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Ethereum, a blockchain, supports its own cryptocurrency named Ether and smart contracts. Although more
than 8M smart contracts have been deployed on Ethereum, little is known about the characteristics of its users,
smart contracts, and the relationships among them. We conduct the !rst systematic study on Ethereum by
leveraging graph analysis to characterize three major activities on Ethereum, namely money transfer, smart
contract creation, and smart contract invocation. We collect all transaction data, construct three graphs from
the data to characterize major activities via graph analysis, and discover new insights. Moreover, we address
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1 INTRODUCTION
With more than 10B USD market capitalization [2], Ethereum is the largest blockchain that runs
smart contracts. A smart contract is an autonomous computer program that, once started, exe-
cutes automatically and mandatorily according to the program logic de#ned beforehand [28]. The
smart contracts on Ethereum are usually developed by any high-level language (e.g., Solidity) and
then compiled into bytecode. After being deployed on Ethereum, the bytecode will run on the
blockchain when it is invoked. Since its debut on July 30, 2015, there are already around 40M ex-
ternal owned accounts, which are usually normal users or developers, and 8M smart contracts
in Ethereum. There are various studies about Ethereum’s security [16, 24, 32, 33, 43] and perfor-
mance [15, 17]. However, little is known about the characteristics of its users, smart contracts, and
the relationships among them (i.e., user to user, user to smart contract, smart contract to smart
contract), which can empower us to better understand the Ethereum ecosystem.

In this article, we conduct the !rst systematic study on Ethereum by leveraging graph analysis
to characterize three major activities on Ethereum: money transfer, smart contract creation, and
smart contract invocation. These activities empower users to send money to others, developers
to deploy their smart contracts on Ethereum, and users or applications to call the deployed smart
contracts. We construct the money "ow graph (MFG), smart contract creation graph (CCG), and
smart contract invocation graph (CIG) to characterize these activities by collecting all transactions
that happened on Ethereum from July 30, 2015, to November 1, 2018, and extracting useful data
from them.

Transactions are signed data packages containing messages with useful information. For exam-
ple, the value #eld in a transaction indicates the amount of money transferred. A transaction can
be an external one if it is sent from an external owned account (EOA), which is usually produced
by a wallet application with data provided by the user (e.g., how much money to transfer). Alter-
natively, a transaction can be an internal one that results from executing a smart contract due to
an external transaction, and therefore an internal transaction’s sender is the smart contract. Note
that an external transaction may lead to many internal transactions. It is non-trivial to collect all
transactions, because although external transactions are publicly available in the blockchain, in-
ternal transactions are not stored in the blockchain. To obtain all internal transactions, we design
a new approach that replays all external transactions in our instrumented Ethereum client that
will record the internal transactions (Section 4).

Based on all transaction data, we construct MFG, CCG, and CIG to represent money "ow, smart
contract creation, and smart contract invocation, respectively (Section 5). Then, we conduct var-
ious graph analysis on MFG, CCG, and CIG, such as measuring their degree distribution, clus-
ters, degree correlation, node importance, assortativity, strongly/weakly connected component
(SCC/WCC), and the evolution of these graphs by investigating the changing of metrics over time
(Section 6). Such investigation leads to new observations and insights, and we present some of
them in this section. First, users prefer transferring money rather than calling smart contracts on
Ethereum. A possible reason is that many users of Ethereum have experiences on Bitcoin or other
blockchains to transfer cryptocurrencies, but they may be unfamiliar with smart contracts. Sec-
ond, smart contracts for #nancial applications dominate the Ethereum ecosystem, but most smart
contracts are not frequently invoked. A reason may be that #nancial applications are naturally fa-
vored by blockchains because of cryptocurrencies, but extending blockchains to other application
domains is still in active exploration.

Third, the trend that the accounts in MFG tend to transfer Ether rather than deposit Ether holds
at all times. Such a trend is accordant with the active speculative behaviors that receive and send
ETH frequently to earn money. Fourth, the trend that if an account creates lots of contracts, then
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the created contracts do not tend to create new contracts holds at all times. We #nd that the huge
number of created contracts by the same account is similar and do simple tasks that do not need
to create other smart contracts. Fifth, we #nd huge SCCs in MFG, indicating hub nodes that may
be exchange markets. Sixth, most WCCs of CCG are small, suggesting that most applications just
consist of a few smart contracts. Seventh, the clustering coe$cient of CIG approaches 0. One
possible reason is that most applications on Ethereum are not complicated, and hence they do not
require intensive interaction between smart contracts.

Besides examining individual graphs, we propose new approaches based on the three graphs
to address three important security issues in Ethereum (Section 7), including attack forensics for
#nding accounts controlled by the attacker, anomaly detection for discovering abnormal accounts
that create lots of unused contracts, and deanonymization for revealing the identities of accounts.
The experimental result demonstrates the e%ectiveness of our new approaches.

There are a few studies investigating Ethereum by graph analysis [12–14, 30, 41]. The existing
studies di%er with our work in many aspects. More importantly, they neither collect the transac-
tions from EOAs to contracts, nor measure the data by graph techniques. For example, Chan and
Olmsted focus on fast query by storing the graph into a graph database [13]. Somin et al. focus
on a special contract behavior, so-called token transfer, which is orthogonal with our work [41].
Ki%er et al. model the creation and invocation of smart contracts as a graph [30]. Although many
recent works studied Bitcoin through graph analysis[7, 23, 34, 36, 39, 47, 48], their methods and
results cannot be directly applied to Ethereum because of the di%erences between Ethereum and
Bitcoin in functionalities and protocols, as discussed in Section 8.1.

This article extends our previous conference paper [18] in six aspects. First, the journal version
presents the observations and insights based on more comprehensive data. In particular, the jour-
nal version collects all transactions till November 1, 2018, which is about 14× more than the data
analyzed in the conference version. Second, the new version of Ethereum introduces a new oper-
ation STATICCALL that can also result in internal transactions. We handle this new operation in
this manuscript to collect complete internal transactions. Third, we implement a new application,
deanonymization based on graph analysis. Fourth, we apply our anomaly detector to all smart
contracts (>8M) and discover more (i.e., 48) abnormal accounts, while the conference version just
analyzes the top 10 most important accounts of CIG. By analyzing these abnormal accounts, we
#nd new attacks that stole money. Fifth, we analyze the strongly connected components (SCCs)
and weakly connected components (WCCs) of CIG in the journal version, whereas the confer-
ence version did not do it. Last, we present the evolution of the three graphs over time and have
interesting observations.

In summary, we make the following major contributions:

(1) To the best of our knowledge, it is the !rst systematic investigation on Ethereum via graph
analysis. We propose a new approach to collect all transaction data and then construct
money "ow graph (MFG), smart contract creation graph (CCG), and smart contract invo-
cation graph (CIG) to characterize major activities on Ethereum.

(2) We obtain many new observations and insights about Ethereum by evaluating various
graph metrics (e.g., degree distribution) on MFG, CCG, and CIG. They empower us to
obtain a better understanding of the Ethereum ecosystem. We list 35 major observations
from our analysis in Table 1.

(3) We propose new approaches based on the three graphs to handle three important security
issues in Ethereum, including attack forensics, anomaly detection, and deanonymization.
The evaluation through real cases shows the e%ectiveness of our new approaches.
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Table 1. 35 Major Observations from Our Analysis

The rest of the article is organized as follows: Section 2 introduces the background
knowledge of Ethereum. After giving an overview of our analysis procedure in Section 3,
we detail the data collection, graph construction, and analysis in Section 4, Section 5,
and Section 6, respectively. Section 7 presents the new approaches based on cross-graph
analysis for handling two security issues. After reviewing related studies in Section 8, we
conclude the article in Section 9.

2 BACKGROUND
Accounts. The basic unit in Ethereum is the account [3]. There are two kinds of accounts: external
owned accounts (EOAs) and smart contracts. The major di%erence between them is that only smart
contracts contain executable code that is developed by users [3]. Developers can #rst develop smart
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contracts in high-level programming language to provide various services and compile them into
bytecode before deployment. A smart contract can be created by an EOA or a smart contract, but
an EOA cannot be created by another account [46].
Transactions. A transaction is a message sent from one account to another. The interaction of
accounts, such as the activities studied by our work, is accomplished by transactions. There are
two types of transactions: the external transaction sent by an EOA and the internal transaction sent
by a smart contract. Both the external transaction and internal transaction can be used for money
transfer, contract creation, and contract invocation, and hence, we handle both. If a transaction
attempts to create a smart contract, its receiver #eld should be null [46]. If the smart contract is
successfully created, then the address of the created smart contract will be returned [46]. Contrar-
ily, if a transaction attempts to invoke a smart contract, its receiver #eld should be the address of
the callee [46]. An external transaction has a similar data structure with an internal transaction,
including the receiver #eld, the amount of transferred ETH, and the input data that carry the EVM
bytecode of a smart contract to be deployed or the parameters for invoking a smart contract [46].
The major di%erence between them is that only the former is sent by an EOA and recorded in the
blockchain, while the latter is sent by a smart contract and not recorded in the blockchain.
Ether/Token. Being the native cryptocurrency of Ethereum, Ether can be traded on cryptocur-
rency exchanges or transferred among accounts. Users transfer Ether to others by sending trans-
actions whose value #eld indicates the amount of Ether transferred. Besides, Ethereum requires
users to pay transaction fees in Ether for protecting the blockchain from frivolous or malicious
tasks that will exhaust the resources [46]. The account who produces blocks (i.e., miners) will be
rewarded in Ether. Since mining is di$cult, many miners form a mining pool to increase the prob-
ability of producing blocks. If a block is produced by a mining pool, then the miners of the pool will
share the reward. Token is a kind of cryptocurrency implemented as smart contracts [3]. Token
can also be traded and transferred.
Smart contract. Developers can create various applications on Ethereum by constructing and
deploying smart contracts. More speci#cally, developers usually prepare smart contracts in high-
level languages (e.g., Solidity) and compile them into bytecode. To deploy a smart contract on
Ethereum, the developer sends a transaction, whose data #eld contains the bytecode rather than
the source, to the null address, indicating contract creation. Note that a smart contract can be
created by either EOA or another smart contract. After a successful deployment, the address of
the contract will be generated. Any user of Ethereum can invoke the smart contract by sending a
transaction whose recipient #eld is the contract address. The data #eld of that transaction speci#es
the function in the smart contract to be invoked as well as function’s parameters. Smart contracts
are executed in Ethereum virtual machine (EVM), which is a stack-based virtual machine.
Ethereum client. The underlying topology of Ethereum blockchain is a P2P network. Each peer
runs an Ethereum client, which is responsible for synchronization with its peers. The client con-
tains an EVM for executing smart contracts. By synchronization, a client downloads all blocks
from other peers and constructs the blockchain in the local machine by replaying all historical
transactions in the EVM of this client.

