
OSTOR: Online Scheduling Framework for Trading
Continuous Queries

Jin Cheng1, 2, Ningning Ding3, John C.S. Lui2, Jianwei Huang1→
1 The Chinese University of Hong Kong, Shenzhen

2 The Chinese University of Hong Kong
3 Hong Kong University of Science and Technology (Guangzhou)

Abstract—Data trading significantly enhances data utility by

enabling data sharing across diverse applications. Despite being

crucial for real-time analytics and online machine learning,

trading continuous queries with streaming data output remains

largely unexplored. The inherent characteristics of trading con-

tinuous queries pose distinctive technical challenges in scheduling

query execution. First, the streaming nature demands online

scheduling under information uncertainty, where data utilities

and execution costs vary unpredictably during query execution.

Second, the intrinsic NP-hardness of the optimization problem,

coupled with repeated invocation requirements, necessitates effi-

cient algorithmic solutions to address computational complexity.

We present OSTOR, the first online scheduling framework

for trading continuous queries. OSTOR aims to maximize social

welfare, defined as the difference between buyers’ obtained utili-

ties and sellers’ execution costs, while achieving both theoretical

guarantees and practical efficiency. To handle the information

uncertainty, we present a primary-dual decomposition method

that transforms the online scheduling problem into multiple

one-round integer programming problems, enabling adaptive

decision-making that only needs current system information. To

address the computational complexity, we design an adaptive

dual descent (ADD) algorithm that iteratively optimizes dual

variables, achieving a bounded constant approximation ratio in

polynomial time. We further enhance OSTOR through structure-

aware greedy optimization strategies with provable performance

guarantees. Extensive experiments demonstrate that OSTOR

substantially improves social welfare and reduces query execution

costs on both real-world and synthetic datasets, compared to

existing data trading methods.

Jin Cheng is with Shenzhen Institute of Artificial Intelligence and Robotics
for Society, the School of Science and Engineering, The Chinese Uni-
versity of Hong Kong, Shenzhen and the Department of Computer Sci-
ence and Engineering, The Chinese University of Hong Kong (Email:
jincheng2@link.cuhk.edu.cn). Ningning Ding is with the Data Science and
Analytics Thrust, Information Hub, Hong Kong University of Science and
Technology (Guangzhou) (Email: ningningding@hkust-gz.edu.cn). John C.S.
Lui is with the Department of Computer Science and Engineering, The
Chinese University of Hong Kong (Email: cslui@cse.cuhk.edu.hk). Jianwei
Huang is with the School of Science and Engineering, Shenzhen Institute
of Artificial Intelligence and Robotics for Society, Shenzhen Key Lab-
oratory of Crowd Intelligence Empowered Low-Carbon Energy Network,
and CSIJRI Joint Research Centre on Smart Energy Storage, The Chinese
University of Hong Kong, Shenzhen (Corresponding Author, Email: jianwei-
huang@cuhk.edu.cn).

This work is supported by the National Natural Science Foundation of
China (Project 62271434), Shenzhen Key Lab of Crowd Intelligence Empow-
ered Low-Carbon Energy Network (No. ZDSYS20220606100601002), the
Shenzhen Stability Science Program 2023, the Shenzhen Institute of Artificial
Intelligence and Robotics for Society, and Longgang District Shenzhen’s “Ten
Action Plan” for Supporting Innovation Projects (No. LGKCSDPT2024002).
The work of John C.S. Lui is supported in part by the RGC GRF-14202923.

Continuous
Queries

Streaming
Results

Continuous
Queries

Data Stream Management System

Data Stream

Machine Learning

Time

Decision Making

Fig. 1: Continuous queries for real-time applications.
I. INTRODUCTION

A. Background and Motivations

Data has emerged as an essential resource, playing a pivotal
role in data-driven decision-making, such as machine learning
[1]. The availability of diverse and extensive datasets through
data trading significantly enhances the robustness of learning
models by allowing more comprehensive training and vali-
dation, leading to more accurate and practical solutions. In
2022, the global data trading market attained a utility of $968
million, with a projected annual growth rate of 25% from
2023 to 2030 [2]. This burgeoning landscape has seen the
emergence of numerous data trading platforms, such as AWS
Data Exchange [3], Snowflake [4], and Xignite [5].

Data from continuous queries (CQs) is valuable for real-
time decision-making and online machine learning [6, 7],
as illustrated in Fig. 1. This is because CQs continuously
process data streams and provide timely streaming results for
downstream applications. Specifically, Example 1, written in
Continuous Query Language (CQL), demonstrates how CQs
enable real-time decision-making [8] in the stock market. This
CQ continuously analyzes the StockTrades stream over a
sliding 5 MINUTES window, computing two key results for
each stock Symbol: average price (AVG(Price)) and price
volatility (STDDEV(Price)). When volatility exceeds 200,
the CQ outputs these results to alert stock traders and guide
trading decisions. For online learning [9–13], CQs provide
streaming results that support continuous model updates with
evolving data patterns, thereby maintaining model accuracy
and adaptability under dynamic environments.
Example 1 (A Continuous Query in Stock Market).

SELECT Symbol, AVG(Price), STDDEV(Price)
FROM StockTrades [RANGE 5 MINUTES]
GROUP BY Symbol
HAVING STDDEV(price) > 200

𝜶 𝝈 𝝅

StockTrade
Stream

Time
Window Aggregate Filter Output

5 Minutes Symbol STDDEV>200

Stream Queue Operator

Fig. 2: A query plan for executing the CQ in Example 1.

Research on trading continuous queries remains largely un-
explored despite its importance. Existing data trading studies
(e.g., [14–19]) primarily focus on trading one-time queries
over static database snapshots. These frameworks mainly
address static properties such as privacy preservation [14–16]
and truthfulness [17–19]. However, they are not suitable for
trading data from continuous queries, as the streaming nature
introduces distinctive technical challenges in scheduling query
execution that existing methods cannot effectively address.

Trading continuous queries poses two key technical chal-
lenges arising from its inherent characteristics: information
uncertainty and computational complexity. The system sched-
ules CQ execution by constructing query plans with processing
operators connected through stream queues, as shown in Fig. 2
of Example 1. While plan construction requires balancing
data utilities against execution costs, the streaming nature
introduces significant information uncertainty, necessitating
online scheduling as both utilities and costs vary unpredictably
during query execution. Specifically, execution costs vary due
to dynamic factors [20, 21]: window memory costs vary with
fluctuating data rates, aggregation processing costs change
with varying symbol distributions, and filtering costs adapt
to changing market conditions. Moreover, data utilities vary
with market conditions and user preferences [22]. This leads
to our first key question:
Key Question 1. How to adaptively schedule continuous
queries in an online manner to maximize social welfare, under
information uncertainty in data trading?

The second challenge stems from the intrinsic computa-
tional complexity of scheduling continuous queries, which
presents an NP-hard combinatorial optimization problem [23].
Moreover, scheduling CQs requires continuous adjustments to
accommodate dynamic stream variations, leading to repeated
invocations of this complex optimization problem. Existing
optimization approaches [24–27] are not suitable for schedul-
ing CQs, as they do not consider the hierarchical coupling
structure detailed in Section II. The structural properties of
CQs require efficient algorithms that can handle these cou-
pling relationships while ensuring computational efficiency
and adaptivity. This leads to our second key question:
Key Question 2. How to efficiently solve the NP-hard schedul-
ing problem for trading continuous queries, under the require-
ment of repeated invocations?

B. Key Contributions
We summarize our key contributions as follows:

• Online Scheduling Framework for Trading Continuous
Queries: To the best of our knowledge, this is the first online

scheduling framework for trading continuous queries. For
Key Question 1, our framework adaptively addresses the
information uncertainty through a customized primal-dual
approach to maximize social welfare. The approach decom-
poses the online scheduling problem into multiple one-round
integer programming problems, which enables scheduling
decisions based solely on current system information.

• Efficient Algorithm for Addressing Computational Complex-
ity: For Key Question 2, we develop an efficient Adaptive
Dual Descent (ADD) algorithm to solve the NP-hard one-
round problems by exploiting the problem structure. The
ADD algorithm achieves a polynomial time complexity of
O (MN log(MN)) while guaranteeing a bounded constant
approximation ratio, where M and N denote the numbers
of query plans and continuous queries.

• Greedy Strategies for Enhancing Performance: We augment
the algorithm with two structure-aware greedy strategies:
Dynamic Reactivation Strategy (DRS) and Iterative Reas-
signment Strategy (IRS). DRS reactivates plans analytically,
while IRS optimizes query assignments iteratively. These
strategies are theoretically proven to optimize the approxi-
mation ratio in dynamic environments.

• Experiments for Evaluating Effectiveness: Through com-
prehensive experiments on both real-world and synthetic
datasets, OSTOR demonstrates a 79.31% improvement in
social welfare and achieves a 54.04% reduction in query
execution costs through its adaptive scheduling mechanism,
compared with classical data trading methods.

C. Related Works
We categorize related research into two areas: query-based

data trading methods and online scheduling frameworks.
1) Query-based Data Trading: Research on data trading

has primarily focused on static databases, emphasizing dif-
ferent mechanism properties such as privacy preservation
[15, 28, 29], arbitrage-freeness [30–32], truthfulness [17, 33],
and security [34–36]. Chen et al. [31] present GSHOP, a
framework that introduces a pricing method for graph statistic
queries through controlled noise injection while maintaining
arbitrage-free guarantees, allowing buyers to balance cost and
accuracy based on their requirements. Cai et al. [17] propose
Cheap, a novel framework for trading high-dimensional corre-
lated private data that models attribute correlations to optimize
data perturbation while ensuring fair compensation through an
auction-based mechanism. However, the growing demand for
real-time analytics and online machine learning in domains
such as stock market monitoring [37] and IoT applications [38]
necessitates continuous query-based data trading, highlighting
the limitations of these static approaches.

While existing mechanisms effectively address key chal-
lenges in static data trading, they cannot handle the distinctive
technical challenges arising from continuous query schedul-
ing, specifically the online optimization challenges requiring
decisions without future information and the computational
complexity due to query coupling. Privacy-preservation mech-
anisms [15, 28, 29] focus on protecting data during trading but

assume fixed data patterns. Arbitrage-free mechanisms [30–
32] ensure consistent pricing across different query combina-
tions but are limited to one-time queries. Although truthfulness
mechanisms [17, 33, 39] and security frameworks [34–36]
provide important trading properties such as accurate query
pricing and secure transaction processing, they are designed
for static datasets with fixed query patterns.

2) Online Scheduling Framework: Existing online schedul-
ing frameworks have been developed for various domains, in-
cluding distributed machine learning [40, 41], edge and cloud
computing [24–27], and transportation networks [42, 43]. Mo-
han et al. [26] propose Synergy, a resource-sensitive scheduler
that infers the sensitivity of deep neural networks to different
resources using optimistic profiling and allocates workloads
accordingly to improve the average job completion time on
multi-tenant GPU clusters. Zhou et al. [40] design DPS, a
dynamic pricing and scheduling mechanism for distributed
machine learning jobs using multi-armed bandit techniques
to make online decisions. Cui et al. [27] propose a container
scheduling algorithm for edge cluster upgrading that employs
self-attention and reinforcement learning to optimize task
latency. Lee et al. [24] propose a time-dependent pricing
and scheduling algorithm TD-PnS for cloud object storage
services that jointly optimize pricing, resource scheduling,
and energy management to maximize service provider profit
through Lyapunov optimization.

While these scheduling frameworks effectively address
scheduling problems in their domains, they are unsuitable
for continuous queries. This is primarily because continuous
query scheduling exhibits hierarchical coupling relationships
between plans and queries, as detailed in Section II. These
inherent coupling structures make the scheduling problem NP-
hard and require repeated optimization invocations.

3) Key Distinctions from Existing Works: Our work differs
from existing data trading frameworks in several fundamental
aspects. While previous works focus on static databases with
one-time queries, our framework specifically addresses the
challenges inherent in continuous data streams where query
patterns and data characteristics evolve dynamically over time.
Furthermore, existing scheduling frameworks, though effec-
tive in resource allocation, are inadequate for handling the
unique hierarchical coupling relationships between execution
plans and continuous queries in data trading scenarios. This
intrinsic coupling nature, combined with the requirement for
online optimization without future knowledge, fundamentally
distinguishes our problem from traditional scheduling tasks.

