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leader explores arms and recommends them to other agents (followers) to exploit. As agents’ active rounds
are unknown, a competent leader must be chosen dynamically. We propose a variant of the Tsallis-INF
algorithm with low switches to choose such a leader sequence. Lastly, we report numerical simulations of our
new asynchronous algorithms with other known baselines.
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1 INTRODUCTION
Multi-agent multi-armed bandit (MA2B) is an important extension of the canonical multi-armed
bandit model [38] in sequential decision making. A MA2B model consists of 𝐿 ↑ N+ arms and
𝑀 ↑ N+ agents. Each of these 𝐿 arms is associated with a reward distribution, and whenever an
agent pulls an arm, they receive a reward sample drawn from their distribution. Most prior works
on MA2B study the stylized setting where agents are fully synchronous [11, 13, 14, 21, 58, 61, 64],
meaning all𝑀 agents have synchronously aligned decision rounds. In this setting, at each time slot,
every agent chooses one arm to pull and obtains a reward sample. The objective is to maximize the
cumulative rewards of all agents over a given time horizon 𝑁 ↑ N+ that is often large in practice.

In real-world distributed systems, however, agents are inherently asynchronous. For example, in
clinical trials involving multiple hospitals (i.e., agents) with di"erent patient groups, the timing
of treatments may depend on patient availability, leading to non-deterministic and asynchronous
decision-making rounds [6, 46]. Similarly, in the operation ofmultiple drones (i.e., agents), drones are
tasked with various missions, and their ability to cooperate for speci!c tasks, such as path planning,
often occurs asynchronously due to di"ering schedules [56]. Other examples of asynchronous
agents include multiple secondary users sensing channel availability in cognitive radio network [43],
and multiple edge devices searching for e#cient servers in edge computing environments [26].

To address the natural asynchronicity in these online distributed systems, this paper studies the
Asynchronous Multi-Agent Multi-Armed Bandits (AMA2B) model, where agents operate in fully
asynchronous decision-making scenarios. In AMA2B, not all agents are active (available) in each time
slot; instead, only a subset of agents is active for pulling arms. The active time slots for each agent
can be irregularly spaced and unknown. In this paper, we study two types of cooperation: fully
distributed and leader-coordinated. In fully distributed cooperation, all agents participate equally
in cooperation (communication) and learning (arm exploration). This type of cooperation is suited
for distributed systems with similar agents, such as multiple drones with identical speci!cations.
On the other hand, the leader-coordinated cooperation imposes a hierarchical structure consisting
of one leader agent and multiple followers. The leader performs exploration and recommends arms
for followers to exploit. This model is applicable to systems with heterogeneous agents, such as
drone swarms where some drones have specialized computation and storage units, or clinical trials
where certain hospitals possess advanced testing labs. In these cases, the high-capacity agent is
designated as the leader. These two cooperation models are fundamentally di"erent, and designing
cooperative algorithms for both requires addressing distinct challenges.

The primary objective of AMA2B is to minimize regret, which is the aggregate cumulative di"er-
ences between rewards from all active agents pulling the optimal arm and those generated by the
cooperative algorithm’s arm-pulling policy. Minimizing regret is equivalent to maximizing the total
reward of all agents. However, in a multi-agent system, the focus extends beyond just minimizing
regret to also developing e#cient cooperative algorithms that require low communication overhead.
To achieve these goals, we pose the following research question:

Can we design asynchronous algorithms that achieve (near-)optimal regret with constant communi-
cation costs, on par with their synchronous counterparts, in both fully distributed and leader-coordinated
paradigms?

1.1 Overview of Technical Challenges
The fundamental challenge of the AMA2B model arises from the fact that the agents’ asynchronous
activations are unknown and arbitrarily spaced. Without the alignment of decision rounds, many
existing cooperation learning approaches become invalid. In fully distributed cooperation, each
agent must decide when and with whom to communicate. In synchronous scenarios, this can be

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 1, Article 3. Publication date: March 2025.



Asynchronous Multi-Agent Bandits 3:3

𝑂 𝐾2𝑀Δ2−2 + 𝑀3

Constant  Communication

𝑂 𝐾𝑀 log Δ2−1

𝑂 ෍
𝑘>1

log𝑇
Δ𝑘

𝑂 ෍
𝑘>1

Δ𝑘 log𝑇
kl(𝜇𝑘, 𝜇𝑘∗)

AAC+ODC

SE
Near-Optimal Regret

Relay

LFLem. 6

Lem. 1

Prop. 3

Thm. 4

Fully Distributed: Algorithm 1 & Theorem 2 Leader-Coordinated: Algo. 2-4 & Theorem 5

Fig. 1. Overview of algorithms and results: the fully distributed SE-AAC-ODC a!ains smaller communications,
while the leader-coordinated LF-Relay enjoys a be!er regret bound.

