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Abstract
Combinatorial multi-armed bandit (CMAB) is a fundamental on-
line learning framework that can optimize cumulative rewards in
networked systems under uncertainty. Real-world applications like
content delivery and channel allocation often feature binary base
arm rewards and nonlinear total reward functions. This paper intro-
duces combinatorial logistic bandits (CLogB), a contextual CMAB
framework with the base arm reward modeled as a nonlinear lo-
gistic function of the context, and the feedback is governed by
a general arm-triggering process. We study CLogB with smooth
reward functions, covering applications such as online content de-
livery, online multi-LLM selection, and dynamic channel allocation.
Our !rst algorithm, CLogUCB, uses a variance-agnostic exploration
bonus and achieves a regret bound of 𝐿̃ (𝑀

→
𝑁𝑂𝑃 ), where 𝑀 is the

feature dimension, 𝑁 re"ects logistic model nonlinearity, 𝑂 is the
maximum number of triggered arms, and 𝐿̃ ignores logarithmic fac-
tors. This improves on prior results by 𝐿̃ (

→
𝑁). We further propose

VA-CLogUCB, a variance-adaptive enhancement achieving regret
bounds of 𝐿̃ (𝑀

→
𝑂𝑃 ) under standard smoothness conditions and

𝐿̃ (𝑀
→
𝑃 ) under stronger variance conditions, removing dependence

on 𝑂 . For time-invariant feature maps, we enhance computational
e#ciency by avoiding nonconvex optimization while maintaining
𝐿̃ (𝑀

→
𝑃 ) regret. Experiments on synthetic and real-world datasets

validate the superior performance of our algorithms, demonstrat-
ing their e$ectiveness and scalability for real-world networked
systems.

CCS Concepts
• Theory of computation↑ Online learning theory; • Com-
puting methodologies ↑ Planning under uncertainty; Learning
from implicit feedback; • Networks↑ Network performance
analysis.

Keywords
Multi-armed bandits, combinatorial multi-armed bandits, logistic
model, variance-adaptive, regret
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1 Combinatorial Logistic Bandit Model
We introduce ourmodel for the combinatorial logistic bandit (CLogB)
problem. A CLogB instance is a tuple ( [𝑄],ω,ε,S,𝑅trig,𝑆), where
[𝑄] are base arms, S are combinatorial actions, ω are feature maps,
ε is the parameter space, 𝑅trig is the probabilistic triggering func-
tion, and 𝑆 is the reward function, which are introduced later. Our
model is mainly based on [3, 4], but introduces a nonlinear pa-
rameterization for the binary outcome of each base arm based on
the logistic bandit model [1]. For more comparisons with existing
models, see Section 2.2 in our full paper [2].

Base arms and combinatorial actions. The environment has
a set of [𝑄] = {1, 2, ...,𝑄} base arms and chooses an unknown
parameter 𝜴 ↓ ↔ ε, whereε is the set of feasible parameters. At each
round 𝑇 ↔ [𝑃 ], the environment !rst reveals a feature map 𝑈𝐿 ↔ ω
to the learner, where 𝑈𝐿 is a function [𝑄] ↑ R𝑀 . The environment
then draws Bernoulli outcomes 𝜶𝐿 = (𝑉𝐿,1, ...𝑉𝐿,𝑁) ↔ {0, 1}𝑁 with
mean 𝑊𝐿,𝑂 := E[𝑉𝐿 ,𝑂 |H𝐿 ] = 𝑋 (𝜴 ↓↗𝜷𝐿 (𝑌)). Here, 𝜴 ↓↗𝜷𝐿 (𝑌) is the linear
predictor, 𝑋 : R ↑ R+ is the sigmoid function 𝑋 (𝑍) := (1 + 𝑎↘𝑃 )↘1
as shown in Fig. 1a that links the linear predictor and the mean
𝑊𝐿,𝑂 in a nonlinear manner, andH𝐿 denotes the history information.
Then the learner selects a combinatorial action 𝑏𝐿 ↔ S, where S is
the set of feasible actions.