To the best of our knowledge, OSTOR is the first online
scheduling framework designed for trading continuous queries.
Our optimization objectives address the distinctive characteris-
tics of trading continuous queries (i.e., information uncertainty
and computational complexity), enabling seamless integration
with existing data trading frameworks [20].

The paper is organized as follows. Section II presents the
system model. Section III formulates the problem and solution
overview. Sections IV and V detail one-round and online

...

...

u

Steam
Processor

Static
Storage

Query
Repository

Streaming Results

Query Processor
Query Plans

Subscribers (Buyers)

Pub/Sub
Manager

Publisher (Seller)
Continuous

Queries

Data Stream

TimeInput Monitor

Fig. 3: Data trading system.

scheduling algorithms. Section VI presents experimental re-
sults. Section VII provides discussion. Section VIII concludes.

II. SYSTEM MODEL

This section presents the system model. We first introduce
continuous queries and query plans in Section II-A, then de-
scribe the data trading system with buyer and seller modelings
in Section II-B.

A. Continuous Query and Query Plan
We introduce continuous queries and query plans based

on CQL [44], a foundational stream processing language
integrated into modern systems like Apache Spark Structured
Streaming and Apache Flink [45]. A continuous query is
a persistent query that processes streaming data based on
windows (time-based or count-based) and continuously pro-
duces updated results as new data arrives. Formally, it can be
expressed as Q = (I, P,O), where I represents input data
streams, P defines the data processing logic (e.g., selection,
projection, join, and aggregation), and O specifies output
specifications including update intervals and delivery methods.

Query plans provide scheduling strategies containing phys-
ical implementation details for query execution. As illustrated
in Fig. 2, a query plan is a directed graph that processes one
or more continuous queries, comprising three key components:
operators for data processing, stream queues between opera-
tors, and synopses that maintain memory for data processing.
The plan executes continuously to process incoming data
streams and produce corresponding results.

For notational simplicity, we use “query” and “plan” to refer
to continuous query and query plan, respectively.

B. Data Trading System
We consider a data stream management system [8] for

trading continuous queries through a widely adopted publish-
subscribe pattern [46, 47], as illustrated in Fig. 3. The system
(i.e., the publisher or seller) comprises an Input Monitor for
data stream ingestion, a Stream Processor for data processing,
a Static Storage for memory management, a Subscription Man-
ager coordinating buyers’ subscriptions with the Query Repos-
itory, and a Query Processor for query execution scheduling.
The trading process operates in cycles, where each cycle

𝜶
𝝈

𝝈 𝝅
StockTrade

Stream
Time

Window Aggregate

Filter

Filter

Output of Query 1

𝝅

5 Minutes Symbol

STDDEV>200

AVG>1000

Basic Plan Additional Operators

Stream Queue
Operator

(Shared Execution) (Individual Execution)

Output of Query 2

Fig. 4: Basic plan and additional operators for query execution.

consists of discrete time slots T = {1, 2, . . . , T}. At the
beginning of each cycle, buyers subscribe to queries based
on their analytical needs. After collecting all subscriptions,
the seller constructs plans to schedule query execution and
delivers real-time results to the corresponding buyers [48]. We
next present the modeling of the data buyers and sellers.

1) Data Buyer Modeling: Each buyer j → N subscribes
to one query with a subscription budget Sj , where N =
{1, 2, · · · , N} denotes the set of all subscribed queries.

The utility1
u
(t)
j of query j varies over time t → T , reflecting

the dynamic nature of data value in real-time analytics. This
time-varying utility is influenced by multiple factors, including
market dynamics, emergency events, and user preference shifts
[22]. For instance, in Example 1, the utility of stock data
increases during market volatility periods and after major
economic announcements, when real-time analytical insights
become crucial for decision-making.

2) Data Seller Modeling: The seller schedules query exe-
cution by constructing plans from a set of predefined basic
plans M = {1, 2, · · · ,M} that handle common execution
operations. Based on scheduling decisions that determine the
activation of basic plans and their query assignments, each
activated plan incorporates additional operators to meet its
assigned queries’ individual requirements. Computation results
of common operators in the basic plan are shared among
queries assigned to the same plan, which is a well-established
query execution pattern [20, 50–52], significantly improving
efficiency. We illustrate this process in the following example.

Example 2 (A Basic Plan and Additional Operators). Con-
sider a query plan executing two queries as shown in Fig. 4,
where the first query is from Example 1 and the second is:

SELECT Symbol, AVG(Price), AVG(Volume)
FROM StockTrades [RANGE 5 MINUTES]
GROUP BY Symbol
HAVING AVG(Volume) > 1000.

The common operators from the basic plan enable execution
sharing, while distinct filters require individual execution.

There are two types of execution costs in each plan: activa-
tion cost ω(t)

i for shared execution in plan i, and assignment

1Following [20], we use monetary units per time slot (e.g., cents/minute) as
the basic measurement unit, where utilities and execution costs are calculated
for each time slot. This aligns with cloud computing services [49], where
resources are charged based on fixed time intervals.

cost2 ε
(t)
ij for individual execution when query j is executed

in plan i. Both costs vary over time t → T due to dynamic
execution environment factors [21]. For example, window
memory costs vary with data rate fluctuations, aggregation
processing costs change with symbol distribution variations,
and filtering costs adapt to dynamic market conditions.

The seller determines two types of binary scheduling vari-
ables at each time slot t → T : plan activation variables
y(t) =

{
y
(t)
i → {0, 1} | i → M

}
and query assignment vari-

ables x(t) =
{
x
(t)
ij → {0, 1} | i → M, j → N

}
. The activation

variable y
(t)
i determines whether plan i is activated with cost

ω
(t)
i , defining the set of activated plans as M

(t)
a = {i → M |

y
(t)
i = 1}. When x

(t)
ij = 1, query j is assigned to plan i with

cost ε(t)
ij . These variables are coupled by x

(t)
ij ↑ y

(t)
i , ↓i → M,

j → N , t → T , ensuring queries are only assigned to activated
plans, which forms a hierarchical coupling structure.

This section has introduced the concepts of continuous
queries, query plans, and the data trading system with seller
and buyer modelings. Based on these concepts, we present the
problem formulation and solution overview in the next section.

III. PROBLEM FORMULATION AND SOLUTION OVERVIEW

In this section, we define the online and one-round schedul-
ing problems for trading continuous queries in Sections III-A
and III-B. Section III-C then provides a solution overview.

A. Online Scheduling Problem

This paper addresses the online scheduling problem of
trading continuous queries, where the seller aims to maximize
social welfare, defined as the total economic value generated
by the trading system, representing the difference between
buyers’ utilities from query results and sellers’ costs during
query execution in a dynamic environment. We first present
an offline problem P1, which provides “ideal” scheduling
strategies by assuming complete information (i.e., u(t), ω(t),
and ε(t) across time span T).

max
x,y

∑

t→T

∑

i→M

∑

j→N
x
(t)
ij (u

(t)
j ↔ ε

(t)
ij)↔

∑

i→M
y
(t)
i ω

(t)
i

(P1)

s.t. x
(t)
ij ↑ y

(t)
i , ↓ i → M, j → N , t → T , (1a)

∑

t→T

∑

i→M
x
(t)
ij u

(t)
j ↑ Sj , ↓ j → N , (1b)

∑

i→M
x
(t)
ij ↑ 1, ↓ j → N , t → T , (1c)

x
(t)
ij , y

(t)
i → {0, 1}, ↓ i → M, j → N , t → T . (1d)

2A query can be executed by multiple plans in various cases, such as (1)
identical filters with different temporal parameters [20], and (2) different filters
with identical temporal requirements [53]. When plan i cannot execute query
j, we set ω(t)

ij = ↑ to prohibit such assignments.

Constraint (1a) ensures that queries are assigned only to
activated plans. Constraint (1b) enforces each query’s sub-
scription budget constraint across the time span. Constraint
(1c) restricts each query to be assigned to at most one plan.

By introducing dual variable vectors ϑ, w, and ϖ for
constraints (1a), (1b), and (1c), respectively, and relaxing the
binary constraints (1d), we obtain the dual of Problem P1:

min
ω,w,ε

∑

j→N
Sjwj +

∑

t→T

∑

j→N
ϑ
(t)
j (Pd

1)

s.t. ϖ
(t)
ij + wju

(t)
j + ϑ

(t)
j ↗ u

(t)
j ↔ ε

(t)
ij ,

↓ i → M, j → N , t → T , (2a)
∑

j→N
ϖ
(t)
ij ↑ ω

(t)
i , ↓ i → M, t → T , (2b)

ϑ, w, ϖ ↗ 0. (2c)

The online scheduling problem addresses P1 under un-
certain information (i.e., unpredictable u(t), ω(t), and ε(t)

across time span T). Since complete future information is
impractical in dynamic execution environments, the seller has
to make decisions at time t based on currently available system
information (i.e., information up to time t).

B. One-round Scheduling Problem
To handle information uncertainty, we decompose P1 into

one-round subproblems P2 by relaxing constraint (1b) and
scaling u

(t)
j to d

(t)
j based on remaining budget Sj . We for-

mulate the one-round problem at time t → T as follows:
max

x(t),y(t)

∑

i→M

∑

j→N
(d(t)j ↔ ε

(t)
ij)x(t)

ij ↔

∑

i→M
ω
(t)
i y

(t)
i (P2)

s.t. x
(t)
ij ↑ y

(t)
i , ↓ i → M, j → N , (3a)

∑

i→M
x
(t)
ij ↑ 1, ↓ j → N (3b)

x
(t)
ij , y

(t)
i → {0, 1}, ↓ i → M, j → N . (3c)

We derive the corresponding dual problem Pd
2 as follows:

min
ω(t),ε(t)

∑

j→N
ϑ
(t)
j (Pd

2)

s.t. ϖ
(t)
ij + ϑ

(t)
j ↗ d

(t)
j ↔ ε

(t)
ij , ↓ i → M, j → N (4a)

∑

j→N
ϖ
(t)
ij ↑ ω

(t)
i , ↓i → M (4b)

ϖ
(t)
ij ,ϑ

(t)
j ↗ 0, ↓i → M, j → N . (4c)

The one-round scheduling problem P2 jointly optimizes
binary variables (y(t)i , x

(t)
ij) for plan activation and query

assignment to maximize social welfare. Despite its simplified
form compared to P1, the computational complexity of P2

remains challenging, as shown in the following proposition.

Proposition 1. Problem P2 is strongly NP-hard.
Proof. We prove this by a polynomial-time reduction from
the strongly NP-hard set cover problem [54] to the one-round
problem P2, as detailed in our online technical report [55].

ℙ1 ℙ1𝑟 ℙ1𝑑

ℙ2 ℙ2𝑟 ℙ2𝑑

relaxed dual

relaxed dual

(OSTOR) Primary-dual
Decomposition Algorithm

(ADD) Adaptive Dual
Descent Algorithm

(Decomposition Loss: 1
𝑒−1

)

(Theorem 3) Competitive Ratio: (𝟏 + 𝜿)(𝝆
𝟑
+ 𝟏

𝝇
)

Enhance

(Theorem 1) Approximation Ratio: 𝒈 = 𝝆
𝟑

Reactivation and Reassignment
(Lemmas 1 & 2) Approximation Ratio: 𝒈 ≤ 𝝆

𝟑

Decompose ℙ1

Enhance ℙ2

(DRS& IRS) Greedy
Optimization Strategies

Section V

Section IV

Section IV

𝑇

Algorithm Components Theoretical Analysis

Fig. 5: Online scheduling framework.

Therefore, solving the scheduling problem faces two chal-
lenges: information uncertainty in Problem P1 and computa-
tional complexity of NP-hard Problem P2 requiring repeated
invocations. In the next subsection, we present the solution
overview, with detailed algorithms in Sections IV and V.