3 METHODOLOGY
As shown in Figure 1, our methodology consists of three phases, which are described in the follow-
ing sections. The #rst phase, data collection (Section 4), collects all transaction data for subsequent
graph construction. Note that although the blockchain and all external transactions are publicly
available, the internal transactions are not stored in the blockchain. We propose a novel approach
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Fig. 1. An overview of our approach. Our approach consists of three phases, and we implement three appli-
cations based on graph analysis.

to obtain internal transactions by instrumenting the Ethereum client to add recording code. Then,
both external and internal transactions are fed to the second phase, graph construction (Section 5),
to construct three graphs: money "ow graph (MFG), smart contract creation graph (CCG), and
smart contract invocation graph (CIG). These graphs characterize the activities of money transfer,
contract creation, and contract invocation, respectively. We also calculate the statistics of these
graphs.

The third phase, graph analysis (Section 6), conducts graph analysis on MFG, CCG, and CIG by
computing metrics including degree distribution, clustering, degree correlation, node importance,
assortativity, and strongly/weakly connected component. We also analyze the evolution of these
graphs over time in this phase. Based on the statistics and metrics of these graphs, we obtain
new observations and insights. Besides inspecting individual graphs, we propose new approaches
based on those graphs to handle security issues in Ethereum (Section 7), including attack forensics,
anomaly detection, and deanonymization.

4 DATA COLLECTION
We collect all accounts (39,572,734 EOAs and 8,725,788 smart contracts) and transactions
(336,410,379 external transactions and 333,011,145 internal transactions) from the launch of
Ethereum on July 30, 2015, to November 1, 2018, and exclude three types of transactions. The
#rst is the failed transaction. The submission of transactions to the blockchain may fail due to
many reasons, e.g., the deployed contract is oversize. Once a transaction fails, the e%ect resulting
from submitting the transaction will be nulli#ed by rollback operations [46]. A transaction of the
second type sends Ether from an EOA to another but the amount is zero. A transaction of the third
type self-destructs a smart contract and the smart contract has no Ether remaining. Consequently,
the last two types of transactions do not result in money transfer.

We do not adopt two alternatives to collect transactions. The #rst is crawling from some
Ethereum explorers (e.g., Etherscan [4]) or invoking the web APIs provided by the Ethereum ex-
plorers. However, to keep the websites available to all visitors, they usually restrict the amount
of data that can be crawled or downloaded. For example, the maximum number of external trans-
actions that the web API of Etherscan allows users to download is 10K [21]. As another exam-
ple, Etherscan just displays the last 0.5M external transactions that account for about 0.15% [4].
The second is invoking the web3 API, web3.eth.getTransaction() provided by an Ethereum
client [20]. Unfortunately, the API cannot obtain internal transactions. Moreover, users need to
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provide the transaction hash when invoking the API. However, there is no easy way to obtain the
transaction hashes of all transactions. We describe our instrumentation-based approach to collect
both external transactions and internal transactions as follows.

4.1 External Transactions Collection
Since external transactions are sent by EOAs and stored in the blockchain, we collect them
by running an Ethereum client to synchronize all data. Note that each Ethereum client
maintains the same copy of blockchain with all historical transactions according to its
protocol [46]. Technically, we instrument the o$cial Ethereum client, Geth. The function
TransitionDb() in \core\state_transition.go is responsible for submitting external transactions.
It calls vmenv.Create() if the transaction attempts to create a new contract; otherwise, it calls
vmenv.Call(). The account creating the contract and the amount of Ether sent to the newly cre-
ated contract are the parameters of vmenv.Create(). Whether the contract is successfully created
and the address of the created contract can be found in the return values of vmenv.Create().
Besides the addresses of caller and callee and the amount of Ether sent to the callee are the pa-
rameters of vmenv.Call(). Whether contract invocation is successful is speci#ed in the return
values of vmenv.Call(). Therefore, we collect external transactions by inserting recording code
to TransitionDb().

4.2 Internal Transactions Collection
Internal transactions result from the execution of smart contracts, but they are not stored in the
blockchain. One should not ignore internal transactions when conducting graph analysis, because
they enable smart contracts to interact with other accounts, such as creating new contracts, in-
voking other contracts. To address this issue, we propose to collect all internal transactions when
EVM replays all historical external transactions. The rationale behind our solution is that inter-
nal transactions are incurred by the execution of smart contracts, which are initialized by external
transactions. Each node of Ethereum will replay all external transactions inside its EVM for achiev-
ing consensus with other nodes [46], and hence each node will reproduce all historical internal
transactions.

To record internal transactions, we add the code for recording into the EVM, which is open-
source. More speci#cally, EVM de#nes 100+ operations for EVM, but only 6, which are CREATE,
CALL, CALLCODE, DELEGATECALL, STATICCALL, and SELFDESTRUCT (an alias of the original
SUICIDE operation) can generate internal transactions [46]. CREATE and CALL create and invoke
a smart contract, respectively [46]. CALLCODE and DELEGATECALL also invoke a smart contract,
but the callee runs in caller’s context [46]. By using them, a smart contract can be loaded as a library
by another one. When calling a contract by STATICCALL, the state (e.g., the amount of Ether, a
global variable) of the callee cannot be modi#ed [46]. SELFDESTRUCT removes the smart contract
from the blockchain and sends the remaining money in the smart contract to a designated target.
Therefore, we insert recording code into the handlers of these six operations.

EVM prepares handlers for interpreting all EVM operations, so we just need to add recording
code into the handler of those 6 EVM operations. In the handler of CREATE, we add the recording
code after the accomplishment of contract creation to record the address of contract creator, the
address of the created contract, and the amount of Ether deposited in the created contract by the
contract creator. Similarly, in the handlers of CALL, CALLCODE, DELEGATECALL, and STATIC-
CALL, we log the addresses of caller, callee, and the amount of Ether transferred from the caller to
the callee. In the handler of SELFDESTRUCT, we record the address of the self-destructed contract,
the address to receive the remaining Ether, and the amount of Ether.
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Table 2. Number of (External and Internal) Transactions in Each Group

Fig. 2. Cumulative distribution of the number of transactions.

4.3 Account Collection
After collecting transactions, the collection of accounts is straightforward, because each trans-
action associates with an account for sending and an account for receiving. Then, we recognize
a smart contract by checking the receiver #eld of a transaction. Particularly, if the receiver #eld
is null, then the return address indicates a smart contract. After recognizing smart contracts, the
remaining accounts are EOAs.

5 GRAPH CONSTRUCTION
Money transfer, contract creation, and contract invocation are three major activities happening
on Ethereum. To investigate them, we construct three graphs (i.e., MFG, CCG, CIG) based on both
external and internal transactions.

5.1 Transaction Preprocessing
From all collected transactions, we obtain 48,298,522 accounts, including 39,572,734 EOAs and
8,725,788 smart contracts in total. Note that the accounts are recorded by client instrumentation
(Section 4.3). In the preprocessing stage, we divide all collected transactions into three groups (i.e.,
BGM F , BGCC , and BGCI ), corresponding to money transfer, smart contract creation, and smart
contract invocation for subsequent graph construction. Please note that a transaction may be
included in several groups if it triggers multiple activities. For instance, a transaction for smart
contract creation can also deposit some Ether in the newly created smart contract and therefore
the transaction should be included in both BGM F and BGCC . Similarly, when a transaction calls a
smart contract, it can also send Ether to the contract, and thus such transaction should be included
in BGM F and BGCI . It is impossible that a transaction belongs to both BGCC and BGCI , because a
smart contract should be created by a transaction and then invoked by a subsequent transaction.
Table 2 lists the number of transactions including external transactions and internal transactions
involved in money "ow (BGM F ), contract creation (BGCC ), contract invocation (BGCI ), both BGM F
and BGCC , both BGM F and BGCI , and both BGCC and BGCI , respectively. It shows that the size of
BGCC (8,725,788) is equal to the number of smart contracts, because a smart contract can only be
created once.

