween the agent and the environment is completely disal-
lowed. Therefore, unlike Ye et al. (2023), which adopted
an optimism-style estimation to the policy value, we adopt
a pessimism-style estimation to fight the distribution shift
issue in the offline setting.

Next we propose a theoretical analysis of PERM. Denote
NΠ

ϵ as the ϵ-covering number of the policy space Π w.r.t.
distance d(π1, π2) = maxs∈S,h∈[H] ∥π1

h(·|s) − π2
h(·|s)∥1.

Then we have the following theorem to provide an upper
bound of the suboptimality gap of the output policy πPERM.

Theorem 9 Set the Evaluation subroutine in Algorithm 2
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as PPE (Algo.1). Let Γi,h be the uncertainty quantifier
returned by O through the PERM. Then w.p. at least 1− δ,
the output πPERM of Algorithm 2 satisfies

SubOpt(πPERM) ≤ 7

√
2 log(6NΠ

(Hn)−1/δ)

n︸ ︷︷ ︸
I1:Supervised learning (SL) error

+
2

n

n∑
i=1

H∑
h=1

Ei,π∗ [Γi,h(sh, ah)|s1 = x1]︸ ︷︷ ︸
I2:Reinforcement learning (RL) error

, (1)

where Ei,π∗ is w.r.t. the trajectory induced by π∗ with the
transition Pi in the underlying MDPMi.

Proof See Appendix B.1.

Remark 10 The covering numberNΠ
(Hn)−1 depends on the

policy class Π. Without any specific assumptions, the policy
class Π that consists of all the policies π = {πh}Hh=1, πh :
S 7→ ∆(A) and the log ϵ-covering number logNΠ

ϵ =
O(|A||S|H log(1 + |A|/ϵ)).

Remark 11 The SL error can be easily improved to a
distribution-dependent bound logN · Var/

√
n, where N

is the covering number term denoted in I1, Var =
maxπ Vc∼CV

π
c,1(x1) is the variance of the context distri-

bution, by using a Bernstein-type concentration inequality
in our proof. Therefore, for the singleton environment case
where |C| = 1, our suboptimality gap reduces to the one of
PEVI in Jin et al. (2021).

Remark 12 In real-world settings, as the number of sam-
pled contexts n may be very large, it is unrealistic to manage
n models simultaneously in the implementation of PERM
algorithm, thus we provide the suboptimality bound in line
with Theorem 9 when the offline dataset is merged into m
contexts such that m < n. See Theorem 28 in Appendix C.

Theorem 9 shows that the ZSG gap of PERM is bounded by
two terms I1 and I2. I1, which we call supervised learning
error, depends on the number of environments n in the
offline dataset D and the covering number of the function
(policy) class, which is similar to the generalization error
in supervised learning. I2, which we call it reinforcement
learning error, is decided by the optimal policy π∗ that
achieves the best zero-shot generalization performance and
the uncertainty quantifier Γi,h. In general, I2 is the “intrinsic
uncertainty" denoted by Jin et al. (2021) over n MDPs,
which characterizes how well each dataset Di covers the
optimal policy π∗.

5.3. Model-free approach: pessimistic proximal policy
optimization

Algorithm 3 Pessimistic Proximal Policy Optimzation
(PPPO)
Require: Offline dataset D = {Di}ni=1,Di :=
{(xτ

i,h, a
τ
i,h, r

τ
i,h)

H
h=1}Kτ=1, confidence probability δ ∈ (0, 1),

a pessimistic offline policy evaluation algorithm Evaluation
as a subroutine.

1: Set Di,h = {(xτ ·H+h
i,h , aτ ·H+h

i,h , rτ ·H+h
i,h , xτ ·H+h

i,h+1 )}⌊K/H⌋−1
τ=0

2: Set π0,h(·|·) as uniform distribution over A and Q̂π0
0,h(·, ·) as

zero functions.
3: for i = 1, 2, · · · , n do
4: Set πi,h(·|·) ∝ πi−1,h(·|·) · exp(α · Q̂

πi−1

i−1,h(·, ·))
5: Set [·, . . . , ·, Q̂πi

i,1(·, ·), . . . , Q̂
πi
i,H(·, ·)] =

Evaluation({Di,h}Hh=1, πi, δ/(nH))
6: end for
7: Return πPPPO = random(π1, ..., πn)

PERM in Algorithm 2 works as a general model-based algo-
rithm framework to enable ZSG for any pessimistic policy
evaluation oracle. However, note that in order to implement
PERM, one needs to maintain n different models or critic
functions simultaneously in order to evaluate

∑n
i=1 V̂

π
i,1(x1)

for any candidate policy π. Note that existing online RL
(Ghosh et al., 2021) achieves ZSG by a model-free approach,
which only maintains n policies rather than models/critic
functions. Therefore, one natural question is whether we can
design a model-free offline RL algorithm also with access
only to policies.

We propose the pessimistic proximal policy optimization
(PPPO) in Algorithm 3 to address this issue. Our algorithm
is inspired by the optimistic PPO (Cai et al., 2020) originally
proposed for online RL. PPPO also adapts PPE as its sub-
routine to evaluate any given policy pessimistically. Unlike
PERM, PPPO only maintains n policies π1, ..., πn, each
of them is associated with an MDPMn from the offline
dataset. In detail, PPPO assigns an order for MDPs in the
offline dataset and names themM1, ...,Mn. For i-th MDP
Mi, PPPO selects the i-th policy πi as the solution of the
proximal policy optimization starting from πi−1, which is

πi ← argmax
π

V π
i−1,1(x1)

− α−1Ei−1,πi−1 [KL(π∥πi−1)|s1 = x1], (2)

where α is the step size parameter. Since V π
i−1,1(x1) is

not achievable, we use a linear approximation Li−1(π) to
replace V π

i−1,1(x1), where

Li−1(π) = V
πi−1

i−1,1(x1) + Ei−1,πi−1

[
H∑

h=1

⟨Q̂πi−1

i−1,h(xh, ·), πh(·|xh)− πi−1,h(·|xh)⟩
∣∣∣∣s1 = x1

]
,

(3)

where Q̂
πi−1

i−1,h ≈ Q
πi−1

i−1,h are the Q values evaluated on the
offline dataset forMi−1. (2) and (3) give us a close-form
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solution of π in Line 4 in Algorithm 3. Such a routine
corresponds to one iteration of PPO (Schulman et al., 2017).
Finally, PPPO outputs πPPPO as a random selection from
π1, ..., πn.

Remark 13 In Algorithm 3, we adopt a data-splitting trick
(Jin et al., 2021) to build Di,h, where we only utilize each
trajectory once for one data tuple at some stage h. It is only
used to avoid the statistical dependency of V̂ πi

i,h+1(·) and
xτ
i,h+1 for the purpose of theoretical analysis.