Probablistically triggering arm feedback.We consider a feed-
back process that involves scenarios where each base arm in a super
arm 𝑏𝐿 does not always reveal its outcome, even probabilistically. To
handle such probabilistic feedback, we assume that after the action
𝑏𝐿 is selected, the base arms in a random set 𝑐𝐿 ≃ 𝑅trig (𝑏𝐿 ,𝜶𝐿 ) are
triggered depending on the outcome 𝜶𝐿 , where 𝑅trig (𝑏,𝜶 ) is the
probabilistic triggering function on the subsets 2[𝑁] . This means
that the outcomes of the arms in 𝑐𝐿 , i.e., (𝑉𝐿 ,𝑂 )𝑂↔𝑄𝐿 are revealed as
feedback to the learner. We let 𝑑𝜴,𝑅𝑂 denote the probability that base
arm 𝑌 is triggered when the action is 𝑏 , the mean vector is 𝜸.

Reward function. At the end of round 𝑇 , the learner receives
a nonnegative reward 𝑆(𝑏𝐿 ,𝜶𝐿 , 𝑐𝐿 ), determined by action 𝑏𝐿 , out-
come 𝜶𝐿 , and triggered arm set 𝑐𝐿 . Similarly to [4], we assume the
expected reward to be 𝑒 (𝑏𝐿 ; 𝜸𝐿 ) := E[𝑆(𝑏𝐿 ,𝜶𝐿 , 𝑐𝐿 )], a function of
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(a) Sigmoid function (b) Content delivery network
Figure 1: Left: illustration of a sigmoid function. Right:
CLogB for content delivery networks as an application.

the unknown mean vector 𝜸𝐿 , where the expectation is taken over
the randomness of 𝜶𝐿 and 𝑐𝐿 ≃ 𝑅trig (𝑏𝐿 ,𝜶𝐿 ).

O!line approximation oracle and approximate regret. The
goal of CLogB is to accumulate as much reward as possible over 𝑃
rounds by learning the underlying parameter 𝜴 ↓. For many reward
functions, it is NP hard to compute the exact 𝑏↓𝐿 even when 𝜸𝐿 is
known, so similar to [3, 4], we assume that algorithm 𝑓 has access
to an o%ine 𝑔-approximation oracle ORACLE, which takes any
mean vector 𝜸 ↔ [0, 1]𝑁 as input, and outputs an 𝑔-approximate
solution 𝑏 ↔ S, i.e.,

𝑏 = ORACLE(𝜸) s.t. 𝑒 (𝑏 ; 𝜸) ⇐ 𝑔 · max
𝑅 ⇒ ↔S

𝑒 (𝑏 ⇒; 𝜸) (1)

The 𝑃 -round 𝑔-approximate regret is then de!ned as

Reg(𝑃 ) = E
[∑𝑆

𝐿=1
(
𝑔 · 𝑒 (𝑏↓𝐿 ; 𝜸𝐿 ) ↘ 𝑒 (𝑏𝐿 ; 𝜸𝐿 )

) ]
, (2)

where the expectation is taken over the randomness of outcomes
𝜶1, ...,𝜶𝑆 , the triggered sets 𝑐1, ..., 𝑐𝑆 , as well as the randomness of
the algorithm itself.

1.1 Key Assumptions and Conditions
We consider the following assumptions/conditions at the arm and
reward level, see Seciton 2.3 of the full paper [2] for their intuitions
and more explanations.
Arm-level assumptions. Assumption 1 bounds the range of plau-
sible feature vectors for each base arm and unknown parameters.
Assumption 2 bounds the nonlinearity level of the base arm mean
regarding all plausible linear predictor 𝜴↗𝜷 (𝑌).

Assumption 1 (Bounded parameter and arm feature). There
exists a known constant 𝑕 > 0 such that for any 𝜴 ↔ ε, ⇑𝜴 ⇑2 ⇓ 𝑕.
For any 𝑈 ↔ ω and 𝑌 ↔ [𝑄], it holds that ⇑𝜷 (𝑌)⇑2 ⇓ 1.

Assumption 2 (Arm-level nonlinearity). There exists a known

𝑁 > 0 such that
(
min𝑂↔ [𝑁],𝑇↔ω,𝜶 ↓↔ε ⇔𝑋 (𝜴↗𝜷 (𝑌))

)↘1
⇓ 𝑁 .

Reward-level conditions. Condition 1 indicates the reward mono-
tonically increases when the parameter 𝜸 increases. Condition 2 and
3 both bound the reward smoothness/sensitivity, i.e., the amount of
the reward change caused by the parameter change from 𝜸 to 𝜸

⇒.