easily managed by uniformly communicating with all other agents, assuming full connectivity
among them. However, in asynchronous environments, some agentsmay be highly active, frequently
collecting and sharing observations, while others may operate at a much lower frequency or
even exit the system before the time horizon concludes. This makes communicating with less-
active agents less bene!cial. To overcome this challenge, an adaptive communication policy is
required—one that can dynamically adjust both the timing of communication and the choice of
communication partners based on agents’ activity levels.
In leader-coordinated cooperation, the key challenge is how to select a competent leader—an

agent remains active at a relatively high frequency throughout the time horizon. In synchronous
scenarios, one can simply pick any agent as the leader. In asynchronous scenarios, however, agents’
decision rounds are unknown and potentially adversarial, making it impossible to pre-select a
competent leader. Tackling this challenging problem requires a dynamic leader selection approach
to adaptively switch the leadership among agents as the time horizon progresses. This process
introduces additional communication costs, so it is crucial to design a policy that minimizes
unnecessary leadership switches, ensuring changes only occur when absolutely necessary.

1.2 Contributions
We formally introduce the asynchronous multi-agent multi-armed bandit problem (AMA2B) and its
motivating applications in §2. Following this, we propose fully distributed algorithms (in §3) and
leader-coordinated algorithms (in §4). Below, we summarize the key technical contributions of this
paper. An overview of the algorithmic techniques and results is provided in Figure 1. Additionally,
we compare the results with closely related prior works in §1.3.

First, we propose a fully distributed algorithm for AMA2B. The key challenges for devising an
e#cient communication policy for each agent are (i) determining when to trigger communication
and, if triggered, (ii) selecting which agents to communicate with. To tackle these challenges, we
introduce the accuracy adaptive communication (AAC) policy, which uses the relative amount of
“new information” from recent local observations to decide when to communicate. We also propose
the on-demand communication (ODC) policy, which utilizes token exchanges to identify eligible
agents for communication. In addition to these communication protocols, we apply the successive
elimination (SE) mechanism for arm pulling, which maintains a candidate arm set for pulling and
gradually eliminates suboptimal arms from this set until only one arm remains. Our fully distributed
algorithm, SE-AAC-ODC, combines the arm pulling policy SE with the AAC and ODC communication
policies (§3.1). In §3.2, we prove that SE-AAC-ODC achieves near-optimal regret while requiring only
a constant (time-independent) number of communications.
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Table 1. Communication cost comparison of MA2B Algorithms in di"erent Scenarios

Fully Distributed Leader-Coordinated
Algorithm Communication Algorithm Communication

Synchronous DoE-bandit 𝑂 (𝐿𝑀 logω↓1
2 ) [61] DPE2 𝑂 (𝐿2𝑀ω↓2

2 ) [57]
SE-ODC 𝑂 (𝐿𝑀2ω↓2

2 log𝑁 ) [23] – –Asynchronous
SE-AAC-ODC 𝑂 (𝐿𝑀 logω↓1

2 ) (Thm. 2) LF-Relay 𝑂 (𝐿2𝑀ω↓2
2 +𝑀3

) (Thm. 7)
ω2 is the smallest reward gap. All algorithms achieve near-optimal regrets.

Second, we propose a leader-coordinated cooperation algorithm for AMA2B. We begin by intro-
ducing a leader-follower scheme for agents with stochastic active decision rounds (§4.1). One key
challenge in generalizing this scheme to arbitrary AMA2B is selecting a competent leader with a
high activation frequency. Notably, as active decision rounds in AMA2B can be adversarial, it is
impossible to pre-assign a competent leader. Addressing this, we propose a leader relay algorithm
that dynamically transfers leadership among agents over the whole time horizon, ensuring that
the leaders in the relay sequence collectively form a competent leader (§4.2). Inspired by the
Tsallis-INF algorithm [65], originally proposed for best-of-both-world bandits, we develop a
leader relay algorithm designed to minimize the frequency of leadership switches. By combining
the leader relay algorithm with the leader-follower scheme, we propose the leader-coordinated
LF-Relay algorithm for general AMA2B and prove that LF-Relay achieves near-optimal regret with
constant communication (§4.3).

Finally, in §5, we conduct numerical simulations to evaluate the performance of SE-AAC-ODC and
LF-Relay compared to known baseline algorithms. The numerical results con!rm our theoretical
results on achieving near-optimal regret and constant communication costs. In addition to intro-
ducing these two novel algorithms, we also explore how to theoretically ensure their privacy under
a local di"erential privacy (LDP) model. The privacy guarantees are detailed in Appendix C.

1.3 Related Works
We compare the theoretical results of this paper and the most relevant prior results in Table 1, and
in what follows we review them in detail.
For fully distributed algorithms, Yang et al. [61] propose a constant communication algorithm

(DoE-bandit) for fully distributed synchronous MA2B. Their algorithm is based on a distributed
online estimator that only needs constant communications to guarantee that all agents’ estimation
is as good as a centralized estimation. However, the aligned decision rounds of all agents, required
by their synchronous estimators, becomes invalid in the misaligned asynchronous decision rounds
in AMA2B. To circumvent the misaligned decision round issue, instead of aiming for all agents’
estimators with good performance as in Yang et al. [61], we devise a weaker estimator, guaranteeing
that at least one agent’s estimator can have comparable performance to a centralized estimator, and
we use this estimator with weak property to devise a fully distributed algorithm for AMA2B.