The following theorem bounds the suboptimality of PPPO.

Theorem 14 Set the Evaluation subroutine in Algorithm
3 as Algorithm 1. Let Γi,h be the uncertainty quantifier
returned by O through the PPPO. Selecting α = 1/

√
H2n.

Then selecting δ = 1/8, w.p. at least 2/3, we have

SubOpt(πPPPO) ≤ 10

(√
log |A|H2

n︸ ︷︷ ︸
I1:SL error

+
1

n

n∑
i=1

H∑
h=1

Ei,π∗ [Γi,h(sh, ah)|s1 = x1]︸ ︷︷ ︸
I2:RL error

)
.

where Ei,π∗ is w.r.t. the trajectory induced by π∗ with the
transition Pi in the underlying MDPMi.

Proof See Appendix B.2.

Remark 15 As in Remark 12, we also provide the subop-
timality bound in line with Theorem 14 when the offline
dataset is merged into m contexts such that m < n. See
Theorem 29 in Appendix C.

Theorem 14 shows that the suboptimality gap of PPPO
can also be bounded by the SL error I1 and RL error I2.
Interestingly, I1 in Theorem 14 for PPPO only depends on
the cardinality of the action space |A|, which is different
from the covering number term in I1 for PERM. Such a
difference is due to the fact that PPPO outputs the final
policy πPPPO as a random selection from n existing policies,
while PERM outputs one policy πPERM. Whether these two
guarantees can be unified into one remains an open question.

6. Provable generalization for offline linear
MDPs

In this section, we instantiate our Algo.2 and Algo.3 for
general MDPs on specific MDP classes. We consider the
linear MDPs defined as follows.

Assumption 16 (Yang and Wang 2019; Jin et al. 2019)
We assume ∀i ∈ C,Mi is a linear MDP with a known
feature map ϕ : S × A → Rd if there exist d unknown

measures µi,h = (µ
(1)
i,h , . . . , µ

(d)
i,h) over S and an unknown

vector θi,h ∈ Rd such that

Pi,h(x
′ |x, a) = ⟨ϕ(x, a), µi,h(x

′)⟩,
E
[
ri,h(sh, ah)

∣∣ sh = x, ah = a
]
= ⟨ϕ(x, a), θi,h⟩ (4)

for all (x, a, x′) ∈ S × A × S at every step h ∈ [H].
We assume ∥ϕ(x, a)∥ ≤ 1 for all (x, a) ∈ S × A and
max{∥µi,h(S)∥, ∥θi,h∥} ≤

√
d at each step h ∈ [H], and

we define ∥µi,h(S)∥ =
∫
S ∥µi,h(x)∥ dx.

We first specialize the general PPE algorithm (Algo.1) to
obtain the PPE algorithm tailored for linear MDPs (Algo.4).
This specialization is achieved by constructing B̂i,hV̂

π
i,h+1,

Γi,h, and V̂ π
i,h based on the dataset Di. We denote the

set of trajectory indexes in Di,h as Bi,h. Algo.4 subse-
quently functions as the policy evaluation subroutine in
Algo.2 and Algo.3 for linear MDPs. In detail, we con-
struct B̂i,hV̂i,h+1 (which is the estimation of Bi,hV̂i,h+1) as
(B̂i,hV̂i,h+1)(x, a) = ϕ(x, a)⊤ŵi,h, where

ŵi,h = argminw∈Rd

∑
τ∈Bi,h

(
rτi,h + V̂i,h+1(x

−,τ
i,h )

− ϕ(xτ
i,h, a

τ
i,h)

⊤w
)2

+ λ · ∥w∥22 (5)

with λ > 0 being the regularization parameter. The closed-
form solution to (5) is in Line 4 in Algorithm 4. Besides,
we construct the uncertainty quantifier Γi,h based on Di as

Γi,h(x, a) = β(δ) · ∥ϕ(x, a)∥Λ−1
i,h

,Λi,h

=
∑

τ∈Bi,h

ϕ(xτ
i,h, a

τ
i,h)ϕ(x

τ
i,h, a

τ
i,h)

⊤ + λ · I,

with β(δ) > 0 being the scaling parameter.

Algorithm 4 Pessimistic Policy Evaluation (PPE): Linear
MDP
Require: Offline dataset {Di,h}Hh=1,Di,h =

{(xτ
i,h, a

τ
i,h, r

τ
i,h, x

−,τ
i,h )}τ∈Bi,h , policy π, confidence

probability δ ∈ (0, 1).
1: Initialize V̂ π

i,H+1(·)← 0, ∀i ∈ [n].
2: for step h = H,H − 1, . . . , 1 do
3: Set Λi,h ←

∑
τ∈Bi,h

ϕ(xτ
i,h, a

τ
i,h)ϕ(x

τ
i,h, a

τ
i,h)

⊤ + λ · I .

4: Set ŵi,h ← Λ−1
i,h(

∑
τ∈Bi,h

ϕ(xτ
i,h, a

τ
i,h) · (rτi,h +

V̂ π
i,h+1(x

−,τ
i,h ))).

5: Set Γi,h(·, ·)← β(δ) · (ϕ(·, ·)⊤Λ−1
i,hϕ(·, ·))

1/2.
6: Set Q̂π

i,h(·, ·) ← min{ϕ(·, ·)⊤ŵi,h − Γi,h(·, ·), H − h +

1}+.
7: Set V̂ π

i,h(·)← ⟨Q̂π
i,h(·, ·), πh(·|·)⟩A

8: end for
9: Return V̂ π

i,1(·), . . . , V̂ π
i,H(·), Q̂π

i,1(·, ·), . . . , Q̂π
i,H(·, ·).

The following theorem shows the suboptimality gaps for
Algo.2 (utilizing subroutine Algo.4) and Algo.3 (also with
subroutine Algo.4).
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Theorem 17 Under Assumption 16, in Algorithm 4, we set
λ = 1, β(δ) = c · dH

√
log(2dHK/δ), where c > 0 is a

positive constant. Then, we have:
(i) for the output policy πPERM of Algo.2 with subroutine
Algo.4, w.p. at least 1− δ, the suboptimality gap satisfies

SubOpt(πPERM) ≤ 7

√
7 log(6NΠ

(Hn)−1/δ)

n
+

2β
(

δ
3nHNΠ

(Hn)−1

)
n

·
n∑

i=1

H∑
h=1

Ei,π∗

[
∥ϕ(sh, ah)∥Λ̃−1

i,h

∣∣ s1 = x1

]
, (6)

(ii) for the output policy πPPPO of Algo.3 with subroutine
Algo.4, setting δ = 1/8, then with probability at least 2/3,
the suboptimality gap satisfies

SubOpt(πPPPO) ≤ 10

(√
log |A|H2

n
+

β
(

1
4nH

)
n

·
n∑

i=1

H∑
h=1

Ei,π∗

[
∥ϕ(sh, ah)∥Λ̄−1

i,h

∣∣ s1 = x1

])
, (7)

where Ei,π∗ is with respect to the trajectory induced by π∗

with the transition Pi in the underlying MDPMi given the
fixed matrix Λ̃i,h or Λ̄i,h.

