
13

Design and Analysis of Incentive and Reputation Mechanisms
for Online Crowdsourcing Systems

HONG XIE and JOHN C. S. LUI, Chinese University of Hong Kong
DON TOWSLEY, University of Massachusetts

Today, online crowdsourcing services like Amazon Mechanical Turk, UpWork, and Yahoo! Answers are
gaining in popularity. For such online services, it is important to attract “workers” to provide high-quality
solutions to the “tasks” outsourced by “requesters.” The challenge is that workers have different skill sets
and can provide different amounts of effort. In this article, we design a class of incentive and reputation
mechanisms to solicit high-quality solutions from workers. Our incentive mechanism allows multiple workers
to solve a task, splits the reward among workers based on requester evaluations of the solution quality, and
guarantees that high-skilled workers provide high-quality solutions. However, our incentive mechanism
suffers the potential risk that a requester will eventually collects low-quality solutions due to fundamental
limitations in task assigning accuracy. Our reputation mechanism ensures that low-skilled workers do
not provide low-quality solutions by tracking workers’ historical contributions and penalizing those workers
having poor reputations. We show that by coupling our reputation mechanism with our incentive mechanism,
a requester can collect at least one high-quality solution. We present an optimization framework to select
parameters for our reputation mechanism. We show that there is a trade-off between system efficiency (i.e.,
the number of tasks that can be solved for a given reward) and revenue (i.e., the amount of transaction
fees), and we present the optimal trade-off curve between system efficiency and revenue. We demonstrate
the applicability and effectiveness of our mechanisms through experiments using a real-world dataset from
UpWork. We infer model parameters from this data, use them to determine proper rewards, and select
the parameters of our incentive and reputation mechanisms for UpWork. Experimental results show that
our incentive and reputation mechanisms achieve 98.82% of the maximum system efficiency while only
sacrificing 4% of revenue.

Categories and Subject Descriptors: H.4 [Information Systems Applications]: World Wide Web

General Terms: Crowdsourcing, Incentive Schemes, Reputation Systems

Additional Key Words and Phrases: Bayesian game, repeated game, equilibrium

ACM Reference Format:
Hong Xie, John C. S. Lui, and Don Towsley. 2016. Design and analysis of incentive and reputation mechanisms
for online crowdsourcing systems. ACM Trans. Model. Perform. Eval. Comput. Syst. 1, 3, Article 13 (May
2016), 27 pages.
DOI: http://dx.doi.org/10.1145/2897510

The work of John C. S. Lui was supported in part by GRF 14205114. An An earlier version of the article
appeared in Proceedings of the 23rd IEEE/ACM International Symposium on Quality of Service (IWQoS’15)
[Xie et al. 2015]. In this journal version, we add an optimization framework to explore tradeoffs in selecting
parameters for our reputation mechanism, and add experiments on a dataset from UpWork to show the
effectiveness and applicability of our incentive and reputation mechanisms.
Authors’ addresses: H. Xie and J. C. S. Lui, Department of Computer Science and Engineering, The
Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, The People’s Republic of China; emails:
hongx87@gmail.com, cslui@cse.cuhk.edu.hk; D. Towsley, Department of Computer Science, University of
Massachusetts Amherst, MA 01003 USA; email: towsley@cs.umass.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c⃝ 2016 ACM 2376-3639/2016/05-ART13 $15.00
DOI: http://dx.doi.org/10.1145/2897510

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 3, Article 13, Publication date: May 2016.

http://dx.doi.org/10.1145/2897510
http://dx.doi.org/10.1145/2897510

13:2 H. Xie et al.

1. INTRODUCTION
Today, many tasks that are easy for humans, such as image labeling and translation,
still challenge the most sophisticated computer. Motivated by a demand of efficient
paradigms to solve such tasks, and with the recent advancement of Internet technolo-
gies, online crowdsourcing arose [Howe 2006]. Coined by Jeff Howe and Mark Robinson
in 2005, crowdsourcing has emerged as an efficient and cost-effective paradigm to ob-
tain needed services, ideas, or content [Howe 2006, 2008; Yuen et al. 2011]. Many online
crowdsourcing systems have emerged over the past decade (e.g., Amazon Mechanical
Turk [2008], UpWork [Elance 1999], Yahoo! Answers [2012]). A variety of “tasks” can
be outsourced to an online crowdsourcing system (e.g., image labeling [Ipeirotis 2010],
question answering [Adamic et al. 2008; Yahoo! Answers 2012], product design [Thread-
less 2000], and human behavioral data collection [Mason and Suri 2012; Paolacci et al.
2010]). Crowdsourcing has been used as a data-gathering paradigm as well. Some well-
known examples include Wikipedia and YouTube. In general, an online crowdsourcing
system creates an online labor market to solve tasks by soliciting contributions from a
large group of users online.

A typical online crowdsourcing system classifies users into two types: requesters
and workers. Requesters outsource a large number of tasks to workers, who in turn
solve the tasks and reply to requesters with solutions. To encourage workers to par-
ticipate, requesters usually set appropriate rewards for tasks, and the rewards are
granted to workers who contribute to solving the task. A variety of rewards have been
deployed in different online crowdsourcing systems (e.g., monetary rewards [Amazon
Mechanical Turk 2008; Taskcn 2010], nonmonetary rewards [Von Ahn 2006], or simply
altruism [Yahoo! Answers 2012]). Workers, on the other hand, have different skill sets,
ranging from low skills to high skills. High-skilled workers are capable of providing
high-quality solutions, whereas solutions by low-skilled workers may have little value
to requesters. Furthermore, it is common that requesters interact with workers, for
which they have little prior knowledge of the workers’ skills.

In general, online crowdsourcing systems face two fundamental challenges: (1) how
to consistently solicit active participation of users (requesters and workers) and (2) how
to solicit high-quality solutions from workers [Horton 2010; Mason and Watts 2010].
This is because an online crowdsourcing system can collapse either due to the lack
of user participation or to the low quality of the solutions. This article focuses on the
design of incentive and reputation mechanisms to solicit active participation and to
generate high-quality solutions by the workers.

Designing incentive and reputation mechanisms for crowdsourcing systems faces two
challenges. The first is how to incentivize workers to provide their maximum effort.
This involves designing an effective incentive mechanism to determine the appropri-
ate reward. If the reward is small, workers may not participate or may just exert
a small amount of effort, leading to a task not being solved or a low-quality solu-
tion. Requesters, on the other hand, always want to minimize reward payments. Note
that simply incentivizing workers to provide their maximum effort is not enough, as
workers may not have sufficient skills. The second challenge is how to guarantee that
sufficiently skilled workers can be recruited and at the same time provide their max-
imum effort. Traditional approaches to address this challenge are based on adaptive
task assignment algorithms [Ho and Vaughan 2012]. However, such algorithms only
improve the probability that a task is assigned to a high-skilled workers. The complex
nature of worker skills and tasks challenges the assigning accuracy. We pose a new
angle to address this challenge by deploying a reputation mechanism that provides
extra incentives for workers to perform self-selection such that at least one sufficiently
skilled worker is guaranteed to participate. Specifically, we reduce our problem to how

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 3, Article 13, Publication date: May 2016.

Design and Analysis of Incentive and Reputation Mechanisms 13:3

to define and update workers’ reputations based on their historical contributions so
that when coupled with appropriate rewards, requesters are guaranteed to collect at
least one high-quality solution for each of their tasks. To the best of our knowledge,
this is the first work combining incentive and reputation mechanisms to guarantee
high-quality solutions. Our contributions are as follows:

—We design a mechanism to incentivize workers to provide their maximum effort. Our
incentive mechanism allows multiple workers to work on a task and split the reward
among workers based on requester evaluations of the solution quality. We use the
Bayesian game framework to derive the minimum reward needed to ensure that
workers provide their maximum effort.

—Our incentive mechanism suffers the potential risk that a requester will collect
low-quality solutions due to fundamental limitations in task assigning accuracy. We
design a class of reputation mechanisms and show that coupling this reputation
mechanism with our incentive mechanism ensures at least one high-quality solution
per task. We also show that our incentive and reputation mechanisms are robust
against human factors (i.e., preferences or biases) on the part of requesters in eval-
uating solution quality.

—We present an optimization framework to determine parameters for our reputation
mechanism. We show that there is a trade-off between system efficiency (i.e., the
number of tasks that can be solved for a given reward) and revenue (i.e., the amount
of transaction fees). We identify extremal design points that correspond to the max-
imum efficiency or the maximum revenue, as well as the optimal trade-off curve of
efficiency and revenue.

—We demonstrate the applicability and effectiveness of our mechanisms through exper-
iments using a dataset from UpWork. From the data, we infer model parameters and
use them to determine the reward payment and select parameters for our incentive
and reputation mechanisms for UpWork. Our incentive and reputation mechanisms
are shown to achieve 98.82% of the maximum system efficiency while only sacrificing
4% revenue.

This article is organized as follows. In Section 2, we present the crowdsourcing
system model. Sections 3 and 4 present the design and analysis of our incentive and
reputation mechanisms. In Section 5, we demonstrate the robustness of our incentive
and reputation mechanisms against human factors. Section 6 presents the design trade-
offs in selecting the parameters for our reputation mechanism. In Section 7, we present
experimental results on a real-world dataset. Related work is given in Section 8, and
we conclude in Section 9.

2. CROWDSOURCING SYSTEM MODEL
Crowdsourcing systems usually include three components: tasks, workers, and re-
questers. Requesters outsource tasks to workers to perform and provide a reward for
each task (the appropriate reward will be discussed later). The reward is distributed
to workers who made appropriate contributions to solving the task.

Tasks are classified into different types. For example, UpWork classifies these into
tasks such as “Mobile,” “Data Science,” and “Translation.” [Elance 1999]. Our model
considers L ≥ 1 types of tasks. For a type ℓ ∈ {1, . . . , L} task, a requester sets a
nonnegative reward of rℓ to be split among contributing workers, and the requester
also pays a transaction fee of Tℓ = τℓr, where τℓ ∈ [0, 1], to the crowdsourcing system.
Hence, the total payment by the requester is rℓ + Tℓ. Without loss of generality, we
focus on one type of task in our analysis. Later we will see that our analysis applies to
all task types. Thus, for ease of presentation, we drop the subscript ℓ.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 3, Article 13, Publication date: May 2016.

13:4 H. Xie et al.

We consider a population of heterogeneous workers (i.e., workers have different skill
sets). More precisely, each worker is associated with a skill level m ∈ M ! {1, . . . , M}.
A higher value of m implies that the worker has a higher skill set. We emphasize that
this categorization is task dependent (i.e., a worker may have skill level M for one
task and skill level 1 for another task). We assume that skill levels are only known to
workers.

2.1. Model for Task Assignment
We use a probabilistic model to characterize the task assignment process of a crowd-
sourcing system. Some real-world crowdsourcing systems (e.g., Amazon Mechanical
Turk [2008]) allow workers to select tasks, whereas others like Clickworker [2001]
require the system administrator to assign tasks to workers. We use a general prob-
abilistic model to represent all possible cases of the task assignment process: with
probability βm ∈ [0, 1], a task is assigned (or recommended) to a worker having skill
level m, where

∑M
m=1 βm = 1. Tasks are independently assigned to different workers.

The task assignment process is represented by an M-dimensional vector (β1, . . . , βM). In
practice, an optimal and deterministic task assignment strategy is usually impossible
to compute, as tasks are heterogeneous and it is difficult to know the exact skill level
of a worker. Furthermore, the deterministic task assignment strategy is a special case
of the probabilistic task assignment strategy. For example, (β1, . . . ,βM) = (0, . . . , 0, 1)
represents the deterministic task assignment strategy that tasks are always assigned
to workers having skill level M. We assume that the values of β1, . . . ,βM are known
to all workers. This assumption is realistic. On the one hand, the system operator can
monitor the task assigning accuracy and make it public to all workers. On the other
hand, a worker can perceive the task assigning accuracy from his own historical task
assignments.