For the leader-coordinated cooperation case, Wang et al. [57] proposed a leader-follower algo-
rithm (DPE2) that achieves the near-optimal regret upper bound with constant communications for
synchronous MA2B. In the algorithm, one initially randomly picks one agent as the leader. However,
when it comes to the asynchronous AMA2B, simply assigning an agent as the leader does not work,
because the asynchronous active decision rounds of agents can be adversarial, and any !xed leader
may not have further active rounds after being chosen. To address the challenge, we propose a
leader relay algorithm, which dynamically transfers leadership among agents over time to ensure
that the leaders in the relay sequence together compose “a competent leader”.
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In the context of asynchronous multi-agent multi-armed bandits (AMA2B), the only prior work we
know is Chen et al. [23], where a fully distributed algorithm with an on-demand communication
(ODC) policy is proposed for AMA2B. Chen et al. [23]’s algorithm achieves near-optimal regret at the
expense of spending logarithmic 𝑂 (log𝑁 ) communications. While our algorithm also utilizes the
ODC idea, it combines the ODC idea with our new accuracy adaptive communication (AAC) policy
that helps to reduce the communication to 𝑂 (𝐿𝑀 logω↓1

2 ) (time 𝑁 independent), where ω2 is the
smallest reward gap (formally de!ned in §2). The new communication policy in this work is the
!rst to achieve constant communications in AMA2B. Also, Chen et al. [23] do not provide any results
for the leader-coordinated scenario.
More broadly, synchronous MA2B has been extensively studied in either a fully distributed

setting [11, 16, 20–22, 27, 30, 32, 39, 42, 44, 49, 53, 59, 60] or a leader-coordinated setting [7, 21, 27,
37, 51, 57, 58], and various communication schemes such as peer-to-peer [28], consensus-based [44],
gossip-style [22, 49], and immediate broadcasting [16, 59, 60] have been considered. Several prior
works study asynchronous multi-agent cooperation in other online learning models, e.g., linear
bandits [31, 40] and online convex optimization [19, 33, 34]. Stochastic asynchronous multi-agent
with collision was also considered by [48], which is di"erent from our arbitrary asynchronous with
non-collision model. Beyond collaborative MA2B, a branch of prior MA2B works study a competitive
setting where simultaneously pulling the same arm degrades the reward [9, 12, 14, 15, 52, 57]. These
works are at a clear distance from the asynchronous model studied in this paper.

2 MODEL
We consider an asynchronous multi-agent multi-armed bandits (AMA2B) model including 𝐿 arms
and𝑀 agents. Each arm 𝑃 ↑ K := {1, 2, . . . ,𝐿} is associated with a Bernoulli reward distribution
with unknown mean 𝑄𝐿 , and we assume 1 > 𝑄1 > 𝑄2 ⊋ . . . ⊋ 𝑄𝑀 > 0 such that arm 1 is the unique
optimal arm. We de!ne ω𝐿 := 𝑄1 ↓ 𝑄𝐿 for 𝑃 ⊋ 2 as the reward gap between optimal arm 1 and
suboptimal arm 𝑃 . Each agent𝑅 ↑ M := {1, 2, . . . ,𝑀} is associated with an arbitrary sequence of
activation times generated by an adversary at the beginning1 and is unknown to agents. When an
agent is activated, we refer to it as an active agent and refer to the time slot that an agent becomes
active as an (active) decision round because the agent needs to pull an arm in the time slot. Denote
by T := {1, 2, . . . ,𝑁 } the set of time slots in which at least one agent is active. In each time slot
𝑆 ↑ T , each active agent 𝑅 ↑ M selects one arm 𝑃 ↑ K to pull and obtains a reward 𝑇 (𝑁)

𝐿 (𝑆)

drawn from its reward distribution. We denote by T
(𝑁) the set of time slots that agent𝑅 is active,

and 𝑁 (𝑁) := |T
(𝑁)

|. The asynchronous setting of AMA2B is very general and can capture various
adaptive and dynamic scenarios. For example, the setting allows any agents to freely drop out
and rejoin the system, which is common in many real-world applications. We assume there are no
collisions or reward degradation, i.e., when more than one agent pulls the same arm, each of them
gets a reward independently drawn from the arm reward distribution.