∥ϕ(sh, ah)∥Λ−1
i,h

indicates how well the state-action pair
(sh, ah) is covered by the dataset Di. The term∑n

i=1

∑H
h=1 Ei,π∗

[
∥ϕ(sh, ah)∥Λ−1

i,h

∣∣ s1 = x1

]
in the sub-

optimality gap in Theorem 17 is small if for each context
i ∈ [n], the dataset Di well covers the trajectory induced by
the optimal policy π∗ on the corresponding MDPMi.

Well-explored behavior policy Next we consider a case
where the dataset D consists of i.i.d. trajectories col-
lecting from different environments. Suppose D con-
sists of n independent datasets D1, . . . ,Dn, and for each
environment i, Di consists of K trajectories Di =
{(xτ

i,h, a
τ
i,h, r

τ
i,h)

H
h=1}Kτ=1 independently and identically in-

duced by a fixed behavior policy π̄i in the linear MDPMi.
We have the following assumption on well-explored policy:

Definition 18 (Duan et al. 2020; Jin et al. 2021) For an
behavior policy π̄ and an episodic linear MDP M with
feature map ϕ, we say π̄ well-exploresM with constant c if
there exists an absolute positive constant c > 0 such that

∀h ∈ [H], λmin(Σh) ≥ c/d,

where Σh = Eπ̄,M
[
ϕ(sh, ah)ϕ(sh, ah)

⊤].
A well-explored policy guarantees that the obtained trajecto-
ries is “uniform" enough to represent any policy and value
function. The following corollary shows that with the above
assumption, the suboptimality gaps of Algo.2 (with subrou-
tine Algo.4) and Algo.3 (with subroutine Algo.4) decay to
0 when n and K are large enough.

Corollary 19 Suppose that for each i ∈ [n], Di is gener-
ated by behavior policy π̄i which well-explores MDPMi
with constant ci ≥ cmin. In Algo.4, we set λ = 1, β(δ) =

c′ · dH
√
log(4dHK/δ) where c′ > 0 is a positive con-

stant. Suppose we have K ≥ 40d/cmin log(4dnH/δ) and
set C∗

n := 1/n ·
∑n

i=1 c
−1/2
i . Then we have:

(i) for the output πPERM of Algo.2 with subroutine Algo.4,
w.p. at least 1− δ, the suboptimality gap satisfies

SubOpt(πPERM) ≤ 7

√
2 log(6NΠ

(Hn)−1/δ)

n

+ 2
√
2c′ · d3/2H2K−1/2

√
log(12dHnKNΠ

(Hn)−1/δ) · C∗
n ,

(8)

(ii) for the output policy πPPPO of Algo.3 with subroutine
Algo.4, setting δ = 1/8, then with probability at least 2/3,
the suboptimality gap satisfies

SubOpt(πPPPO) ≤ 10

(√
log |A|H2

n

+ 2
√
2c′ · d3/2H2.5K−1/2

√
log(16dHnK) · C∗

n

)
. (9)

Remark 20 The mixed coverage parameter C∗
n =

1
n

∑n
i=1

1√
ci

is small if for any i ∈ [n], ci
is large, i.e., the minimum eigenvalue of Σi,h =
Eπ̄i,Mi

[
ϕ(sh, ah)ϕ(sh, ah)

⊤] is large. Note that
λmin(Σi,h) indicates how well the behavior policy π̄i ex-
plores the state-action pairs on MDPMi; this shows that if
for each environment i ∈ [n], the behavior policy explores
Mi well, the suboptimality gap will be small.

Remark 21 Under the same conditions of Corollary 19:

(i) If n ≥
392 log(6NΠ

(Hn)−1/δ)

ϵ2 and K ≥

max{ 40dcmin
log( 4dnHδ ),

32c′2d3H4 log(12dHnKNΠ
(Hn)−1/δ)C

∗2
n

ϵ2 },
then w.p. at least 1− δ, SubOpt(πPERM) ≤ ϵ.
(ii) If n ≥ 400H2 log(|A|)

ϵ2 and K ≥
max{ 40dcmin

log(16dnH),
32c′2d3H5 log(16dHnK)C∗2

n

ϵ2 }, then
w.p. at least 2/3, SubOpt(πPPPO) ≤ ϵ.

Corollary 19 suggests that both of our proposed algorithms
enjoy the O(n−1/2 +K−1/2 · C∗

n) convergence rate to the
optimal policy π∗ given a well-exploration data collection
assumption, where C∗

n is a mixed coverage parameter over
n environments defined in Corollary 19.

7. Conclusion and Future Work
In this work, we study the zero-shot generalization (ZSG)
performance of offline reinforcement learning (RL). We
propose two offline RL frameworks, pessimistic empirical
risk minimization and pessimistic proximal policy optimiza-
tion, and show that both of them can find the optimal policy
with ZSG ability. We also show that such a generalization

8
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property does not hold for offline RL without knowing the
context information of the environment, which demonstrates
the necessity of our proposed new algorithms. Currently,
our theorems and algorithm design depend on the i.i.d. as-
sumption of the environment selection. How to relax such
an assumption remains an interesting future direction.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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We provide missing proofs and theoretical results of our paper in the Appendix sections:

• In Appendix A, we provide the missing results of Section 4. We first provide the proof of Proposition 4, then we analyze
the suboptimality gap of the Pessimistic Value Iteration (PEVI) ((Jin et al., 2021)) in the contextual linear MDP setting
without context information.

• In Appendix B, we provide the proofs of our main theorems on the suboptimality bounds of PERM and PPPO in Section
5.

• In Appendix C, we state and prove the suboptimality bounds we promised in Remarks 12 and 15, where we merge the
sampled contexts into m groups (m < n) to reduce the computational complexity in practical settings.

• In Appendix D, we provide the proofs of results in Section 6 on linear MDPs. Namely, we provide proof of Theorem 17,
proof of Corollary 19.

A. Results in Section 4
A.1. Proof of Proposition 4

Let D′ = {(xτ
cτ ,h

, aτcτ ,h, r
τ
cτ ,h

)}H,K
h=1,τ=1 denote the merged dataset, where each trajectory belongs to a context cτ . For

simplicity, let Dc denote the collection of trajectories that belong to MDPMc. Then each trajectory in D′ is generated by
the following steps:

• The experimenter randomly samples an environment c ∼ C.