Figure 2 illustrates the distribution of the number of transactions related to the accounts in
BGM F , BGCC , and BGCI , individually. The dashed line, dash-dot line, and solid line with marks
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denote all accounts, EOAs, and smart contracts, respectively. Each point (x , y) indicates that y
of accounts are involved in no more than x transactions. Figure 2(a) shows that 0.2% (the point
(0, 0.002)) EOAs do not transfer any Ether. In other words, if an EOA is a user, then almost all
users transfer (i.e., receive or send) money on Ethereum. Such observation is expected, because the
easiest way to use Ethereum is sending or receiving ETH. However, more than 83% smart contracts
(the point (0, 0.83)) do not transfer any Ether. A possible reason is that the program logic of those
smart contracts may not involve ETH transfer. For example, the standard methods de#ned in the
ERC-20 standard (the most popular token standard) support token transfer, querying the amount of
tokens, and so on, but they are not designed for ETH transfer [44]. Moreover, about 85% accounts
(96% smart contracts and 82.5% EOAs) are involved in no more than #ve transactions; that is,
most accounts, especially smart contracts, did not frequently transfer ETH. Such observation may
suggest that Ethereum, a new blockchain-based computation platform, has not become a necessity
of daily life yet.

Figure 2(b) shows that 99.7% EOAs (point (0, 0.997)) do not create contracts. If an EOA that cre-
ates smart contracts is a smart contract developer, then the proportion of developers is just 0.3%
total users. The result is unsurprising, because application users always outnumber application
developers. The point (1, 0.992) indicates that 99.2% of smart contracts are involved in only one
transaction, i.e., the transaction for contract creation. Hence, we learn that almost all contracts do
not create contracts. One possible reason is that Ethereum is such a young platform that developers
rarely exploit this advanced functionality. Figure 2(c) demonstrates that 66% (point (0, 0.66)) EOAs
do not invoke smart contracts and 47% (point (0, 0.47)) smart contracts are not invoked. Moreover,
about 92% EOAs call smart contracts no more than #ve times (point (5, 0.92)). Hence, we can learn
that most users use smart contracts infrequently. A reasonable explanation is that most smart con-
tracts do not belong to hot applications; instead, they may be toy examples deployed by Ethereum
fans. Since 83% of smart contracts do not transfer money, we investigate whether they are invoked.
Results show that 57% (4, 107, 460/7, 233, 706) of these smart contracts are not invoked (i.e., those
smart contracts are not used at all) and thus considerable resources (e.g., network, disk) are wasted
to synchronize and store them.

5.2 MFG Construction

De!nition 5.1. MFG = (V ,E,w ), whereV is a set of nodes, E is a set of edges andw is a function
mapping edges to their weights. V = Vn

⋃
Vsc , Vn is the set of EOAs, and Vsc is the set of smart

contracts.E is a set of ordered pairs of nodes,E = {(vi ,vj ) |vi ,vj ∈ V }. The order of an edge indicates
the direction of transferred money. w : E → R+ associates each edge with a weight, which is the
total amount of transferred Ether along the edge by one or more transactions. In summary, MFG
is a weighted directed graph.

We use the terms account and node interchangeably in the remainder of this article. To construct
MFG, we iteratively process the transactions in BGM F . In particular, for every transaction, the
accounts who send or receive Ether are nodes, and we connect an edge whose weight is the amount
of transferred Ether from the sender to the recipient. If the edge has already existed, then we add its
weight by the amount of transferred Ether. Note that the sender, recipient, and the amount of Ether
are recorded by client instrumentation (Section 4). Table 3 lists the statistics of MFG, including the
number of edges, the number of isolated EOA, and the number of isolated smart contracts (sc). An
isolated node in MFG means that it neither receives nor sends Ether. Only 88,361 EOAs (compared
to 39,572,734 in total) do not transfer money, since they are isolated in MFG. The data in Table 3
match the observations from Figure 2(a) that almost all EOAs transfer money, but more than 80%
of smart contracts do not. We classify the edges of MFG into four kinds according to senders and
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Table 3. Statistics of Graphs

Table 4. Edges of MFG Table 5. Edges of CCG Table 6. Edges of CIG

receivers. Results are reported in Table 4. We #nd that 88% (84, 704, 702/95, 963, 113) of edges are
between EOAs, which is accordant with Figure 2(a) that almost all EOAs transfer ETH but most
smart contracts did not do it.

5.3 CCG Construction

De!nition 5.2. CCG = (V ,E), where V is a set of nodes, the same as those in De#nition 5.1 (in
revised paper). E is a set of edges. E = {(vi ,vj ) |vi ∈ V ,vj ∈ Vsc }, where a directed edge (vi ,vj )
from vi to vj indicates that an account vi creates a smart contract vj .

The de#nition implies several properties of CCG. First, if (vi ,vj ) ∈ E, then (vj ,vi ) ! E. That
is, the edge between two nodes is unidirectional, because if a node A creates a contract B, then
B cannot create A. Second, if (vi ,vj ) ∈ E, then (vk ,vj ) ! E,∀k " i . Since a smart contract cannot
be created twice and an EOA cannot be created by another account, CCG contains no cycles.
Therefore, we can view CCG as a forest consisting of multiple trees. The root of each tree is an
EOA, and the other nodes of the tree are smart contracts directly or indirectly created by the root.
Since each transaction in BGCC indicates the creation of a smart contract, we add an edge from
the transaction sender to the created smart contract.

The statistics of CCG (Table 3) match the observations from Figure 2(b) that the vast majority
of EOAs are isolated, i.e., they do not create contracts. Moreover, the smart contracts (8,725,788)
obviously outnumber the EOAs (i.e., 108, 621 = 39, 572, 734 − 39, 464, 113), which create contracts.
If an EOA that creates smart contracts is a developer, then the number of developers is much fewer
than that of smart contracts. In practice, the di%erence may be more signi#cant, since a developer
can have many EOAs. We classify the edges in CCG into two kinds: from EOAs to smart contracts
and from smart contracts to smart contracts, because only smart contracts can be created, as shown
in Table 5. The results in Table 5 are accordant with the results in Table 2, because each edge in
CCG corresponds to a unique transaction (i.e., the weight of each edge is 1).

5.4 CIG Construction

De!nition 5.3. CIG = (V ,E,w ), whereV is a set of nodes, E is a set of edges, andw is a function
mapping edges to their weights. E is an ordered pairs of nodes, E = {(vi ,vj ) |vi ∈ V ,vj ∈ Vsc }. An
edge (vi ,vj ) indicates that the callervi invokes the calleevj .w : E → N associates each edge with
a weight, which is the total number of invocations along the edge by one or more transactions.
Hence, CIG is a weighted directed graph.
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Fig. 3. An example to explain high weights of edges between smart contracts.

To construct CIG, we process every (external and internal) transaction in BGCI to get the callers’
and callees’ addresses, which are the nodes in CIG. Then, we add an edge from sender to recipient
and set the edge’s weight to 1 if there is no edge between them. Otherwise, we increase the edge’s
weight by 1. Table 3 shows the statistics of CIG, which match the observations from Figure 2 that
66% (26, 301, 754/39, 572, 734) of EOAs do not call smart contracts, and 47% (4, 121, 492/8, 725, 788)
of smart contracts are not invoked. We classify the edges in CIG into two kinds: from EOAs to
smart contracts and from smart contracts to smart contracts, because only smart contracts can be
invoked, as shown in Table 6. We #nd that 84% (32, 435, 514/38, 708, 166) of edges are from EOAs
to smart contracts. Such a high proportion is consistent with Table 2 that there are more internal
transactions than external transactions in CIG, because we #nd that the average weight (i.e., the
number of transactions) of the edges from smart contracts to smart contracts is higher than the
average weight of the edges from EOAs to smart contracts. The high weights of the edges between
smart contracts may result from the program logic of smart contracts. For example, if an EOA calls
a smart contract, SC1, which invokes SC2, and SC2 calls back to SC1, which invokes SC2 again, and
#nally SC2 calls back to SC1 again, as shown in Figure 3, the weight of the edge from the EOA to
SC1 is one and the weights of the two edges between SC1 and SC2 are two.

We obtain the following insights by building these graphs:

Insight 1. Users prefer to transfer money on Ethereum instead of using smart contracts. One
possible reason is that many users of Ethereum may have experiences in using Bitcoin
or other cryptocurrency blockchains. However, smart contracts may be relatively new to
them.

Insight 2. The smart contracts are not widely used. One possible reason is that (as shown in
Section 6.4) there is a limited number of applications supported by smart contracts and
most of them are for #nancial applications. Financial applications are naturally favored by
blockchains because of cryptocurrencies, but extending blockchains to other applications
is still in active exploration.

Insight 3. Not all users frequently use Ethereum. One possible reason is that most users just
try Ethereum and deploy toy contracts on it.

Figure 4 visualizes the three graphs. They are di%erent and have noticeable structure features.
We can #nd several community structures in them, indicating the existence of a few large-degree
nodes and many small-degree nodes. In other words, a few accounts play a vital role in Ethereum.
We investigate the structures of three graphs in Section 6.

6 GRAPH ANALYSIS
This section investigates MFG, CCG, and CIG from various metrics in graph analysis. Please note
that we do not consider isolated nodes when computing the metrics. We #rst introduce the metrics
and then detail the observations from each graph in the following subsections.

6.1 Metrics
Degree distribution. The degree of a node is the number of edges connecting to the node, and the
degree distribution is the fraction Pk of nodes with degree k, for all k [45]. Since Pk is a fraction, 0 ≤
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Fig. 4. Visualization of MFG, CCG, and CIG. For the ease of illustration, we randomly select 20K edges from
each graph to draw the figure.