Condition 1 (Monotonicity). A CLogB problem satis!es mono-
tonicity condition if for any action 𝑏 ↔ S, any mean vectors 𝜸, 𝜸⇒ ↔
[0, 1]𝑁 s.t. 𝑊𝑂 ⇓ 𝑊⇒𝑂 for all 𝑌 ↔ [𝑄], we have 𝑒 (𝑏 ; 𝜸) ⇓ 𝑒 (𝑏 ; 𝜸⇒).

Condition 2 (1-norm TPM bounded smoothness, [4]). We say
that a CLogB problem satis!es the 1-norm triggering probability
modulated (TPM) 𝑖1-bounded smoothness condition, if there exists
𝑖1 > 0, such that for any action 𝑏 ↔ S, any mean vectors 𝜸, 𝜸⇒ ↔
[0, 1]𝑁 , we have |𝑒 (𝑏 ; 𝜸⇒) ↘ 𝑒 (𝑏 ; 𝜸) | ⇓ 𝑖1

∑
𝑂↔ [𝑁] 𝑑

𝜴,𝑅
𝑂 |𝑊𝑂 ↘ 𝑊⇒𝑂 |.

Condition 3 (TPVM bounded smoothness, [3]). We say that a
CLogB problem satis!es the triggering probability and variance modu-
lated (TPVM) (𝑖𝑈,𝑖1, 𝑗)-bounded smoothness condition, if there exists
𝑖𝑈,𝑖1, 𝑗 > 0 such that for any action 𝑏 ↔ S, any mean vector 𝜸, 𝜸⇒ ↔
(0, 1)𝑁 , for any 𝜹 ,𝝐 ↔ [↘1, 1]𝑁 s.t. 𝜸⇒ = 𝜸+𝜹 +𝝐, we have |𝑒 (𝑏 ; 𝜸⇒)↘

𝑒 (𝑏 ; 𝜸) | ⇓ 𝑖𝑈

√∑
𝑂↔ [𝑁] (𝑑

𝜴,𝑅
𝑂 )𝑉

𝑊 2
𝑀

(1↘𝑋𝑀 )𝑋𝑀 + 𝑖1
∑
𝑂↔ [𝑁] 𝑑

𝜴,𝑅
𝑂 |𝑘𝑂 |.

2 Variance-Agnostic CLogUCB Algorithm,
Regret, Applications, and Experiments

In this abstract, we will introduce a variance-agnostic CLogUCB
algorithm with 𝐿̃ (𝑀

→
𝑁𝑂𝑃 ) regret under the 1-norm TPM condi-

tion. Then in the full paper [2], we devise the variance-adaptive
VA-CLogUCB algorithm with improved 𝐿̃ (𝑀

→
𝑃 ) regret under the

stronger TPVM condition. Finally, we improve the computational
e#ciency of VA-CLogUCB while maintaining the regret results. We
summarize their regret bounds and per-round time complexity in
Table 1.

Maximum likelihood estimation. We !rst introduce the pa-
rameter learning process, which utilizes the maximum likelihood
estimation (MLE) and lays the foundations of our combinatorial
UCB-based algorithms throughout the paper. Based on historical
dataH𝐿 = (𝜷𝑌 , 𝑏𝑌 , 𝑐𝑌 , (𝑉𝑌,𝑂 )𝑂↔𝑄𝑁 )𝑌<𝐿

⋃
𝜷𝐿 , we consider the following

regularized log-likelihood (or cross-entropy loss) for 𝑇 ↔ [𝑃 ]:

L𝐿 (𝜴 ) := ↘
∑𝐿↘1
𝑌=1

∑
𝑂↔𝑄𝑁

[
𝑉𝑌,𝑂 log 𝑋

(
𝜴
↗
𝜷𝑌 (𝑌)

)
+(

1 ↘ 𝑉𝑌,𝑂
)
· log

(
1 ↘ 𝑋

(
𝜴
↗
𝜷𝑌 (𝑌)

) ) ]
+

𝑉𝐿
2 ⇑𝜴 ⇑

2
2 .