• The experimenter collect a trajectory from the episodic MDPMc.

Then for any x′, r′, τ we have

PD′(rτcτ ,h = r′, xτ
cτ ,h+1 = x′|{(xj

cj ,h
, ajcj ,h)}

τ
j=1, {r

j
cj ,h

, xj
cj ,h+1}

τ−1
j=1 )

=
PD′(rτcτ ,h = r′, xτ

cτ ,h+1 = x′, {(xj
cj ,h

, ajcj ,h)}
τ
j=1, {r

j
cj ,h

, xj
cj ,h+1}

τ−1
j=1 )

PD′({(xj
cj ,h

, ajcj ,h)}
τ
j=1, {r

j
cj ,h

, xj
cj ,h+1}

τ−1
j=1 )

=
∑
c∈C

PD′(rτcτ ,h = r′, xτ
cτ ,h+1 = x′|{(xj

cj ,h
, ajcj ,h)}

τ
j=1, {r

j
cj ,h

, xj
cj ,h+1}

τ−1
j=1 , cτ = c)q(c), (10)

where

q(c′) :=
PD′({(xj

cj ,h
, ajcj ,h)}

τ
j=1, {r

j
cj ,h

, xj
cj ,h+1}

τ−1
j=1 , cτ = c′)∑

c∈C PD′({(xj
cj ,h

, ajcj ,h)}
τ
j=1, {r

j
cj ,h

, xj
cj ,h+1}

τ−1
j=1 , cτ = c)

.

Next, we further have

(10)

=
∑
c∈C

Pc(rc,h(sh) = r′, sh+1 = x′|sh = xτ
cτ ,h, ah = aτcτ ,h)q(c)

=
∑
c∈C

Pc(rc,h(sh) = r′, sh+1 = x′|sh = xτ
cτ ,h

, ah = aτcτ ,h)PD′(sh = xτ
cτ ,h

, ah = aτcτ ,h, cτ = c)∑
c∈C PD′(sh = xτ

cτ ,h
, ah = aτcτ ,h, cτ = c)

=
∑
c∈C

p(c) ·
Pc(rc,h(sh) = r′, sh+1 = x′|sh = xτ

cτ ,h
, ah = aτcτ ,h)Pc(sh = xτ

cτ ,h
, ah = aτcτ ,h)∑

c∈C p(c) · Pc(sh = xτ
cτ ,h

, ah = aτcτ ,h)

= Ec∼C

Pc(rc,h(sh) = r′, sh+1 = x′|sh = xτ
cτ ,h

, ah = aτcτ ,h)µc,h(x
τ
cτ ,h

, aτcτ ,h)

Ec∼Cµc,h(xτ
cτ ,h

, aτcτ ,h)
,

where the first equality holds since for all trajectories τ satisfying cτ = c, they are compliant withMc, the second one holds
since all trajectories are independent of each other, the third and fourth ones hold due to the definition of µc,h(·, ·).
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A.2. PEVI algorithm

Algorithm 5 (Jin et al., 2021) Pessimistic Value Iteration (PEVI)
Require: Dataset D = {(xτ

cτ ,h
, aτcτ ,h, r

τ
cτ ,h

)Hh=1}Kτ=1, confidence probability δ ∈ (0, 1).
1: Initialization: Set V̂H+1(·)← 0.
2: for step h = H,H − 1, . . . , 1 do
3: Set Λh ←

∑K
τ=1 ϕ(x

τ
h, a

τ
h)ϕ(x

τ
h, a

τ
h)

⊤ + λ · I .
4: Set ŵh ← Λ−1

h (
∑K

τ=1 ϕ(x
τ
h, a

τ
h) · (rτh + V̂h+1(x

τ
h+1))).

5: Set Γh(·, ·)← β(δ) · (ϕ(·, ·)⊤Λ−1
h ϕ(·, ·))1/2.

6: Set Q̂h(·, ·)← min{ϕ(·, ·)⊤ŵh − Γh(·, ·), H − h+ 1}+.
7: Set π̂h(· | ·)← argmaxπh

⟨Q̂h(·, ·), πh(· | ·)⟩A.
8: Set V̂h(·)← ⟨Q̂h(·, ·), π̂h(· | ·)⟩A.
9: end for

10: Return πPEVI = {π̂h}Hh=1.

We analyze the suboptimality gap of the Pessimistic Value Iteration (PEVI) ((Jin et al., 2021)) in the contextual linear MDP
setting without context information to demonstrate that by finding the optimal policy for M̄ is not enough to find the policy
that performs well on MDPs with context information.

Pessimistic Value Iteration (PEVI). Let π∗ be the optimal policy w.r.t. the average MDP M̄. We analyze the performance
of the Pessimistic Value Iteration (PEVI) (Jin et al., 2021) under the unknown context information setting. The details of
PEVI is in Algo.5.

Suppose that D̄ consists of K number of trajectories generated i.i.d. following by a fixed behavior policy π̄. Then the
following theorem shows the suboptimality gap for Algo.5 does not converge to 0 even when the data size grows to infinity.

Theorem 22 Assume that π̄ In Algo.4, we set

λ = 1, β(δ) = c′ · dH
√
log(4dHK/δ) , (11)

where c′ > 0 is a positive constant. Suppose we have K ≥ c̃ · d log(4dH/ξ), where c̃ > 0 is a sufficiently large positive
constant that depends on c. Then we have: w.p. at least 1− δ, for the output policy πPEVI of Algo.5,

sup
π

V π
M̄,1 − V πPEVI

M̄,1 ≤ c′′ · d3/2H2K−1/2
√
log(4dHK/δ), (12)

and the suboptimality gap satisfies

SubOpt(πPEVI) ≤ c′′ · d3/2H2K−1/2
√
log(4dHK/δ) + 2 sup

π
|V π

M̄,1(x1)− Ec∼CV
π
c,1(x1)| , (13)

where c′′ > 0 is a positive constant that only depends on c and c′.

Proof [Proof of Theorem 22] First, we define the value function on the average MDP M̄ as follows.

V
π

h(x) = Eπ,M̄

[ H∑
i=h

ri(si, ai)
∣∣ sh = x

]
. (14)

We then decompose the suboptimality gap as follows.