2.2. Model for Worker Action
Our model allows n ≥ 1 workers to solve a task denoted by w1, . . . , wn. Let θi ∈ {1, . . . , M}
denote the skill level of wi. When a task is assigned to a worker, this worker can either
refuse to take on this task or exert some effort to solve this task. When a worker refuses
a task, the task is then reassigned to another worker until exactly n workers commit
to solving this task. Without loss of generality, we denote the probability that a worker
having skill type m refuses a task by ηm ∈ [0, 1]. Using Bayes’ rule, one can easily
express the probability mass function of θi as

Pr[θi = m′] = (1 − ηm′)βm′

∑M
j=1(1 − η j)β j

, ∀m′ ∈ M. (1)

We emphasize that θ1, . . . , θn are independent and identically distributed random vari-
ables. We assume that η1, . . . , ηM are known to all workers. This assumption is reason-
able, because as we shall see later, our incentive and reputation mechanisms control
η1, . . . , ηM, through which η1, . . . , ηM are made public to all workers.

Worker wi exerts effort ai ∈ K ! {0, 1, . . . , K} to complete a task. The larger the ai,
the greater the effort. Moreover, there is a cost associated with each effort level—for
instance, cm,k is the cost associated with effort level k ∈ K and skill set type m ∈ M,
where cm,K > · · · > cm,0 = 0, capturing the physical meaning that the more effort a
worker provides, the larger the cost incurred. Without loss of generality, we assume
a strictly greater order to simplify the analysis. Here, cm,0 = 0 corresponds to a type
m worker choosing to be a free rider by exerting no effort. Furthermore, the cost of
exerting the same effort level decreases as a worker is more skilled in solving a given
task—for instance, cM,k ≤ · · · ≤ c1,k, where k ∈ K.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 3, Article 13, Publication date: May 2016.

Design and Analysis of Incentive and Reputation Mechanisms 13:5

2.3. Model for Solution Quality and Benefit
The quality of a solution is jointly determined by a worker’s skill level and effort
level. Specifically, the quality of a solution increases as the skill level increases or as
greater effort is exerted. Let Q(m, k) ∈ [0, 1], (m ∈ M, k ∈ K), denote the quality of a
solution submitted by a worker with skill level m exerting a level k effort. A larger
value of Q(m, k) means that the solution has higher quality. Our model assumes that
Q(m, k) exhibits three properties. First, a higher effort level implies higher quality:
Q(m, k) > Q(m, k′), ∀k > k′. Second, a higher worker skill level implies higher quality:
Q(m, k) > Q(m′, k),∀m > m′, k > 0. Thirs, the quality of a zero effort solution is zero:
Q(M, 0) = · · · = Q(1, 0) = 0. Without loss of generality, we assume a strictly greater
order to simplify the analysis.

The benefit of a solution to a requester is determined by its quality. A solution
submitted by a worker having skill level m ∈ Mworking at effort level k ∈ K contributes
a benefit of Vm,k ≥ 0 to a requester. Our model assumes that Vm,k exhibits the following
two properties. First, the higher the quality of a solution, the greater benefit to a
requester: Vm,k > Vm′,k′ if and only if Q(m, k) > Q(m′, k′). Second, two solutions bring
the same benefit if and only if they have the same quality: Vm,k = Vm′,k′ if and only if
Q(m, k) = Q(m′, k′).

A requester collects n solutions and selects the one with the highest quality. If a
tie occurs (i.e., multiple solutions of the highest quality), each solution in this tie is
equally likely to be selected. The overall benefit of these n solutions corresponds to the
largest single solution benefit (i.e., max{Vθ1,a1 , . . . , Vθn,an}). Note that we have to ensure
VM,K > r + T to attract requesters to participate. Namely, there is at least one worker
with a skill set such that if he exerts his highest effort, he will contribute a benefit
that outweighs a requester’s cost. For ease of presentation, we focus on the scenario
where requesters have high expectation regarding solutions: they will only be satisfied
if at least one solution has the highest possible quality Q(M, K)—that is, VM,k < r + T
for all k < K, and Vm,K < r + T ,∀m < M. Our results can be easily extended to other
selections of the minimum solution quality that satisfies a requester.

2.4. Discussion
Discretizing workers’ skill set and effort level is practical for modeling real-world crowd-
sourcing systems. First, it simplifies the analysis and makes it much easier to present
the main ideas and results than using a continuous model. Furthermore, as we will
show later, although our incentive mechanism applies when workers have continuous
skills levels, the analysis will be more complicated. Finally, the main challenge lies in
reputation system design if we consider a continuous model. It will be complicated to
set the quality threshold and design a feedback rating system as well.

3. INCENTIVE MECHANISM
We propose a class of mechanisms to incentivize high-quality solutions. They allow
multiple workers to solve a task and split the reward based on requester evaluations
of the quality of the solution. We use the Bayesian game framework to derive the
minimum reward needed to guarantee that workers exert their greatest effort. We
also identify the minimum number of workers needed so that at least one worker with
skill level M participates. We derive the reward needed to guarantee that this worker
provides his best effort.

3.1. Incentive Mechanism Design
Our objective is to determine the minimum reward needed to attract both requesters
and workers to participate, and to incentivize workers to exert their maximum effort

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 3, Article 13, Publication date: May 2016.

13:6 H. Xie et al.

(level K). This is challenging because large rewards will attract workers but may
discourage requesters from participating. Furthermore, a social dilemma arises as to
when to settle the payment. If a requester pays before a task begins, workers may
have an incentive to free ride (i.e., take the reward while exerting no effort). However,
if a requester pays after receiving solutions, he may refuse to pay the workers, thus
discouraging workers from participating. Finally, the incentive mechanism design is
complicated by the heterogeneity of workers with different skill sets and their goal to
maximize their payoffs by strategically exerting one of K + 1 levels of effort.

We consider the following incentive mechanism. Upon posting a task, a requester
must submit its associated reward r and transaction fee T to the crowdsourcing system
administrator. The task is solved by exactly n workers. Once a worker solves a task,
he submits the solution to the system administrator. After collecting all n solutions,
the administrator forwards them to the requester. Upon receiving these n solutions,
a requester evaluates their quality and selects the one with the highest quality. If
there is a tie, each solution within the tie is selected with equal probability. We refer
to the highest-quality solutions as winner(s) and the other solutions as losers. Finally,
the requester notifies the system administrator as to the identity of the winners,
and the system administrator distributes the reward r evenly to those winners.
Workers are encouraged to participate because winners equally share the reward.
One important property of this scheme is that the requester cannot refuse to pay
workers, as the reward r and the transaction fee T are held by the administrator.
Hence, he does not benefit from providing false feedback—for example, notifying the
administrator that there is no winner, as the reward is not returned to the requester.

Discussion. Our model applies to macrotasking crowdsourcing systems [Wikipedia
2003a], which serve as platforms to outsource innovative and challenging tasks that
require special skills (e.g., develop a computer program). Typical examples of such sys-
tems include UpWork [Elance 1999] and Fiverr [2010], which are two real-world macro-
tasking crowdsourcing systems. It is widely practiced in such systems that requesters
evaluate the solution quality and reward the best answer, as the cost of finding the
best answer is small as compared to solving the task. The other type of crowdsourcing
is microtasking [Wikipedia 2003b] crowdsourcing systems (e.g., Amazon Mechanical
Turk [2008] and Microtask [2003]), where the assumptions of our model may not hold.
The reason is that for such tasks, the cost incurred by finding the best answer will be
almost as high as solving the task since the tasks are small and repetitive (e.g., image
labeling, transcription).

We like to note that our incentive mechanism is rational in expectation—for instance,
low-skilled workers may have negative utility even if they provide their maximum
effort. This is practical because the solutions submitted by low-skilled workers are of
low quality, and in real-world crowdsourcing systems (e.g., UpWork), a worker may not
get any reward if he submits a low-quality solution.

The preceding mechanism allows a worker to receive a reward without exerting any
effort. For example, when all nworkers exert no effort, each of them receives a reward of
r/n. We next use the Bayesian game framework to derive the minimum reward needed
so that workers exert their maximum (level K) efforts.

3.2. Formulating the Bayesian Game
In our Bayesian game formulation, n workers participate in a task w1, . . . , wn. Each
worker has the same set of actions K and can be of any type in M. Recall that ai ∈ K
denotes the action of worker wi and θi ∈ M denotes the skill type of wi. We define
a = (a1, . . . , an) and θ = (θ1, . . . , θn). We use ui(a, θ) to denote the payoff function for

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 3, Article 13, Publication date: May 2016.

Design and Analysis of Incentive and Reputation Mechanisms 13:7

worker wi,

ui(a, θ) =
{ r∑n

j=1 I{Q(θ j ,aj)=Q(θi ,ai)}
− cθi ,ai , if Q(θi, ai) = max j Q(θ j, aj),

−cθi ,ai , if Q(θi, ai) < max j Q(θ j, aj).

Recall that θi is private information known only to wi. Only the joint distribution Pr[θ]
over the types of workers is known to all workers. Hence, we can express worker wi ’s
belief on the types of other workers as Pr[θ−i|θi], where θ−i = [θ j] j ̸=i denotes a vector of
types for all other workers except wi. Since θ1, . . . , θn are independent and identically
distributed random variables, with the probability mass function given in Equation (1),
we have

Pr[θ−i|θi] = Pr[θ−i] =
n∏

j=1, j ̸=i

(1 − ηθ j)βθ j∑M
m=1(1 − ηm)βm

.

We now describe the action space of each worker. A worker may randomize his po-
tential actions (i.e., exert at level k ∈ K with some probability). We refer to such actions
as mixed actions. Formally, we represent each mixed action by a K + 1–dimensional
vector σ = (p(0), p(1), . . . , p(K)), where p(k) is the probability that a worker exerts level
k effort, with p(k) ≥ 0,

∑K
k=0 p(k)=1. Define " to be the action space for a worker, which

is the set of all possible mixed actions:

" =
{

(p(0), p(1), . . . , p(K))|p(k) ≥ 0,

K∑

k=1

p(k) = 1

}

.

For simplicity, we refer to a mixed action as an action.
We now introduce the concept of a strategy, which prescribes an action for each

possible worker type (i.e., skill level).

Definition 3.1. Worker wi ’s strategy is a map si : M → " prescribing an action for
each possible skill type.

For example, si(M) = (0, . . . , 0, 1) means that when wi has skill type θi = M, he
always exerts level K effort. On the other hand, si(1)= (1

K+1 , . . . , 1
K+1) means that when

wi has skill type θi =1, he exerts any effort level with equal probability of 1/(K + 1).
We now introduce expected utility. Each worker knows his own type and tries to

maximize his expected utility. Let s−i(·)= [s j(·)] j ̸=i denote the vector of strategies for all
other workers except wi. Let ui(si(θi), s−i(·), θi) denote the expected utility for wi given
that he has skill type θi, under strategy profile (si(θi), s−i(·)). We have

ui(si(θi), s−i(·), θi) =
∑

θ−i

n∏

ℓ=1,ℓ ̸=i

(1 − ηθℓ
)βθℓ∑M

m=1(1 − ηm)βm

∑

a∈Kn

n∏

j=1

[s j(θ j)]aj ui(a, θ),

where [s j(θ j)]aj represents the probability that w j plays aj ∈ K under action s j(θ j). We
now introduce the Bayesian Nash equilibrium in which each worker’s strategy must
be the best response to the other workers’ strategies.