Objective. We !rst de!ne the expected (pseudo) regret of all agents as follows,

𝑈(𝑁 ) :=
∑

𝑁↑M

E

[
𝑁 (𝑁)𝑄1 ↓

∑
𝑂 ↑T(𝐿)

𝑇 (𝑁)

𝐿 (𝐿) (𝑂 )

]
=

∑
𝑁↑M

𝑁 (𝑁)𝑄1 ↓ E

[ ∑
𝑁↑M

∑
𝑂 ↑T(𝐿)

𝑄𝐿 (𝐿) (𝑂 )

]
,

where the expectation is taken over the randomness of the algorithm and rewards realization.
This cooperative AMA2B model allows agents to communicate with each other, and we de!ne the

1This kind of adversary is called oblivious in online learning because it cannot adaptively alter the active decision rounds
based on history and algorithm’s action.
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Table 2. Applications of the asynchronous multi-agent multi-armed bandits model

Application Asynchronous Agents Arms Rewards

Clinical Trials† [6, 46] Hospitals with
patient arrivals

Medical treatments
(e.g., medicines, vaccines)

Treatment
e"ectiveness

Drone Swarm Planning† [56] Drones hovering near
the computing leader

Latency-sensitive task
queues (e.g., path planning) Task completion

Cognitive Radio Networks [45] Secondary users with
signal transmissions

Channels
(e.g., radio frequencies)

Channel
availability

Mobile Edge Computing [43] Local stations with
computing task arrivals

Computing nodes
(e.g., edge, cloud) Task completion

†: leader-coordinated applications.

expected rounds of communications as

𝑉 (𝑁 ) := E

[ ∑
𝑁↑M

∑
𝑂 ↑T

{agent𝑅 sends a message at time 𝑆}

]
,

where {·} is the indicator function. Our objectives are to minimize both the regret 𝑈(𝑁 ) and the
communication costs 𝑉 (𝑁 ).

2.1 Representative Applications
In this section, we present several applications of the AMA2B model, as summarized in Table 2.

Clinical trials. Clinical trials aim to evaluate the e"ectiveness of medical treatments on patients
across multiple hospitals [6, 46]. In this setting, 𝐿 medical treatments (arms, e.g., di"erent drugs
or therapies) are administered across 𝑀 hospitals (agents), with each hospital asynchronously
receiving new patients. The active decision rounds T (𝑁) for a hospital𝑅 depend on when new
patients arrive, which can be highly irregular and unpredictable. The e"ectiveness of treatment 𝑃
is modeled as a Bernoulli random variable 𝑇𝐿 , indicating whether the treatment was successful.
Asynchronous patient arrivals lead to hospitals making treatment decisions at di"erent times,
complicating coordination across institutions. In leader-coordinated scenarios, a leader hospital,
typically one with more resources or patients, must handle the additional challenge of coordinating
treatments with other hospitals that may be receiving patients on completely di"erent schedules.
The goal is to maximize the overall treatment e"ectiveness across all hospitals by selecting the
most e"ective treatments. Especially, the communication in clinical trial is privacy-sensitive, and
the hospitals (agents) can protect the privacy of their patients by only sharing the aggregrated
information of the treatment e"ectiveness, which is a side-e"ect of the communication-e#cient
algorithms.

Drone swarm planning. In drone swarm operations, multiple drones are tasked with per-
forming latency-sensitive tasks, such as path planning or object recognition, in dynamic envi-
ronments [56]. The system includes 𝐿 task queues (arms) with di"erent task priorities, and 𝑀
drones (agents), each responsible for completing tasks asynchronously. The completion of a task in
queue 𝑃 is modeled as a Bernoulli random variable 𝑇𝐿 , indicating whether the task was successfully
completed within the required time. The active decision rounds T (𝑁) for a drone𝑅 depend on
its operational status, which varies due to factors such as battery life, environmental conditions,
and mission schedules. This leads to signi!cant asynchronicity, as some drones may be more
active than others, while others may need to recharge or switch tasks. Typically, drone swarm
planning involves a leader drone that coordinates path planning for the swarm, which aligns with
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the leader-coordinated scheme in §4. The active decision rounds T (𝑁) for a drone𝑅 correspond to
the time slots when it is $oating near the leader drone, which manages task coordination. We note
that as all follower drones are helping the leader drone to complete the tasks from the 𝐿 queues,
they are all in the same context and have the same objective. The objective is to maximize the
timely completion of high-priority tasks while e#ciently coordinating drones with varying activity
levels, especially when using a leader drone to manage swarm coordination.

Cognitive radio networks. A cognitive radio network (CRN) is a wireless communication
system where secondary users opportunistically access spectrum allocated to primary users [1,
45]. In such a network, 𝑀 secondary users (agents, such as smartphones) must asynchronously
decide when to transmit data, depending on their individual data transmission needs, which occur
irregularly. Each user chooses from 𝐿 available spectrum channels (arms), and the availability of
a channel 𝑃 depends on whether a primary user is occupying it, modeled as a Bernoulli random
variable 𝑇𝐿 . The active decision rounds T (𝑁) for each secondary user𝑅 occur asynchronously, as
they depend on the user’s communication needs, which vary in both frequency and timing. The
asynchronous nature of CRNs makes it di#cult for secondary users to coordinate spectrum use
e#ciently, and the goal is to maximize the successful data transmission rate by selecting available
channels.