C. Solution Overview
We propose an online scheduling framework that inte-

grates temporal decomposition and efficient approximation
algorithms to address these challenges. As illustrated in Fig. 5,
the framework consists of the following components:
• Primary-dual Decomposition Algorithm for Online Schedul-

ing: The framework decomposes P1 into a sequence of one-
round problems P2 through primal-dual algorithm OSTOR.
Using carefully designed weights w

(t)
j , it enables efficient

scheduling decisions solely based on current information.
Section V presents the details.

• Adaptive Dual Descent Algorithm for One-round Schedul-
ing: The framework incorporates an efficient approximation
algorithm ADD to solve Problem P2 through adaptive dual
descent. The dual variables ϖ

(t)
ij and ϑ

(t)
j act as economic

prices to guide plan activation and query assignment. Sec-
tion IV-A provides the details.

• Greedy Optimization Strategies for Enhancement: To op-
timize system performance, the framework employs two
greedy strategies with theoretical guarantees: Dynamic Re-
activation Strategy (DRS) and Iterative Reassignment Strat-
egy (IRS). DRS iteratively activates superior query plans
following designed principles until convergence, while IRS
optimizes social welfare through structured query-to-plan
reassignment. Section IV-B provides detailed analysis.
This section has formulated the online and one-round

scheduling problems for trading continuous queries. In Sec-
tion IV, we present the algorithm design for the one-round
scheduling problem, followed by Section V, where we develop
the complete online scheduling framework.

IV. ONE-ROUND SCHEDULING ALGORITHM DESIGN

In this section, we propose an efficient approximation
algorithm for the one-round problem P2 through a series
of algorithm designs. We present the basic Adaptive Dual
Descent (ADD) algorithm in Section IV-A, providing poly-
nomial time complexity with a constant approximation ratio.

Then Section IV-B introduces two greedy strategies to enhance
performance. Due to page limit, all proofs are in our technical
report [55]. Since all parameters and variables are in time slot
t, we omit the superscript (t) in this section for clarity.

A. Basic Adaptive Dual Descent Algorithm

We develop an efficient approximation approach using adap-
tive dual descent (ADD) as the basic algorithm for Problem
P2. The algorithm presentation follows three steps: key ideas
in Section IV-A1, detailed algorithm design in Section IV-A2,
and theoretical analysis of approximation ratio and time com-
plexity in Section IV-A3.

1) Algorithm Idea: ADD iteratively constructs a solution
by adaptively adjusting dual variables, which naturally guide
both plan activation decisions and query assignment strategies.
Since the core mechanism of our algorithm relies on this
dual adjustment process, understanding the dual solution is
fundamental: We first conduct a comprehensive analysis of
the dual solution in part (a), and then demonstrate how to sys-
tematically derive a feasible primal solution while effectively
addressing the problem-specific constraints in part (b).

(a) Analysis of Dual Solutions: Our analysis of dual solu-
tions, focusing on their structure and economic interpretations,
reveals the core scheduling mechanism. For any optimal dual
solution (ϖ↑

,ϑ↑) to Problem Pd
2, given ϑ↑, the optimal ϑ↑

j that
minimizes the objective function takes the following form:

ϑ
↑
j = max

i→M
(0, dj ↔ εij ↔ ϖ

↑
ij), (5)

since ϑ
↑
j needs to satisfy constraint (4a) while minimizing the

objective function.
The dual variables have corresponding economic interpre-

tations. ϑ↑
j represents the seller’s subsidy to buyer j, which

the seller minimizes in Pd
2. By complementary slackness [56],

the plan is activated only when (4b) becomes tight. The cost
share ϖ

↑
ij decomposes ωi among queries and is charged only

upon execution, eliminating explicit activation charges while
ensuring cost recovery. The dual solution (5) reflects buyers’
incentive to maximize their subsidies across plans.

(b) Deriving Primal Solutions from Dual Solutions: Based
on the dual solution in (5), we now demonstrate the derivation
of a primal solution for Problem P2. The primal solution
requires determining two decision variables: plan activation
yi, ↓ i → M and query assignment xij , ↓ i → M, j → N .
We first establish two key definitions that guide our derivation:

Definition 1 (Association). For dual solution (ϖ↑
,ϑ↑),

query j associates plan i if ϑ
↑
j ↑ dj ↔ εij . We de-

fine N(i) =
{
j → N : ϑ↑

j ↑ dj ↔ εij

}
and N(j) ={

i → M : ϑ↑
j ↑ dj ↔ εij

}
as their respective associated sets.

Definition 2 (Contribution). Given a dual solution (ϖ↑
,ϑ↑),

a query j contributes to a plan i if ϖ↑
ij > 0.

To derive primal solution, we first determine query assign-
ments based on dual solution. For any optimal dual solution
(ϖ↑

,ϑ↑), given ϖ↑, we can derive feasible cost shares ϑ↑ by:
ϖ
↑
ij = max(0, di ↔ εij ↔ ϑ

↑
j). (6)

This formulation establishes two key properties: (1) if query j

contributes to plan i, then query j associates plan i (i.e., j →

N(i)), since ϖ
↑
ij > 0 implies ϑ

↑
j < dj ↔ εij ; (2) if j → N(i),

then ϑ
↑
j = dj ↔ εij + ϖ

↑
ij . These properties indicate that we

can assign query j to its associated plan i (i.e., j → N(i)).
Next, we determine the plan activation decisions. Let M̄a ={
i → M :

∑
j→N ϖ

↑
ij = ωi

}
be the set of all plans where the

sum of the cost shares equals the plan activation cost (i.e., the
corresponding constraint (4b) is tight). For plan i → M̄a, the
assignment utility of the associated set N(i) minus the plan
activation cost is exactly equal to the sum of the dual variables
ϑ
↑
j of the associating queries, which means
∑

j→N(i)

(dj ↔ εij)↔ ωi =
∑

j→N(i)

(dj ↔ εij ↔ ϖ
↑
ij) =

∑

j→N(i)

ϑ
↑
j .

(7)
Here, the first equality follows since ϖ

↑
ij > 0 implies that

j → N(i) and the second equality follows since j → N(i)
implies that dj ↔ εij = ϑ

↑
j + ϖ

↑
ij according to (6). We also

find a structural property of the dual solution, as shown in the
following proposition.
Proposition 2. In an optimal dual solution (ϖ↑

,ϑ↑), each
query must associate at least one plan in M̄a.
Proof. Please refer to our technical report [55].

Proposition 2 reveals that each query must have at least
one associated plan where subsidies fully reflect the activation
cost. Accordingly, we can establish strong duality between the
relaxed primal problem Pr

2 and its dual Pd
2:

∑

i→M

∑

j→N(i)

(dj ↔ εij)↔ ωi =
∑

i→M

∑

j→N(i)

ϑ
↑
j . (8)

which shows that the gap between relaxed problem Pr
2 and

dual problem Pd
2 is zero and both solutions are optimal.

Therefore, a potential primary solution activates plans in
M̄a and assigns query j to plan i if j → N(i). However, a
challenge emerges: a query j may contribute to multiple plans’
activation costs in M̄a, violating constraint (3b). To address
this, we select a subset Ma of M̄a and implement a plan
redirection strategy that ensures each query contributes to at
most one plan through a mapping function ϱ(·) detailed next.

2) Algorithm Design: We design an Adaptive Dual De-
scent (ADD) algorithm, as shown in Algorithm 1. The key
idea is to gradually reduce query subsidies while maintaining
dual feasibility, using dual solutions in (5) and (6) for plan
activation and query assignments. Query subsidies are fixed
upon triggering events. The algorithm consists of two phases:

Phase 1: Initialization of Dynamic Sets (Line 1): The
algorithm maintains three dynamic sets: activated plans Ma,
unprocessed plans Mu, and unassigned queries Nu. For multi-
plan query contributions, we define redirection function ϱ(·)
that maps execution plans to their target plans (Lines 10-11).

Phase 2: Adaptive Dual Descent Process (Lines 2-15):
The algorithm operates through adaptive dual descent. Query
subsidies ϑj decrease iteratively, with plan sharing costs
ϖij = max(0, dj ↔εij ↔ϑj) following (6). Two events trigger
plan activation and query assignment:

Algorithm 1: Basic Adaptive Dual Descent Algorithm.
Input: M, N , d, ε, ω
Output: y, x

1 Mu := M; Nu := N ; Ma := ↘;
2 while Nu ≃= ↘ do

3 eq = max{dj ↔ εij : i → M\Mu, j → Nu};
4 ep = max{ς : ⇐ i → Mu :

∑
j→Nu

max{0, dj ↔
εij↔ς}+

∑
j→N\Nu

max{0, dj↔εij↔ϑj} = ωi};
5 e = max{eq, ep};

// Query Assignment Events Occur

6 for i → M\Mu and j → Nu with dj ↔ εij = e do

7 xω(i),j = 1; ϑj = e; Nu = Nu \ {j};

// Plan Activation Events Occur

8 for i → Mu with
∑

j→Nu
max{0, dj ↔ εij ↔ e}+∑

j→N\Nu
max{0, dj ↔ εij ↔ ϑj} = ωi do

9 Mu = Mu \ {i};
10 if ⇐ i

↓
→ Ma and j → N \ Nu with

ϑj < dj ↔ εi→j and ϑj < dj ↔ εij then

11 ϱ(i) = i
↓;

12 else

13 ϱ(i) = i; yi = 1; Ma = Ma ⇒ {i};

14 for j → Nu with dj ↔ εij ↗ e do

15 xω(i),j = 1; ϑj = e; Nu = Nu \ {j};

• Query Assignment Events (eq) given in Line 3 occur when
the sharing cost of an unassigned query to an activated plan
becomes zero, indicating ϑj = dj ↔εij . The algorithm then
assigns query j to plan i by setting xω(i),j = 1, fixes ϑj at
the current value, and updates the set Nu (Lines 6-7).

• Plan Activation Events (ep) defined in Line 4 occur when
the accumulated sharing costs of plan i reach its activation
threshold

∑
j→N ϖij = ωi (Lines 8-9). The algorithm either

redirects plan i to an active plan i
↓ or activates it inde-

pendently. Redirection occurs when a query j contributes
positively to both plans (ϖij > 0 and ϖi→j > 0), and sets ϱ(i)
to i

↓ (Lines 10-11). Otherwise, plan i is directly activated
(Lines 12-13). The algorithm then assigns all unassigned
queries j → N with dj ↔εij ↗ e to plan i and freezes their
ϑj values (Lines 14-15).
Concurrent events are processed in arbitrary order. The

algorithm continues until all queries are handled.3 Based on
the algorithm design, we next analyze its theoretical properties.

3) Theoretical Analysis: We establish the theoretical guar-
antees for the ADD algorithm in this subsection, analyzing
both its approximation ratio and computational complexity. Let
bij = dj ↔ εij be the assignment utility of executing query j

in plan i. We define
φ = max

i,i→→M, j,j→→N

(bij + bi→j + bi→j→)

bij→
(9)

3To ensure completeness, there is a null plan n with εn = 0 and dj ↓
ωnj = 0 to handle any unassigned queries.

as the homogeneity ratio of query utilities, measuring the
maximum ratio between assignment utilities across any pair of
plans and any pair of queries. This ratio is a bounded constant
in practice, as the assignment utilities typically fall within a
bounded range. Our main theoretical result is as follows:
Theorem 1. Algorithm 1 computes feasible primary and dual
solutions for Problems P2 and Pd

2, and guarantees pφ/3 ↗ d,
where p and d denote the primal and dual objective values.

Proof. Please refer to our technical report [55].
For any maximization integer program P, the approximation

ratio measures the ratio between the optimal solution p
↑

and the algorithm’s solution p, bounded by d/p where d

denotes the dual solution. A smaller ratio indicates better
approximation quality, with 1 being the ideal case where the
algorithm achieves optimality. Following Theorem 1, we have:

Remark 1. The basic ADD algorithm achieves a bounded
constant approximation ratio of φ/3.