Pk ≤ 1 and ∑ Pk = 1. Speci#cally, the degree of a node in MFG indicates the number of accounts
trading with that node. The degree of an EOA in CCG represents the number of contracts created
by it, while the degree of a smart contract in CCG indicates the number of contracts created by it
plus 1 (for the transaction to create that contract). The degree of an EOA in CIG is the number of
smart contracts invoked by it, while the degree of a contract in CIG is the total number of contracts
invoking it and the number of contracts it invokes. Let γ be the slope of the distribution; a higher
γ represents a fairer degree distribution. γ is between −2 and −3 for many real-world graphs [19],
and that is the case for MFG, CCG, and CIG. The indegree of a node in a directed graph is the
number of edges whose heads end at that node. Speci#cally, the indegree of an account in MFG
is the number of accounts sending money to it. The indegree of an EOA in CCG and CIG is 0,
since it cannot be created or invoked by other accounts according to the de#nitions of CCG and
CIG (De#nition 5.2, De#nition 5.3). The indegree of a contract in CCG is 1, because it can only
be created once. The indegree of a contract in CIG is the number of accounts invoking it. The
outdegree of a node in a directed graph is the number of edges whose tails end at that node. In
particular, the outdegree of an account in MFG is the number of accounts receiving money from it.
The outdegree of an account in CCG/CIG indicates the number of contracts created/invoked by it.
Clustering coe!cient. We compute the global clustering coe"cient to evaluate the extent to
which nodes in a graph tend to cluster together. The global clustering coe$cient is the average of
local clustering coe$cients over all nodes with degree larger than one [40]. The range of the global
clustering coe$cient is [0, 1], and interested readers can #nd its mathematical expression in So%er
and Vazquez’s work [40]. We obtain many observations using this metric. For example, Section 6.4
shows that the clustering coe$cient of CIG approaches to 0, meaning that the collaboration of
contracts in CIG is rare.
Assortativity coe!cient. We compute the assortativity coe"cient to measure the level of corre-
lation between the sets of upstream and downstream nodes constituting the edges in a network
graph [35]. For example, as shown in Section 6.4, the assortativity coe$cient of CIG approaches 0,
indicating that method invocation is determined by program logic rather than the degrees of nodes.
Interested readers can #nd its mathematical expression in Meghanathan’s work [35]. The range
of the assortativity coe$cient is [−1, 1] [35]. The studied graph is strongly assortative, weakly as-
sortative, neutral, weakly disassortative, and strongly disassortative, if the assortativity coe$cient
falls into [0.6, 1], [0.2, 0.6), (−0.2, 0.2), (−0.6,−0.2], and [−1,−0.6], respectively [35].
Pearson coe!cient. Pearson coe$cient measures the strength and direction of linear relation-
ships between pairs of continuous variables [29]. Interested readers can #nd its mathematical ex-
pression in a tutorial [29]. Let γ be the Pearson coe$cient, then −1 ≤ γ ≤ 1 [29]. Two pairs of
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variables have strong correlation, moderate correlation, weak correlation, very weak correlation,
and neural correlation, if 0.5 < |γ | ≤ 1, 0.3 < |γ | ≤ 0.5, 0.1 < |γ | ≤ 0.3, 0 < |γ | ≤ 0.1, and γ == 0,
respectively [29]. We use it to evaluate the correlation between the indegree and the outdegree
of nodes, because di%erent values of Pearson coe$cient indicate di%erent behavior patterns of
accounts. For instance, as shown in Section 6.2, the Pearson coe$cient of MFG is 0.45, indicating
that indegrees and outdegrees of MFG are moderately correlated; that is to say, accounts tend to
transfer ETH rather than deposit ETH.
Strongly connected component (SCC). Before explaining the SCC, we de#ne a path in a graph
as a sequence of edges that connects a sequence of nodes. An SCC of a directed graph G is the set
of nodes C ⊆ V such that for every pair of nodes u and v , there is a directed path from u to v and
a directed path from v to u [11].
Weakly connected component (WCC). A WCC of a directed graph G is a set of nodes C ⊆ V
such that for every pair of nodes u and v , there is an undirected path from u to v [11]; that is, the
direction of edges is ignored when looking for WCC.
Importance. We evaluate the importance of nodes using two metrics: PageRank and degree cen-
trality. To measure the importance of a node, degree centrality merely considers its degree, while
PageRank also considers the importance of its neighbors [10]. Let PR(x ) be the PageRank value of
node x , then 0 ≤ PR (x ) ≤ 1 and ∑ PR (x ) = 1, because PageRank forms a probability distribution
over nodes [10]. The larger PR (x ) is, the more important x is. Interested readers can #nd the com-
putation procedure of PageRank in Brin and Page’s work [10]. By evaluating the importance of
nodes, we can discover hot applications. For example, as shown in Section 6.2, the 10 most impor-
tant nodes in MFG measured by PageRank are exchange markets, highlighting the core position
of exchange markets in ETH transfer. We also #nd that some nodes are regarded as important
in terms of both degree centrality and PageRank, although these two metrics do not produce the
same results. Such a #nding highlights the value of applying more metrics to study graphs, which
will be our future work.
Ether between two accounts (ETA). We propose a new metric, ETA, to describe the average
amount of ETH transferred per transaction between two accounts. This metric only applies to
MFG, since each edge of MFG indicates ETH transfer between two accounts. To compute ETA, we
need the number of transactions for each edge in MFG, which is known when constructing MFG.
Common edges. A common edge between two graphs denotes that two di%erent behaviors hap-
pened between two accounts. We use two notions, E (MFG ) to represent the edge set of MFG
and |E (MFG ) | to represent the number of edges of MFG. We de#ne E (CCG ), |E (CCG ) |, E (CIG ),
and |E (CIG ) | in the same way. We use E (MFG ) ∩ E (CCG ) to represent the common edges be-
tween MFG and CCG, and let |E (MFG ) ∩ E (CCG ) | denote the number of common edges be-
tween MFG and CCG. We de#ne E (MFG ) ∩ E (CIG ), |E (MFG ) ∩ E (CIG ) |, E (CCG ) ∩ E (CIG ), and
|E (CCG ) ∩ E (CIG ) | in the same way. We de#ne the metric |E (MFG ) ∩ E (CCG ) |/|E (MFG ) | to rep-
resent the proportion of the common edges between MFG and CCG to all edges of MFG. We de-
#ne other #ve metrics |E (MFG ) ∩ E (CCG ) |/|E (CCG ) |, |E (CCG ) ∩ E (CIG ) |/|E (CCG ) |, |E (CCG ) ∩
E (CIG ) |/|E (CIG ) |, |E (MFG ) ∩ E (CIG ) |/|E (MFG ) |, and |E (MFG ) ∩ E (CIG ) |/|E (CIG ) | in the same
way. By computing these metrics, we know the frequencies of two di%erent behaviors between
two accounts. For example, as shown in Section 6.3, |E (CCG ) ∩ E (CIG ) |/|E (CCG ) | = 0.26, indicat-
ing that most smart contracts have not been invoked by their creators. A possible reason is that the
purpose of a contract creator to create smart contracts is providing services to other users rather
than herself.
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Fig. 5. Degree/Indegree/Outdegree distributions of MFG. They all follow power law.

Fig. 6. Ether distribution and statistics of an outlier.

Evolution. Moreover, we investigate the evolution of these graphs over time in terms of the num-
ber of nodes, the number of edges, clustering coe$cient, Pearson coe$cient, assortativity coef-
#cient, the number of SCCs, the size of the largest SCC, the number of WCCs, the size of the
largest WCC, and the six metrics related to common edges. To do so, we set a checkpoint at the
end of every month after the launching of Ethereum, then we compute the aforementioned metrics
based on the data collected before each checkpoint. Therefore, for each metric, we obtain 39 results
corresponding to 39 checkpoints. By investigating the evolution, we can discover how Ethereum
evolves from its birth.

6.2 MFG Analysis
Degree distribution. Figure 5 shows the degree/indegree/outdegree distributions of MFG, all of
which follow the power law, meaning that there are a few large-degree nodes and many small-
degree nodes. We also plot the #tting line y ∼ x−α for each distribution. The larger the α , the less
variable of nodes’ degree. As discussed below, these degree distributions match the investigation
of important nodes in MFG (Table 9) that a few exchange markets have large degree. The small-
degree nodes may be individuals.

We then investigate the distribution of Ether, as shown in Figure 6(a). Each point (x , y) in this
#gure indicates that there are y of total accounts, and each transfer (i.e., sends and receives) x
Ether. Its distribution also conforms to the power law, denoting that a few accounts transfer a lot
of money. There are some outliers in Figure 6(a) deviating from the #tted line. Taking them and
Figure 5 into consideration, we learn that the outliers are small-degree accounts (i.e., they trade
with a few accounts) transferring a lot of money. The slope of Ether distribution (i.e., −1.7) is
higher than the slope of degree distribution of MFG (i.e., −2.7), indicating that Ether distribution
is fairer than degree distribution. Such observation is expected, because two accounts may transfer
di%erent amounts of Ether, even if they transfer Ether to the same number of accounts. Figure 6(b)
shows the degree statistics of the accounts corresponding to an outlier, (10,002, 0.0012). The tag
x : y% means that the nodes of degree x account for y% of total nodes. We #nd that the degree of
nearly 93% accounts is no larger than 6.