(3)

where 𝑗𝐿 = 𝐿 (𝑀 log(𝑂𝑇)) is a time-varying regularizer that will be
speci!ed later on in Algorithms. Our MLE estimator is de!ned as

𝜴̂𝐿 := argmin𝜶 ↔R𝑂 L𝐿 (𝜴 ) . (4)

For this loss function L𝐿 (𝜴 ), it is convenient to de!ne a mapping
𝜻𝐿 : R𝑀 ↑ R𝑀 𝜻𝐿 (𝜴 ) :=

∑𝐿↘1
𝑌=1

∑
𝑂↔𝑄𝑁 𝑋

(
𝜴
↗
𝜷𝑌 (𝑌)

)
𝜷𝑌 (𝑌) + 𝑗𝐿𝜴 . Then

we can express the gradient ↖𝜶L𝐿 (𝜴 ) at 𝜴 as: ↖𝜶L𝐿 (𝜴 ) = 𝜻𝐿 (𝜴 ) ↘∑𝐿↘1
𝑌=1

∑
𝑂↔𝑄𝑁 𝑉𝑌,𝑂𝜷𝑌 (𝑌). Lastly, we de!ne Hessian 𝜼𝐿 (𝜴 ) of the log-

loss and the covariance matrix 𝜽𝐿 as two important quantities used
in our algorithm design and analysis.

𝜼𝐿 (𝜴 ) :=
∑𝐿↘1
𝑌=1

∑
𝑂↔𝑄𝑁

⇔𝑋
(
𝜴
↗
𝜷𝑌 (𝑌)

)
𝜷
↗
𝑌 (𝑌)𝜷𝑌 (𝑌) + 𝑗𝐿 𝜾𝑀 , (5)

𝜽𝐿 :=
∑𝐿↘1
𝑌=1

∑
𝑂↔𝑄𝑁 𝜷

↗
𝑌 (𝑌)𝜷𝑌 (𝑌) + 𝑁𝑗𝐿 𝜾𝑀 .. (6)

We show that 𝜴̂𝐿 is a good estimator by bounding the distance
between 𝜴̂𝐿 and 𝜴 ↓ via mapping 𝑙𝐿 .

Lemma 1 (Concentration inequality for MLE). Let 𝜴̂𝐿 be the MLE
as de!ned in Eq. (4), it holds with probability at least 1 ↘ 𝑚 that:***𝜻𝐿 (𝜴̂𝐿 ) ↘ 𝜻𝐿

(
𝜴
↓
)***

𝜷 ↘1
𝐿 (𝜶 ↓ )

⇓ 𝑛𝐿 (𝑚), ↙𝑇 ⇐ 1,

where 𝑛𝐿 (𝑚) := (𝑕 + 3/2)
√
𝑀 log (4(1+𝐿𝑍 )/𝑎) is the con!dence radius.

Therefore, it holds with probability at least 1 ↘ 𝑚 that {↙𝑇 ⇐ 1, 𝜴 ↓ ↔

A𝐿 (𝑚)}, whereA𝐿 (𝑚) :=
{
𝜴 ↔ ε :

***𝜻𝐿 (𝜴̂𝐿 ) ↘ 𝜻𝐿 (𝜴 )

***
𝜷 ↘1

𝐿 (𝜶 )
⇓ 𝑛𝐿 (𝑚)

}
.

Variance-agnostic con"dence region. We !rst construct the
following variance-agnostic con!dence region around the MLE 𝜴̂𝐿 .
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Table 1: Summary of the main results and additional results for CLogB with time-invariant features (CLogB-TI).
CLogB Algorithm Condition Coe#cient Regret Bound Per-round Cost

(Main Result 1) CLogUCB (Algorithm 1) 1-norm TPM 𝑖1 𝐿̃
(
𝑖1𝑀

→
𝑁𝑂𝑃

)
𝐿̃
(
𝑀𝑂2𝑃 2

+𝑃𝑏
)

(Main Result 2) VA-CLogUCB (Full paper [2]) 1-norm TPM 𝑖1 𝐿̃
(
𝑖1𝑀

→
𝑂𝑃 + 𝑖1𝑁𝑀2

)
𝐿̃
(
𝑀𝑂2𝑃 2

+𝑃nc +𝑃𝑏
)

(Main Result 3) VA-CLogUCB (Full paper [2]) TPVM 𝑖𝑈 †, 𝑗 ⇐ 1‡ 𝐿̃
(
𝑖𝑈𝑀

→
𝑃 + 𝑖1𝑁𝑀2

)
𝐿
(
𝑀𝑂2𝑃 2

+𝑃nc +𝑃𝑏
)

CLogB-TI Algorithm Condition Coe#cient Regret Bound
(Additional Result 1) EVA-CLogUCB (Full paper [2]) 1-norm TPM 𝑖1 𝐿̃