This theoretical guarantee yields several key implications.
The approximation ratio φ/3 characterizes the system utility
structure. In homogeneous utility settings (bij ⇑ b, ↓ i →

M, j → N), φ converges to three, and the approximation
ratio approaches one, as redirection yields approximate opti-
mal value. For heterogeneous utility, empirical evaluation in
Section VI demonstrates ADD’s effectiveness through adaptive
query-plan assignment optimization. We further establish the
computational complexity through the following theorem:
Theorem 2. The time complexity of Algorithm 1 is
O (MN log(MN)).

Proof. Please refer to our technical report [55].
Theorem 2 shows that the ADD algorithm maintains

polynomial-time complexity while providing a bounded con-
stant approximation guarantee. This polynomial-time com-
plexity is crucial for our problem requiring repeated invoca-
tions, as it ensures the scalability with problem size.

To further enhance the performance of the ADD algorithm,
we propose two greedy optimization strategies that leverage
the problem structure in the following subsection.

B. Greedy Optimization Strategies

Building upon the ADD algorithm, we propose two greedy
strategies to enhance the solution quality: the dynamic reas-
signment strategy (DRS) in Section IV-B1, and the iterative
reactivation strategy (IRS) in Section IV-B2.

1) Dynamic Reassignment Strategy (DRS): We augment
the ADD algorithm with dynamic query reassignment (DRS)
for plan activation. When evaluating plan i’s activation, we
consider both unassigned queries and potential reassignments
that yield higher utility. Both assignment types contribute to
amortizing activation costs. The DRS redefines ep as ς that
satisfies ⇐ i → M\Ma:
∑

j→N
max(0, dj↔εij↔ς)+

∑

j→N\Nu

max(0,εε(j),j↔εij) = ωi

(10)

For an already assigned query j → N \Nu, its contribution
to the activation of plan i is max(0,εε(j),j↔εij), where ↼(j)
is j’s assigned plan. In (10), the first term captures unassigned
query benefits, and the second term reflects reassignment
gains. These gains amortize plan i’s activation cost ai.

For the theoretical bound, we conduct a factor-revealing
analysis detailed in our online report [55]:

Lemma 1. For any set of activated plans Mx ⇓ M,
Algorithm 1 augmented with DRS achieves a social welfare
of at least ↽P p(Mx) ↔ ↽Qc(Mx) for Problem P2, with
an approximation ratio ⇀ = min ϑP p(Mx)↔ϑQc(Mx)

p(Mx)↔c(Mx)
, where

c : 2M ↔⇔ R denote the activation cost function, p : 2M ↔⇔ R

denote the assignment utility function, ↽Q → [0, 1] and ↽P is
the optimal value of Problem P3 in [55].

This lemma proves DRS strategy maintains a provable
performance guarantee. After obtaining the solution from the
DRS-augmented ADD algorithm, we propose a greedy strategy
to iteratively optimize the activated plan set.

2) Iterative Reactivation Strategy (IRS): We propose an
iterative reactivation strategy (IRS) that operates on the acti-
vated plan set Ma determined by the DRS-augmented ADD
algorithm. IRS activates additional plans based on their effi-
ciency ratio (p(Ma ⇒ i)↔ p(Ma))/ωi. The optimality of this
greedy strategy is guaranteed by the following lemma:

Lemma 2. Given the optimal activated plan set M↑
a, for any

activated plan set Ma, there exists a plan i → M
↑
a such that

p(Ma ⇒ {i})↔ p(Ma)

ωi
↗

p(M↑
a)↔ p(Ma)

c(M↑
a)

. (11)

Proof. Please refer to our technical report [55].
Lemma 2 shows that at least one plan from the optimal

set M
↑
a has a marginal utility-to-cost ratio no worse than

the average ratio of the optimal set M
↑
a. This property is

fundamental to our greedy algorithm’s guarantee.
Based on Lemma 2, IRS iteratively activates plans to opti-

mize Problem P2. In each iteration, we select plan i → M

maximizing ratio (p(Ma ⇒ {i})↔ p(Ma))/ωi and add to
Ma. Process terminates when p(Ma ⇒ {i}) ↔ p(Ma) ↑

ωi, ↓i → M. After each activation, queries are assigned to
optimal plans where ↼

↑(j) = argmaxi→Ma
(dj↔εij), ↓j → N .

By incorporating DRS and IRS strategies, based on Lemmas
1 and 2, we can establish stronger theoretical guarantees for
our solution to P2 as follows:

Remark 2. The ADD algorithm, augmented with DRS and
IRS strategies, achieves an improved approximation ratio of
min(φ/3, ⇀) for Problem P2.

In this section, we have presented an efficient algorithm for
the one-round scheduling problem P2, based on ADD and two
greedy strategies. This design serves as the foundation for the
online scheduling solution presented in the next section.

V. AN ONLINE SCHEDULING FRAMEWORK

In this section, we solve the online scheduling problem
(i.e., Problem P1 under information uncertainty). Section V-A

Algorithm 2: Online Scheduling Framework OSTOR.
Input: M, N , Time-varying information
Output: y, x

1 Set w(0) = 0;
2 for t → T do

Input: u(t), ε(t), ω(t)

3 for j → N do

4 if u
(t↔1)
j < 1 then

5 d
(t)
j = u

(t)
j (1↔ w

(t↔1)
j);

6 else

7 d
(t)
j = 0;

8 {y(t)
,x(t)

}=AG
ADD(M,N ,d(t)

,ε(t)
,ω(t));

9 for j → N and
∑

i→M x
(t)
ij = 1 do

10 Calculate F
(t)
j according to (13);

11 S
(t)
j = S

(t↔1)
j ↔ F

(t)
j ;

12 w
(t)
j = w

(t↔1)
j

(
1 +

u(t)
j ↔F (t)

j

S(t)
j

)
+

u(t)
j ↔F (t)

j

ϖS(t)
j

;

Output: y(t), x(t)

presents key ideas, Section V-B details algorithm design, and
Section V-C provides theoretical analysis.

A. Algorithm Idea

The key challenge in solving Problem P1 under information
uncertainty lies in preserving the long-term budget constraints
(1b). In the ideal case, these constraints require each buyer’s
budget to support participation across all T rounds for optimal
social welfare. However, in the online setting, premature
budget exhaustion would prevent future participation, leading
to suboptimal outcomes.

To address this challenge, we take a two-fold approach.
First, we develop a theoretically guaranteed primal-dual ap-
proach to decompose scheduling problem P1 into one-round
scheduling problem P2, which can be efficiently solved by the
algorithm presented in Section IV using only current system
information. Second, similar to [25, 57], we design a dynamic
utility scaling mechanism to prevent rapid budget depletion.
For each buyer j, we introduce a scaling factor w(t)

j tracking
cumulative budget utilization, which evolves from 0 to 1, with
w

(t)
j = 1 indicating complete budget exhaustion. The original

utility u
(t)
j is then scaled to:

d
(t)
j = u

(t)
j (1↔ w

(t)
j). (12)

This scaling naturally reduces the scheduling priority of
queries with depleting budgets through the factor (1 ↔ w

(t)
j),

thereby extending budget lifetimes across the entire period.
Finally, by dynamically scaling utilities based on budget us-

age, we decompose the multi-round online scheduling problem
into multiple one-round problems P2. Next, we present our
online scheduling framework in the following subsection.

B. Algorithm Design

In this subsection, we present OSTOR, an online scheduling
framework for trading continuous queries, which leverages
primal-dual decomposition to address information uncertainty.
The core idea of OSTOR is to transform the online scheduling
problem into a sequence of one-round problems through three
phases: utility scaling, scheduling decision, and scaling factor
update, as detailed in Algorithm 2.

OSTOR initializes scaling factors w
(0)
j = 0 for all queries

(Line 1). In each round t → T , it schedules based on current
system state (u(t), ε(t), ω(t)) through three phases (Line 2):

Phase 1: Utility Scaling (Lines 3-7) computes scaled utility
d
(t)
j for each query j using factor w(t↔1)

j . This scaling excludes
queries with depleted budgets (w(t↔1)

j = 1) and weights others
by the remaining budget.

Phase 2: Scheduling Decision (Line 8) solves one-round
scheduling by invoking A

G
ADD (ADD with two greedy strate-

gies) to determine (y(t)
,x(t)). This phase optimizes decisions

using scaled utilities from Phase 1.
Phase 3: Scaling Factor Update (Lines 9-12) updates the

scaling factor w
(t)
j based on scheduling decisions. First, it

calculates each query’s execution cost as follows:

F
(t)
j (y(t)

,x(t)) =
∑

i→M
x
(t)
ij ε

(t)
ij +

∑

i→M:x(t)
ij =1

ω
(t)
i∑

j→N x
(t)
ij

,

(13)
comprising assignment cost (first term) and shared ac-
tivation cost (second term). Then w

(t)
j is updated in

Line 12, where ⇁ = (1 + !)
1
! ↔ 1 and ! =

maxj→N ,t→T

(
(u(t)

j ↔ F
(t)
j (y(t)

,x(t)))/S(t)
j

is the maxi-

mum utility-to-budget ratio. This update maintains budget
constraint (1b) across T rounds, as proved in Theorem 3.

The following subsection establishes the theoretical proper-
ties and performance guarantees of the proposed algorithm.

C. Theoretical Analysis

We now present the theoretical analysis of Algorithm 2,
focusing on two key aspects: competitive ratio and compu-
tational complexity. For an online algorithm, the competitive
ratio measures the worst-case ratio between the optimal offline
solution and the algorithm’s solution. We establish the com-
petitive ratio through a sequence of lemmas that progressively
analyze the algorithm’s properties, similar to [25, 58]. First,
we show that our algorithm generates feasible dual solutions:

Lemma 3. Algorithm 2 produces a feasible solution for
Problem Pd

1.

Proof. Please refer to our technical report [55].

To obtain the competitive ratio, we need to analyze the
gap between primal and dual objectives. Let P

(t) and D
(t)

denote the objective values of Problems P1 and Pd
1 after t

iterations, respectively. The following lemma establishes a
crucial relationship between the incremental changes:

Lemma 4. Algorithm 2 ensures: (φ/3+1/⇁)”P (t) ↗ ”D(t),
where ”P (t) = P

(t)
↔ P

(t↔1) and ”D(t) = D
(t)

↔D
(t↔1)

represent the incremental changes in round t.

Proof. Please refer to our technical report [55].

While these lemmas establish the solution feasibility
and a bounded primal-dual gap, we also need to an-
alyze the budget constraint satisfaction. Let u

↓
j
(t) =

u
(t)
j ↔ F

(t)
j (y(t)

,x(t)) denote the marginal utility and
κ = maxj→N ,t→T

(
(u(t+1)

j ↔ F
(t+1)
j (x(t+1)

,y(t+1)))/S(t)
j

denote the marginal next utility-to-budget ratio. We have:

Lemma 5. Algorithm 2 ensures a relaxed budget constraint:
∑

t→T

∑

i→M
u
↓
j
(t)
x
(t)
i,j ↑ (1 + κ)S(t)

j ↓j → N . (14)

Proof. Please refer to our technical report [55].
Combining these lemmas, we prove that OSTOR achieves a

constant competitive ratio while satisfying all constraints:

Theorem 3. Algorithm 2 achieves a competitive ratio of (1+
κ) (φ/3 + 1/⇁) for the online scheduling problem P1.

Proof. Please refer to our technical report [55].
As κ and ! approach 0 (indicating high utility-to-budget

efficiency), the competitive ratio approaches its optimal value
of φ/3+1/(e↔ 1) with ⇁ = e↔ 1. This optimal ratio exceeds
the one-round problem’s primal-dual gap by only 1/(e ↔ 1),
demonstrating the effectiveness of our online framework, as
shown by our experimental results. Moreover, OSTOR main-
tains efficiency with the following complexity:

Theorem 4. The time complexity of Algorithm 2 is
O(TMN log(MN)).

Proof. Please refer to our technical report [55].
Theorem 4 shows that Algorithm 2 achieves polynomial

time complexity where T is the number of time slots, M is
the number of plans, and N represents the number of queries.

In this section, we have introduced the algorithm design
for the online scheduling problem P1, including the algorithm
ideas and theoretical analysis. In the following section, we will
evaluate the framework performance through experiments.