Table 7 shows the metrics of MFG. Columns 2–8 list the values of the clustering coe$cient,
assortativity coe$cient, Pearson coe$cient, number of SCCs, size (i.e., how many nodes) of the
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Table 7. Metrics of the Three Graphs

Table 8. Metrics of Six Metrics Related to Common Edges

largest SCC, number of WCCs, and size of the largest WCC, respectively. Table 8 presents the
results of the six metrics related to common edges.
Clustering coe!cient. The clustering coe$cient is 0.12, revealing that if two accounts A, B trade
with a third account C, A and B are likely to trade with each other. A potential reason is that A
and B may be friends of C, because there are money "ows between A and C, B and C. Therefore,
A may also be a friend of B so that there may be money "ow between them.
Assortativity coe!cient. Its assortativity coe$cient approaches to 0, indicating that whether
there exists an edge between two nodes is not determined by the degrees of the two nodes. A
possible reason is that the users’ demand determines money "ow. For example, if a user wants
to sell ETH, the user will interact with a large-degree account, i.e., an exchange market. On the
contrary, if a user wants to send ETH to another individual, the user will interact with a low-degree
account, i.e., the receiver.
Pearson coe!cient. Pearson coe$cient is 0.45, which is moderately large [29], revealing that
a node with large indegree is likely to have large outdegree and vice versa. That is, an account
will be frequent in both sending and receiving money. Hence, deposit (frequent in receiving but
infrequent in sending) is uncommon in Ethereum. Such observation is accordant with the active
speculative behaviors that frequently receive and send ETH to earn money.
SCC/WCC. The size of the largest SCC is huge, which contains about 75% nodes (30, 878,
301/40, 976, 455, 40,976,455 is the number of all accounts minus the number of isolated nodes).
It indicates that there should be hub nodes. Such hub nodes may be exchange markets, because
they send/receive money to/from a large number of other accounts. The number of SCCs (i.e.,
10,012,456) in MFG is far more than that of WCCs (i.e., 90). In this case, a WCC may contain many
SCCs, and the money transfer among di%erent SCCs should be unidirectional. Otherwise, the con-
nected SCCs will merge into a bigger SCC. Therefore, if money is transferred from one SCC to
another, it never comes back. One possible reason is that some processes or businesses involve
several steps. After each step, money is transferred to another account (never used in previous
stages) for the next step.
PageRank. Table 9 lists the top 10 most important nodes in MFG, ranked by PageRank, where sc
indicates smart contract and PR denotes PageRank value. Every account is denoted by the #rst two
bytes of its address to save space. Note that the identities of all accounts presented in this article
are revealed by our deanonymization application (Section 7.3). If the identities of some accounts
cannot be successfully recovered, then we mark their identity and category as “/”. Remarkably, all
10 most important nodes in MFG belong to six exchange markets. Moreover, exchange markets,
which are hub nodes connecting to other nodes bidirectionally, result in huge SCCs.
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Table 9. Top 10 Most Important Nodes of MFG Evaluated by PageRank

Table 10. Top 10 Most Important Nodes of MFG Evaluated by Degree Centrality

Fig. 7. Ether per transaction between two accounts.

Degree Centrality. Table 10 lists the top 10 most important nodes in MFG, ranked by degree
centrality. The columns with grey background indicate that these accounts are also the top 10 most
important nodes ranked by PageRank. Eight accounts in this table belong to exchange markets.
The account ea67 belongs to a famous mining pool, Ethermine, which aggregates mining power
from a huge number of miners to obtain stable mining rewards. The node 6090 is a smart contract
providing name service, through which a user can interact with others by specifying the recipient’s
name rather than its address. We notice that all smart contracts created by 6090 are open-source
and the same as 6090. In other words, 6090 makes many copies.
ETA. Figure 7 presents the cumulative distribution function (CDF) plot of Ether per transaction
between two accounts. x-axis is the amount of Ether, and y-axis is the number of edges in MFG.
Please recall that each edge in MFG indicates Ether transfer between two accounts. Each cross (x ,
y) in this #gure denotes that there are y edges in MFG; for each, the average Ether per transaction
is no more than x . We #nd 63.3% and 80.6% of edges in MFG transfer no more than 1 Ether and
10 Ether per transaction, respectively. That means users do not usually transfer much money by a
single transaction. Moreover, we observe two turning points where the slope of the curve becomes
suddenly smaller. After further analysis, we #nd that the two turning points correspond to 100
Ether and 1K Ether, respectively. That is, the number of edges suddenly decreases when the average
Ether per transaction becomes larger than 100 and 1K. By checking the transactions corresponding
to the two turning points, we #nd that most transactions transfer exactly 100 or 1K Ether. Such
observation may be useful in making price decisions.
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Fig. 8. Trend of MFG.

Common edges. The proportion of the common edges between MFG and CCG to the total edges
of MFG is very low, 0.005, indicating that almost all Ether transfers are not from contract creators to
their created contracts. Such observation is accordant with the results presented in Section 5.1 that
99.8% of EOAs transfer ETH, but only 0.3% of EOAs create smart contracts. Besides, the proportion
of the common edges between MFG and CCG to the total edges of CCG is very low, 0.06, suggesting
that almost all smart contracts do not receive ETH from their creators. A potential reason is that
the purpose of contract creators is to earn money from the users of their smart contracts, and thus
they do not deposit Ether into their smart contracts. Moreover, the proportion of the common
edges between MFG and CIG to the total edges of MFG is very low, 0.08, indicating that almost all
Ether transfers do not go to the invoked smart contracts. Such observation is accordant with the
results in Section 5.1 and Table 3 that the edges of MFG outnumber the edges of CIG and about
one half of smart contracts are not invoked. Additionally, the proportion of the common edges
between MFG and CIG to the total edges of CIG is low, 0.2, indicating that the contract callers do
not often transfer Ether from/to the called smart contracts. The reason may be that whether the
caller transfers Ether from/to the called contract depends on the business logic of the callee. For
example, a token contract for transferring tokens always refuses Ether transfer.
Evolution Analysis. The numbers of nodes and edges increase, because more Ether is transferred
over time. Figure 8 depicts the evolution of MFG in terms of clustering coe$cient, associativity
coe$cient, Pearson coe$cient, number of SCCs, size of the largest SCC, number of WCCs, size
of the largest WCC, and |E (MFG ) ∩ E (CCG ) | in order. The #rst point refers to the data collected
in the #rst month after the launching of Ethereum. The clustering coe$cient "uctuates between
0.1 to 0.3, indicating that nodes tend to cluster together at all times. The assortativity coe$cient
increases from about −0.1 to nearly 0, indicating that the disassortativity of MFG remains neutral
over time.

The Pearson coe$cient "uctuates between 0.4 to 0.8 except a few points (highlighted by the
red box), indicating that an obviously positive correlation maintains over time. After investigating
the points that are smaller than 0.4, we #nd many outliers that lead to small Pearson coe$cients,
because Pearson coe$cient is very sensitive to the presence of outliers [5]. For each outlier, its
indegree signi#cantly di%ers with its outdegree, and hence Pearson coe$cient becomes small.
Table 11 lists three such outliers. 209c is a smart contract belonging to an exchange market that
receives money from many accounts (large indegree) and sends the money to only one account
(small outdegree). 257b is an EOA belonging to an exchange market. It receives money from a
few accounts (small indegree) and sends the money to many users of the exchange market (large
outdegree). EA67 is the account of a mining pool for receiving mining reward and sending the
reward to miners of the mining pool. Thus, EA67 has a small indegree and a large outdegree.
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Table 11. Three Outliers in Computing Pearson Coe!icient of MFG

The size of the largest SCC becomes larger over time. A possible explanation is that the largest
SCC consists of a big exchange market and its users. Therefore, an increasing size means that
more and more users leverage the exchange market to trade ETH/tokens. The number of SCC
increases over time, and a possible explanation is that more and more applications have been de-
ployed to Ethereum over time. The size of the largest WCC increases, because the size of Ethereum
blockchain increases over time. The number of WCC is relatively stable around 100 with a few out-
liers, because a WCC contains many SCCs. By investigating these outliers, we #nd some miners
that do not belong to any mining pools, and hence there are many small WCCs containing these
miners. After a period of time, these small WCCs merge into large WCCs, because miners send
Ether to other accounts or trade Ether in exchange markets.

The two proportions |E (MFG ) ∩ E (CCG ) |/|E (MFG ) | and |E (MFG ) ∩ E (CCG ) |/|E (CCG ) | "uc-
tuate but keep small over time. We #nd that in the 23rd month, these two proportions reach their
largest values in history. By the end of the 23rd month, 806,862 smart contracts are created, and
227,288 (28%) out of them received Ether from their creators. After checking these contract creation
behaviors, we #nd that a smart contract (i.e., 6090), which is one of the top 10 most important nodes
in both MFG (Table 10) and CCG (Table 12), increases the two proportions. 6090 creates 198,897
smart contracts by the end of the 23rd month, and each of them receives Ether from 6090 during
contract creation. The reason is due to the business logic of 6090, as shown in Listing 1. When a
user places a new bid, the function newBid() (Line 1) will be invoked, and the bid price should not
be lower than minPrice (Line 3). Then, 6090 creates a new smart contract for each new bid and
deposits the bid price sent from the user into the created smart contract (Line 3). Therefore, the
money of the user rather than the money of 6090 is sent to the smart contract serving the user.

Listing 1. 6090 sends Ether to the smart contracts created by itself.

6.3 CCG Analysis

Degree distribution. Figure 9(a) shows the degree distribution of CCG. We do not present in-
degree/outdegree distributions, because the indegree of an account is either 0 (EOA) or 1 (smart
contract). For the same reason, we do not measure the correlation of indegree and outdegree by
computing Pearson coe$cient. The degree distribution of CCG follows the power law, meaning
that a few nodes create a large number of smart contracts. This observation matches the analysis
in Section 5.3 that smart contracts outnumber application developers.
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Fig. 9. Degree distribution and size of WCC of CCG.