(
𝑖1𝑀

→
𝑂𝑃 + 𝑖1𝑁𝑂𝑀2

)
𝐿
(
𝑀𝑂2𝑃 2

+𝑃𝑏
)

(Additional Result 2) EVA-CLogUCB (Full paper [2]) TPVM 𝑖𝑈, 𝑗 ⇐ 1 𝐿̃
(
𝑖𝑈𝑀

→
𝑃 + 𝑖1𝑁𝑂𝑀2

)
𝐿̃
(
𝑀𝑂2𝑃 2

+𝑃𝑏
)

This table assumes𝑆 ∝ 𝑁 ⇐ 𝑍 ∝ 𝑀 . ↓↓ 𝑆nc and𝑆𝑃 are the time to solve a nonconvex projection problem and an 𝑏-approximation for the combinatorial optimization problem,
respectively. † Generally, coe#cient 𝑐𝑄 = 𝑑 (𝑐1

→
𝑍 ) and the existing regret bound is improved when 𝑐𝑄 = 𝑒 (𝑐1

→
𝑍 )

‡ 𝑉 is a coe#cient in TPVM condition: when 𝑉 is larger,
the condition is stronger with smaller regret but can include fewer applications.

Algorithm 1 CLogUCB:Combinatorial LogisitcUpperCon!dence
Bound Algorithm for CLogB

1: Input: Base arms [𝑄], dimension 𝑀 , parameter space ε, non-
linearity coe#cient 𝑁, probability 𝑚 = 1/𝑆 , o%ine ORACLE.

2: for 𝑇 = 1, ...,𝑃 do
3: ComputeMLE 𝜴̂𝐿 = argmax𝜶 ↔R𝑂 L𝐿 (𝜴 ) according to Eq. (3)

with 𝑗𝐿 = 𝑀 log (4(1+𝐿𝑍 )/𝑎).
4: Compute the covariance matrix 𝜽𝐿 according to Eq. (6).
5: for 𝑌 ↔ [𝑄] do
6: 𝑊𝐿,𝑂 = 𝑋

(
𝜴̂
↗
𝐿 𝜷𝐿 (𝑌)

)
+ 𝑜𝐿 (𝑚) ⇑𝜷𝐿 (𝑌)⇑𝜸 ↘1

𝐿
with 𝑜𝐿 (𝑚) =(

𝑕2 + 4𝑕 + 19/4
) √

𝑁𝑀 log (4(1+𝐿𝑍 )/𝑎).
7: end for
8: 𝑏𝐿 = ORACLE(𝑊𝐿 ,1, ..., 𝑊𝐿,𝑁) as in Eq. (1).
9: Play 𝑏𝐿 and observe triggering arm set 𝑐𝐿 with their out-

comes (𝑉𝐿 ,𝑂 )𝑂↔𝑄𝐿 .
10: end for

Lemma 2. Let 𝑚 ↔ (0, 1] and set the con!dence radius 𝑜𝐿 (𝑚) :=(
𝑕2 + 4𝑕 + 19/4

) √
𝑁𝑀 log (4(1+𝐿𝑍 )/𝑎). The following region

B𝐿 (𝑚) :=
{
𝜴 ↔ ε :

***𝜴 ↘ 𝜴̂𝐿

***
Vt

⇓ 𝑜𝐿 (𝑚)

}
, (7)

is an anytime con!dence region for 𝜴 ↓ with probability at least 1 ↘ 𝑚 ,
i.e., Pr (↙𝑇 ⇐ 1, 𝜴 ↓ ↔ B𝐿 (𝑚)) ⇐ 1 ↘ 𝑚 .

Based on the above con!dence region, we can now construct
our variance-agnostic exploration bonus.

Lemma 3. Let 𝑖𝐿 (𝑚) be the con!dence region with the con!dence
radius 𝑜𝐿 (𝑚) as de!ned in Lemma 2. Let the exploration bonus be
𝑝𝐿,𝑓 (𝑌) := 1

4 𝑜𝐿 (𝑚) ⇑𝜷𝐿 (𝑌)⇑𝜸 ↘1
𝐿

.Under the event {↙𝑇 ⇐ 1, 𝜴 ↓ ↔ B𝐿 (𝑚)},

it holds that, for any 𝑌 ↔ [𝑄], 𝑇 ⇐ 1, 𝑋
(
𝜴
↓↗

𝜷𝐿 (𝑌)
)
⇓ 𝑋

(
𝜴̂
↗
𝐿 𝜷𝐿 (𝑌)

)
+

𝑝𝐿,𝑓 (𝑌) ⇓ 𝑋
(
𝜴
↓↗

𝜷𝐿 (𝑌)
)
+ 2𝑝𝐿 ,𝑓 (𝑌) .