SubOpt(πPEVI)

= Ec∼C

[
V π∗

c,1 (x1)
]
− Ec∼C

[
V πPEVI

c,1 (x1)
]

= V
π∗

1 (x1)− V
πPEVI

1 (x1) +
(
Ec∼C

[
V π∗

c,1 (x1)
]
− V

π∗

1 (x1)
)
+

(
V

πPEVI

1 (x1)− Ec∼C

[
V πPEVI

c,1 (x1)
])

≤ V
π∗

1 (x1)− V
πPEVI

1 (x1) + 2 sup
π
|V π

M̄,1(x1)− Ec∼CV
π
c,1(x1)| . (15)
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Then, applying Corollary 4.6 in (Jin et al., 2021), we can get that w.p. at least 1− δ

V
π∗

1 (x1)− V
πPEVI

1 (x1) ≤ c′′ · d3/2H2K−1/2
√
log(4dHK/δ) , (16)

which, together with Eq.(15) completes the proof.

Theorem 22 shows that by adapting the standard pessimistic offline RL algorithm over the offline dataset without context
information, the learned policy πPEVI converges to the optimal policy π̄∗ over the average MDP M̄.

B. Proof of Theorems in Section 5
B.1. Proof of Theorem 9

We define the model estimation error as

ιπi,h(x, a) = (Bi,hV̂
π
i,h+1)(x, a)− Q̂π

i,h(x, a). (17)

And we define the following condition∣∣(B̂i,hV̂
π
i,h+1)(x, a)− (Bi,hV̂

π
i,h+1)(x, a)

∣∣ ≤ Γi,h(x, a) for all i ∈ [n], π ∈ Π, (x, a) ∈ S ×A, h ∈ [H] . (18)

We introduce the following lemma to bound the model estimation error.

Lemma 23 (Model estimation error bound (Adapted from Lemma 5.1 in (Jin et al., 2021)) Under the condition of
Eq.(18), we have

0 ≤ ιπi,h(x, a) ≤ 2Γi,h(x, a), for all i ∈ [n], π ∈ Π, (x, a) ∈ S ×A, h ∈ [H]. (19)

Then, we prove the following lemma for pessimism in V values.

Lemma 24 (Pessimism for Estimated V Values) Under the condition of Eq.(18), for any i ∈ [n], π ∈ Π, x ∈ S, we have

V π
i,h(x) ≥ V̂ π

i,h(x) . (20)

Proof For any i ∈ [n], π ∈ Π, x ∈ S, a ∈ A, we have

Qπ
i,h(x, a)− Q̂π

i,h(x, a)

≥ ri,h(x, a) + (Bi,hV
π
i,h+1)(x, a)−

(
ri,h(s, a) + (B̂i,hV̂

π
i,h+1)(x, a)− Γi,h(x, a)

)
= (Bi,hV

π
i,h+1)(x, a)− (Bi,hV̂

π
i,h+1)(x, a) + Γi,h(x, a)

−
(
(B̂i,hV̂

π
i,h+1)(x, a)− Bi,hV̂

π
i,h+1)(x, a)

)
≥ (Bi,hV

π
i,h+1)(x, a)− (Bi,hV̂

π
i,h+1)(x, a)

=
(
Pi,h(V

π
i,h+1 − V̂ π

i,h+1)
)
(x, a) ,

where the second inequality is because of Eq.(18). And since in the H + 1 step we have V π
i,H+1 = V̂ π

i,h+1 = 0, we can
get Qπ

i,H(x, a) − Q̂π
i,H(x, a). Then we use induction to prove Qπ

i,h(x, a) ≥ Q̂π
i,h(x, a) for all h. Given Qπ

i,h+1(x, a) ≥
Q̂π

i,h+1(x, a), we have

Qπ
i,h(x, a)− Q̂π

i,h(x, a) ≥
(
Pi,h(V

π
i,h+1 − V̂ π

i,h+1)
)
(x, a)

= E
[
⟨Qπ

i,h+1(sh+1, ·)− Q̂π
i,h+1(sh+1, ·), πh+1(·|sh+1)⟩A|sh = x, ah = a

]
≥ 0 . (21)
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Then we have

V π
i,h(x)− V̂ π

i,h(x) = ⟨Qπ
i,h(x, ·)− Q̂π

i,h(x, ·), πh(· |x)⟩A ≥ 0 .

Then we start our proof.

Proof [Proof of Theorem 9]

First, we decompose the suboptimality gap as follows

SubOpt(πPERM)

= Ec∼CV
π∗

c,1 (x1)− V π̂∗

c,1 (x1)

= Ec∼CV
π∗

c,1 (x1)−
1

n

n∑
i=1

V π∗

i,1 (x1) +
1

n

n∑
i=1

V πPERM

i,1 (x1)− Ec∼CV
πPERM

c,1 (x1)

+
1

n

n∑
i=1

(
V π∗

i,1 (x1)− V πPERM

i,1 (x1)
)
. (22)

For the first two terms, we can bound them following the standard generalization techniques ((Ye et al., 2023)), i.e., we use
the covering argument, Chernoff bound,and union bound.

Define the distance between policies d(π1, π2) ≜ maxs∈S,h∈[H] ∥π1
h(·|s)− π2

h(·|s)∥1. We construct the ϵ-covering set Π̃
w.r.t. d such that

∀π ∈ Π,∃π̃ ∈ Π̃, s.t. d(π, π̃) ≤ ϵ. (23)

Then we have

∀i ∈ [n], π ∈ Π,∃π̃ ∈ Π̃, s.t.V π
i,1(x1)− V π̃

i,1(x1) ≤ Hϵ. (24)

By the definition of the covering number,
∣∣∣Π̃∣∣∣ = NΠ

ϵ . By Chernoff bound and union bound over the policy set Π̃, we have

with prob. at least 1− δ
3 , for any π̃ ∈ Π̃,∣∣∣∣∣ 1n

n∑
i=1

V π̃
i,1(x1)− Ec∼CV

π̃
c,1(x1)

∣∣∣∣∣ ≤
√

2 log(6NΠ
ϵ /δ)

n
. (25)

By Eq.(24) and Eq.(25), ∀i ∈ [n], π ∈ Π,∃π̃ ∈ Π̃ with
∣∣∣Π̃∣∣∣ = NΠ

ϵ , s.t.V π
i,1(x1)− V π̃

i,1(x1) ≤ Hϵ, and with probability at
least 1− δ/3, we have ∣∣∣∣∣ 1n

n∑
i=1

V π
i,1(x1)− Ec∼CV

π
c,1(x1)

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑

i=1

V π̃
i,1(s1)− Ec∼CV

π̃
c,1(x1)

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑

i=1

V π
i,1(s1)−

1

n

n∑
i=1

V π̃
i,1(s1)

∣∣∣∣∣+ ∣∣∣Ec∼CV
π̃
c,1(x1)− Ec∼CV

π
c,1(x1)

∣∣∣
≤

√
2 log(6NΠ

ϵ /δ)

n
+ 2Hϵ . (26)

Therefore, we have for the first two terms, w.p. at least 1− 2
3δ we can upper bound them with 4Hϵ+ 2

√
2 log(6NΠ

ϵ /δ)
n .
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Then, what remains is to bound the term 1
n

∑n
i=1

(
V π∗

i,1 (x1)− V πPERM

i,1 (x1)
)
.