Mobile edge computing. Mobile edge computing (MEC) is a distributed computing paradigm
that brings computation and data storage closer to end-users [43]. In MEC systems, 𝐿 computing
nodes (arms, ranging from edge to cloud) provide computational resources to 𝑀 local stations
(agents, serving nearby smartphones and vehicles). These local stations asynchronously receive
computational tasks from the devices they serve. The active decision rounds T (𝑁) for a station
𝑅 occur whenever there is a nearby device o%oading a task, which can happen unpredictably as
task arrivals depend on end-user behavior. Each computing node 𝑃 has a di"erent latency based
on its processing power and round-trip time (RTT), and whether a task is completed successfully
at node 𝑃 is modeled as a Bernoulli random variable 𝑇𝐿 . The asynchronicity in MEC arises from
the fact that stations handle tasks at irregular intervals, and computational resources may vary in
availability, making coordinated task o%oading and communication between stations challenging.
The objective is to maximize the overall task completion rate across all stations by minimizing the
latency, despite the asynchronous task arrivals and varying node performance.

Other Applications and Extensions. While this paper and the proposed model focus on
applications without collisions or reward degradation, certain scenarios, such as cognitive radio
networks and mobile edge computing, may involve these challenges. With the current commu-
nication algorithm design, the later-proposed AMA2B algorithms can be extended to handle such
cases by modifying the optimal action: instead of all𝑀 agents converging on a single optimal arm,
agents can distribute across a set of top𝑀 arms.

3 FULLY DISTRIBUTED ALGORITHM FOR AMA2B

In this section, we introduce a fully distributed asynchronous algorithm, called SE-AAC-ODC, for the
AMA2B model. SE-AAC-ODC involves several key technical components (§3.1) — Accuracy Adaptive
Communication (AAC), On-Demand Communication (ODC), and Successive Elimination (SE)—each
contributing essential functionality to the overall approach. We also present the theoretical analysis
of SE-AAC-ODC in §3.2. In the following, we !rst explain the technical challenges along with our
algorithmic ideas for tackling the AMA2B model.

Design challenges and key ideas. While recent works in the synchronous multi-agent bandits
setting [57, 61] have signi!cantly improved the communication cost, in the asynchronous setting
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with agents active arbitrarily, designing fully distributed cooperative algorithms is more challenging.
For example, in communications between a “fast” agent (often active) and a “slow” agent (seldom
active), letting all agents communicate in the same frequency as synchronous policies would cause
many redundant communications. Because, !rstly, the slow agent may not have new observations
to communicate with the fast agent, and, secondly, the slow agent, if there are no future active
rounds, may not need the extra information from the fast agent. An e#cient fully distributed
algorithm for asynchronous AMA2B should appropriately answer two critical questions: (1) when to
communicate, and (2) who to communicate with, both of which are challenging due to the agent
asynchronicity.

Our approach to addressing the question (1) is to have each agent wait until it has accumulated
su#cient “new information” since its last communication, called accuracy adaptive communication
(AAC). Addressing question (2) regarding whom to communicate with, requires the determination
of which agents can bene!t from the new information, named as on-demand communication (ODC).
In the following, we present how both high-level communication ideas can be implemented in a
cooperative multi-agent bandit algorithm.

3.1 SE-AAC-ODC: A Fully Distributed Bandit Algorithm
3.1.1 Accuracy adaptive communication (AAC) policy (Lines 11-15). We use the con!dence radius
(half of a con!dence interval’s width) to represent the accuracy of the current estimate of reward
mean and determine when an agent decides to share information. We de!ne the con!dence radius
as follows,

CR(𝑊) := min
{
1,
√
2 log𝑁 /𝑊

}
, (1)

where 𝑊 is the number of samples (drawn from a Bernoulli distribution) used in this calculation. This
con!dence interval guarantees that, with a probability of at least 1↓𝑁 ↓4, the true reward mean 𝑄 lies
inside the con!dence interval (𝑄 ↓ CR(𝑊), 𝑄 + CR(𝑊)), where 𝑄 is the empirical average of 𝑊 samples.
To construct a con!dence interval, the agents need to determine the number of observations 𝑊.
However, since agents are distributed and asynchronous, without timely communication, an agent
does not know the exact pull times for other agents since their last communication. To address this
issue, we use the number of agent𝑅’s recent local observations (since the last communication) as a
surrogate for the number of other agents’ recent local observations.
To facilitate presentation of the AAC policy, we !rst !x an arm 𝑃 and consider the task that all

asynchronous agents cooperate to estimate arm 𝑃’s mean 𝑄𝐿 . Denote by 𝑊 (𝑁)

𝐿 (𝑆) the number of
local observations of arm 𝑃 (excluding those received from others) by agent𝑅 up to time slot 𝑆 ,
and by 𝑊𝐿 (𝑆) the total number of times among all agents that arm 𝑃 has been pulled on and before
time slot 𝑆 , i.e., 𝑊𝐿 (𝑆) =

∑
𝑁↑M 𝑊 (𝑁)

𝐿 (𝑆). Denote the last communication rounds for sharing arm 𝑃’s
observations at time slot 𝑆 as 𝑋𝐿 (𝑆). We denote ECR(𝑁)