Definition 3.2. (s∗
1(·), . . . , s∗

n(·)) is a Bayesian Nash equilibrium if for all i = 1, . . . , n,
and for all θi ∈ M, we have s∗

i (θi) ∈arg maxsi (θi)∈" ui(si(θi), s∗
−i(·), θi).

We next show that our incentive mechanism guarantees that each type of worker
exerts the maximum (level K) effort, once we properly set the reward.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 3, Article 13, Publication date: May 2016.

13:8 H. Xie et al.

3.3. Deriving the Minimum Reward
We first show that when n = 1 (or single worker), it is impossible to incentivize the
worker to exert an effort higher than level 0. For n ≥ 2, we derive the minimum
reward required to ensure that all workers exert their maximum (level K) efforts. We
also derive the minimum number of workers needed such that at least one worker
with the highest skill level, M, participates with high probability. We then derive the
corresponding minimum reward to ensure that this worker exerts his maximum (level
K) effort and show that it decreases with respect to βM.

We first explore the simplest case of n = 1, where a task is assigned to only one worker.
In this case, a worker plays a single game, where reward r is always distributed to that
worker no matter what effort he exerts. Hence, a worker does not refuse a task, because
the utility for refusing a task is zero. Furthermore, the utility of a worker is maximized
when he exerts no effort (level 0). This implies that the worker should free ride and
never exert any effort. We next show that this undesirable result can be eliminated
when we allow more than one worker to solve a task (i.e., n ≥ 2).

We now consider the case n = 2. We derive the minimum reward needed so that
workers are guaranteed to exert their maximum (level K) effort. We first claim that
workers do not refuse tasks, as the action of refusing a task is weakly dominated by
exerting level 0 effort.

Definition 3.3. Consider worker wi; an action ŝi(m) ∈ " is weakly dominated given
that wi has skill type m if and only if ∃s′

i(m) ∈ " such that ∀s−i(·), ui(s′
i(m), s−i(·), m) ≥

ui (̂si(m), s−i(·), m) holds and ∃s−i(·), ui(s′
i(m), s−i(·), m) > ui (̂si(m), s−i(·), m).

Hence, a weakly dominated action is never the best action. In fact, the utility for
refusing a task is zero. However, a worker earns a reward r with probability 1/n by
exerting level 0 effort if all n workers exert level 0 effort. And he earns 0 if some worker
exerts a higher level effort. This implies that workers never refuse tasks, or ηm = 0,
∀m = 1, . . . , M. With this observation, we next derive the minimum reward needed to
guarantee that workers exert their maximum (level K) effort.

LEMMA 3.4. Consider our proposed incentive mechanism, and assume that two work-
ers work on a task. At least one Bayesian Nash equilibrium exists. Given a skill type m,
if r >

2cm,K
βm

, then each such equilibrium (s∗
1(·), . . . , s∗

n(·)) satisfies s∗
i (m) = (0, . . . , 0, 1) for

all i = 1, . . . , n.

PROOF. The proof can be found in the Appendix.

Remark. We prove the existence result by applying the work of Fudenberg and Tirole
[1991], which states that the Bayesian Nash equilibrium exists in the finite incomplete
information setting. We characterize the property of the Bayesian Nash equilibrium by
showing the elimination of strictly dominated actions, and we eliminate all but level K
effort for players of type m.

Lemma 3.4 implies that when a requester sets a reward of r ≥ 2cm,K/βm, the unique
best response for workers having skill level m is guaranteed to be (0, . . . , 0, 1) (i.e.,
they exert their maximum (level K) effort). When two workers work on a task, a
requester needs to set a reward r > max{2c1,K/β1, . . . , 2cM,K/βM} to guarantee that
each participating worker exerts level K effort. However, even by setting such a reward,
there is a probability (1 − βM)2 that two participating workers have skill types smaller
than M. In such situations, a requester collects a solution with a benefit less than his
cost, or r + T . One way to reduce such risk is to assign a task to more workers. This
can be achieved by extending Lemma 3.4 to the case of n ≥ 2.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 3, Article 13, Publication date: May 2016.

Design and Analysis of Incentive and Reputation Mechanisms 13:9

LEMMA 3.5. Consider our incentive mechanism, and assume that n ≥ 2 workers work
on a task. At least one Bayesian Nash equilibrium exists. Given a skill type m, if

r >
nβmcm,K

(∑m
ℓ=1 βℓ

)n −
(∑m−1

ℓ=1 βℓ

)n − nβm
(∑m−1

ℓ=1 βℓ

)n−1 , (2)

then each such equilibrium (s∗
1(·), . . . , s∗

n(·)) satisfies s∗
i (m) = (0, . . . , 0, 1) for all i =

1, . . . , n.

PROOF. The proof can be found in the Appendix.

Remark. We prove this lemma following a similar proof framework as in Lemma 3.4.
The elimination of the strictly dominated strategy becomes more subtle than that of
Lemma 3.4. This is a strong result because it specifies the minimum reward needed to
guarantee that workers exert their maximum (level K) efforts. The following lemma
states that the bound derived in Inequality (2) is tight in general.

LEMMA 3.6 (TIGHTNESS OF BOUND). Consider our incentive mechanism, and assume
that n ≥ 2 workers work on a task. Given a skill type m, there exists (β1, . . . , βM)∈ [0, 1]M

such that if

r ≤ nβmcm,K
(∑m

ℓ=1 βℓ

)n −
(∑m−1

ℓ=1 βℓ

)n − nβm
(∑m−1

ℓ=1 βℓ

)n−1 , (3)

then there exists at least one Bayesian Nash equilibrium (s∗
1(·), . . . , s∗

n(·)), which satisfies
s∗

i (m) ̸= (0, . . . , 0, 1) for some i ∈{1, . . . , n}.
PROOF. The proof can be found in the Appendix.

Remark. We prove this lemma by identifying that when (β1, . . . , βM) = (0, . . . , 0, 1)
(i.e., tasks are assigned to skilled workers), workers may not provide their maximum
effort if the reward satisfies (3). If the reward r does not satisfy Inequality (2), then
type m workers may not provide their maximum effort. Namely, the bound derived in
Inequality (2) is tight in general.

Requesters are only interested in high-quality solutions—that is, those produced by
workers having skill level M exerting level K effort. We next derive the minimum
number of workers, as well as the corresponding reward to guarantee that at least one
such high-quality solution can be collected with high probability.

THEOREM 3.7. To guarantee that at least one solution is submitted by a worker having
skill level M using level K effort with probability greater than 1 − α, where 0<α<1, we
need to assign a task to n′ =max{2, ⌈log1−βM

α⌉} workers and set

r >
n′βMcM,K

1 − (1 − βM)n′ − n′βM(1 − βM)n′−1 .

PROOF. The proof is similar to that of Lemma 3.5.

Remark. When a task is assigned to ⌈log1−βM
α⌉ workers, one can claim with proba-

bility greater than 1 − α that at least one participating worker has skill level M. One
constraint is that a task must be assigned to at least two workers. Hence, we have
n′ =max{2, ⌈log1−βM

α⌉}. Then one can apply Lemma 3.5 to set the appropriate reward.

Table I presents numerical results on the minimum number of workers needed (n′)
and the corresponding minimum reward, where α = 0.001 (i.e., with probability of at
least 0.999 of getting a good solution). When βM = 0.2, one needs at least 31 workers
to work on a task. The corresponding reward is at least 6.25cM,K. Note that as we

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 3, Article 13, Publication date: May 2016.

13:10 H. Xie et al.

Table I. Minimum Number of Workers (n′) and Minimum
Reward (r) to Have a High-Quality Solution with

Probability of 0.999

βM 0.2 0.4 0.6 0.8

n′ 31 14 8 5
r 6.25cM,K 5.65cM,K 4.84cM,K 4.03cM,K

Table II. Main Notation

M Worker skill levels M!{1, . . . , M}
K Worker effort levels K!{0, 1, . . . , K}

r, T Reward, transaction fee of a task
r∗ Optimal reward
n Number of workers working on a task

βm Probability of assigning a task to a worker having skill level m
ηm Probability of a worker having skill level m refusing a task

w1, . . . , wn n workers participating in a task
θi, ai Skill type, effort level of wi

cm,k Cost associated with skill type m and effort level k
Q(m, k) Solution quality by skill type m and effort level k

a, θ a= (a1, . . . , an), θ = (θ1, . . . , θn)
Vm,k Benefit of a solution with quality Q(m, k)
" Action space of workers

si : M→" Strategy of worker wi

ϵ Error matrix
s∗ Desirable strategy of workers
Ne Number of errors a worker has committed since last reset
Nb Number of time slots a worker has been blocked since last penalty

πNe ,Nb Stationary probability of a worker in state (Ne, Nb)
Ñb, Ñe Blocking window threshold, active window threshold
Ñ∗

b , Ñ∗
e Optimal blocking window threshold, optimal active window threshold

E Crowdsourcing system efficiency
Ẽ Theoretical maximum system efficiency

NW Total number of workers (active and blocked) in the system
R(Ñe, Ñb) Revenue with an (Ñe, Ñb) reputation system

R̃ Theoretical maximum revenue
Rmax Maximum attainable revenue

increase the value of βM, the minimum number of workers needed decreases as well as
the minimum reward. This suggests that a crowdsourcing Web site needs to implement
an accurate task assignment algorithm to reduce the reward that a requester pays so
as to attract more requesters.

Summary. Our incentive mechanism guarantees that workers exert their maximum
(level K) efforts. However, there is a nonzero probability (1 − βM)n that no worker has
skill type M. Even though these lower-skill workers will contribute at effort level K, the
requester will be dissatisfied by their solutions. We next propose a reputation system to
guarantee that low-skilled workers refuse tasks and that the administrator eventually
assigns a task to a worker having skill type M. Table II summarizes the key notations
in this article.

4. REPUTATION SYSTEM
We first present the design of our reputation system. We then couple this reputation
system with our previously proposed incentive mechanism and apply a repeated game

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 3, Article 13, Publication date: May 2016.

Design and Analysis of Incentive and Reputation Mechanisms 13:11

framework to derive the minimum reward needed to guarantee that at least one high-
quality solution is collected.

4.1. Reputation System Design
Our reputation system tracks the historical contributions of long-lived workers, who
attempt to solve many tasks over a long period of time. Our system maintains the
reputation of each worker and penalizes a worker when his reputation falls below a
threshold. We integrate this reputation system into our incentive mechanism and use
a repeated game framework to derive the minimum reward needed to sustain a unique
subgame perfect equilibrium: skilled workers (skill type M) provide solutions at their
maximum (level K) efforts, and less skilled workers (skill type < M) automatically
refuse tasks. Let us first define desirable strategy and error.

Definition 4.1. s∗ is a desirable strategy prescribing that a skilled worker (type M)
provides a solution using his maximum (level K) effort, whereas less skilled workers
(skill type < M) refuse the task. Formally,

s∗ =
{

exert level K effort, if a worker has skill level M
refuse a task, if a worker has skill level smaller than M.

Definition 4.2. An “error” occurs when a worker submits a solution whose quality is
less than Q(M, K).

Our reputation system relies on requesters rating workers using a feedback rating ∈
{0, 1}, where 0 indicates an error and 1 indicates that the solution has quality Q(M, K)
(i.e., the highest quality). We emphasize that a requester does not require any prior
knowledge of worker skill types or effort levels but simply evaluates the quality of a
solution when providing a feedback rating.