First, by similar arguments, we have

V π∗

i,1 (x1)− V πPERM

i,1 (x1) ≤
(
V π∗

i,1 (x1)− V π̃PERM

i,1 (x1)
)
+ |V π̃PERM

i,1 (x1)− V πPERM

i,1 (x1)|

≤ Hϵ+ V π∗

i,1 (x1)− V π̃PERM

i,1 (x1) , (27)

where π̃PERM ∈ Π̃ such that |V π̃PERM

i,1 (x1)− V πPERM

i,1 (x1)| ≤ Hϵ.

By the definition of the oracle in Definition.5, the algorithm design of Algo.1 (e.g., we call oracle
O(Dh, V̂h+1, δ/(3nHNΠ

(Hn)−1))), and use a union bound over H steps, n contexts, and NΠ
(Hn)−1 policies, we have:

with probability at least 1− δ/3, the condition in Eq.(18) holds (with the policy class Π replaced by Π̃ (and ϵ = 1/(Hn)).

Then, we have

1

n

n∑
i=1

(
V π∗

i,1 (x1)− V π̃PERM

i,1 (x1)
)

≤ 1

n

n∑
i=1

(
V π∗

i,1 (x1)− V̂ π̃PERM

i,1 (x1)
)

=
1

n

n∑
i=1

(
V π∗

i,1 (x1)− V̂ πPERM

i,1 (x1)
)
+

1

n

n∑
i=1

(
V̂ πPERM

i,1 (x1)− V̂ π̃PERM

i,1 (x1)
)

≤ 1

n

n∑
i=1

(
V π∗

i,1 (x1)− V̂ πPERM

i,1 (x1)
)
+H · 1

Hn

≤ 1

n

n∑
i=1

(
V π∗

i,1 (x1)− V̂ π∗

i,1 (x1)
)
+ 1/n , (28)

where the first inequality holds because of the pessimism in Lemma 24, the second inequality holds because |V̂ π̃PERM

i,1 (x1)−
V̂ πPERM

i,1 (x1)| ≤ Hϵ with ϵ here specified as 1/(Hn), and the last inequality holds because that in the algorithm design of
Algo.2 we set πPERM = argmaxπ∈Π

1
n

∑n
i=1 V̂

π
i,1(x1).

Then what left is to bound V π∗

i,1 (x1)− V̂ π∗

i,1 (x1).

And using Lemma A.1 in (Jin et al., 2021), we have

V π∗

i,1 (x1)− V̂ π∗

i,1 (x1) = −
H∑

h=1

Eπ̂∗,Mi

[
ιπ

∗

i,h(sh, ah)
∣∣ s1 = x

]
+

H∑
h=1

Eπ∗,Mi

[
ιπ

∗

i,h(sh, ah)
∣∣ s1 = x

]
+

H∑
h=1

Eπ∗,Mi

[
⟨Q̂π∗

i,h(sh, ·), π∗
h(· | sh)− π∗

h(· | sh)⟩A
∣∣ s1 = x

]
≤ 2

H∑
h=1

Eπ∗,Mi

[
Γi,h(sh, ah)

∣∣ s1 = x
]
, (29)

where in the last inequality we use Lemma 23.

Finally, with Eq.(22), Eq.(26), Eq.(27), Eq.(28), and Eq.(29), with ϵ set as 1
nH , we can get w.p. at least 1− δ
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Ec∼CV
π∗

c,1 (x1)− V πPERM

c,1 (x1)

≤ 5

n
+ 2

√
2 log(6NΠ

(Hn)−1/δ)

n
+

2

n

n∑
i=1

H∑
h=1

Eπ∗,Mi [Γi,h(sh, ah)|s1 = x1]

≤ 7

√
2 log(6NΠ

(Hn)−1/δ)

n
+

2

n

n∑
i=1

H∑
h=1

Eπ∗,Mi
[Γi,h(sh, ah)|s1 = x1] .

B.2. Proof of Theorem 14

Our proof has two steps. First, we define that

ιi,h(x, a) := Bi,hVi,h+1(x, a)−Qi,h(x, a) (30)

Then we have the following lemma from Jin et al. (2021):

Lemma 25 Define the event E as

E =

{∣∣(B̂V̂ πi

i,h+1)(x, a)− (Bi,hV̂
πi

i,h+1)(x, a)
∣∣ ≤ Γi,h(x, a) ∀(x, a) ∈ S ×A,∀h ∈ [H],∀i ∈ [n]

}
,

Then by selecting the input parameter ξ = δ/(Hn) in O, we have P(E) ≥ 1− δ and

0 ≤ ιi,h(x, a) ≤ 2Γi,h(x, a).

Proof The proof is the same as [Lemma 5.1, Jin et al. 2021] with the probability assigned as δ/(Hn) and a union bound
over h ∈ [H], i ∈ [n].

Next lemma shows the difference between the value of the optimal policy π∗ and number n of different policies πi for n
MDPs.

Lemma 26 Let π be an arbitrary policy. Then we have

n∑
i=1

[V π
i,1(x1)− V πi

i,1 (x1)] =

n∑
i=1

H∑
h=1

Ei,π[⟨Qi,h(·, ·), πh(·|·)− πi,h(·|·)⟩A]

+

n∑
i=1

H∑
h=1

(Ei,π[ιi,h(xh, ah)]− Ei,πi [ιi,h(xh, ah)]) (31)

Proof The proof is the same as Lemma 3.1 in (Jin et al., 2021) except substituting π into the lemma.

We also have the following one-step lemma:

Lemma 27 (Lemma 3.3, Cai et al. 2020) For any distribution p∗, p ∈ ∆(A), if p′(·) ∝ p(·) · exp(α ·Q(x, ·)), then

⟨Q(x, ·), p∗(·)− p(·)⟩ ≤ αH2/2 + α−1 ·
(

KL(p∗(·)∥p(·))− KL(p∗(·)∥p′(·))
)
.

Given the above lemmas, we begin our proof of Theorem 14.