𝐿 (𝑆) an estimated con!dence radius of agent
𝑅 for arm 𝑃 at time 𝑆 as a representation for accuracy, which can be expressed as

ECR
(𝑁)

𝐿 (𝑆) := min{1, CR(𝑊𝐿 (𝑋𝐿 (𝑆)) +𝑀 (𝑊 (𝑁)

𝐿 (𝑆) ↓ 𝑊 (𝑁)

𝐿 (𝑋𝐿 (𝑆))))}. (2)

Taking minimum with 1 is because arm reward means lie in (0, 1) and the value 1 is the radius
upper bound. The term 𝑀 (𝑊 (𝑁)

𝐿 (𝑆) ↓ 𝑊 (𝑁)

𝐿 (𝑋𝐿 (𝑆))) acts as a surrogate for the number of recent
observations of other agents for arm 𝑃 since the last communication time 𝑋𝐿 (𝑆) by using the agent
𝑅’s recent local observations. We note that if the current time slot is a communication round, i.e.,
𝑆 = 𝑋𝐿 (𝑆), then there is no surrogate observation, therefore, the con!dence radius is equal to the
estimated one, i.e., CR(𝑊𝐿 (𝑋𝐿 (𝑆))) = ECR

(𝑁)

𝐿 (𝑋𝐿 (𝑆)),↔𝑅. Hence, we refer to the estimated con!dence
radius in a communication round, i.e., ECR(𝑁)

𝐿 (𝑋𝐿 (𝑆)) as the aligned con!dence radius.
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Algorithm 1 SE-AAC-ODC: Fully distributed algorithm for agent𝑅
1: Inputs: threshold parameter 𝑌 > 1, time horizon 𝑁 , the number of arms 𝐿 and agents𝑀
2: Initialization: 𝑋𝐿 (𝑆), 𝑄

(𝑁)

𝐿
(𝑆),𝑊 (𝑁)

𝐿
(𝑆), 𝑍 (𝑁)

𝐿
(𝑆) ↗ 0 for all agents𝑅↘

↑ M and arms 𝑃 ↑ K

3: for all 𝑆 ↑ T do
4: if 𝑆 ↑ T

(𝑁) then
5: Update 𝑄 (𝑁)

𝐿 ↘ (𝑆) for all arm 𝑃↘ ↑ K according to (3)
6: Update the candidate arm set C(𝑆) according to (4) 𝐿 Elimination
7: if any arm elimination happens then notify other agents for this elimination
8: Pick an arm 𝑃 from candidate arm set C(𝑆) to pull in a Round-Robin manner
9: Obtain arm 𝑃’s reward observation 𝑇 (𝑁)

𝐿
(𝑆)

10: 𝑍 (𝑁)

𝐿
(𝑆) ↗ 𝑍 (𝑁)

𝐿
(𝑆) + 𝑇 (𝑁)

𝐿
(𝑆) and 𝑊 (𝑁)

𝐿
(𝑆) ↗ 𝑊 (𝑁)

𝐿
(𝑆) + 1

11: if 𝑌ECR(𝑁)

𝐿
(𝑆) ⫅̸ ECR

(𝑁)

𝐿
(𝑋𝐿 (𝑆)) then 𝐿 AAC communication condition

12: 𝑋𝐿 (𝑆) ↗ 𝑆 𝐿 Update the latest communication time slot

13: Collect (𝑊 (𝑁
↘
)

𝐿
(𝑆), 𝑍 (𝑁

↘
)

𝐿
(𝑆)) from all agents𝑅↘ whose token tk

(𝑁→𝑁↘
) is held by agent𝑅

14: Update 𝑊𝐿 (𝑆) and 𝑄𝐿 (𝑆)
15: Send (𝑃,𝑊𝐿 (𝑆), 𝑄𝐿 (𝑆), 𝑋𝐿 (𝑆)) to other agents𝑅↘ whose token tk

(𝑁→𝑁↘
) is held by agent𝑅

16: Send tokens tk(𝑁→𝑁↘
) to corresponding agent𝑅↘

17: end if
18: Return all tokens tk(𝑁

↘
→𝑁) on hold to corresponding agents𝑅↘

19: end if
20: if receive tk(𝑁→𝑁↘

) from agent𝑅↘ then
21: Send messages (𝑃↘,𝑊𝐿 ↘ (𝑆), 𝑄𝐿 ↘ (𝑆), 𝑋𝐿 ↘ (𝑆)) for arms whose updates were blocked

due to that agent𝑅 did not hold token for agent𝑅↘

22: Keep token tk
(𝑁→𝑁↘

)

23: end if
24: if receive tk(𝑁

↘
→𝑁) from agent𝑅↘ then

25: Keep token tk
(𝑁↘

→𝑁)

26: end if
27: if receive broadcast (𝑃↘,𝑊𝐿 ↘ (𝑆), 𝑄𝐿 ↘ (𝑆), 𝑋𝐿 ↘ (𝑆)) from other agents𝑅↘ then
28: Update local (𝑊𝐿 ↘ (𝑆), 𝑄𝐿 ↘ (𝑆), 𝑋𝐿 ↘ (𝑆)) for arm 𝑃↘

29: end if
30: end for

Weuse the ratio between the latest aligned con!dence radius and the current estimated con!dence
radius ECR(𝑁)

𝐿 (𝑋𝐿 (𝑆))/ECR
(𝑁)

𝐿 (𝑆) to measure the relative amount of “new information” that agent𝑅
collects since its last communication. Notice that the ratio increases with the number of observations.
Hence, when the ratio exceeds some predetermined threshold𝑌 , there is su#cient “new information”
to initiate a new communication (Line 11).