VI. EXPERIMENTAL EVALUATION

In this section, we conduct comprehensive experiments on
both real-world and synthetic datasets to evaluate OSTOR’s
performance. Section VI-A describes the experimental set-
tings, and Section VI-B presents a series of experimental result
analyses and corresponding insights.

A. Experimental Settings
1) Datasets: We evaluate OSTOR on four4 real-world and

two synthetic datasets, each partitioned into 200 time slots with
user preferences ηj distributed uniformly in [20, 40]. For each

4We also tested on WEATHER [59] and POWER [60] datasets. Due to page
limitations, the description, experimental results, and analysis of these two
datasets are provided in our online technical report.[55].

dataset, we compute time-varying utilities as u
(t)
j = v

(t)
b ↖ ηj ,

where v
(t)
b is the dataset-specific base query utility:

• TRAFFIC [61]: Collects iCloud traffic records from 20
countries with frame ID, time, and length attributes. The
base query utility v

(t)
b is calculated as the product of data

arrival rate ϖ
(t) and average frame length L

(t), reflecting
network traffic patterns.

• IOT [62]: Contains IoT sensor data with packet ID, time, and
bytes information. The base query utility v

(t)
b is computed

as the product of data arrival rate ϖ
(t) and average bytes

b
(t), representing network load characteristics.

• FINANCIAL [63]: Captures 10-year historical data of US
stocks and ETFs. The base query utility v

(t)
b is calculated

as the product of the closing price p
(t) and trading volume

v
(t), capturing market activity dynamics.

• SOCIAL [64]: Comprises social media posts with 15 fea-
tures spanning user interactions, content characteristics, and
temporal-spatial dimensions. The base query utility v

(t)
b is

derived from the product of retweet count r(t) and like count
l
(t), reflecting content engagement levels.

• UNIFORM and NORMAL: Generate base query utilities and
user preferences that follow uniform and normal distri-
butions, respectively, enabling controlled evaluation under
diverse scenarios.
2) Workload: Following [20, 65], we implement a synthetic

aggregate query generator for evaluation. We consider plan
computation sharing types discussed in Section II where
queries share filters but differ in temporal requirements. Each
aggregate query is characterized by range r (window size) and
slide s (sliding interval). Our workload uses 100 queries and
ten execution plans. The slide s follows uniform distribution
over [1, 1024], while range r equals s↖▷, with overlap factor
▷ uniform over [1, 100]. The cost model combines continuous
query systems and cloud pricing [49]. Plan activation cost
is ω

(t)
i = ⇀pϖ

(t) + ⇀m▷i and query assignment cost is
ε
(t)
ij = ⇀p▷j/si, where processing cost ⇀p = 1.0 and memory

cost ⇀m = 0.36 are derived from Amazon Timestream [49].
3) Baselines: Given the current absence of online schedul-

ing models for trading continuous queries in the market, we
evaluate OSTOR against two traditional approaches primarily
designed for one-time query-based data trading [1, 32]:
1) TNA (Time-slot-based Non-Adaptive scheduling): This

baseline makes scheduling decisions independently for
each time slot t by maximizing the immediate social wel-
fare

∑
i→M

∑
j→N (u(t)

j ↔ ε
(t)
ij)x(t)

ij ↔
∑

i→M ω
(t)
i y

(t)
i , sub-

ject to the assignment constraints. TNA utilizes complete
information within the current time slot and can quickly
respond to temporal changes in utilities and costs. The key
difference from OSTOR is that TNA does not consider
long-term budget constraints in its decision-making pro-
cess, while OSTOR employs dynamic scaling factors w

(t)
j

to balance immediate gains against future opportunities.
2) TOFF (Time-zero Offline scheduling): This baseline deter-

mines the entire scheduling strategy at initial time t = 0,
assuming u

(t)
j = u

(0)
j , ε(t)

ij = ε
(0)
ij , and ω

(t)
i = ω

(0)
i for

0 50 100 150 200
Time Slots

1500

2000

2500

3000

3500

4000

So
ci

al
 W

el
fa

re

OSTOR
TNA
TOFF

(a) TRAFFIC

0 50 100 150 200
Time Slots

2000

2500

3000

3500

4000

So
ci

al
 W

el
fa

re

OSTOR
TNA
TOFF

(b) IOT

0 50 100 150 200
Time Slots

1500

2000

2500

3000

3500

4000

4500

So
ci

al
 W

el
fa

re

OSTOR
TNA
TOFF

(c) FINANCIAL

0 50 100 150 200
Time Slots

0

1000

2000

3000

4000

5000

6000

So
ci

al
 W

el
fa

re

OSTOR
TNA
TOFF

170 185
1500

2000

(d) SOCIAL

0 50 100 150 200
Time Slots

0

500

1000

1500

2000

2500

3000

So
ci

al
 W

el
fa

re
OSTOR
TNA
TOFF

140 160

2000
2200
2400

(e) UNIFORM

0 50 100 150 200
Time Slots

0

1000

2000

3000

4000

5000

6000

So
ci

al
 W

el
fa

re

OSTOR
TNA
TOFF

150 160 170
0

200

(f) NORMAL

Fig. 6: Performance across time span.
all t → T . TOFF provides consistent scheduling decisions
and can optimize the global objective if the system remains
static. The key difference from OSTOR is that TOFF cannot
adapt to temporal variations in utilities and costs, while
OSTOR continuously adjusts its decisions based on the
latest system information through its adaptive dual descent
mechanism.

These baselines represent two fundamental approaches in
data trading: immediate optimization (TNA) and static global
planning (TOFF), serving as meaningful references for eval-
uating OSTOR’s performance in handling both temporal dy-
namics and long-term constraints.
B. Result Analysis

In this subsection, we analyze experimental results. We
evaluate framework performance over time in Section VI-B1,
analyze parameter sensitivity in Section VI-B2, and conduct
ablation studies on greedy optimization strategies in Section
VI-B3. All results are averaged over ten runs.

1) Overall Performance: We compare the social welfare
of different algorithms across six datasets over a 200-time-
slot period, as illustrated in Fig. 6. The experimental results
demonstrate that OSTOR consistently outperforms baseline
algorithms. Compared to TOFF, it achieves average improve-
ments of 12.58%, 11.97%, 18.42%, 15.93%, 57.31%, and
9.77% in Traffic, IoT, Financial, Social, Uniform, and Norm
datasets, respectively. The improvements over TNA are 9.53%,
9.00%, 16.65%, 14.14%, 15.89%, and 9.76%. In real-world
datasets (i.e., the first four datasets), OSTOR maintains a
consistent advantage throughout the period from time slot
0 to 150, effectively managing natural fluctuations. During

slots 160-200 (i.e., budget exhaustion period), OSTOR shows
gradual degradation in Uniform dataset compared to sharp
drops in baselines. The performance patterns exhibit dis-
tinct characteristics between real-world and synthetic datasets,
with real-world data showing higher volatility while Uniform
and Norm display more stable trajectories. The significant
improvement in Uniform (57.31%) demonstrates OSTOR’s
effectiveness under long-term constraints. These experimental
results validate OSTOR’s robust performance in managing
budget allocation under information uncertainty.

2) Parameter Study: This subsection investigates the pa-
rameter sensitivity of our framework by systematically varying
key parameters. We analyze the impact of each parameter
while fixing others at their default values, evaluating how these
variations affect the framework’s performance. All metrics are
averaged over the entire time horizon for fair comparison.

400 800 1200 1600 2000
Number of Queries

0

1

2

3

4

So
ci

al
 W

el
fa

re

104

OSTOR
TNA
TOFF

400 800 1200 1600 2000
Number of Queries

0

1

2

3

4

So
ci

al
 W

el
fa

re

104

OSTOR
TNA
TOFF

400 800 1200 1600 2000
Number of Queries

0

1

2

3

4

So
ci

al
 W

el
fa

re

104

OSTOR
TNA
TOFF

400 800 1200 1600 2000
Number of Queries

0

2

4

6

So
ci

al
 W

el
fa

re

104

OSTOR
TNA
TOFF

400 800 1200 1600 2000
Number of Queries

0

2

4

6

So
ci

al
 W

el
fa

re

104

OSTOR
TNA
TOFF

400 800 1200 1600 2000
Number of Queries

0

2

4

6

8

So
ci

al
 W

el
fa

re

104

OSTOR
TNA
TOFF

(a) TRAFFIC

400 800 1200 1600 2000
Number of Queries

0

1

2

3

4

So
ci

al
 W

el
fa

re

104

OSTOR
TNA
TOFF

400 800 1200 1600 2000
Number of Queries

0

1

2

3

4

So
ci

al
 W

el
fa

re

104

OSTOR
TNA
TOFF

400 800 1200 1600 2000
Number of Queries

0

1

2

3

4

So
ci

al
 W

el
fa

re

104

OSTOR
TNA
TOFF

400 800 1200 1600 2000
Number of Queries

0

2

4

6

So
ci

al
 W

el
fa

re

104

OSTOR
TNA
TOFF

400 800 1200 1600 2000
Number of Queries

0

2

4

6

So
ci

al
 W

el
fa

re

104

OSTOR
TNA
TOFF

400 800 1200 1600 2000
Number of Queries

0

2

4

6

8

So
ci

al
 W

el
fa

re

104

OSTOR
TNA
TOFF

(b) IOT

400 800 1200 1600 2000
Number of Queries

0

1

2

3

4

So
ci

al
 W

el
fa

re

104

OSTOR
TNA
TOFF

400 800 1200 1600 2000
Number of Queries

0

1

2

3

4

So
ci

al
 W

el
fa

re

104

OSTOR
TNA
TOFF

400 800 1200 1600 2000
Number of Queries

0

1

2

3

4

So
ci

al
 W

el
fa

re

104

OSTOR
TNA
TOFF

400 800 1200 1600 2000
Number of Queries

0

2

4

6

So
ci

al
 W

el
fa

re

104

OSTOR
TNA
TOFF

400 800 1200 1600 2000
Number of Queries

0

2

4

6

So
ci

al
 W

el
fa

re

104

OSTOR
TNA
TOFF

400 800 1200 1600 2000
Number of Queries

0

2

4

6

8

So
ci

al
 W

el
fa

re

104

OSTOR
TNA
TOFF

(c) FINANCIAL400 800 1200 1600 2000
Number of Queries

0

1

2

3

4

So
ci

al
 W

el
fa

re

104

OSTOR
TNA
TOFF

400 800 1200 1600 2000
Number of Queries

0

1

2

3

4

So
ci

al
 W

el
fa

re

104

OSTOR
TNA
TOFF

400 800 1200 1600 2000
Number of Queries

0

1

2

3

4

So
ci

al
 W

el
fa

re

104

OSTOR
TNA
TOFF

400 800 1200 1600 2000
Number of Queries

0

2

4

6

So
ci

al
 W

el
fa

re

104

OSTOR
TNA
TOFF

400 800 1200 1600 2000
Number of Queries

0

2

4

6

So
ci

al
 W

el
fa

re

104

OSTOR
TNA
TOFF

400 800 1200 1600 2000
Number of Queries

0

2

4

6

8

So
ci

al
 W

el
fa

re

104

OSTOR
TNA
TOFF

(d) SOCIAL

400 800 1200 1600 2000
Number of Queries

0

1

2

3

4

So
ci

al
 W

el
fa

re

104

OSTOR
TNA
TOFF

400 800 1200 1600 2000
Number of Queries

0

1

2

3

4

So
ci

al
 W

el
fa

re

104

OSTOR
TNA
TOFF

400 800 1200 1600 2000
Number of Queries

0

1

2

3

4

So
ci

al
 W

el
fa

re

104

OSTOR
TNA
TOFF

400 800 1200 1600 2000
Number of Queries

0

2

4

6

So
ci

al
 W

el
fa

re

104

OSTOR
TNA
TOFF

400 800 1200 1600 2000
Number of Queries

0

2

4

6

So
ci

al
 W

el
fa

re

104

OSTOR
TNA
TOFF

400 800 1200 1600 2000
Number of Queries

0

2

4

6

8

So
ci

al
 W

el
fa

re

104

OSTOR
TNA
TOFF

(e) UNIFORM

400 800 1200 1600 2000
Number of Queries

0

1

2

3

4

So
ci

al
 W

el
fa

re

104

OSTOR
TNA
TOFF

400 800 1200 1600 2000
Number of Queries

0

1

2

3

4

So
ci

al
 W

el
fa

re

104

OSTOR
TNA
TOFF

400 800 1200 1600 2000
Number of Queries

0

1

2

3

4

So
ci

al
 W

el
fa

re

104

OSTOR
TNA
TOFF

400 800 1200 1600 2000
Number of Queries

0

2

4

6

So
ci

al
 W

el
fa

re

104

OSTOR
TNA
TOFF

400 800 1200 1600 2000
Number of Queries

0

2

4

6

So
ci

al
 W

el
fa

re

104

OSTOR
TNA
TOFF

400 800 1200 1600 2000
Number of Queries

0

2

4

6

8

So
ci

al
 W

el
fa

re

104

OSTOR
TNA
TOFF

(f) NORMAL

Fig. 7: Impact of the number of queries.

a) Number of Queries: In this experiment, we evaluate
the scalability of OSTOR by varying the number of queries
from 400 to 2000, as illustrated in Figs. 7 and 8. The results
indicate that OSTOR consistently outperforms the baseline
methods across all datasets.