18
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Proof [Proof of Theorem 14] Combining Lemma 25 and Lemma 26, we have

n∑
i=1

[V π∗

i,1 (x1)− V πi

i,1 (x1)]

≤
n∑

i=1

H∑
h=1

Ei,π∗ [⟨Qi,h, π
∗
h − πi,h⟩] + 2

n∑
i=1

H∑
h=1

Ei,π∗ [Γi,h(xh, ah)]

≤
n∑

i=1

H∑
h=1

αH2/2 + α−1Ei,π∗ [KL(π∗
h(·|xh)∥πi,h(·|xh))− KL(π∗

h(·|xh)∥πi+1,h(·|xh))]

+ 2

n∑
i=1

H∑
h=1

Ei,π∗ [Γi,h(xh, ah)]

≤ αH3n/2 + α−1 ·
H∑

h=1

Ei,π∗ [KL(π∗
h(·|xh)∥π1,h(·|xh))] + 2

n∑
i=1

H∑
h=1

Ei,π∗ [Γi,h(xh, ah)]

≤ αH3n/2 + α−1H log |A|+ 2

n∑
i=1

H∑
h=1

Ei,π∗ [Γi,h(xh, ah)],

where the last inequality holds since π1,h is the uniform distribution over A. Then, selecting α = 1/
√
H2n, we have

n∑
i=1

[V π∗

i,1 (x1)− V πi

i,1 (x1)] ≤ 2
√
n log |A|H2 + 2

n∑
i=1

H∑
h=1

Ei,π∗ [Γi,h(sh, ah)],

which holds for the random selection of D with probability at least 1− δ. Meanwhile, note that each MDP Mi is drawn
i.i.d. from C. Meanwhile, note that πi only depends on MDP M1, ...,Mi−1. Therefore, by the standard online-to-batch
conversion, we have

P
(
1

n

n∑
i=1

[V π∗
i,1 (x1)− V πi

i,1 (x1)] +

(
1

n

n∑
i=1

Ec∼CV
πi
c,1(x1)− Ec∼CV

π∗
c,1 (x1)

)
≤ 2H

√
2 log 1/δ

n

)
≥ 1− δ,

which suggests that with probability at least 1− 2δ,

Ec∼CV
π∗

c,1 (x1)−
1

n

n∑
i=1

Ec∼CV
πi
c,1(x1) ≤ 2

√
log |A|H2

n
+

2

n

n∑
i=1

H∑
h=1

Eπ∗ [Γi,h(xh, ah)] + 2

√
2H log 1/δ

n
.

Therefore, by selecting πPPPO := random(π1, ..., πn) and applying the Markov inequality, setting δ = 1/8, we have our
bound holds.

C. Suboptimality bounds for real-world setups
In this section we state and prove the suboptimality bounds we promised in Remarks 12 and 15, where we merge the sampled
contexts into m groups (generally, m << n) to reduce the computational complexity in practical settings. The bound in
Theorem 28 serves as a partial justification for the effectiveness of IQL-mV in our real-data experiments (Section ??).

Assume m|n and the n contexts from offline dataset are equally partitioned into m groups. We write the resulting average
MDPs (see Proposition 4) for each group as M̄1, . . . ,M̄m. For each M̄j , we regard it as an individual context in the sense
of (18) and denote the resulting uncertainty quantifier and value function as Γ′

j,h, V
′π
j,h.

Theorem 28 (Suboptimality bound for Remark 12) Assume the same setting as Theorem 9 with the original n contexts
grouped as m contexts, and denote the resulting algorithm as PERM-mV. Then w.p. at least 1 − δ, the output π′ of
PERM-mV satisfies
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SubOpt(π′) ≤ 2

√
2 log(6NΠ

(Hm)−1/δ)

n︸ ︷︷ ︸
I1:Supervised learning (SL) error

+
2

m

m∑
j=1

H∑
h=1

Eπ∗,M̄j

[
Γ′

j,h(sh, ah)|s1 = x1

]
︸ ︷︷ ︸

I2:Reinforcement learning (RL) error

+
5

m
+ 2 sup

π

∣∣∣∣∣ 1n
n∑

i=1

V π
i,1(x1)−

1

m

m∑
j=1

V ′π
j,1(x1)

∣∣∣∣∣︸ ︷︷ ︸
Additional approximation error

,

where Ej,π∗ is w.r.t. the trajectory induced by π∗ with the transition P̄j in the underlying average MDP M̄j .

Proof [Proof of Theorem 28]

Similar to the proof of Theorem 9, we decompose the suboptimality gap as follows

SubOpt(π′)

= Ec∼CV
π∗

c,1 (x1)− V π′

c,1(x1)

= Ec∼CV
π∗

c,1 (x1)−
1

n

n∑
i=1

V π∗

i,1 (x1) +
1

n

n∑
i=1

V π′

i,1(x1)− Ec∼CV
π′

c,1(x1)

+
1

n

n∑
i=1

V π∗

i,1 (x1)−
1

m

m∑
j=1

V ′π∗

j,1(x1) +
1

m

m∑
j=1

V ′π′

j,1(x1)−
1

n

n∑
i=1

V π′

i,1(x1)

+
1

m

m∑
j=1

(
V ′π∗

j,1(x1)− V ′π′

j,1(x1)
)
. (32)

Note that we can bound the first and third lines of (32) with the exactly same arguments as the proof of Theorem 9, the only
notation-wise difference is that the uncertainty quantifier becomes Γ′ as we are operating on the level of average MDP M̄j .

The only thing left is to bound the second line of (32). This is the same in spirit of the bound (15), so that we can express the
bound as follows

1

n

n∑
i=1

V π∗

i,1 (x1)−
1

m

m∑
j=1

V ′π∗

j,1(x1) +
1

m

m∑
j=1

V ′π′

j,1(x1)−
1

n

n∑
i=1

V π′

i,1(x1)

≤ 2 sup
π

∣∣∣∣∣∣ 1n
n∑

i=1

V π
i,1(x1)−

1

m

m∑
j=1

V ′π
j,1(x1)

∣∣∣∣∣∣ .
To conclude, our final bound can be expressed as: with ϵ set as 1

mH , we can get w.p. at least 1− δ

SubOpt(π′)

≤ 2

√
2 log(6NΠ

(Hm)−1/δ)

n
+

2

m

m∑
j=1

H∑
h=1

Eπ∗,M̄j
[Γ′

j,h(sh, ah)|s1 = x1]

+
5

m
+ 2 sup

π

∣∣∣∣∣∣ 1n
n∑

i=1

V π
i,1(x1)−

1

m

m∑
j=1

V ′π
j,1(x1)

∣∣∣∣∣∣ .