3.1.2 On-demand communication (ODC) policy (Lines 15-25). We employ a token-based mechanism
to implement On-Demand Communication (ODC). The system has in total𝑀 (𝑀 ↓ 1) tokens, where
each token tk

(𝑁→𝑁↘
) is associated with a pair of agents𝑅 and𝑅↘ (𝑅 ω𝑅↘) and is either held by

agent𝑅 or𝑅↘ at any time slot 𝑆 . At initialization, each agent𝑅 ↑ M is assigned 𝑀 ↓ 1 tokens
tk

(𝑁→𝑁↘
) , each corresponding to one other agent 𝑅↘

↑ M \ {𝑅}. The token tk
(𝑁→𝑁↘

) (resp.,
not) held by agent𝑅 indicates to agent𝑅 that the agent𝑅↘ is (resp., not) on-demand and is (resp.,
not) interested in receiving information from agent𝑅. More speci!cally, the mechanism has two
tk

(𝑁→𝑁↘
) -related operations:
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Agent 𝑚 Agent 𝑚′

If AAC is fulfilled

Share message
Send token

After
Agent 𝑚 Agent 𝑚′

(a) Agent𝑅 holds token tk
(𝑁→𝑁↘

)

Agent 𝑚 Agent 𝑚′

Share message

Return token

Agent 𝑚 Agent 𝑚′
After

If agent 𝑚′ is active

(b) Agent𝑅↘ holds token tk
(𝑁→𝑁↘

)

Fig. 2. Illustration of the token-based ODC mechanism: Token tk𝑚→𝑚′ Message to share

• Agent𝑅 holds token tk(𝑁→𝑁↘
) (Fig. 2a): Only when agent𝑅 holds token tk

(𝑁→𝑁↘
) can it

communicate to agent𝑅↘ (for actual triggering communication, agent𝑅 also needs to ful!ll
the AAC condition in Line 11). At this type of communications from agents𝑅 to agent𝑅↘

(Line 15, agent𝑅 addressing the demand of agent𝑅↘), agent𝑅 also sends the token tk(𝑁→𝑁↘
)

to agent𝑅↘ (Line 16).
• Agent𝑅↘ holds token tk(𝑁→𝑁↘

) (Fig. 2b): Once agent𝑅↘ is active, it immediately returns
the token tk

(𝑁→𝑁↘
) to agent𝑅 as a signal to agent𝑅 notifying that agent𝑅↘ is on-demand

(Line 18). Agent𝑅 then sends one updating message to agent𝑅↘ containing information
that was not previously communicated due to agent 𝑅 not having a token for agent 𝑅↘

(Lines 20-22), while agent𝑅 still keeps the token tk
(𝑁→𝑁↘

) .

3.1.3 Successive elimination (SE) arm pull policy (Lines 6-10). Denote by C(𝑆) the candidate arm
set, which is initialized as the full arm set, i.e., C(0) = K . The main idea of successive elimination is
to uniformly explore all remaining arms in the candidate arm set in a round-robin manner (Line 8)
and remove an arm from the candidate arm set (Line 6) whenever it is identi!ed as suboptimal.
Note that whenever an agent eliminates one arm, this agent noti!es all other agents to eliminate
the arm from their candidate arm sets as well; hence, all agents have the identical candidate arm
set (Line 7).
Next, we introduce notation to illustrate the technical details of eliminating a suboptimal arm

from the candidate arm set. Denote by 𝑍 (𝑁)

𝐿 (𝑆) the sum of 𝑊 (𝑁)

𝐿 (𝑆) observations of arm 𝑃 for agent

𝑅 at time slot 𝑆 , which can be expressed as 𝑍 (𝑁)

𝐿 (𝑆) :=
∑𝑃 (𝐿)

𝑀 (𝑂 )
𝑄=1 𝑇 (𝑁)

𝐿 (𝑎), where 𝑇 (𝑁)

𝐿 (𝑎) is the 𝑎 th

reward observation for arm 𝑃 of agent𝑅. Next, we introduce estimator 𝑄 (𝑁)

𝐿 (𝑆) for the reward
mean of agent𝑅 for arm 𝑃 at time 𝑆 as follows,

𝑄 (𝑁)

𝐿 (𝑆) :=
𝑊𝐿 (𝑋𝐿 (𝑆))𝑄𝐿 (𝑋𝐿 (𝑆)) + (𝑍 (𝑁)