Our reputation system operates as follows. Each worker is tagged with a reputation
index denoted by Ne, which records the number of errors since the last reset. Initially,
each worker is tagged with zero errors, Ne = 0. Once a worker is reported to have
committed an error (i.e., a requester reports a 0 rating), Ne is increased by one. Once
the number of errors of a worker reaches a threshold Ñe, the reputation system triggers
a punishment by blocking this worker from participating in any crowdsourcing activity
for a given number, Ñb, of time slots. We refer to Ñe and Ñb as the active window
threshold and the blocking window threshold, respectively. Let Nb denote the number
of time slots that a worker has been blocked since he was last penalized. When a worker
is blocked, Nb is increased by one at each time slot. After being blocked for Ñb time
slots, our reputation system activates the worker’s account and resets Ne to zero. We
denote this system as the (Ñe, Ñb)-reputation system. Formally, we index a worker’s
reputation via a pair (Ne, Nb), where Nb = Ñb indicates that a worker is active, Ne = Ñe
indicates that a worker is blocked, Ne ∈ {0, 1, . . . , Ñe}, and Nb ∈ {0, 1, . . . , Ñb}. Formally,
our reputation system is described by the following transition rules:

(Ne, Nb)
(ai ,θi)−−−−→

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(Ne, Ñb), if Nb = Ñb, Ne < Ñe,Q(ai, θi) = Q(K, M)

(Ne + 1, Ñb), if Nb = Ñb, Ne < Ñe − 1, Q(ai, θi) < Q(K, M)

(Ñe, 0), if Nb = Ñb, Ne = Ñe − 1,Q(ai, θi) < Q(K, M)

(Ñe, Nb + 1), if Ne = Ñe, Nb < Ñb − 1

(0, Ñb), if Ne = Ñe, Nb = Ñb − 1.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 3, Article 13, Publication date: May 2016.

13:12 H. Xie et al.

We next integrate the preceding reputation system into our proposed incentive mech-
anism and use a repeated game framework to characterize long-lived worker strategic
behaviors.

4.2. Repeated Game Formulation
We divide time into slots such that during each time slot, a worker can only register
to solve at most one task and only one task is recommended to a worker. This can
result in a low-skilled worker refusing a task, resulting in this worker being idle for
the time slot. We integrate the (Ñe, Ñb)-reputation system into our proposed incentive
mechanism. Recall from Section 2 that we formulated a Bayesian game to characterize
a worker’s strategic behavior in solving a task for one time slot. Long-lived workers
attempt to maximize their long-term utility by solving many tasks over many time
slots. We capture this scenario via a repeated game in which a worker repeatedly
plays the Bayesian game. More precisely, consider a worker wi, and let θ t

i ∈ M and
st

i(θ
t
i) ∈ " denote his type and action at time t, respectively. Let st

−i(·) denote a vector
of strategies of the other n − 1 workers at time slot t. The expected single-shot utility
of worker wi at time t is denoted by ui(st

i(θ
t
i), st

−i(·), θ t
i). A worker may not work on

any task at time t because he is blocked or refuses a task. We define the single-shot
utility for this idle worker wi to be 0 (ui(st

i(θ
t
i), st

−i(·), θ t
i)=0). Let 0<δ<1 be a discount

factor. We define the long-term discounted utility for worker wi to be u∞
i ({st

i(θ
t
i)}∞t=0) =∑∞

t=0 δt(1 − It
{idle})ui(st

i(θ
t
i), st

−i(·), θ t
i), where It

{idle} =1 indicates that a worker is idle and
It
{idle} =0 indicates that a worker participates a task. We assume that a worker chooses

his strategy independently from slot to slot.

4.3. Sustaining Compliance via Proper Reward
We derive the minimum reward needed so that a unique subgame perfect equilib-
rium can be sustained where workers play the desirable strategy s∗. Furthermore, we
quantify the impact of the active window threshold Ñe, blocked window threshold Ñb,
and the probability of assigning a task to a most skilled worker βM on this minimum
reward. We state these results in the following theorem.

THEOREM 4.3. Using the (Ñe, Ñb)-reputation system in our incentive mechanism and
assuming that n ≥ 2 workers work on a task, (1) if the active window threshold is Ñe ≥ 2,
then a worker with skill level less than M always deviates from s∗ when it has reputation
index (Ne, Ñb), where Ne = 0, 1, . . . , Ñe−2, and (2) if Ñe = 1, δ > (1+βM(1−βM)1−n/n)−1,
Ñb ≥ ⌈ln(1 − n(1 − δ)(1 − βM)n−1/(δβM))/ ln δ⌉, and

r > ncM,K max

{
1
γ ∗ ,

(
1 − n(1 − βM)n−1(1 − δ)

(1 − δ Ñb)βMδ

)−1}

, (4)

where γ ∗ = min{ 1−(1−x)n

x −n(1−x)n−1|x ∈ [βM, 1]}, then each worker will not unilaterally
deviate from s∗. Furthermore, this subgame perfect equilibrium is unique.

PROOF. The proof can be found in the Appendix.

Remark. We first show that for workers having skill type M, by eliminating the
strictly dominated action we can eliminate all but level K effort. This implies that
workers having skill type M playing the desirable strategy s∗ is a unique best response.
Then we apply the one-shot deviation principle to show that workers with type lower
than M will play the desirable strategy s∗ irrespective of other workers’ actions, under
the condition that workers having skill type M playing the desirable strategy s∗.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 3, Article 13, Publication date: May 2016.

Design and Analysis of Incentive and Reputation Mechanisms 13:13

Table III. Minimum Reward to Ensure That Workers
Play the Desirable Strategy s∗ (n = 3, δ = 0.999)

Ñb 20 30 40
r(βM = 0.2) 5.82cM,K 5.77cM,K 5.77cM,K
r(βM = 0.4) 3.47cM,K 3.41cM,K 3.41cM,K
r(βM = 0.6) 3.13cM,K 3.08cM,K 3.06cM,K
r(βM = 0.8) 3.02cM,K 3.02cM,K 3.01cM,K

Workers are guaranteed to play s∗, as the subgame perfect equilibrium is unique.
Theorem 4.3 states that one needs to set the active window threshold to Ñe =1 because
workers committing errors while in states (0, Ñb), (1, Ñb), . . . , (Ñe−2, Ñb) incur no penal-
ties. Examining (4), one observes that as we increase the blocking window threshold
Ñb, we decrease the minimum reward. This suggests that a crowdsourcing provider
should set Ñb as large as possible, provided that there are no errors in reputation
updating.

Table III presents numerical examples on the minimum reward derived in Equa-
tion (4), where n=3, δ=0.999. Table III depicts βM, Ñb, and the corresponding minimum
reward. When βM = 0.2 and Ñb = 20, the reward is r = 5.82cM,K. As Ñb increases from
20 to 40, the reward decreases from 5.82cM,K to 5.77cM,K (i.e., a 1% decrease). Similar
decreases are shown for βM = 0.4, 0.6, 0.8. When Ñb = 20, as βM increases from 0.2 to
0.8, the minimum reward decreases from 5.82cM,K to 3.02cM,K, a significant reduction.
It is important to observe that the minimum rewards are smaller than in Table I.
Namely, our reputation system decreases the reward payment, which is attractive to
requesters.

Summary. Our model thus far assumes that requesters must provide perfect feed-
back ratings to indicate whether a worker committed an error or not. This is difficult
to achieve in practice, because human factors such as inherent personal preferences
or biases may lead to some erroneous feedback ratings on the part of a requester. We
explore the robustness of our reputation system against such human factors in the
next section.

5. HUMAN FACTORS
We present a probabilistic model to characterize errors in ratings caused by human
factors such as inherent biases. We derive the minimum reward needed to tolerate such
errors in ratings. We show that the minimum reward increases in Ñe and decreases in
Ñb, and the number of active workers increases in Ñe and decreases in Ñb.

5.1. Model for Human Factors
In real-world crowdsourcing systems, requester feedback ratings may not accurately
reflect the quality of a solution. Feedback ratings may be distorted due to inherent
user biases—for instance, some critical requesters may always express low ratings,
whereas lenient requesters may always express high ratings. Such factors can lead
to the following situation: a solution of quality Q(M, K) receives a feedback rating of
zero or a solution of quality lower than Q(M, K) receives a feedback rating of one. We
refer to these as erroneous ratings. We assume that a solution of quality Q(m, k), where
m∈M, k∈K, receives a rating of zero with probability ϵm,k∈ [0, 1] (Pr[rating 0|Q(m, k)]=
ϵm,k). We assume that an erroneous rating occurs with a small probability, for instance,
ϵM,K << 1, and that ϵm,k ≈ 1 holds for all m, k such that Q(m, k) < Q(M, K). We also
assume that ϵm,k > ϵm′,k′ if and only if Q(m, k) < Q(m′, k′), which means that the higher
the quality of a solution, the lower the chance it receives rating 0. We define an M by

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 3, Article 13, Publication date: May 2016.

13:14 H. Xie et al.

the K + 1 error matrix, ϵ = [ϵm,k]. This article focuses on the case that the requester
can identify the highest quality solution regardless of whatever he is biased toward
providing higher or lower feedback ratings.

5.2. Quantify the Impact of Human Factors

In this section, we first derive the feasible space of (Ñe, Ñb) and show that the incentive
and reputation mechanisms can tolerate erroneous feedback ratings provided that
we slightly increase the reward. We also show that this reward increases in Ñe and
decreases in Ñb.

THEOREM 5.1. Consider a combined incentive/(Ñe, Ñb)-reputation system, and assume
that n ≥ 2 workers work on a task. The feasible space of (Ñe, Ñb) is

Ñe ≤
− ln

(
nϵM,K/((1 − βM)1−n − 1 + ϵM−1,K)

)

ln(1 − δ + δβMϵM,K) − ln(δβMϵM,K)
, (5)

Ñb ≥ ln
1 − nϵM,K

(1−βM)1−n−1+ϵM−1,K

(
1−δ+δβMϵM,K

δβMϵM,K

)Ñe

1 − nϵM,K/((1 − βM)1−n − 1 + ϵM−1,K)
/ ln δ. (6)

For each feasible pair of (Ñe, Ñb), if reward r satisfies

r > ncM,K max
{

1
γ ∗ ,

(
1 −

((
1 + (1 − δ)/(δβMϵM,K)

)Ñe − δ Ñb
)

(1 − βM)n−1nϵM,K

(1 − δ Ñb)(1 − (1 − ϵM−1,K)(1 − βM)n−1)

)−1
⎫
⎬

⎭ , (7)

where γ ∗ =min{ 1−(1−x)n

x − n(1 − x)n−1|x ∈ [βM, 1]}, then s∗ is a subgame perfect equilib-
rium. Furthermore, this subgame perfect equilibrium is unique. Last, r increases with
respect to Ñe and decreases with respect to Ñb.

PROOF. The proof can be found in the Appendix.

Remark. We prove this lemma following a similar proof framework as in Theo-
rem 4.3. As we consider human factors (i.e., errors in reputation updating), the analysis
becomes more complicated.

Theorem 5.1 shows that our proposed incentive mechanism combined with our rep-
utation system is robust against imperfect feedback and can be practically applied in
real-world crowdsourcing systems. Theorem 5.1 suggests that a crowdsourcing provider
should decrease Ñe (or increase Ñb) so as to decrease the reward paid out by requesters.
However, the side effect is a decrease in the number of active workers (as we will show
with Theorem 5.3).

Table IV presents the minimum reward derived from (7), when n = 3, ϵM,K = 0.05,
ϵM−1,K = 0.95, βM = 0.6, δ = 0.999. To apply Theorem 5.1, we take Ñe ≤ 114. Table IV
depicts the active window threshold Ñe, the blocking window threshold Ñb, and the
corresponding minimum reward. When Ñb = 100, as the active window threshold in-
creases from Ñe = 10 to Ñe = 30, the reward increases from 3.42cM,K to 5.46cM,K, a
significant increase. When Ñe =20, an increase in the blocking window threshold from
Ñb =70 to Ñb =90 results in a slight decrease in the reward from 4.66cM,K to 4.20cM,K.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 3, Article 13, Publication date: May 2016.