Finally we can use the variance-agnostic upper con!dence bound
𝑊𝐿 ,𝑂 := 𝑋

(
𝜴̂
↗
𝐿 𝜷𝐿 (𝑌)

)
+𝑝𝐿,𝑓 (𝑌) as our optimistic estimation of the true

mean 𝑊𝐿 ,𝑂 to balance the exploration-exploitation tradeo$.
Variance-agnostic CLogUCB algorithm. Based on this ex-

ploration bonus, we introduce a simple yet e#cient CLogUCB al-
gorithm and prove the !rst regret bound for applications under
the 1-norm TPM smoothness condition. In Line 4, we compute the
covariance matrix 𝜽𝐿 in order to compute the exploration bonus
𝑝𝐿,𝑓 (𝑌) de!ned as in Lemma 3. In Line 6, we construct an upper

con!dence bound 𝑊𝐿,𝑂 for each arm 𝑌 based on Lemma 2, where
𝑋
(
𝜴̂
↗
𝐿 𝜷𝐿 (𝑌)

)
is the MLE estimation of 𝑊𝐿,𝑂 and 𝑜𝐿 (𝑚) ⇑𝜷𝐿 (𝑌)⇑𝜸 ↘1

𝐿
is

the exploration bonus in the direction 𝜷𝐿 (𝑌). After computing the
UCB values 𝑊𝐿 , the learner selects action 𝑏𝐿 through the o%ine
oracle with 𝜸̄𝐿 as input. Then, the base arms in 𝑐𝐿 are triggered, and
the learner receives the observation set (𝑉𝐿,𝑂 )𝑂↔𝑄𝐿 as feedback to
improve future decisions. Now we provide the regret upper bound
for applications under the 1-norm TPM condition.

Theorem 1. For a CLogB instance that satis!es monotonicity
(Condition 1) and 1-norm TPM smoothness (Condition 2) with coef-
!cient 𝑖1, CLogUCB (Algorithm 1) with an 𝑔-approximation oracle
achieves an𝑔-approximate regret bounded by𝐿

(
𝑖1𝑀

→
𝑁𝑂𝑃 log(𝑂𝑃 )

)
.

Representative applications and experiments.We show that
our framework can cover a diverse range of application scenarios,
including online content delivery, dynamic channel allocation, on-
line packet routing, and online multi-LLM selection, which are
detailed in Section 3 in the full paper [2]. We also validate our
theoretical results through experiments on both synthetic and real-
world datasets, demonstrating at least 53% regret improvement
compared to baseline algorithms. See the full paper [2] for details.

Acknowledgement
The work of Xutong Liu was supported in part by a fellowship
award from the Research Grants Council of the Hong Kong Special
Administrative Region, China (CUHK PDFS2324-4S04). The work of
John C.S. Lui was supported in part by the RGC GRF-14202923. The
work is supported by the National Science Foundation under awards
CNS-2102963, CAREER-2045641, CNS-2106299, CPS-2136199, and
CNS-2325956. (Corresponding author: Xuchuang Wang.)

References
[1] Louis Faury, Marc Abeille, Clément Calauzènes, and Olivier Fercoq. 2020. Improved

optimistic algorithms for logistic bandits. In International Conference on Machine
Learning. PMLR, 3052–3060.

[2] Xutong Liu, Xiangxiang Dai, Xuchuang Wang, Mohammad Hajiesmaili, and John
Lui. 2024. Combinatorial Logistic Bandits. arXiv preprint arXiv:2410.17075 (2024).

[3] Xutong Liu, Jinhang Zuo, Siwei Wang, John CS Lui, Mohammad Hajiesmaili,
Adam Wierman, and Wei Chen. 2023. Contextual combinatorial bandits with
probabilistically triggered arms. In International Conference on Machine Learning.
PMLR, 22559–22593.

[4] Qinshi Wang and Wei Chen. 2017. Improving regret bounds for combinatorial
semi-bandits with probabilistically triggered arms and its applications. InAdvances
in Neural Information Processing Systems. 1161–1171.

114