Table 12. Top 10 Most Important Nodes of CCG Evaluated by Degree Centrality

Clustering coe!cient. Table 7 also lists the analysis results of CCG. Its clustering coe$cient
equals to zero, because if two contracts are created by the third node, they cannot create each
other. Indeed, a contract cannot be created twice.
Assortativity coe!cient. The assortativity coe$cient is −0.29, indicating weak disassortativity
of CCG; that is to say, large-degree nodes tend to connect small-degree nodes. That is, if an ac-
count creates many contracts, the created smart contracts are unlikely to create many other smart
contracts. This observation matches Figure 2(b) that only a few smart contracts create smart con-
tracts. And, we observe that the huge number of created contracts by the same account are similar
and do simple tasks that do not need to create other smart contracts.
SCC/WCC. As expected, the largest SCC has only 1 node, because there are no cycles in
CCG. Surprisingly, the size of the largest WCC of CCG is 1,501,271, accounting for 17.2%
(1, 501, 271/8, 725, 788) of all contracts. The root of this WCC is an EOA (F892), which directly
or indirectly created 17.2% of the total contracts. In CCG, contract A is said to directly create con-
tract B if there is an edge from A to B. A is said to indirectly create B if A does not directly create
B but there is a path from A to B. After inspecting the WCC rooted at F892, we reveal that the
contract a3c1, which is created by F892, directly creates 1,501,241 contracts. Unsurprisingly, a3c1
is the most important node of CCG, as shown in Table 12, because it creates many contracts. After
deanonymization by the method described in Section 7.3, we #nd that all nodes of the WCC belong
to Bittrex, an exchange market. Figure 9(b) shows that most WCCs are very small, indicating that
most applications just consist of a few of smart contracts. Particularly, the number of WCCs whose
sizes are larger than 10 is 5,554, accounting for 7% (5, 554/81, 177) of all WCCs.
Degree centrality. Since the indegree of an account is either 0 or 1, PageRank cannot provide
informative values, and thus we just evaluate the importance of nodes in CCG by degree centrality.
Table 12 lists the top 10 most important nodes in CCG. The last three rows contain information
for anomaly detection in Section 7.2. The EOA b42b belongs to an exchange market, Poloniex. The
smart contract 0000 is a token that is detailed in Section 7.2.
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Fig. 10. Trend of CCG.

Common edges. The proportion of the common edges between CCG and CIG to the total edges of
CCG is low, 0.26, indicating that 74% of smart contracts are not invoked by their creators. Besides,
the proportion of the common edges between CCG and CIG to the total edges of CIG is very
low, 0.08, suggesting that most contract invocations are not from contract creators to the smart
contracts created by them. A reasonable explanation for the two proportions is that smart contracts
aim to serve other users, rather than their creators.
Evolution Analysis. The numbers of nodes and edges increase, because more smart contracts are
deployed on the blockchain over time. The clustering coe$cient remains 0 at all time (i.e., CCG
cannot contain triangles), because if two contracts A and B are created by C, then A cannot create
B and vice versa. The size of the largest SCC is still 1, because there is no cycle in CCG. Figure 10
presents the evolution of CCG in terms of assortativity coe$cient, number of SCCs, number of
WCCs, the size of the largest WCC, and |E (CCG ) ∩ E (CIG ) | in order.

The assortativity coe$cient "uctuates between −0.4 and −0.1 except for a few outliers (high-
lighted by the red box) that are smaller than −0.4, indicating that CCG is a disassortative graph
at all times. By investigating these outliers, we #nd that some accounts create a large number of
contracts; however, these created contracts do not create new contracts. Therefore, there are lots
of edges that connect large-degree nodes to small-degree nodes, leading to a very small assorta-
tivity coe$cient. For example, two of the top 10 most important nodes (Table 12), a3c1 and 71d2,
create 547,123 and 478,482 contracts in 28 months, respectively. However, these 1,025,605 con-
tracts do not create new contracts. Note that the number of created contracts shown in Table 12
is the number accumulated in 39 months. The number of SCCs increases, because new contracts
are deployed over time. The number of WCCs increases, because the developers of smart con-
tracts increase over time, considering the root of a WCC is a developer. The size of the largest
WCC increases, indicating that there is a developer who creates lots of contracts. The root of the
largest WCC is F892, which belongs to an exchange market Bittrex, and therefore all the con-
tracts in the WCC are created by Bittrex. The two proportions |E (CCG ) ∩ E (CIG ) |/|E (CCG ) | and
|E (CCG ) ∩ E (CIG ) |/|E (CIG ) | "uctuate but keep small over time. |E (CCG ) ∩ E (CIG ) |/|E (CCG ) |
reaches its historical low value, 0.18 at the 12th month. By the end of the 12th month, 111,487
smart contracts are created, and 90,511 (82%) out of them are not invoked by their creators. By
investigating these 90,511 smart contracts, we #nd that a smart contract 8b3b obviously impacts
the two proportions, because it creates 48,776 smart contracts, but none of them are invoked by
the end of the 12th month.
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Fig. 11. Degree/Indegree/Outdegree distributions of CIG.

Fig. 12. A community structure with 3 nodes and 4 SCCs.

Insight 4. A small number of developers created lots of smart contracts. By downloading and
inspecting all smart contracts (2,061,393) created by EOAs, we #nd that only 159,127 (i.e., 7.7%) are
unique.

6.4 CIG Analysis
Degree distribution. Figure 11 gives the degree/indegree/outdegree distributions of CIG, all of
which follow the power law. Indegree distribution reveals that the majority of contracts are in-
voked by a few accounts, and outdegree distribution indicates that most accounts invoke a few
contracts. We can learn that not all contracts are widely used and similarly not all users frequently
use Ethereum.
Pearson coe!cient. Table 7 gives the measurement results of CIG. We do not consider EOAs
when evaluating the correlation of indegree and outdegree (i.e., Pearson coe$cient), because the
indegree of an EOA is always zero. Pearson coe$cient is 0.01, indicating a very weak correlation
between indegree and outdegree [27]. An explanation is that whether a smart contract invokes
another smart contract is determined by the program logic of the contract rather than whether
the smart contract is invoked.
Clustering coe!cient. The clustering coe$cient approaches 0, meaning that if an account A
calls contract B and C, then B and C are very unlikely to call each other. One possible reason is
that B and C are independent modules where interactions between them are rare.
Assortativity coe!cient. The assortativity coe$cient approaches 0, so there is no obvious re-
lation between the degree of a node A and the degree of a node B, which connects to A. The
observation is reasonable, because how nodes connect with each other in CIG is determined by
the program logic of smart contracts rather than the degree of nodes.
SCC/WCC. The number of SCCs (17,744,593) is larger than the number of smart contracts
(8,725,788), indicating that there should be many community structures where nodes intensely
connect with each other. Figure 12 presents such a community structure that has three nodes and
four SCCs. The largest SCC contains 103,367 nodes. After inspecting the SCC, we #nd that it con-
tains two popular applications. One is dd9f, which is one of the top 10 most important nodes of CIG
(Table 13, detailed below). The other one is 6090, one of the top 10 most important nodes of CCG
(Table 12). The number of WCCs is signi#cantly fewer than the number of SCCs, and the largest
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Table 13. Top 10 Most Important Nodes of CIG Evaluated by PageRank

Table 14. Top 10 Most Important Nodes of CIG Evaluated by Degree Centrality

WCC is much larger than the largest SCC. The explanation is that a WCC can contain many SCCs.
For example, if an EOA calls a contract in an SCC, and it also calls a contract in another SCC, the
two SCCs will be merged into one WCC. Note that they cannot be merged into one SCC, because
for each node in the two SCCs, we cannot #nd a path from the node to the EOA (EOA cannot be
called).
PageRank. Table 13 lists the top 10 most important nodes ranked by PageRank in CIG. We have
several observations from this table. First, all top 10 most important nodes are smart contracts.
This observation is reasonable, because smart contracts are the most important nodes in contract
invocation graph. The contract 2bd2 is an important node in CIG, because it is used to prevent the
attacks that replay transactions between the old chain (i.e., Ethereum) and new forked chain (i.e.,
Ethereum Classical) [25]. Four out of 10 most important nodes are token contracts that realize four
di%erent cryptocurrencies based on Ethereum. The contract 7da8 is a wallet contract that increases
security by requiring multiple parties to agree on transactions before execution [22]. That is, trans-
actions can be executed only when con#rmed by a prede#ned number of owners [22]. Therefore,
8 out of the 10 most important nodes are #nancial applications. The contract dd9f, named Last-
Winner, is a gambling application. LastWinner is so popular that Ethereum was congested by the
high volume of transactions invoking it [37].
Degree centrality. Table 14 lists the top 10 most important nodes ranked by degree centrality in
CIG. The columns with grey background indicate that these accounts also belong to the top 10
most important nodes of CIG evaluated by PageRank. All 10 accounts in this table are also smart
contracts. Six out of 10 accounts are token contracts. Such a #nding is expected, because tokens
play a critical role in various applications, and thus token behaviors (e.g., transfer some tokens
from one account to another account) frequently happen in Ethereum.
Evolution Analysis. The numbers of nodes and edges increase, because more smart contracts are
invoked over time. Figure 13 demonstrates the evolution of CIG in terms of clustering coe$cient,
associativity coe$cient, Pearson coe$cient, the number of SCCs, the size of the largest SCC, the
number of WCCs, the size of the largest WCC, and |E (MFG ) ∩ E (CIG ) | in order. The clustering
coe$cients in most checkpoints are smaller than 0.1, indicating that contracts do not tend to co-
operate at all times. The assortativity coe$cient "uctuates between −0.15 and 0, indicating that
there is no obvious relation between the degrees of two connected nodes at all times.
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Fig. 13. Trend of CIG.