Design and Analysis of Incentive and Reputation Mechanisms 13:15

Table IV. Minimum Reward to Guarantee Desirable
Strategy s∗, with ϵM,K = 0.05, ϵM−1,K = 0.95,

βM = 0.6, δ = 0.999, n = 3

Ñe 10 20 30
r (Ñb =100) 3.42cM,K 4.05cM,K 5.46cM,K

Ñb 70 80 90
r (Ñe = 20) 4.66cM,K 4.39cM,K 4.20cM,K

We next model our combined incentive reputation system as a Markov chain and show
that the number of active workers increases in Ñe and decreases in Ñb.

5.3. Evolving Dynamics of a Worker’s Reputation
We model the evolving dynamics of a worker’s reputation (when he plays s∗) in the
presence of error matrix ϵ as a Markov chain. A worker is in state (Ne, Nb) if this worker
has reputation index (Ne, Nb). Based on the reputation transition rule, the state space of
our Markov chain can be expressed as {(Ñe, Nb), Nb = 0, 1, . . . , Ñb − 1} ∪ {(Ne, Ñb), Ne =
0, 1, . . . , Ñe − 1}. Applying error matrix ϵ, the one-step state transition probability of
our Markov chain can be expressed as follows:

Pr
[
(N′

e, N′
b)|(Ne, Nb)

]

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

βMϵM,K, if Nb = Ñb, (N′
e, N′

b) = (Ne + 1, Ñb), Ne < Ñe − 1

βMϵM,K, if Nb = Ñb, (N′
e, N′

b) = (Ñe, 0), Ne = Ñe − 1

1 − βMϵM,K, if Nb = Ñb, (N′
e, N′

b) = (Ne, Nb),∀Ne

1, if Ne = Ñe, (N′
e, N′

b) = (Ñe, Nb + 1), Nb < Ñb − 1

1, if Ne = Ñe, (N′
e, N′

b) = (0, Ñb), Nb = Ñb − 1.

(8)

It is easy to check that the preceding Markov chain is aperiodic and ergodic. We next
express its stationary distribution.

Definition 5.2. Denote by πNe,Nb the stationary probability of a worker in state
(Ne, Nb), where Ne =0, 1, . . . , Ñe − 1 and Nb =0, 1, . . . , Ñb − 1.

THEOREM 5.3. The stationary probability of a worker in state (Ne, Nb) can be expressed
as

πNe,Nb =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
Ñe + ÑbβMϵM,K

, Ne = 0, 1, . . . , Ñe − 1, Nb = Ñb

βMϵM,K

Ñe + ÑbβMϵM,K
, Nb = 0, 1, . . . , Ñb − 1, Ne = Ñe

0, otherwise.

PROOF. One can prove this by substituting the expressions for πNe,Nb into π = πP,
where matrix P is expressed as P = [Pr[(N′

e, N′
b)|(Ne, Nb)]] with Pr[(N′

e, N′
b)|(Ne, Nb)]

given by (8).

Remark. It follows that the probability that a worker is active is Ñe/(Ñe+ ÑbβMϵM,K),
which increases in Ñe and decreases in Ñb. Thus, either increasing Ñe or decreasing
Ñb increases the total number of active workers.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 3, Article 13, Publication date: May 2016.

13:16 H. Xie et al.

Summary. Decreasing Ñe or increasing Ñb reduces the reward that a requester must
pay to guarantee that workers play the desirable strategy s∗. However, this has the
side effect of decreasing the total number of active workers. We next explore the effect
of Ñe, Ñb on different design trade-offs (i.e., system efficiency, revenue.).

6. TRADE-OFF IN REPUTATION SYSTEM
We present a class of metrics to quantify system efficiency (i.e., the total number of tasks
that can be solved for a given reward) and revenue (i.e., the total amount of transaction
fees). We formulate an optimization framework to select appropriate values of Ñe and
Ñb. We identify extremal design points corresponding to the maximum efficiency and
maximum revenue, as well as the optimal trade-off between efficiency and revenue.

6.1. Design Trade-Offs and Metrics

System efficiency. A decrease in the active window threshold Ñe, or an increase in the
blocking window threshold Ñb, leads to an increase in the efficiency of a crowdsourcing
system. Specifically, this leads to the solution of more tasks for a given reward budget.
We formally quantify system efficiency as follows.

Definition 6.1. We denote by E the crowdsourcing system efficiency expressed as

E ! cM,K

r
.

The larger the value of E , the higher the crowdsourcing system efficiency. Increasing
system efficiency E can increase the number of requesters willing to participate. From
a crowdsourcing Web site owner’ perspective, he may want to maximize the efficiency
(i.e., maximize E) subject to the requirement that workers provide their maximum
effort. Ideally, a crowdsourcing system can achieve the theoretical maximum efficiency
if it is perfect—that is, perfect reputation updates (there is no erroneous ratings in
reputation updating) and perfect task assignments (βM = 1, tasks are assigned to
high-skilled workers with probability 1). We denote this theoretical maximum system
efficiency by Ẽ . One of our objectives is to show the effectiveness of our mechanisms via
studying the gap between E and Ẽ .

LEMMA 6.2. Consider a combined incentive/(Ñe, Ñb)-reputation system, and assume
that n ≥ 2 workers work on a task. The theoretical maximum system efficiency is Ẽ = 1

n.

PROOF. The proof can be found in the Appendix.

Revenue. However, decreasing Ñe or increasing Ñb also decreases revenue. The-
orem 5.3 states that decreasing Ñe (or increasing Ñb) results in a decrease in the
number of active workers. A decrease in the number of active workers leads to a
decrease in the total amount of transaction fees (i.e., revenue loss). We now quantify
the long-term revenue of a crowdsourcing system under each selection of (Ñe, Ñb).
Suppose that the total number of workers (active and blocked) in the system is Nw.
As derived in Theorem 5.3, the steady-state probability of an active worker being
in state (Ne, Ñb) is πNe,Ñb

= 1/(Ñe + ÑbβMϵM,K). Thus, the expected number of active

workers at each time slot is Nw

∑Ñe−1
Ne=0 πNe,Ñb

= Nw Ñe/(Ñe + ÑbβMϵM,K). Based on this,
we introduce a measure to quantify revenue for a crowdsourcing system as follows.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 3, Article 13, Publication date: May 2016.

Design and Analysis of Incentive and Reputation Mechanisms 13:17

Table V. Reputation System Design to Maximize Efficiency
(ϵM−1,K = 1 − ϵM,K , δ = 0.999, βM = 0.8, n = 3)

ϵM,K Ñ∗
e Ñ∗

b r∗ E∗/Ẽ R(Ñ∗
e , Ñ∗

b)/R̃

0.05 1 ∞ 3.02cM,K 0.9933 0
0.10 1 ∞ 3.04cM,K 0.9867 0
0.15 1 ∞ 3.06cM,K 0.9804 0

Definition 6.3. Denote R(Ñe, Ñb) by the expected revenue in one time slot. We express
it as

R(Ñe, Ñb) ! Nw Ñe

Ñe + ÑbβMϵM,K

(
βMT

n

)
,

where T is the transaction fee for a task as defined in Section 2.

A crowdsourcing system can achieve the theoretical maximum revenue if it is perfect—
that is, there are no erroneous ratings in reputation updating and tasks are assigned to
high-skilled workers with probability 1, or βM = 1. We use R̃ to denote the theoretical
maximum revenue. It can be easily expressed as

R̃ ! NwTβM

n
.

From a crowdsourcing Web site owner’s perspective, he wants to maximize the revenue
under the constraint that workers play the desirable strategy s∗. We define the following
notations to present our results.

Definition 6.4. Denote Ñ∗
e , Ñ∗

b by the optimal active window threshold and optimal
blocking window threshold, respectively. Denote r∗, E∗, R(Ñ∗

e , Ñ∗
b) by the reward, system

efficiency, and revenue respectively corresponding to Ñ∗
e , Ñ∗

b .

6.2. Reputation System to Maximize Efficiency

One possible goal is to choose (Ñe, Ñb) so as to maximize system efficiency. The opti-
mization formulation is

max
(Ñe,Ñb)

E = cM,K

r
subject to Equations (5), (6), and (7),

where constraints (5), (6), and (7) ensure that workers play s∗.
The preceding optimization problem has a solution if and only if δ ≥ (1−βMϵM,K +

βM((1 − βM)1−n − 1+ϵM−1,K)/n)−1. One observes that the solution is Ñ∗
e =1 and Ñ∗

b =∞,
because decreasing Ñe or increasing Ñb increases efficiency. This solution implies that
a worker will be blocked permanently once he commits an error. In the presence of
erroneous ratings, all workers will be blocked. In other words, eventually there will be
no active worker, and the revenue is R(Ñ∗

e , Ñ∗
b)=0. Table V shows numerical examples

on the maximum efficiency. One observes that when ϵM,K =0.05, the optimal reward is
3.02cM,K. The corresponding system efficiency only attains E∗/Ẽ = 0.9933 of the theo-
retical maximum system efficiency. This implies a quite high system efficiency. As ϵM,K
increases from 0.05 to 0.15, the reward increases from 3.02cM,K to 3.06cM,K, and the
system efficiency drops from 0.9933Ẽ to 0.9804Ẽ . In other words, the maximum effi-
ciency is robust against erroneous ratings. However, there is no revenue, as eventually
all workers are blocked out (i.e., Ñ∗

b =∞).

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 3, Article 13, Publication date: May 2016.

13:18 H. Xie et al.

Table VI. Reputation System Design to Maximize Revenue
(ϵM−1,K = 1 − ϵM,K , δ = 0.999, βM = 0.8, n = 3)

ϵM,K Ñ∗
e Ñ∗

b r∗ E∗/Ẽ R(Ñ∗
e , Ñ∗

b)/R̃

0.05 6 1 91.22cM,K 0.0330 0.994
0.1 6 1 54.88cM,K 0.0546 0.987
0.15 18 3 407.37cM,K 0.0075 0.980

6.3. Reputation System to Maximize Revenue

Another goal is to choose (Ñe, Ñb) so as to maximize revenue. The optimization formu-
lation is

max
(Ñe,Ñb)

R(Ñe, Ñb) = Nw Ñe

Ñe + ÑbβMϵM,K

(
βMT

n

)

subject to Equations (5), (6), and (7).

The solution to the optimization problem yields the maximum attainable revenue Rmax
under the constraint that workers play s∗.

The preceding optimization problem has at least one solution. We locate the optimal
solution by searching all pairs (Ñe, Ñb), where the value of Ñb equals the right-hand
side in (6). In fact, for a given active window threshold Ñe, (6) expresses a lower bound
for the blocking window threshold Ñb. Recall that increasing the blocking window
threshold decreases revenue. We therefore set Ñb to the right-hand side in (6).

Table VI presents examples of solutions to the preceding optimization problem. When
ϵM,K =0.05, the solution is Ñ∗

e =6 and Ñ∗
b =1, which achieves a revenue of 0.994R̃. This

suggests that the revenue is close to the theoretical upper bound R̃. As ϵM,K increases
from 0.05 to 0.15, revenue drops from 0.994R̃ to 0.980R̃. In other words, maximum
revenue is robust against erroneous feedback ratings. However, efficiency is low. In
fact, reward r∗ is at least 54.88cM,K, which attains E∗/Ẽ = 0.0546 of the theoretical
maximum efficiency. We next explore the optimal trade-off between efficiency and
revenue.

6.4. Exploring the Optimal Trade-Off Curve
We identify the optimal efficiency/revenue trade-off curve. This curve enables us to
explore the full design space of the reputation system. We show that a small sacrifice
in revenue can lead to a significant increase in system efficiency.