As shown in Fig. 7, OSTOR consistently outperforms base-
line methods in social welfare. In network-centric datasets
(Traffic and IoT), it improves social welfare by up to 31.34%
over TOFF and 11.11% over TNA. In dynamic datasets
(Financial and Social), its advantage grows with higher query
loads, reaching 31.83% over TOFF and 17.77% over TNA. For
periodic datasets (Weather and Power), it captures recurring
patterns, surpassing TOFF by 30.70% and TNA by 18.65%.
In synthetic datasets (Uniform and Normal), OSTOR demon-
strates strong scalability, achieving up to 35.66% and 21.67%
improvements over TOFF and TNA, respectively.

Regarding execution costs, as illustrated in Fig. 8, OSTOR
achieves substantial cost reductions over TOFF across datasets.
Savings reach 26.14% in network-centric, 23.03% in dynamic,
37.03% in periodic, and 33.55% in synthetic datasets. The
cost advantage grows as queries exceed 1200, especially in
periodic datasets, where OSTOR leverages data periodicity.
While slightly costlier than TNA due to proactive resource

500 1000 1500 2000
Number of Queries

0

2

4

6

Ex
ec

ut
io

n
C

os
t

105

OSTOR
TNA
TOFF

500 1000 1500 2000
Number of Queries

0

2

4

6

Ex
ec

ut
io

n
C

os
t

105

OSTOR
TNA
TOFF

500 1000 1500 2000
Number of Queries

0

1

2

3

4

Ex
ec

ut
io

n
C

os
t

105

OSTOR
TNA
TOFF

500 1000 1500 2000
Number of Queries

0

2

4

6

Ex
ec

ut
io

n
C

os
t

105

OSTOR
TNA
TOFF

500 1000 1500 2000
Number of Queries

0

5

10

Ex
ec

ut
io

n
C

os
t

105

OSTOR
TNA
TOFF

500 1000 1500 2000
Number of Queries

0

5

10

Ex
ec

ut
io

n
C

os
t

105

OSTOR
TNA
TOFF

(a) TRAFFIC

500 1000 1500 2000
Number of Queries

0

2

4

6

Ex
ec

ut
io

n
C

os
t

105

OSTOR
TNA
TOFF

500 1000 1500 2000
Number of Queries

0

2

4

6

Ex
ec

ut
io

n
C

os
t

105

OSTOR
TNA
TOFF

500 1000 1500 2000
Number of Queries

0

1

2

3

4

Ex
ec

ut
io

n
C

os
t

105

OSTOR
TNA
TOFF

500 1000 1500 2000
Number of Queries

0

2

4

6

Ex
ec

ut
io

n
C

os
t

105

OSTOR
TNA
TOFF

500 1000 1500 2000
Number of Queries

0

5

10

Ex
ec

ut
io

n
C

os
t

105

OSTOR
TNA
TOFF

500 1000 1500 2000
Number of Queries

0

5

10

Ex
ec

ut
io

n
C

os
t

105

OSTOR
TNA
TOFF

(b) IOT

500 1000 1500 2000
Number of Queries

0

2

4

6

Ex
ec

ut
io

n
C

os
t

105

OSTOR
TNA
TOFF

500 1000 1500 2000
Number of Queries

0

2

4

6

Ex
ec

ut
io

n
C

os
t

105

OSTOR
TNA
TOFF

500 1000 1500 2000
Number of Queries

0

1

2

3

4

Ex
ec

ut
io

n
C

os
t

105

OSTOR
TNA
TOFF

500 1000 1500 2000
Number of Queries

0

2

4

6

Ex
ec

ut
io

n
C

os
t

105

OSTOR
TNA
TOFF

500 1000 1500 2000
Number of Queries

0

5

10

Ex
ec

ut
io

n
C

os
t

105

OSTOR
TNA
TOFF

500 1000 1500 2000
Number of Queries

0

5

10

Ex
ec

ut
io

n
C

os
t

105

OSTOR
TNA
TOFF

(c) FINANCIAL
500 1000 1500 2000

Number of Queries

0

2

4

6

Ex
ec

ut
io

n
C

os
t

105

OSTOR
TNA
TOFF

500 1000 1500 2000
Number of Queries

0

2

4

6

Ex
ec

ut
io

n
C

os
t

105

OSTOR
TNA
TOFF

500 1000 1500 2000
Number of Queries

0

1

2

3

4

Ex
ec

ut
io

n
C

os
t

105

OSTOR
TNA
TOFF

500 1000 1500 2000
Number of Queries

0

2

4

6

Ex
ec

ut
io

n
C

os
t

105

OSTOR
TNA
TOFF

500 1000 1500 2000
Number of Queries

0

5

10
Ex

ec
ut

io
n

C
os

t
105

OSTOR
TNA
TOFF

500 1000 1500 2000
Number of Queries

0

5

10

Ex
ec

ut
io

n
C

os
t

105

OSTOR
TNA
TOFF

(d) SOCIAL

500 1000 1500 2000
Number of Queries

0

2

4

6

Ex
ec

ut
io

n
C

os
t

105

OSTOR
TNA
TOFF

500 1000 1500 2000
Number of Queries

0

2

4

6

Ex
ec

ut
io

n
C

os
t

105

OSTOR
TNA
TOFF

500 1000 1500 2000
Number of Queries

0

1

2

3

4

Ex
ec

ut
io

n
C

os
t

105

OSTOR
TNA
TOFF

500 1000 1500 2000
Number of Queries

0

2

4

6

Ex
ec

ut
io

n
C

os
t

105

OSTOR
TNA
TOFF

500 1000 1500 2000
Number of Queries

0

5

10

Ex
ec

ut
io

n
C

os
t

105

OSTOR
TNA
TOFF

500 1000 1500 2000
Number of Queries

0

5

10

Ex
ec

ut
io

n
C

os
t

105

OSTOR
TNA
TOFF

(e) UNIFORM

500 1000 1500 2000
Number of Queries

0

2

4

6

Ex
ec

ut
io

n
C

os
t

105

OSTOR
TNA
TOFF

500 1000 1500 2000
Number of Queries

0

2

4

6

Ex
ec

ut
io

n
C

os
t

105

OSTOR
TNA
TOFF

500 1000 1500 2000
Number of Queries

0

1

2

3

4

Ex
ec

ut
io

n
C

os
t

105

OSTOR
TNA
TOFF

500 1000 1500 2000
Number of Queries

0

2

4

6

Ex
ec

ut
io

n
C

os
t

105

OSTOR
TNA
TOFF

500 1000 1500 2000
Number of Queries

0

5

10

Ex
ec

ut
io

n
C

os
t

105

OSTOR
TNA
TOFF

500 1000 1500 2000
Number of Queries

0

5

10

Ex
ec

ut
io

n
C

os
t

105

OSTOR
TNA
TOFF

(f) NORMAL

Fig. 8: Impact of the number of queries.

40 80 120 160 200
Number of Plans

0

2000

4000

6000

8000

So
ci

al
 W

el
fa

re

OSTOR
TNA
TOFF

40 80 120 160 200
Number of Plans

0

2000

4000

6000

8000

So
ci

al
 W

el
fa

re

OSTOR
TNA
TOFF

40 80 120 160 200
Number of Plans

0

2000

4000

6000

8000

So
ci

al
 W

el
fa

re

OSTOR
TNA
TOFF

40 80 120 160 200
Number of Plans

0

2000

4000

6000

8000

So
ci

al
 W

el
fa

re

OSTOR
TNA
TOFF

40 80 120 160 200
Number of Plans

0

2000

4000

6000

So
ci

al
 W

el
fa

re

OSTOR
TNA
TOFF

40 80 120 160 200
Number of Plans

0

2000

4000

6000

8000

So
ci

al
 W

el
fa

re

OSTOR
TNA
TOFF

(a) TRAFFIC

40 80 120 160 200
Number of Plans

0

2000

4000

6000

8000

So
ci

al
 W

el
fa

re

OSTOR
TNA
TOFF

40 80 120 160 200
Number of Plans

0

2000

4000

6000

8000

So
ci

al
 W

el
fa

re

OSTOR
TNA
TOFF

40 80 120 160 200
Number of Plans

0

2000

4000

6000

8000

So
ci

al
 W

el
fa

re

OSTOR
TNA
TOFF

40 80 120 160 200
Number of Plans

0

2000

4000

6000

8000

So
ci

al
 W

el
fa

re

OSTOR
TNA
TOFF

40 80 120 160 200
Number of Plans

0

2000

4000

6000

So
ci

al
 W

el
fa

re

OSTOR
TNA
TOFF

40 80 120 160 200
Number of Plans

0

2000

4000

6000

8000

So
ci

al
 W

el
fa

re

OSTOR
TNA
TOFF

(b) IOT

40 80 120 160 200
Number of Plans

0

2000

4000

6000

8000

So
ci

al
 W

el
fa

re

OSTOR
TNA
TOFF

40 80 120 160 200
Number of Plans

0

2000

4000

6000

8000

So
ci

al
 W

el
fa

re

OSTOR
TNA
TOFF

40 80 120 160 200
Number of Plans

0

2000

4000

6000

8000

So
ci

al
 W

el
fa

re

OSTOR
TNA
TOFF

40 80 120 160 200
Number of Plans

0

2000

4000

6000

8000

So
ci

al
 W

el
fa

re

OSTOR
TNA
TOFF

40 80 120 160 200
Number of Plans

0

2000

4000

6000

So
ci

al
 W

el
fa

re

OSTOR
TNA
TOFF

40 80 120 160 200
Number of Plans

0

2000

4000

6000

8000

So
ci

al
 W

el
fa

re

OSTOR
TNA
TOFF

(c) FINANCIAL
40 80 120 160 200

Number of Plans

0

2000

4000

6000

8000

So
ci

al
 W

el
fa

re

OSTOR
TNA
TOFF

40 80 120 160 200
Number of Plans

0

2000

4000

6000

8000

So
ci

al
 W

el
fa

re

OSTOR
TNA
TOFF

40 80 120 160 200
Number of Plans

0

2000

4000

6000

8000

So
ci

al
 W

el
fa

re

OSTOR
TNA
TOFF

40 80 120 160 200
Number of Plans

0

2000

4000

6000

8000

So
ci

al
 W

el
fa

re

OSTOR
TNA
TOFF

40 80 120 160 200
Number of Plans

0

2000

4000

6000

So
ci

al
 W

el
fa

re

OSTOR
TNA
TOFF

40 80 120 160 200
Number of Plans

0

2000

4000

6000

8000

So
ci

al
 W

el
fa

re

OSTOR
TNA
TOFF

(d) SOCIAL

40 80 120 160 200
Number of Plans

0

2000

4000

6000

8000

So
ci

al
 W

el
fa

re

OSTOR
TNA
TOFF

40 80 120 160 200
Number of Plans

0

2000

4000

6000

8000

So
ci

al
 W

el
fa

re

OSTOR
TNA
TOFF

40 80 120 160 200
Number of Plans

0

2000

4000

6000

8000

So
ci

al
 W

el
fa

re

OSTOR
TNA
TOFF

40 80 120 160 200
Number of Plans

0

2000

4000

6000

8000

So
ci

al
 W

el
fa

re

OSTOR
TNA
TOFF

40 80 120 160 200
Number of Plans

0

2000

4000

6000

So
ci

al
 W

el
fa

re

OSTOR
TNA
TOFF

40 80 120 160 200
Number of Plans

0

2000

4000

6000

8000

So
ci

al
 W

el
fa

re

OSTOR
TNA
TOFF

(e) UNIFORM

40 80 120 160 200
Number of Plans

0

2000

4000

6000

8000

So
ci

al
 W

el
fa

re

OSTOR
TNA
TOFF

40 80 120 160 200
Number of Plans

0

2000

4000

6000

8000

So
ci

al
 W

el
fa

re

OSTOR
TNA
TOFF

40 80 120 160 200
Number of Plans

0

2000

4000

6000

8000

So
ci

al
 W

el
fa

re

OSTOR
TNA
TOFF

40 80 120 160 200
Number of Plans

0

2000

4000

6000

8000

So
ci

al
 W

el
fa

re

OSTOR
TNA
TOFF

40 80 120 160 200
Number of Plans

0

2000

4000

6000

So
ci

al
 W

el
fa

re

OSTOR
TNA
TOFF

40 80 120 160 200
Number of Plans

0

2000

4000

6000

8000

So
ci

al
 W

el
fa

re

OSTOR
TNA
TOFF

(f) NORMAL

Fig. 9: Impact of the number of plans.