To prove the suboptimality bound for Remark 15, we denote that the policies produced by PPPO after merging dataset to m
groups to be π1, . . . , πm, and the original PPPO algorithm would produce the policies as π′

1, . . . , π
′
n. We assume that the

merging of dataset from n to m groups is only to combine the consecutive n/m terms from π′
1, . . . , π

′
n and preserves the

order.
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Theorem 29 (Suboptimality bound for Remark 15) Assume the same setting as Theorem 14 with the original n contexts
grouped as m contexts, and denote the resulting algorithm as PPPO-mV. Let Γ′

j,h be the uncertainty quantifier returned by
O through the PPPO-mV algorithm. Selecting α = 1/

√
H2m. Then selecting δ = 1/8, w.p. at least 2/3, we have

SubOpt(πPPPO−mV ) ≤ 10

(√
log |A|H2

m︸ ︷︷ ︸
I1:SL error

+
1

m

m∑
j=1

H∑
h=1

Ej,π∗
[
Γ′

j,h(sh, ah)|s1 = x1

]
︸ ︷︷ ︸

I2:RL error

+ sup
π

∣∣∣∣∣ 1n
n∑

i=1

V π
i,1(x1)−

1

m

m∑
j=1

V ′π
j,1(x1)

∣∣∣∣∣+ 1

n

n∑
i=1

sup
π

∣∣Ec[V
π
c,1(x1)]− V π

i,1(x1)
∣∣

+
1

m

m∑
j=1

sup
π

∣∣Ec[V
′π
c,1(x1)]− V ′π

j,1(x1)
∣∣ ).

where Ej,π∗ is w.r.t. the trajectory induced by π∗ with the transition P̄j in the underlying MDP M̄j .

Proof [Proof of Theorem 29]

Using the same arguments as in the proof of Theorem 14 with α = 1/
√
H2m, we can derive the bound

m∑
j=1

[V ′π∗

j,1(x1)− V ′πj

j,1(x1)] ≤ 2
√

m log |A|H2 + 2

m∑
j=1

H∑
h=1

Ej,π∗ [Γ′
j,h(sh, ah)].

Leveraging this bound and online-to-batch, we obtain the following estimation

Ec[V
π∗

c,1 (x1)]−
1

m

m∑
j=1

Ec[V
πj

c,1 (x1)]

=Ec[V
π∗

c,1 (x1)]−
1

n

n∑
i=1

Ec[V
π′
i

c,1(x1)] +
1

n

n∑
i=1

Ec[V
π′
i

c,1(x1)]−
1

m

m∑
j=1

Ec[V
πj

c,1 (x1)]

≤2H
√

2 log 1/δ

n
+

1

n

n∑
i=1

(
Ec[V

π′
i

c,1(x1)]− V
π′
i

i,1 (x1)
)
+

1

n

n∑
i=1

V π∗

i,1 (x1)−
1

m

m∑
j=1

Ec[V
πj

c,1 (x1)]

=2H

√
2 log 1/δ

n
+

1

n

n∑
i=1

V π∗

i,1 (x1)−
1

m

m∑
j=1

V ′π∗

j,1(x1)

+
1

m

m∑
j=1

V ′π∗

j,1(x1)−
1

m

m∑
j=1

V ′πj

j,1(x1)

+
1

n

n∑
i=1

(
Ec[V

π′
i

c,1(x1)]− V
π′
i

i,1 (x1)
)
+

1

m

m∑
j=1

V ′πj

j,1(x1)−
1

m

m∑
j=1

Ec[V
πj

c,1 (x1)]

≤2H
√

2 log 1/δ

n
+ sup

π

∣∣∣∣∣∣ 1n
n∑

i=1

V π
i,1(x1)−

1

m

m∑
j=1

V ′π
j,1(x1)

∣∣∣∣∣∣
+ 2

√
log |A|H2

m
+

2

m

m∑
j=1

H∑
h=1

Ej,π∗ [Γ′
j,h(sh, ah)]

+
1

n

n∑
i=1

sup
π

∣∣Ec[V
π
c,1(x1)]− V π

i,1(x1)
∣∣+ 1

m

m∑
j=1

sup
π

∣∣Ec[V
′π
c,1(x1)]− V ′π

j,1(x1)
∣∣ .

Finally we apply Markov inequality and take δ = 1/8 as in the proof of Theorem 14.
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D. Results in Section 6
D.1. Proof of Theorem 17

By (Jin et al., 2021), the parameters specified as λ = 1, β(δ) = c · dH
√

log(2dHK/δ), and applying union bound, we
can get: for Algo.4, with probability at least 1− δ/3

∣∣(B̂i,hV̂
π
i,h+1)(x, a)− (Bi,hV̂

π
i,h+1)(x, a)

∣∣ ≤ β
( δ

3nHNΠ
(Hn)−1

)(
ϕ(x, a)⊤Λ−1

i,hϕ(x, a)
)1/2

,

for all i ∈ [n], π ∈ Π̃, (x, a) ∈ S ×A, h ∈ [H] , (33)

where Π̃ is the 1
Hn -covering set of the policy space Π w.r.t. distance d(π1, π2) = maxs∈S,h∈[H] ∥π1

h(·|s)− π2
h(·|s)∥1.

Therefore, we can specify the Γi,h(·, ·) in Theorem 9 with β
(

δ
3nHNΠ

(Hn)−1

)(
ϕ(x, a)⊤Λ−1

i,hϕ(x, a)
)1/2

, and follow the same

process as the proof of Theorem 9 to get the result for Algo.2 with subroutine Algo.4.

Similarly, we can get: we can get: for Algo.4, with probability at least 1− 1/4

∣∣(B̂i,hV̂i,h+1)(x, a)− (Bi,hV̂i,h+1)(x, a)
∣∣ ≤ β

( δ

4nH

)(
ϕ(x, a)⊤Λ−1

i,hϕ(x, a)
)1/2

,

for all i ∈ [n], (x, a) ∈ S ×A, h ∈ [H] . (34)

Therefore, we can specify the Γi,h(·, ·) in Theorem 14 with β
(

δ
4nH

)(
ϕ(x, a)⊤Λ−1

i,hϕ(x, a)
)1/2

and follow the same process
as the proof of Theorem 14 to get the result for Algo.3 with subroutine Algo.4.

D.2. Proof of Corollary 19

By the assumption that Di is generated by behavior policy π̄i which well-explores MDPMi with constant ci (where the
well-explore is defined in Def.18), the proof of Corollary 4.6 in (Jin et al., 2021), and applying a union bound over n
contexts, we have that for Algo.2 with subroutine Algo.4 w.p. at least 1− δ/2

∥ϕ(x, a)∥Λ−1
i,h
≤

√
2d

ciK

for all i ∈ [n], (x, a) ∈ S ×A and all h ∈ [H] , (35)

and for Algo.2 with subroutine Algo.4 w.p. at least 1− δ/2

∥ϕ(x, a)∥Λ−1
i,h
≤

√
2dH

ciK

for all i ∈ [n], (x, a) ∈ S ×A and all h ∈ [H] , (36)

because we use the data splitting technique and we only utilize each trajectory once for one data tuple at some stage h, so
we replace K with K/H .

Then, the result follows by plugging the results above into Theorem17.
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