We consider the following problem: given a minimum acceptable revenue R(Ñe, Ñb)≥
ξ Rmax, ξ ∈ (0, 1], what values of Ñe, Ñb maximize system efficiency? The optimization
formulation is

max
(Ñe,Ñb)

E = cM,K

r
subject to Equations (5), (6), and (7),

Nw Ñe

Ñe + ÑbβMϵM,K

βMT
n

≥ ξ Rmax. (9)

We find the optimal solution of the preceding optimization problem by searching the
feasible solution space. Given an active window threshold Ñe, (9) yields an upper bound
for Ñb (i.e., Ñb ≤ ⌊(NwTβM

nξ Rmax
−1) Ñe

ϵM,KβM
⌋). Feasible values of Ñb for this given Ñe range from

the right-hand side in (6) to this upper bound. If this upper bound is smaller than the

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 3, Article 13, Publication date: May 2016.

Design and Analysis of Incentive and Reputation Mechanisms 13:19

Table VII. Optimal Trade-Offs Between Efficiency and Revenue
(ϵM−1,K = 1 − ϵM,K , δ = 0.999, βM = 0.8, n = 3, ξ = 0.95)

ϵM,K Ñ∗
e Ñ∗

b r∗ E∗/Ẽ R(Ñ∗
e , Ñ∗

b)

0.05 5 7 3.41cM,K 0.8796 0.95Rmax

0.1 6 5 3.75cM,K 0.8001 0.95Rmax

0.15 5 3 4.13cM,K 0.7263 0.95Rmax

right-hand side in (6), then Ñe is invalid. Searching all feasible pairs (Ñe, Ñb) allows us
to find the optimal solution.

Table VII shows examples of the optimal trade-offs between efficiency and revenue.
We adopt the same setting as for Table VI. We set ξ = 0.95 (we allow a 5% decrease
in the revenue). One observes that when ϵM,K = 0.05, the corresponding reputation
system design is Ñ∗

e = 5, Ñ∗
b = 7, and we obtain a reward r∗ = 3.41cM,K, which attains

E∗/Ẽ = 0.8976 of the theoretical maximum system efficiency. As shown in Table VI,
the reward for ξ = 1 is r∗ = 91.22cM,K, which attains an efficiency of E∗ = 0.0330Ẽ .
This implies a significant decrease in reward, or an improvement on system efficiency.
Similar results also hold for ϵM,K =0.1, 0.15. This implies that a small sacrifice in the
revenue can lead to a significant improvement in system efficiency. Furthermore, our
reputation mechanism is robust against erroneous ratings.

7. EXPERIMENTS ON REAL DATA
We carry out experiments on a real dataset from UpWork. We infer model parameters
from the dataset and use them to determine the right reward and values of (Ñe, Ñb) for
the reputation system in the UpWork setting.

7.1. UpWork Dataset
We developed a crawler based on Scrapy [2008] to obtain historical transaction data
from UpWork [Elance 1999] instead of using its API. In UpWork, workers (or free-
lancers) provide solutions to various types of tasks (e.g., translation, programming,
writing). Each worker posts his skills and sets his price—for example, a worker pro-
vides an English translation service and sets a price of $10 per hour. Requesters can
select workers to solve a specific task. When a task is finished, requesters can rate
the quality of the solution using one to five stars. More stars imply higher quality. We
crawled historical task transactions from UpWork, which are of type “programmer”
and conducted from June 22, 2000 to May 16, 2015. Each transaction contains the task
ID, the worker ID, the requester ID, the timestamp, the price of the task, and the rating
for the solution. Our dataset contains 150,297 task transactions of type “programming”
and 9,592 workers.

7.2. Inferring Model Parameters
We first infer M, K, and worker skill types from the dataset relying on the five-star
solution rating scale. A solution submitted by a worker at his maximum effort reflects
his skill set. The rating scale can categorize such solutions into five types. Namely,
worker skills are classified into M = 5 levels. A worker having the highest skill type
earns a rating ranging from one star to five stars as an indication of his effort level. We
interpret it as a means to classify effort into K + 1=5 levels yielding K=4.

Now we infer the cost cm,k in providing a service. A worker sets a price for providing a
service. We interpret this price as the cost to that worker to exert maximum effort (i.e.,
cm,4) if he has skill type m. This procedure allows us to obtain cm,4,∀m. There is insuffi-
cient information to identify costs for the other effort levels (i.e., cm,3, cm,2, cm,1, cm,0). We
will see later that the inferred cm,4,∀m suffices for our purpose. We infer the skill level

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 3, Article 13, Publication date: May 2016.

13:20 H. Xie et al.

m∈ {0, 1, 2, 3, 4} of a worker via his majority rating, as this rating reflects the overall
solution quality that a worker can provide. We can also infer the task assignment prob-
abilities β1, . . . ,β5. We infer the value of βm via the fraction of service transactions that
involve workers having skill type m—that is,

βm= # of service transactions involving skill type m worker
total # of service transactions

.

Using this simple rule on our dataset, we obtain β1 = 1
150297 = 6.65 · 10−6, β2 = 1

150297 =
6.65 · 10−6, β3 = 3

150297 =1.996 · 10−5, β4 = 361
150297 =0.0024, β5 = 149931

150297 =0.997565.
We now infer error matrix ϵ. Our model interprets the five-star rating scale as follows:

5 means a high-quality solution (i.e., feedback rating 1), whereas a rating smaller than
5 implies an error (i.e., feedback rating 0). In general, it is impossible to know the exact
level of effort that a worker exerted in solving a task. We assume that workers provide
the highest effort because there is insufficient information to identify multiple effort
levels. We infer ϵm,K as the fraction of ratings smaller than 5 received by workers at
skill type m:

ϵm,K = # of ratings smaller than 5 for skill type m worker
of ratings for skill type m worker

.

Using this simple rule on our dataset, we obtain ϵ1,4 = 1
1 = 1, ϵ2,4 = 1

1 = 1, ϵ3,4 = 3
3 =

1, ϵ4,4 = 286
361 =0.7922, ϵ5,4 = 13386

149931 =0.08928. These values only give partial information
of the error matrix ϵ. We are unable to estimate the remaining elements of ϵ. We will
see later that this does not cause any problem. We like to point out that the values of
ϵ1,4, ϵ2,4, ϵ3,4 are noisy because of the size of our dataset. However accurate values of
these three parameters are not critical to our results. In fact, only the values of ϵ4,4
and ϵ5,4 are critical, and the dataset from which we estimate them is sufficiently large.

7.3. Reward Settlement and Reputation System Design
We use the preceding inferred model parameters to demonstrate how to determine
the reward payment and set Ñe, Ñb for the reputation system in the UpWork setting.
Through this, we show the applicability of our incentive mechanism and reputation
system. We first determine the maximum efficiency that UpWork can achieve. We set
n= 2 and δ = 0.999. Applying results in Section 6.2 yields Ñ∗

e = 1 and Ñ∗
b = ∞. The

reward, maximum efficiency, and revenue are

r∗ =2.00488c5,4,
E∗

Ẽ
= 0.9976,

R(Ñ∗
e , Ñ∗

b)
R̃

=0.

We observe that the system efficiency attains E∗

Ẽ = 0.9976 of the theoretical maximum
efficiency. This implies a quite high system efficiency. However, the revenue is quite
low (i.e., R(Ñ∗

e , Ñ∗
b)=0).

We now explore the maximum revenue that UpWork can achieve. Using our inferred
model parameters and applying results in Section 6.3 yields the following:

Ñ∗
e = 106, Ñ∗

b = 1, r∗ = 164.1599c5,4,
E∗

Ẽ
= 0.0122,

R(Ñ∗
e , Ñ∗

b)
R̃

= 0.99916.

UpWork can attain a large revenue (i.e., 0.99916R̃). However, the reward is r∗ =
164.1599c5,4, and system efficiency only attains E∗/Ẽ = 0.0122 of the theoretical maxi-
mum system efficiency. This implies a quite low efficiency.

Now we explore the optimal trade-off between efficiency and revenue for UpWork.
This is obtained by using our inferred model parameters and applying the results

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 3, Article 13, Publication date: May 2016.

Design and Analysis of Incentive and Reputation Mechanisms 13:21

Table VIII. Reputation System Design to Explore the Optimal
Trade-Off Between Efficiency and Revenue for UpWork

ξ Ñ∗
e Ñ∗

b R(Ñ∗
e , Ñ∗

b) r∗ E∗/Ẽ
1 106 1 Rmax 164.1599c5,4 0.0122

0.98 13 3 0.98Rmax 2.0474c5,4 0.9769
0.96 13 6 0.96Rmax 2.0239c5,4 0.9882
0.94 7 5 0.94Rmax 2.0152c5,4 0.9925
0.92 13 12 0.92Rmax 2.0124c5,4 0.9939

in Section 6.4, where we set δ = 0.999, n = 2. We present this optimal trade-off in
Table VIII. We observe that a 2% decrease in the revenue from Rmax to 0.98Rmax leads
to a significant decrease in reward from 164.1599c5,4 to 2.0474c5,4, and consequently
a significant increase in system efficiency from 0.0122Ẽ to 0.9769Ẽ . An 8% decrease in
the revenue to 0.92Rmax leads to a system efficiency of E∗ = 0.9939Ẽ . It is interesting to
observe that a further reduction in the revenue only improves efficiency slightly (i.e.,
improves system efficiency less than 1%). One observes that Ñ∗

e =13, Ñ∗
b =6 is a good

choice for UpWork with reward r∗ =2.0239c5,4, where c5,4 is inferred in Section 7.2. This
choice attains a good balance between system revenue and system efficiency—that is,
it achieves 98.82% of the theoretical maximum system efficiency while only sacrificing
4% revenue.

8. RELATED WORK
Research on crowdsourcing has been very active recently, ranging from application
design [Heer and Bostock 2010], cheat detection [Hirth et al. 2011], and quality man-
agement [Ipeirotis et al. 2010; Karger et al. 2013] to incentive design [Mason and Watts
2010; Jain et al. 2009; Xie et al. 2014; Zhang and van der Schaar 2012], among others.
A recent survey can be found in Yuen et al. [2011]. In this work, we study the incentive
and reputation mechanism design for crowdsourcing systems.

Much work focuses on determining the minimum reward so as to attract users (work-
ers and requesters). One approach is to estimate worker wages and benefits [Bacon
et al. 2012; Horton and Chilton 2010], where models and methods are built and their
parameters inferred. However, these works do not consider the strategic behavior of
workers. A multiarmed bandit algorithm to dynamically determine the appropriate
reward was developed in Tran-Thanh et al. [2012]. The strategic behavior of workers
was not considered, and low-skilled workers could participate to contribute low-quality
solutions. Another approach is to design auction-based pricing mechanisms [Chawla
et al. 2012; DiPalantino and Vojnovic 2009; Singer and Mittal 2013; Singla and Krause
2013]. For example, in Singer and Mittal [2013], tasks are dynamically priced and al-
located to workers based on their bids. However, these pricing schemes do not address
the dilemma of free riding or denial of payment. Our work addresses this dilemma. In
practice, the complexity in deploying these auction-based pricing mechanisms is high,
and determining the price usually involves high delays. Our incentive and reputation
mechanisms are simple to implement. In addition, Chawla et al. [2012], DiPalantino
and Vojnovic [2009], Singer and Mittal [2013], and Singla and Krause [2013] only model
the interaction between workers and requesters as a single-shot game, whereas our
work further extends it to a repeated game to represent behavior of long-lived workers.
Finally, we show that our work is highly applicable to UpWork.

Several works were done to design incentive protocols so that workers provide high-
quality contributions. Note that simply attracting participation is not enough, as work-
ers may solve tasks at low levels of effort. Only a few works [Jain et al. 2009; Shaw
et al. 2011; Xie et al. 2014] have investigated this important question, and usually

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 3, Article 13, Publication date: May 2016.