allocation, it maintains a strong balance between performance
and efficiency, optimizing resource use under high query loads.

b) Number of Plans: In this experiment, we further
evaluate the scalability of OSTOR by varying the number of
plans from 40 to 200, as depicted in Fig. 9. The results indicate
that OSTOR consistently outperforms baseline algorithms.

OSTOR demonstrates significant performance gains across
all datasets, consistently surpassing baseline methods. In
network-centric datasets, it improves social welfare by 37.65%
over TNA and 33.27% over TOFF, optimizing resource allo-
cation under high connectivity. In dynamic datasets, it out-
performs TNA by 35.72% and TOFF by 36.75%, adapting to
evolving conditions. For periodic datasets, OSTOR achieves a
45.00% improvement over TOFF by leveraging temporal pat-
terns. The largest gains occur in synthetic datasets, exceeding
TNA by 60% and TOFF by 79.45%, demonstrating robustness
across distributions. As plans increase, baseline methods de-
grade, especially in synthetic datasets, where TNA and TOFF
decline beyond 120 plans due to limited adaptability.

These results highlight OSTOR’s scalability in maintaining
high social welfare across plan numbers, particularly in real-
world datasets, where it remains stable within 6000–7000.
This robustness is evident in synthetic datasets, where OSTOR
adapts to diverse distributions, mitigating baseline degradation.
Moreover, these results validate OSTOR’s ability to manage
complex data dynamics across query plan complexities.

TABLE I: SOCIAL WELFARE OF ABLATION STUDY.

Dataset MR2 OT-1 OT-2 OSTOR

TRAFFIC 3.0760 3.0990 3.1803 3.2046

IOT 3.0978 3.1397 3.2100 3.2328

FINANCIAL 3.1438 3.1657 3.2386 3.2640

SOCIAL 3.2447 3.3234 3.3394 3.4056

UNIFORM 2.0316 2.1171 2.2097 2.2937

NORMAL 3.3503 3.3924 3.4671 3.5135

3) Ablation Study: Through ablation studies, we inves-
tigate the impact of two greedy optimization strategies in
Section IV-B: Dynamic Reassignment Strategy (DRS) and It-
erative Reactivation Strategy (IRS). We evaluate four variants:
(1) MR2: no greedy strategies; (2) OT-1: only IRS; (3) OT-
2: only DRS; (4) OSTOR: both strategies. Table I shows the
normalized social welfare across algorithm variants.

The OSTOR framework consistently achieves the best per-
formance by combining the two greedy strategies. When
examining individual strategies, DRS shows stronger improve-
ments over IRS across datasets. In Traffic and IoT datasets,
DRS (OT-2) outperforms IRS (OT-1) by 0.0813 and 0.0703,
respectively. The Financial dataset shows similar patterns, with
OT-2 achieving 3.2386, exceeding OT-1’s 3.1657 by 0.0729. In
the Social dataset, the performance gap between strategies nar-
rows, with OT-2 (3.3394) showing a 0.0160 improvement over
OT-1 (3.3234). Comparing the full OSTOR implementation
to the baseline MR2, we observe consistent improvements:
0.1286 in Traffic, 0.1350 in IoT, 0.1202 in Financial, 0.1609
in Social, 0.2621 in Uniform, and 0.1632 in Norm datasets.
The most significant improvement appears in the Uniform
dataset, where OSTOR achieves 2.2937, surpassing MR2’s
2.0316 by 0.2621. These results demonstrate the effectiveness
of combining these greedy strategies in OSTOR to achieve a
robust solution.

In this section, we have verified the framework’s perfor-
mance on both real-world and synthetic datasets, demonstrat-
ing OSTOR’s adaptability across diverse scenarios. Through
comprehensive parameter analysis and ablation studies, we
validate the robustness of the proposed framework.

VII. DISCUSSION

In this section, we discuss the practical considerations and
potential limitations of OSTOR to provide a comprehensive
understanding of its applicability in real-world scenarios.
A. Practical Implementation

Deploying OSTOR in real-world systems requires integra-
tion with stream processing platforms like Apache Kafka and
Flink [45, 66]. While effective in controlled settings, real
deployments involve added complexities. Below, we discuss
several practical considerations:
• Real-time Utility Estimation and Monitoring: Implemen-

tation requires accurate utility estimation over time-based
windows, which aligns well with modern stream processing
platforms [67]. These estimators should integrate with mon-
itoring tools and emphasize recent data to effectively track
metrics such as throughput, latency, and data quality.

• Scalability Management: For high-velocity and high-volume
data streams, scalability becomes crucial. The implemen-
tation strategy should incorporate efficient data structures,
caching mechanisms, and pre-computed result storage.

• Performance Optimization: To ensure optimal performance
in stream processing environments, we recommend mini-
mizing network delays through batch processing of similar
queries and implementing strategic component placement
and stream partitioning [68].

• System Reliability: The implementation should leverage
built-in fault-tolerance features such as checkpointing and
state management [69] to ensure reliable query trading and
maintain system stability under high load or failures.

B. Limitations and Challenging Scenarios
Despite OSTOR’s robust performance, several limitations

and challenging scenarios may affect its effectiveness:
• Dynamic Environment Challenges: Frequent changes in user

preferences and data patterns may increase uncertainty in
utility and cost estimation, potentially requiring more com-
putation. Techniques such as adaptive learning rates [70],
online learning [71], and bandit algorithms [72] could help
the system adapt more effectively.

• Extreme Utility Distribution Issues: When user utilities vary
greatly or follow skewed distributions, ADD’s convergence
may slow down. Approaches like normalization, parameter
tuning, robust optimization [73], and distribution transfor-
mations [74] may improve stability.

• Strategic Behavior Concerns: The system may be vulner-
able to misreported utilities or coordinated manipulation.
Incorporating reputation systems [75], historical behavior
analysis, or game-theoretic models [76] could help mitigate
such risks.
Each challenge represents an opportunity for future research

and system enhancement, with established frameworks provid-
ing potential solutions.

VIII. CONCLUSION

This paper has presented OSTOR, the first online scheduling
framework for trading continuous queries. The framework
addresses two key challenges in trading continuous query:
information uncertainty and computational complexity. To
tackle information uncertainty, OSTOR has decomposed the
online scheduling problem into one-round problems that only
require current system information. For computational com-
plexity, it has employed an adaptive dual descent (ADD)
algorithm with bounded approximation ratio with polynomial
time complexity, augmented with two structure-aware greedy
optimization strategies: dynamic reassignment (DRS) and it-
erative reactivation (IRS). Our extensive experimental evalu-
ation has demonstrated that OSTOR has achieved substantial
improvements in social welfare and considerable reductions
in query execution costs on both real-world and synthetic
datasets, compared to existing data trading methods. Future
research directions should include extending the framework
to address information asymmetry scenarios, where buyers’
utility functions remain private and unknown to the seller.

REFERENCES

[1] Z. Cong, X. Luo, J. Pei, F. Zhu, and Y. Zhang, “Data
pricing in machine learning pipelines,” Knowledge and
Information Systems, vol. 64, no. 6, pp. 1417–1455,
2022.

[2] Grand View Research, “Data marketplace market report.”
https://www.grandviewresearch.com, 2023.

[3] AWS Data Exchange. https://aws.amazon.com/cn/
data-exchange.

[4] SnowflakeMarketplace. https://www.snowflake.com/en/
data-cloud/marketplace.

[5] Xignite. https://www.xignite.com.
[6] Y. An, Z. Zhen, S. Zhang, R. Zhu, and C. Zong,

“Approximate continuous k representative skyline queries
over memory limitation-based streaming data,” in In-
ternational Conference on Advanced Data Mining and
Applications, pp. 94–106, Springer, 2023.

[7] R. Zhu, Y. Jia, X. Yang, B. Zheng, B. Wang, and C. Zong,
“Multiple continuous top-k queries over data stream,”
in 2024 IEEE 40th International Conference on Data
Engineering (ICDE), pp. 1575–1588, IEEE, 2024.

[8] M. Fragkoulis, P. Carbone, V. Kalavri, and A. Katsifodi-
mos, “A survey on the evolution of stream processing
systems,” The VLDB Journal, vol. 33, no. 2, pp. 507–
541, 2024.

[9] Q. Liu, A. King, and T. Ge, “Reducing resource usage for
continuous model updating and predictive query answer-
ing in graph streams,” in 2024 IEEE 40th International
Conference on Data Engineering (ICDE), pp. 2653–
2666, IEEE, 2024.

[10] X. Dai, Z. Wang, J. Xie, X. Liu, and J. C. Lui, “Con-
versational recommendation with online learning and
clustering on misspecified users,” IEEE Transactions on
Knowledge and Data Engineering, 2024.

[11] M. Liu, Z. Li, K. Cai, J. Allcock, S. Zhang, and J. C. Lui,
“Quantum bgp with online path selection via network
benchmarking,” in IEEE INFOCOM 2024-IEEE Con-
ference on Computer Communications, pp. 1401–1410,
IEEE, 2024.

[12] X. Wang, J. Ye, and J. C. Lui, “Online learning aided
decentralized multi-user task offloading for mobile edge
computing,” IEEE Transactions on Mobile Computing,
vol. 23, no. 4, pp. 3328–3342, 2023.

[13] J. Ye, D. Lin, K. Cai, C. Zhou, J. He, and J. C. Lui, “Data-
driven rate control for rdma networks: A lightweight on-
line learning approach,” in 2023 IEEE 43rd International
Conference on Distributed Computing Systems (ICDCS),
pp. 1–11, IEEE, 2023.

[14] M. Xiao, M. Li, and J. J. Zhang, “Locally differentially
private personal data markets using contextual dynamic
pricing mechanism,” IEEE Transactions on Dependable
and Secure Computing, 2023.

[15] Z. Liu, C. Hu, C. Ruan, L. Zhang, P. Hu, and T. Xiang, “A
privacy-preserving matching service scheme for power
data trading,” IEEE Internet of Things Journal, 2024.

[16] Z. He and Z. Cai, “Trading aggregate statistics over
private internet of things data,” IEEE Transactions on
Computers, 2023.

[17] H. Cai, Y. Yang, W. Fan, F. Xiao, and Y. Zhu, “To-
wards correlated data trading for high-dimensional pri-
vate data,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 34, no. 3, pp. 1047–1059, 2023.