The Pearson coe$cients fall into [0, 0.1] except a few outliers (highlighted in the red box), in-
dicating a very weak correlation between indegree and outdegree at all times. After investigat-
ing these outliers, we #nd some smart contracts that have large indegrees and outdegrees, and
therefore Pearson coe$cient becomes large due to these contracts. For example, 6c8f is an open-
source smart contract providing alarm clock service with a large indegree (1,021) and a large out-
degree (1,029), indicating that 1,021 accounts call 6c8f and 6c8f calls 1,029 smart contracts. After
reading its source code, we #nd that if a contract A calls the function updateDefaultPayment()
of 6c8f, updateDefaultPayment() will call A again, and hence, the indegree of 6c8f is close to its
outdegree.

The number of SCCs and the number of WCCs increase over time. The reason may be that more
applications have been deployed to the blockchain, and more users invoke these applications over
time. The size of the largest SCC also increases, and a possible explanation is that a large SCC is
formed due to popular applications. For example, the largest SCC in the 38th month (marked in
Figure 13(e)) contains 99,522 nodes, which is much bigger than the largest SCC in the 37th month.
After investigating the two SCCs, we #nd that the SCC in the 38th month contains a community
structure, in which 35,703 accounts call dd9f (the gambling application, LastWinner), and dd9f
calls 35,695 smart contracts, but the SCC in the 37th month does not contain such a community
structure. The size of the largest WCC increases, because the EOAs of this WCC glue many SCCs.
More speci#cally, the largest WCC contains 17,748,461 nodes, and 13,212,413 (74%) of them are
EOAs.
|E (MFG ) ∩ E (CIG ) |/E (MFG ) | "uctuates but keeps small over time, but |E (MFG ) ∩

E (CIG ) |/E (CIG ) | has some peaks. We #nd that a few hot applications can obviously in-
crease the common edges between MFG and CIG. For example, |E (MFG ) ∩ E (CIG ) |/E (CIG ) |
reaches its historical high value, 0.69 at the 23rd month, when 1,833,418 edges in CIG are invoked
and 1,265,838 also appear in MFG. After inspecting these 1,265,838 edges, we #nd the account
6090 contributes 15% (184, 020/1, 265, 838) of |E (MFG ) ∩ E (CIG ) |/E (CIG ) |. Please recall that 6090
is one of the 10 most important nodes in MFG (Table 10), CCG (Table 12), and CIG (Table 14).
Listing 2 shows that when a user invokes the function unsealBid() of 6090, it will call bid.value()
(Line 5), bid.setBalance() (Line 6), bid.creationDate() (Line 8), and bidcloseDeed() (Line 9) in the
smart contract bid created by itself.
Insight 5. Financial applications, such as exchange markets and tokens, dominate Ethereum,
because they are the most important nodes in money transfer (Table 9), contract creation
(Table 12), and contract invocation (Table 13), although Ethereum allows di%erent types of
applications [3].
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Fig. 14. A"ack forensics of BD37. Fig. 15. A"ack forensics of 5843.

Listing 2. 6090 invokes the smart contracts created by itself.

7 APPLICATIONS BASED ON GRAPH ANALYSIS
Besides inspecting individual graphs, we propose new approaches based on the three graphs to ad-
dress three important security issues in Ethereum, including attack forensics (Section 7.1), anomaly
detection (Section 7.2), and deanonymization (Section 7.3).

7.1 A!ack Forensics
Given a malicious smart contract, attack forensics intends to #nd all accounts controlled by the
attacker. To achieve this goal, we correlate CCG and CIG to obtain all smart contracts created by
the attacker and all accounts invoking such smart contracts. More precisely, we #rst compute the
WCC containing the malicious contract from CCG to collect all contracts (directly or indirectly)
created by the root. Then, for each node in the WCC, we locate all callers from CIG. If a caller is a
smart contract, then we backtrack in CIG until reaching an EOA. Eventually, all nodes in the WCC
and all nodes (directly or indirectly) invoking the nodes in the WCC should be controlled by the
attacker.

Figure 14 shows our analysis result of a real case, where the node BD37 is a malicious contract
for a DoS attack [9]. We randomly select 10K contracts created by 7C20 for the ease of drawing this
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ALGORITHM 1: Detection of abnormal contract creation
Inputs: x , the detected account

MFG, money "ow graph
CCG/CIG, contract creation/invocation graphs
T1,T2,T3, thresholds

Outputs: True/False, x is abnormal/benign
1 sc_set = created_sc(CCG, x );
2 if size(sc_set) < T1 return False;
3 for each node y in sc_set
4 caller_set = inedge(CIG, y);
5 for each edge z in caller_set
6 num + = z.weight;
7 sender_set = inedge(MFG, y);
8 for each edge s in sender_set
9 value + = s .weight;
10 if num > T2 × size(sc_set) || value > T3 × size(sc_set)
11 return False;
12 else return True;

#gure. The WCC containing BD37 roots in the node FCD0. The notation x:y indicates that node x
creates y contracts. We can see that the WCC has 34,942 nodes, and 7C20 creates 34,146 contracts
among them. 34,939 contracts in the WCC are invoked, and there are 43 callers that invoke the
contracts in the WCC. Five out of 43 callers belong to the WCC, and the other 38 callers are EOAs.
Therefore, attack forensics show that to launch the attack, the attacker creates 34,941 contracts and
leverages 43 EOAs to call 34,939 created contracts. Figure 15 shows our analysis result of another
real case, where the node 5843 is a malicious contract for stealing ETH [38]. The WCC contains
17,704 nodes whose root is 8761. 395 smart contracts in the WCC are invoked, and 10 callers invoke
these 395 contracts. None of the callers belong to the WCC, and 8 out of them are EOAs. Hence,
our conclusion is that to launch the attack, the attacker creates 17,703 contracts and leverages 10
EOAs to call 395 created contracts.

7.2 Anomaly Detection
We design a new approach to detect abnormal contract creation, which consumes lots of resources
(e.g., disk, network) by creating a great number of unused contracts, because every Ethereum client
has to maintain a copy of the blockchain. An intuitive detection approach is to count the number
of created contracts. Unfortunately, it is not accurate, because benign applications (e.g., exchange
markets) may also create many contracts for their businesses (Table 12). As shown in Algorithm 1,
our detection algorithm regards an account as abnormal if it creates lots of contracts that are rarely
used to transfer money and invoked, because such accounts will waste computing resources of the
blockchain. This algorithm correlates the three graphs to detect abnormal activities.

The inputs of the detection algorithm include an account x, MFG, CCG, CIG, and three thresh-
olds (i.e., T1, T2, T3). It returns True if x launches a campaign of abnormal smart contract creation,
or False otherwise. It #rst obtains all contracts directly or indirectly created by x from CCG (Line 1).
If the number is smaller than T1, then the algorithm considers x to be benign (Line 2), because not
many accounts are created. For each created smart contract y (Line 3), all edges pointing to it are
obtained from CIG (Line 4). Since the weight of an edge of CIG is the number of invocations, num
is the total number of invocations to all contracts belonging to the WCC (Line 6). Besides, the
amount of Ether (i.e., value) transferred by y is computed based on MFG (Line 9). If num is smaller
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than T2×size (sc_set) and value is smaller than T3×size (sc_set), then x is considered as abnormal,
since the contracts in the WCC are rarely used both in money transfer and contract invocation.

By setting T1 = 10,000, T2 = T3 = 0.5, we apply our anomaly detector to all 48,298,522 accounts
and reveal 48 abnormal accounts that created many unused contracts. Note that the thresholds
could be learned from the activities of normal accounts, and we will investigate it in future work.
Only one abnormal account (0000) is open-source, which creates 774,235 contracts directly or in-
directly. Interestingly, 3 (0000, 5a4e, a998) of the top 10 most important nodes of CCG (Table 12)
are abnormal accounts. Table 12 presents the amount of transferred Ether (row 6) and the number
of invocations (row 7) of all smart contracts created by the top 10 most important nodes of CCG.
The results of T2(3)×size(sc_set) are also given in the last row.

Abnormal contract creation can result from various reasons, e.g., Denial of Service (DoS) attacks
for consuming resources, attacks for stealing tokens, business logic of smart contracts. We propose
a method to recognize DoS attacks automatically, but the investigation of other reasons needs man-
ual e%orts to inspect the program logic of the smart contracts’ bytecode (e.g., what smart contracts
attempt to do?). Our automated approach is based on the following observation: The smart con-
tracts produced by DoS attacks have no functionalities; instead, the created smart contracts are
just for wasting computing resources (e.g., disk resources for storing smart contracts, network
resources for synchronizing smart contracts). A smart contract with functionalities should con-
tain a jump-table-like structure that directs contract invocations to the called functions [49]. Our
approach considers an abnormal account as an account for launching DoS attacks if at least one
of its created smart contracts does not have such jump tables. Our approach #nds 71% (34/48) of
abnormal accounts that launch DoS attacks.

We then manually investigate 6 out of the remaining 14 abnormal accounts to discover the rea-
sons for abnormal contract creation. 0000 is Gastoken, which aims to save money for users [26].
More precisely, the account who creates a contract should pay an execution fee, because contract
creation consumes computing resources of all Ethereum clients. The execution fee is computed by
the multiplication of gas cost and gas price, where gas cost evaluates how many units of gas will
be consumed and gas price is evaluated in Ether of one gas unit [3]. Ethereum encourages devel-
opers to self-destruct smart contracts by refunding some units of gas, because self-destruction will
release the disk space for storing contracts [3]. Therefore, Gastoken suggests users to purchase to-
kens with a low gas price, and Gastoken will create many contracts during purchasing. Then users
can earn Ether by burning tokens with a high gas price, because these created contracts will be
self-destructed during the burning process. However, we observe that users purchase many tokens
without burning, thus lots of created contracts are not self-destructed. A possible explanation is
that users are bullish of Gastoken so they tend to hold the tokens rather than burn these tokens.
Therefore, the account 0000 creates a huge number of unused smart contracts due to its business
logic. The account 470f creates 0000, and thus it is also abnormal.