13:22 H. Xie et al.

their models are simple (e.g, single-shot game). Jin et al. [2015] designed a mechanism
to incentivize user participation for mobile crowdsensing applications. The mechanism
is based on reverse combinatorial auctions and considers a single-shot game. We focus
on a general crowdsourcing application scenario and formulate a repeated game to
understand the strategic behavior of long-lived workers. We also study how to couple a
reputation mechanism with an incentive mechanism so as to improve system efficiency.
Recently, a few reputation-based incentive protocols [Ho et al. 2012; Xiao et al. 2013;
Zhang and van der Schaar 2012] have been proposed. These works were motivated by
the seminal work [Kandori 1992] on reputation mechanism and social norm. To the
best of our knowledge, this is the first work that combines the incentive mechanism
and reputation mechanism. Our work differs from theirs in the following four technical
aspects. First, they [Ho et al. 2012; Xiao et al. 2013; Zhang and van der Schaar 2012]
assume a payment scheme either before tasks begin or after tasks are complete. We
propose a payment mechanism via an administrator to avoid free riding or denial of
payment. Second, they consider a simplified model where all workers are highly skilled
(one skill type) and there are only two level of efforts (i.e., high effort or no effort), and
each task is solved by only one worker. We present a more general model to capture
practical scenarios where workers have many different levels of skill and can exert
more than two levels of effort to solve a task, and a task can be solved by multiple
workers. Third, they did not consider the impact of task assignment. We address this
point by presenting a probabilistic model for the task assignment process. Fourth, we
show the applicability of our work via performing experiments on UpWork dataset.
Their works did not cover this aspect.

9. CONCLUSION
This article presents a class of effective incentive and reputation mechanisms for crowd-
sourcing applications. Our incentive mechanism allows multiple workers to solve a task
and splits the reward among workers based on requester evaluations of the quality of
solutions. We derived the minimum reward needed to guarantee that workers provide
their maximum efforts. Our reputation mechanism ensures that low-skilled workers
do not provide low-quality solutions by tracking workers’ historical contributions and
penalizing those workers having poor reputation. Our incentive and reputation mech-
anisms are robust against human biases in evaluating solution quality. We presented
an optimization framework to select parameters for our reputation mechanism. We
showed that there is a trade-off between system efficiency and revenue, and we pre-
sented the optimal trade-off curve between system efficiency and revenue. We also
performed experiments using a real-world dataset from UpWork. We inferred model
parameters from this data, used them to determine the right reward payment, and
selected the parameters of our incentive and reputation mechanisms for UpWork. Our
incentive and reputation mechanisms are shown to achieve 98.82% of the maximum
system efficiency while only sacrificing 4% revenue.

APPENDIX
A.1. Proof of Lemma 3.4
The Bayesian Nash equilibrium exists in the finite incomplete information setting
[Fudenberg and Tirole 1991] (i.e., finite types and finite actions). We complete this
proof by showing that by elimination of strictly dominated actions, we eliminate all but
level K effort for players of type m.

We first show that level 0 effort is a strictly dominated action for type m players.
Consider wi of type m. Let eℓ = (0, . . . , 0, 1, 0, . . . , 0) denote a K + 1-dimensional vector

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 3, Article 13, Publication date: May 2016.

Design and Analysis of Incentive and Reputation Mechanisms 13:23

such that only the ℓ-th entry is 1 and other entries are 0. Then eK+1, e1 represent
level K effort and level 0 effort, respectively. We claim that level 0 effort is strictly
dominated by level K effort—that is, ui(eK+1, s−i(·), m)>ui(e1, s−i(·), m) for all s−i(·). Let
Ri(ek, s−i(·), m) = ui(ek, s−i(·), m) + cm,k denote the expected reward for player wi. And
let -Ri(k, k′, m) = Ri(ek, s−i(·), m)− Ri(ek′, s−i(·), m). Then we have ui(eK+1, s−i(·), m) −
ui(e1, s−i(·), m)=-Ri(K + 1, 1, m) − cm,K + cm,0. Let w−i denote the player that wi plays
against, and let θ−i denote its type. We next show that -Ri(K + 1, 1, m) is minimized
when w−i exert level 0 effort if of type lower than m and otherwise exert level K effort.

Case 1: θ−i <m. If w−i exerts an effort higher than level 0, then E[-Ri(K+1, 1, m)|θ−i <
m] = r. If w−i exerts level 0 effort, then E[-Ri(K+1, 1, m)|θ−i <m]= r

2 . Thus, E[-Ri(K+
1, 1, m)|θ−i < m] attains the minimal value r

2 when w−i exerts level 0 effort. Note that
Pr[θ−i <m]=

∑m−1
ℓ=1 βℓ.

Case 2: θ−i >m. If w−i exerts the level K effort, then E[-Ri(K + 1, 1, m)|θ−i >m]=0.
Note that E[-Ri(K+1, 1, m)|θ−i >m]≥0. Hence, E[-Ri(K+1, 1, m)|θ−i >m] attains the
minimal value 0 when w−i exerts level K effort.

Case 3: θi =m. If w−i exerts the level K or level 0 effort, then E[-Ri(K+1, 1, m)|θ−i =
m] = r

2 . Otherwise, E[-Ri(K+1, 1, m)|θ−i = m] = r. Hence, E[-Ri(K+1, 1, m)|θ−i = m]
attains the minimal value r

2 when w−i exerts level K effort. Note that Pr[θ−i =m]=βm.
Combine them together, and we have

ui(eK+1, s−i(·), m) − ui(e1, s−i(·), m)
= E[-Ri(K+1, 1, m)] − cm,K + cm,0

≥ r
2

Pr[θ−i < m] + r
2

Pr[θ−i = m] − cm,K + cm,0

> 0,

where the last step follows that r ≥ 2cm,K/βm. Thus, level 0 effort is a strictly dominated
action for wi of type m. Similarly, the same statements holds for w−i of type m.

We now consider the reduced game, where level 0 effort is eliminated for type m
players. With a similar derivation as earlier, we obtain that for this reduced game, level
1 effort is a strictly dominated action for type m players. Repeating this elimination of
strictly dominated action, we finally eliminate all but the level K effort for skill type m
players.

A.2. Proof of Lemma 3.5
This proof extends the proof of Lemma 3.4. The argument for the existence of Bayesian
Nash equilibrium is the same as for Lemma 3.4.

We first show that level 0 effort is a strictly dominated action for type m players.
Consider player wi. Let w−i = [w j] j ̸=i denote the other players except wi. We claim that
-Ri(K+1, 1, m) is minimized when players from w−i exert level 0 effort, if of type lower
than m, and otherwise exert level K effort. Let θ ′

i =max{θ j | j ̸= i}.
Case 1: θ ′

i <m. All players in w−i are of type lower than m. If some w−i exert an effort
higher than 0, then E[-Ri(K+1, 1, m)|θ ′

i < m] = r. Otherwise, E[-Ri(K + 1, 1, m)|θ ′
i <

m] = (n−1)r
n . Thus, E[-Ri(K+1, 1, m)|θ ′

i < m] attains the minimal value (n−1)r
n when all

w−i exert level 0 effort. Note that Pr[θ ′
i <m]= (

∑m−1
ℓ=1 βℓ)n−1.

Case 2: θ ′
i > m. All players in w−i are of type higher than m. If some of them exert

level K effort, then E[-Ri(K+1, 1, m)|θ ′
i >m]=0. Note that E[-Ri(K+1, 1, m)|θ ′

i >m]≥0.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 3, Article 13, Publication date: May 2016.

13:24 H. Xie et al.

Thus, E[-Ri(K+1, 1, m)|θ ′
i > m] attains the minimal value 0 when players with type

higher than m exert level K effort.

Case 3: θ ′
i = m. Suppose that ℓ of w−i are of type m, and if none of them exerts level

K effort, then E[-Ri(K + 1, 1, m)|θ ′
i = m] ≥ (n−1)r

n , and the the lower bound is attained
when all w−i exert level 0 effort. If ℓ′ ≥ 1 of type m workers from w−i exert level K
effort, then E[-Ri(K + 1, 1, m)|θ ′

i = m] = r
ℓ′+1 . Thus, E[-Ri(K+1, 1, m)|θ ′

i = m] attains
the minimum value of r

ℓ+1 when type m workers in w−i exert level K effort. Note that
Pr[ℓ, θ ′

i =m]= (n−1
ℓ

)βℓ
m(

∑m−1
ℓ′=1 βℓ′)n−1−ℓ.

Combine them together, and we have

ui(eK+1, s−i(·), m) − ui(e1, s−i(·), m)

≥ (n − 1)r
n

Pr[θ ′
i < m] +

n−1∑

ℓ=1

r Pr[ℓ, θ ′
i = m]

ℓ + 1
− cm,K + cm,0

≥ r
nβm

⎛

⎝
(m∑

ℓ=1

βℓ

)n

−
(m−1∑

ℓ=1

βℓ

)n

− nβm

(m−1∑

ℓ=1

βℓ

)n−1⎞

⎠ − cm,K + cm,0

> 0.

Repeating this elimination of strictly dominated action, we eliminate all but the level
K effort for type m players. This proof is then complete.

A.3. Proof of Lemma 3.6
Consider our incentive mechanism, and assume that n ≥ 2 workers work on a
task. Given a skill type m, consider one possible selection of (β1, . . . ,βM) such that
(β1, . . . ,βM) = (0, . . . , 0, 1, 0, . . . , 0), where 1 is the m-th entry. Then Inequality (3) can
be simplified to r ≤ ncm,K. In this setting of (β1, . . . ,βM), each participating worker is of
skill type m. We first consider r = ncm,K. We consider r < ncm,K later. When r = ncm,K,

then there is an equilibrium that n − 1 workers provide their maximum effort and
one worker provides his minimum effort (i.e., zero effort). This means that Lemma 3.6
holds. Now consider r < ncm,K. It is impossible that each worker providing his max-
imum effort is an equilibrium. Note that there exists at least one equilibrium. This
lemma is then complete.

A.4. Proof of Theorem 4.3
We first show that subgame perfect equilibrium exists, and for each such equilibrium,
type M players exert level K effort. Applying the one-shot deviation principle, it is
easy to check that workers playing s∗ is a subgame perfect equilibrium. For type M
workers, by elimination of strictly dominated action, we can eliminate all but level K
effort. Examining Equation (1), one can observe that if some workers of skill type lower
than M refuse tasks, Pr[θi = M] will be increased. Then with a similar derivation as
Lemma 3.4, we conclude that by setting a reward of r > 1/γ ∗, type M players exert
level K effort for each subgame perfect equilibrium.

We now show that workers with type lower than M will play s∗ irrespective of other
workers’ actions, under the condition that type M workers exert level K effort. We say
that a worker is compliant if he plays s∗. Suppose that all workers are compliant. Let
u∞(Ia, I) denote the long-term utility for a player with initial state (Ia, I). Consider a
type m< M player at state (1, I) who is assigned a task. If he refuses the task, then his
long-term utility is δu∞(1, I). If this worker solves this task, then his long-term utility
is δu∞(1, I+1)+ui(si(m), s−i(·), m). Since type M workers are compliant, thus we obtain

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 3, Article 13, Publication date: May 2016.

Design and Analysis of Incentive and Reputation Mechanisms 13:25

the upper bound ui(si(m), s−i(·), m)< (1 − βM)n−1r. Hence, this worker will be compliant
irrespective of other workers’ actions if for all I =0, . . . , Wa − 1

δ-u(1, I) > (1 − βM)n−1r, (10)

where -u(1, I)=u∞(1, I)−u∞(1, I +1), if I <Wa −1, and -u(1, I)=u∞(1, I)−u∞(0, 0), if
I =Wa − 1. One can easily obtain that u∞(1, I)= βM

1−δ

(r
n − cM,K

)
for all I =0, . . . , Wa − 1.