[18] J. Li, J. Li, X. Wang, R. Qin, Y. Yuan, and F.-Y. Wang,
“Multi-blockchain based data trading markets with novel
pricing mechanisms,” IEEE/CAA Journal of Automatica
Sinica, vol. 10, no. 12, pp. 2222–2232, 2023.

[19] R. Castro Fernandez, “Protecting data markets from
strategic buyers,” SIGMOD ’22, p. 1755–1769, 2022.

[20] J. Cheng, N. Ding, J. C. Lui, and J. Huang, “Continuous
query-based data trading,” in Abstracts of the 2024 ACM
SIGMETRICS/IFIP PERFORMANCE Joint International
Conference on Measurement and Modeling of Computer
Systems, pp. 73–74, 2024.

[21] J. Park, K. Han, and B. Lee, “Green cloud? an empirical
analysis of cloud computing and energy efficiency,” Man-
agement Science, vol. 69, no. 3, pp. 1639–1664, 2023.

[22] Y. Fu, X. Miao, H. Peng, C. Na, S. Deng, and J. Yin,
“Online query-based data pricing with time-discounting
valuations,” in 2024 IEEE 40th International Conference
on Data Engineering (ICDE), pp. 3449–3461, IEEE,
2024.

[23] C. H. Papadimitriou and K. Steiglitz, Combinatorial
optimization: algorithms and complexity. Courier Cor-
poration, 1998.

[24] K. Lee and Y. Kim, “Online pricing and resource
scheduling for profit maximization of cloud storage
providers,” IEEE Transactions on Cloud Computing,
2024.

[25] W. Shi, L. Zhang, C. Wu, Z. Li, and F. C. Lau, “An online
auction framework for dynamic resource provisioning in
cloud computing,” IEEE/ACM transactions on network-
ing, vol. 24, no. 4, pp. 2060–2073, 2015.

[26] J. Mohan, A. Phanishayee, J. Kulkarni, and V. Chi-
dambaram, “Looking beyond gpus for dnn scheduling
on multi-tenant clusters,” in 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI
22), pp. 579–596, 2022.

[27] H. Cui, Z. Tang, J. Lou, W. Jia, and W. Zhao, “Latency-
aware container scheduling in edge cluster upgrades: A
deep reinforcement learning approach,” IEEE Transac-
tions on Services Computing, 2024.

[28] Q. Deng, Q. Zuo, and Z. Li, “Privacy-preserving stable
data trading for unknown market based on blockchain,”
IEEE Transactions on Mobile Computing, 2025.

[29] P. Abla, T. Li, D. He, H. Huang, S. Yu, and Y. Zhang,
“Fair and privacy-preserved data trading protocol by ex-
ploiting blockchain,” IEEE Transactions on Information
Forensics and Security, 2024.

[30] H. Hou, L. Qiao, Y. Yuan, C. Chen, and G. Wang, “A
scalable query pricing framework for incomplete graph
data,” in International Conference on Database Systems

for Advanced Applications, pp. 97–113, Springer, 2023.
[31] C. Chen, Y. Yuan, Z. Wen, Y.-P. Wang, and G. Wang,

“Gshop: Towards flexible pricing for graph statistics,”
in 2024 IEEE 40th International Conference on Data
Engineering (ICDE), pp. 2612–2624, IEEE, 2024.

[32] M. Zhang, F. Beltrán, and J. Liu, “A survey of data
pricing for data marketplaces,” IEEE Transactions on Big
Data, 2023.

[33] W. Chen, R. Huo, C. Sun, S. Wang, and T. Huang, “Ef-
ficient and non-repudiable data trading scheme based on
state channels and stackelberg game,” IEEE Transactions
on Mobile Computing, 2024.

[34] J. Fang, T. Feng, X. Guo, R. Ma, and Y. Lu, “Blockchain-
cloud privacy-enhanced distributed industrial data trading
based on verifiable credentials,” Journal of cloud com-
puting, vol. 13, no. 1, p. 30, 2024.

[35] H. Xu, S. Qi, Y. Qi, W. Wei, and N. Xiong, “Secure
and lightweight blockchain-based truthful data trading
for real-time vehicular crowdsensing,” ACM Transactions
on Embedded Computing Systems, vol. 23, no. 1, pp. 1–
31, 2024.

[36] I. Bauer-Hänsel, Q. Liu, C. J. Tessone, and G. Schwabe,
“Designing a blockchain-based data market and pricing
data to optimize data trading and welfare,” International
Journal of Electronic Commerce, vol. 28, no. 1, pp. 3–30,
2024.

[37] T. Singh, R. Kalra, S. Mishra, Satakshi, and M. Kumar,
“An efficient real-time stock prediction exploiting incre-
mental learning and deep learning,” Evolving Systems,
vol. 14, no. 6, pp. 919–937, 2023.

[38] L. Antonelli, H. Badir, H. Bazza, S. Bimonte, S. Rizzi,
et al., “Requirements engineering for continuous queries
on iort data: A case study in agricultural autonomous
robots monitoring,” in Proceedings of the 26th Inter-
national Conference on Enterprise Information Systems
(Volume 2), vol. 2, pp. 113–120, SciTePress, 2024.

[39] M. Zhang, X. Li, Y. Miao, B. Luo, W. Xu, Y. Ren,
and R. H. Deng, “Privacy-preserved data disturbance and
truthfulness verification for data trading,” IEEE Transac-
tions on Information Forensics and Security, 2024.

[40] R. Zhou, X. Zhang, J. C. Lui, and Z. Li, “Dynamic
pricing and placing for distributed machine learning jobs:
An online learning approach,” IEEE Journal on Selected
Areas in Communications, vol. 41, no. 4, pp. 1135–1150,
2023.

[41] F. Liang, Z. Zhang, H. Lu, C. Li, V. Leung, Y. Guo, and
X. Hu, “Resource allocation and workload scheduling for
large-scale distributed deep learning: A survey,” arXiv
preprint arXiv:2406.08115, 2024.

[42] Q. Zhang, M. Ikram, and K. Xu, “Online optimization
of vehicle-to-grid scheduling to mitigate battery aging,”
Energies, vol. 17, no. 7, p. 1681, 2024.

[43] J. R. Daduna and L. Xie, “Vehicle scheduling,” in Ency-
clopedia of Optimization, pp. 1–7, Springer, 2024.

[44] A. Arasu, S. Babu, and J. Widom, “The cql continuous
query language: semantic foundations and query execu-

tion,” The VLDB Journal, vol. 15, pp. 121–142, 2006.
[45] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl,

S. Haridi, and K. Tzoumas, “Apache flink: Stream and
batch processing in a single engine,” The Bulletin of the
Technical Committee on Data Engineering, vol. 38, no. 4,
2015.

[46] Y. Zhong, J. Li, and S. Zhu, “Continuous spatial keyword
search with query result diversifications,” World Wide
Web, vol. 26, no. 4, pp. 1935–1948, 2023.

[47] I. Livaja, K. Pripužić, S. Sovilj, and M. Vuković, “A
distributed geospatial publish/subscribe system on apache
spark,” Future generation computer systems, vol. 132,
pp. 282–298, 2022.

[48] S. Babu and J. Widom, “Continuous queries over data
streams,” ACM Sigmod Record, vol. 30, no. 3, pp. 109–
120, 2001.

[49] Amazon Web Services. https://aws.amazon.com/.
[50] A. Mhedhbi, C. Kankanamge, and S. Salihoglu, “Op-

timizing one-time and continuous subgraph queries us-
ing worst-case optimal joins,” ACM Transactions on
Database Systems (TODS), vol. 46, no. 2, pp. 1–45, 2021.

[51] V. Rosenfeld, S. Breß, and V. Markl, “Query processing
on heterogeneous cpu/gpu systems,” ACM Computing
Surveys (CSUR), vol. 55, no. 1, pp. 1–38, 2022.

[52] M. Sharaf and A. Labrinidis, Scheduling Strategies for
Data Stream Processing, pp. 2475–2479. Boston, MA:
Springer US, 2009.

[53] D. Tang, Z. Shang, W. W. Ma, A. J. Elmore, and
S. Krishnan, “Resource-efficient shared query execution
via exploiting time slackness,” in Proceedings of the
2021 International Conference on Management of Data,
pp. 1797–1810, 2021.

[54] R. M. Karp, Reducibility among combinatorial problems.
Springer, 2010.

[55] Technical Report. https://drive.google.com/file/d/
16JGQiyOQraoHY4HPtaL-Ouf-XCfuaupY/view?usp=
sharing.

[56] S. Boyd and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

[57] R. Zhou, Z. Li, and C. Wu, “Scheduling frameworks
for cloud container services,” IEEE/acm transactions on
networking, vol. 26, no. 1, pp. 436–450, 2018.

[58] R. Zhou, Z. Li, and C. Wu, “An efficient online place-
ment scheme for cloud container clusters,” IEEE Journal
on Selected Areas in Communications, vol. 37, no. 5,
pp. 1046–1058, 2019.

[59] M. Gruben, “Austin weather dataset,” 2019.
[60] A. Kannal, “Solar power generation data,” 2020.
[61] UMass Trace Repository, “Investigating traffic analysis

attacks on apple icloud private relay.” https://traces.cs.
umass.edu/docs/traces/network/.

[62] Tianchi, “Ddos botnet attack on iot devices.” https://
tianchi.aliyun.com/dataset/92825.

[63] B. Marjanovic, “Price-volume data for all us stocks &
etfs,” 2017.

[64] K. Parmar, “Social media sentiments analysis dataset,”

2023.
[65] W. Yue, L. Benson, and T. Rabl, “Desis: Efficient window

aggregation in decentralized networks,” EDBT, 2023.
[66] J. Kreps, N. Narkhede, J. Rao, et al., “Kafka: A dis-

tributed messaging system for log processing,” in Pro-
ceedings of the NetDB, vol. 11, pp. 1–7, Athens, Greece,
2011.

[67] Z. Chen, F. Zhang, Y. Chen, X. Fang, G. Feng, X. Zhu,
W. Chen, and X. Du, “Enabling window-based mono-
tonic graph analytics with reusable transitional results
for pattern-consistent queries,” Proceedings of the VLDB
Endowment, vol. 17, no. 11, pp. 3003–3016, 2024.

[68] T. P. Raptis, C. Cicconetti, and A. Passarella, “Efficient
topic partitioning of apache kafka for high-reliability
real-time data streaming applications,” Future Genera-
tion Computer Systems, vol. 154, pp. 173–188, 2024.

[69] G. Siachamis, K. Psarakis, M. Fragkoulis,
A. Van Deursen, P. Carbone, and A. Katsifodimos,
“Checkmate: Evaluating checkpointing protocols for
streaming dataflows,” in 2024 IEEE 40th International
Conference on Data Engineering (ICDE), pp. 4030–
4043, IEEE, 2024.

[70] H. Sun, L. Shen, Q. Zhong, L. Ding, S. Chen, J. Sun,
J. Li, G. Sun, and D. Tao, “Adasam: Boosting sharpness-
aware minimization with adaptive learning rate and
momentum for training deep neural networks,” Neural
Networks, vol. 169, pp. 506–519, 2024.

[71] E. Bartz and T. Bartz-Beielstein, Online Machine Learn-
ing. Springer, 2024.

[72] Y. Lin, Y. Endo, J. Lee, and S. Kamijo, “Bandit-nas: Ban-
dit sampling and training method for neural architecture
search,” Neurocomputing, vol. 597, p. 127684, 2024.

[73] C. Li, S. Han, S. Zeng, and S. Yang, “Robust optimiza-
tion,” in Intelligent Optimization: Principles, Algorithms
and Applications, pp. 239–251, Springer, 2024.

[74] A. H. Zemanian, Distribution theory and transform
analysis: an introduction to generalized functions, with
applications. Courier Corporation, 1987.

[75] C. P. Fernandes, C. Montez, D. D. Adriano, A. Bouk-
erche, and M. S. Wangham, “A blockchain-based reputa-
tion system for trusted vanet nodes,” Ad Hoc Networks,
vol. 140, p. 103071, 2023.

[76] A. E. Atakan and M. Ekmekci, “The role of informa-
tion in auctions,” Journal of Mathematical Economics,
vol. 114, p. 103027, 2024.