175e creates 5a4e and a998, and the latter two create 177,460 and 154,056 contracts, respectively.
Most of these contracts are unused, and hence all three accounts are abnormal. When 5a4e creates
contracts, each created contract invokes a token contract, named SiaCashCoin; that is, the con-
struction function of each created contract calls SiaCashCoin. SiaCashCoin rewards the accounts
who invoke SiaCashCoin with some tokens for promotion. SiaCashCoin ensures that each account
can get reward only once. Therefore, 5a4e can steal tokens (i.e., get reward many times, which is
unexpected by SiaCashCoin) by creating many contracts, and each created contract gets reward
once. a998 behaves similarly as 5a4e, which steals "amingostar token. 2207 behaves like 175e, which
steals various tokens, such as SiaCashCoin, Bankcoin Cash. Therefore, the four abnormal accounts
steal tokens.
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Fig. 16. Procedures of deanonymization.

Fig. 17. The WCC rooted in 99AC. Fig. 18. The WCC rooted in 1Ff2.

7.3 Deanonymization
Deanonymization aims to associate account addresses with real identities, which facilitates #ght-
ing against crimes (e.g., money theft, money laundering, blackmail). However, deanonymization
of Ethereum is an open problem, because users do not need to provide their identities for using
Ethereum. A common practice of deanonymization is inferring the identity of an account by com-
bining multiple sources (e.g., name tag, source code, discussion board) of information.

In this study, we propose to infer the identity of a group of accounts leveraging the WCC of CCG.
Recall that the root of a WCC is an EOA and the other nodes are smart contracts that are directly
or indirectly created by the root. Therefore, all nodes in a WCC should have the same identity
(i.e., all accounts of the WCC are created by the same person or organization). One advantage
of our approach is that more information can be obtained from all nodes of a WCC than from
a single node. Indeed, the more information we have, the higher chance we have to successfully
infer the identity. Figure 16 presents the procedures of our deanonymization approach. It accepts
a WCC and then collects information (e.g., name tag, source code) about all nodes belonging to the
WCC. After that, we extract comments and constant strings from source code and tags, since they
may contain hints of identity. Then, we leverage natural language processing (NLP) to distill key
information (e.g., keyword, text summary). We plan to leverage more types (e.g., code structures
of bytecode) of information to infer identity in future work.

We use a real case to illustrate the procedures: the identity of node 6A39, because it creates lots of
(i.e., 12,880) contracts. Figure 17 illustrates the WCC containing 6A39 whose root is 99AC. Note that
x :y in this #gure means that node x createsy contracts. Although 6A39 creates many contracts, we
do not #nd useful information from it and all its created contracts. Moreover, we do not #nd iden-
tity information for the root. By traversing the WCC, we #nd that some contracts (circled in this
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Fig. 19. Keywords and sentences of the WCC rooted in 99AC.

Fig. 20. Keywords and sentences of the WCC rooted in 1Ff2.

#gure) have name tags and open source, which are directly created by the root 99AC. After pro-
cessing the comments and constant strings by RAKE, an NLP tool (http://textminingonline.com/
tag/rake), we extract #ve keywords and #ve summarized sentences from all comments, constant
strings, and name tags, as shown in Figure 19. From the results, we can easily infer that those con-
tracts are developed by a corporation, named Incent Loyalty Pty, and are used to swap tokens on
Wave blockchain. We con#rm the analysis results by visiting Incent’s website. Consequently, we
reveal the identity of all 15,416 accounts belonging to the WCC via graph-based deanonymization.

As another example, we present how to infer the identity of node 71d2, the No. 3 most important
node of CCG, by leveraging CCG. Unfortunately, we do not #nd any identity information from 71d2
and all 743,616 smart contracts created by it. Therefore, we try to infer its identity by investigating
the WCC containing 71d2 whose root is 1Ff2, as shown in Figure 18. For the ease of drawing this
#gure, we randomly select 20K nodes from the WCC. The WCC contains 1,210,377 accounts and
32 (inside the circle) out of them are open-source smart contracts that are all created by 1Ff2. We
then use RAKE to extract #ve keywords and #ve summarized sentences from their source code.
From the results, as shown in Figure 20, we can easily discover that all 1,210,377 accounts of the
WCC belong to a company named Ambisafe.

8 RELATED WORK
This section retrospects graph analysis of Ethereum. Before introducing related studies, we #rst
discuss the di%erences between Ethereum with Bitcoin, which make it inappropriate to directly
apply the techniques for, and the insights from the graph analysis of Bitcoin to Ethereum.
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Table 15. Comparison of Ethereum with Bitcoin

8.1 Ethereum vs. Bitcoin
Although Bitcoin has a basic scripting mechanism, it does not support complex programs like
smart contracts, because it does not provide complex program structures (e.g., loops) [1]. New
techniques based on cryptographic protocols (e.g., RSK [31], a sidechain) aim at enhancing Bitcoin
with the capability of running complex programs and are still in active development. Therefore, we
focus on the money transfer capability of Bitcoin hereinafter. Table 15 lists the major di%erences of
Ethereum with Bitcoin in terms of money transfer. Di%erent from Ethereum, there are no accounts
or balances in Bitcoin. The basic block of a Bitcoin transaction is an unspent transaction output
(UTXO) [42]. When a user receives BTC (the native cryptocurrency of Bitcoin), the amount is
recorded in the blockchain as a UTXO. Besides, a user’s BTC may be scattered in multiple UTXOs,
and the concept of an account does not exist in Bitcoin [6]. The balance of a user is calculated
by the wallet application, which scans the blockchain and aggregates all UTXO belonging to that
user [6]. By contrast, each account of Ethereum has a unique address and a balance #eld to record
the money [42].

A transaction of Bitcoin can have change, because after a UTXO is created, the UTXO cannot
be cut in half [6]. If a UTXO is larger than desired, then the whole UTXO will be consumed and
change will be produced in that transaction. In Ethereum, an account sends an exact amount of
money to another, and hence there is no change. A transaction of Bitcoin can have multiple inputs
and multiple outputs, because the wallet can aggregate multiple UTXOs belonging to the same
user (i.e., multiple inputs) for payment and send money to many recipients in one transaction (i.e.,
multiple outputs). Note that a transaction of Ethereum comes from one sender to one receipt, and
thus a transaction of Ethereum has just one input and one output. Moreover, a user of Bitcoin often
has many addresses, because the client of Bitcoin generates a new address to receive the change of
a UTXO [8], but in Ethereum one EOA has a unique address. Therefore, the techniques for, and the
insights from the graph analysis of Bitcoin cannot directly apply to Ethereum due to their many
di%erences.

8.2 Graph Analysis of Ethereum
This article extends our previous conference paper [18], and the major extensions are presented in
Section 1. Ki%er et al. records contract creation and contract invocation by client instrumentation
to compute many statistics of Ethereum (e.g., how many contracts are created by contracts) [30].
However, they do not record the complete contract invocation data. For example, they lack the in-
vocation from EOAs to contracts. They de#ne a graph, named smart contract topology, where each
node is a contract and each edge indicates contract invocation [30]. But, they do not characterize
the topology using graph analysis. Charlier et al. construct a graph, named smart contract graph,
where each node is a contract and each edge indicates Ether transfer between two nodes [14].
They study some metrics (e.g., degree distribution) of the graph [14]. However, their paper does
not explain how to collect relevant data for constructing the graph. Besides, they just study a very
small graph that consists of hundreds of nodes.

Chan and Olmsted store the entities (e.g., accounts, transactions) and the relations (e.g., Ether
transfer) among entities into a graph database for fast querying [13]. But, they do not conduct
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graph analysis on the recorded data. Somin et al. investigate a special kind of contract invoca-
tion, named token transfer [41]. A token is a cryptocurrency realized in smart contracts, and token
transfer means that an account transfers some amount of tokens to another account. They con-
struct a graph by parsing contract invocation, where each node is an account and each edge indi-
cates token transfer between two accounts [41]. They #nd that the graph follows power law [41].
Cachin et al. propose a transaction graph, named TDAG, as a general semantics for modeling vari-
ous blockchains, including Ethereum, Bitcoin, and Hyperledger Fabric [12]. However, they neither
study the characteristics of TDAG nor develop applications on it.

9 CONCLUSION
We conduct the !rst systematic study to characterize Ethereum via graph analysis. By instrument-
ing an EVM client, we collect all transactions and then construct three graphs (i.e., MFG, CCG,
and CIG) to characterize the activities of Ether transfer, contract creation, and invocation, respec-
tively. By analyzing these graphs through various metrics, we obtain many new observations and
insights, which help people to have a deep understanding of Ethereum. Moreover, we propose
new approaches that leverage those graphs to address three security issues in Ethereum, and the
evaluation through real cases demonstrates their e%ectiveness.

In the future, we plan to extend our work from the following aspects. First, we will conduct a
thorough study of Ethereum using more graph metrics. Second, we plan to develop more graph-
based applications based on MFG, CCG, and CIG. Third, we will try to set the threshold parameters
used for anomaly detection automatically by leveraging machine learning. Fourth, we plan to in-
corporate the code structure of smart contracts to improve deanonymization. Finally, since the
information required for deanonymization may not be written in English, we plan to apply multi-
lingual NLP in the future.
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