And u∞(0, I) = δWb−I βM
1−δ

(r
n − cM,K) for all I = 0, . . . , Wa − 1. Applying these expressions

for the long-term utilities to Inequality (10), we complete this proof.

A.5. Proof of Theorem 5.1
With a similar derivation as Theorem 4.3, we obtain that subgame perfect equilibrium
exists, and for each of such equilibrium, type M workers exert level K effort. We next
show that players with lower skill type will play s∗ irrespective of the actions of other
workers, under the condition that type M workers exert level K effort. Consider a type
m< M player at state (1, I) who is assigned a task. If this player refuses this task, then
his long-term utility is δu∞(1, I). If this player solves this task exerting level k effort,
then his long-term utility is δ(1 − ϵm,k)u∞(1, I) + δϵm,ku∞(1, I + 1) + ui(si(m), s−i(·), m).
Observe that ui(si(m), s−i(·), m) < (1 − βM)n−1r. Thus, this player will be compliant
irrespective of other workers’ actions if ϵm,kδ[u∞(1, I) − u∞(1, I + 1)] > (1 − βM)n−1r. To
make this inequality hold for all m= 1, . . . , M − 1, k = 0, . . . , K, we only need for all
I =0, . . . , Wa − 1

-u(1, I) >
(1 − βM)n−1r

δϵM−1,K
, (11)

where -u(1, I) is defined in the proof of Theorem 4.3. The long-term utility satisfies
the following equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u∞(1, I) =
u∞(1, I + 1) +

(r
n − cM,K

)
/(δϵM,K)

(1 − δ + δβMϵM,K)/(δβMϵM,K)
, I ≤ Wa − 2

u∞(1, Wa − 1) =
u∞(0, 0) +

(r
n − cM,K

)
/(δϵM,K)

(1 − δ + δβMϵM,K)/(δβMϵM,K)
u∞(0, I) = δu∞(0, I + 1), I ≤ Wb − 2
u∞(0, Wb − 1) = δu∞(1, 0).

Solving these equations, we obtain

u∞(1, I) = βM

1 − δ

(
r
n

− cM,K

) [

1 + (δWb − 1)
(

1 − δ + δβMϵM,K

δβMϵM,K

)I

/ ((
1 − δ + δβMϵM,K

δβMϵM,K

)Wa

− δWb

)]

∀I = 0, . . . , Wa − 1, and

u∞(0, I) = δWb−IβM

1 − δ

(
r
n

− cM,K

)[

1 + (δWb − 1)

/((
1 − δ + δβMϵM,K

δβMϵM,K

)Wa

− δWb

)]

,

∀I < Wb. Substituting these expressions for the long-term utilities to Inequality (11),
we obtain the expression for reward r active window threshold Ne and blocking window
threshold Nb, respectively. Evaluating the first-order derivative of the expression for r
in terms of Ne and Nb, respectively, we complete this proof.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 3, Article 13, Publication date: May 2016.

13:26 H. Xie et al.

A.6. Proof of Lemma 6.2
Note that the crowdsourcing system is perfect (i.e., there are no erroneous ratings
in reputation updating and βM = 1), and say that tasks are assigned to high-skilled
workers with probability 1. This implies that each participating worker has skill type
M. In this scenario, to guarantee all of them providing their maximum effort, we need
a reward of at least ncM,K. This means that the maximum achievable efficiency is
Ẽ = cM,K/(ncM,K) = 1/n.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their helpful comments.

REFERENCES
Lada A. Adamic, Jun Zhang, Eytan Bakshy, and Mark S. Ackerman. 2008. Knowledge sharing and Yahoo

answers: Everyone knows something. In Proceedings of the 17th International Conference on World Wide
Web (WWW’08).

Amazon Mechanical Turk. 2008. Amazon Mechanical Turk Home Page. Retrieved March 29, 2016, from
https://www.mturk.com.

David F. Bacon, David C. Parkes, Yiling Chen, Malvika Rao, Ian Kash, and Manu Sridharan. 2012. Pre-
dicting your own effort. In Proceedings of the 11th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS’12).

Shuchi Chawla, Jason D. Hartline, and Balasubramanian Sivan. 2012. Optimal crowdsourcing contests. In
Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’12).

Clickworker. 2001. Clickworker Home Page. Retrieved March 29, 2016, from http://www.clickworker.com/.
Dominic DiPalantino and Milan Vojnovic. 2009. Crowdsourcing and all-pay auctions. In Proceedings of the

10th ACM Conference on Electronic Commerce (EC’09).
Elance. 1999. Elance Home Page. Retrieved March 29, 2016, from https://www.elance.com/.
Fiverr. 2010. Fiverr Home Page. Retrieved March 29, 2016, from https://www.fiverr.com/.
Drew Fudenberg and Jean Tirole. 1991. Game Theory. Cambridge.
Jeffrey Heer and Michael Bostock. 2010. Crowdsourcing graphical perception: Using Mechanical Turk to as-

sess visualization design. In Proceedings of the 28th SIGCHI Conference on Human Factors in Computing
Systems (CHI’10).

M. Hirth, T. Hossfeld, and P. Tran-Gia. 2011. Cost-optimal validation mechanisms and cheat-detection for
crowdsourcing platforms. In Proceedings of the 5th International Conference on Innovative Mobile and
Internet Services in Ubiquitous Computing (IMIS’11).

Chien-Ju Ho and Jennifer Wortman Vaughan. 2012. Online task assignment in crowdsourcing markets. In
Proceedings of the 26th AAAI Conference on Artificial Intelligence.

C.-J. Ho, Y. Zhang, J. Vaughan, and M. van der Schaar. 2012. Towards social norm design for crowdsourcing
markets. In Proceedings of the 4th Human Computation Workshop (HCOMP’12).

John Horton. 2010. Online labor markets. In Internet and Network Economics. Lecture Notes in Computer
Science, Vol. 6484. Springer, 515–522.

John Joseph Horton and Lydia B. Chilton. 2010. The labor economics of paid crowdsourcing. In Proceedings
of the 11th ACM Conference on Electronic Commerce (EC’10).

Jeff Howe. 2006. The rise of crowdsourcing. Wired Magazine 14, 6, 1–4.
Jeff Howe. 2008. Crowdsourcing: Why the Power of the Crowd Is Driving the Future of Business. Crown

Business.
Panagiotis G. Ipeirotis. 2010. Analyzing the Amazon Mechanical Turk marketplace. XRDS: Crossroads, The

ACM Magazine for Students 17, 2, 16–21.
Panagiotis G. Ipeirotis, Foster Provost, and Jing Wang. 2010. Quality management on Amazon Mechanical

Turk. In Proceedings of the 2nd Human Computation Workshop (HCOMP’10).
Shaili Jain, Yiling Chen, and David C. Parkes. 2009. Designing incentives for online question and answer

forums. In Proceedings of the 10th ACM Conference on Electronic Commerce (EC’09).
Haiming Jin, Lu Su, Danyang Chen, Klara Nahrstedt, and Jinhui Xu. 2015. Quality of information aware

incentive mechanisms for mobile crowd sensing systems. In Proceedings of the 16th ACM International
Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc’15).

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 3, Article 13, Publication date: May 2016.

https://www.mturk.com
http://www.clickworker.com/
https://www.elance.com/
https://www.fiverr.com/

Design and Analysis of Incentive and Reputation Mechanisms 13:27

Michihiro Kandori. 1992. Social norms and community enforcement. Review of Economic Studies 59, 1,
63–80.

David R. Karger, Sewoong Oh, and Devavrat Shah. 2013. Efficient crowdsourcing for multi-class labeling.
In Proceedings of the ACM SIGMETRICS/International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS’13).

Winter Mason and Siddharth Suri. 2012. Conducting behavioral research on Amazon Mechanical Turk.
Behavior Research Methods 44, 1, 1–23. http://dx.doi.org/10.3758/s13428-011-0124-6.

Winter Mason and Duncan J. Watts. 2010. Financial incentives and the “performance of crowds.” ACM
SIGKDD Explorations 11, 2, 100–108.

Microtask. 2003. Microtask Home Page. Retrieved March 29, 2016, from http://www.microtask.com/.
Gabriele Paolacci, Jesse Chandler, and Panagiotis Ipeirotis. 2010. Running experiments on Amazon Mechan-

ical Turk. Judgment and Decision Making 5, 5, 411–419.
Scrapy. 2008. Scrapy Home Page. Retrieved March 29, 2016, from http://scrapy.org/.
Aaron D. Shaw, John J. Horton, and Daniel L. Chen. 2011. Designing incentives for inexpert human raters.

In Proceedings of the 14th ACM Conference on Computer Supported Cooperative Work (CSCW’11).
Yaron Singer and Manas Mittal. 2013. Pricing mechanisms for crowdsourcing markets. In Proceedings of the

22nd International Conference on World Wide Web (WWW’13).
Adish Singla and Andreas Krause. 2013. Truthful incentives in crowdsourcing tasks using regret minimiza-

tion mechanisms. In Proceedings of the 22nd International Conference on World Wide Web (WWW’13).
Taskcn. 2010. Taskcn Home Page. Retrieved March 29, 2016, from http://www.taskcn.com/.
Threadless. 2000. Threadless Home Page. Retrieved March 29, 2016, from http://www.threadless.com/.
Long Tran-Thanh, Sebastian Stein, Alex Rogers, and Nicholas R. Jennings. 2012. Efficient crowdsourcing

of unknown experts using multi-armed bandits. In Proceedings of the 20th European Conference on
Artificial Intelligence (ECAI’12). 768–773.

Luis Von Ahn. 2006. Games with a purpose. Computer 39, 6, 92–94.
Wikipedia. 2003a. Macrotasking. Retrieved March 29, 2016, from https://en.wikipedia.org/wiki/Macrotasking.
Wikipedia. 2003b. Microwork. Retrieved March 29, 2016, from https://en.wikipedia.org/wiki/Microwork.
Y. Xiao, Y. Zhang, and M. van der Schaar. 2013. Socially-optimal design of crowdsourcing platforms with

reputation update errors. In Proceedings of the 38th IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP’13).

Hong Xie, John C. S. Lui, and Wenjie Jiang. 2014. Mathematical modeling of crowdsourcing systems: Incen-
tive mechanism and rating system design. In Proceedings of the IEEE 22nd International Symposium
on Modelling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS’14).

Hong Xie, John C. S. Lui, and Don Towsley. 2015. Incentive and reputation mechanisms for online crowd-
sourcing systems. In Proceedings of the 23rd IEEE/ACM International Symposium on Quality of Service
(IWQoS’15).

Yahoo! Answers. 2012. Yahoo! Answers Home Page. Retrieved March 29, 2016, from http://answers.
yahoo.com.

Man-Ching Yuen, I. King, and Kwong-Sak Leung. 2011. A survey of crowdsourcing systems. In Proceed-
ings of the IEEE 3rd International Conference on Privacy, Security, Risk, and Trust (PASSAT’11) and
Proceedings of the IEEE 3rd International Conference on Social Computing (SocialCom’11).

Y. Zhang and M. van der Schaar. 2012. Reputation-based incentive protocols in crowdsourcing applica-
tions. In Proceedings of the 31st Annual IEEE International Conference on Computer Communications
(INFOCOM’12).

Received September 2015; revised January 2016; accepted February 2016

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 3, Article 13, Publication date: May 2016.

http://dx.doi.org/10.3758/s13428-011-0124-6
http://www.microtask.com/
http://scrapy.org/
http://www.taskcn.com/
http://www.threadless.com/
https://en.wikipedia.org/wiki/Macrotasking
https://en.wikipedia.org/wiki/Microwork
http://answers.yahoo.com
http://answers.yahoo.com