𝐿 (𝑆) ↓ 𝑍 (𝑁)

𝐿 (𝑋𝐿 (𝑆)))

𝑊𝐿 (𝑋𝐿 (𝑆)) + 𝑊
(𝑁)

𝐿 (𝑆) ↓ 𝑊 (𝑁)

𝐿 (𝑋𝐿 (𝑆))
, (3)

where 𝑋𝐿 (𝑆) is the latest time slot (on or before 𝑆 ) that agent𝑅 communicates information about
arm 𝑃 to other agents (i.e., synchronizes globally), and 𝑄𝐿 (𝑋𝐿 (𝑆)) is the average of all 𝑊𝐿 (𝑋𝐿 (𝑆))
observations. This estimator in (3) together with the con!dence radius (1) yields a con!dence
interval for 𝑄𝐿 with bounds 𝑄

(𝑁)

𝐿 ±CR(𝑊𝐿 (𝑋𝐿 (𝑆))+(𝑊
(𝑁)

𝐿 (𝑆)↓𝑊 (𝑁)

𝐿 (𝑋𝐿 (𝑆)))).With the above con!dence
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interval, an arm 𝑃 is eliminated by agent𝑅 from the candidate set C(𝑆) at time 𝑆 if there exists an
arm 𝑃 ↘ ↑ C(𝑆) such that the upper con!dence bound of arm 𝑃 is less than the lower con!dence
bound of arm 𝑃 ↘, i.e.,

𝑄 (𝑁)

𝐿 (𝑆) + CR

(
𝑊𝐿 (𝑋𝐿 (𝑆)) + (𝑊 (𝑁)

𝐿 (𝑆) ↓ 𝑊 (𝑁)

𝐿 (𝑋𝐿 (𝑆)))
)

< 𝑄 (𝑁)

𝐿 ↘ (𝑆) ↓ CR

(
𝑊𝐿 ↘ (𝑋𝐿 ↘ (𝑆)) + (𝑊 (𝑁)

𝐿 ↘ (𝑆) ↓ 𝑊 (𝑁)

𝐿 ↘ (𝑋𝐿 ↘ (𝑆)))
)
.

(4)

Inequality (4) is the elimination condition used for identifying suboptimal arms in the candidate
set.

3.2 Theoretical Analysis of SE-AAC-ODC
This section presents the theoretical analysis of the SE-AAC-ODC algorithm. We start by studying
the estimation performance of the estimator in (3) in Lemma 1.

L!""# 1. Assume𝑀 agents independently and asynchronously sample arm 𝑃 associated with i.i.d.
Bernoulli distributions with unknown mean 𝑄𝐿 , as Algorithm 1 (with threshold parameter 𝑌 > 1), and
𝑊𝐿 (𝑆) is the total number of available samples across all agents. For any 𝑆 , there exists an agent 𝑏 such
that, with probability 1 ↓𝑀𝑁 ↓3, we have

|𝑄 (𝑅 )𝐿 (𝑆) ↓ 𝑄𝐿 | ⫅̸ 𝑌CR(𝑊𝐿 (𝑆)) .

Proof of Lemma 1 is presented in Appendix A.1. Lemma 1 shows that among the estimates of
all agents for reward mean 𝑄𝐿 of arm 𝑃 , at least one agent 𝑏’s estimate 𝑄 (𝑅 )𝐿 (𝑆) enjoys the estimate
accuracy comparable (up to an 𝑌 factor) to that of an estimate that uses all of the observations
of arm 𝑃 , i.e., all 𝑊𝐿 (𝑆) samples. In the proof of Lemma 1 deferred to Appendix A, this agent 𝑏 is
set to be the one with the largest number of active decision rounds since the last communication
time 𝑋𝐿 (𝑆) for arm 𝑃 . As the active decision rounds of agents in AMA2B are asynchronous and can
be arbitrarily, the agent with the best estimation performance may change over time. This proof
relies on dynamically determining which agent has the most active decision rounds since last
communication. We highlight that Lemma 1 describes the key property of the estimator in (3) in an
asynchronous setting, which is a novel result compared to the synchronous setting.

Our main theorem in Theorem 2 shows that although agents with good estimates can vary, SE-
AAC-ODC is able to adapt to the changes and achieve near-optimal regret and constant communication
cost.

T$!%&!" 2. Given parameter 𝑌 > 1, Algorithm 1’s regret and communication are upper bounded
as follows,

𝑈(𝑁 ) ⫅̸
∑
𝐿>1

8(1 + 𝑌)2 log𝑁
ω𝐿

+

∑
𝐿>1

𝑀ω𝐿 + 𝐿𝑀2, (5)

𝑉 (𝑁 ) ⫅̸
∑
𝐿>1

2𝑀 log𝑆

(
2(1 + 𝑌)

ω𝐿

)
+ 2𝑀 log𝑆

(
2(1 + 𝑌)

ω2

)
+ 2𝐿𝑀3. (6)

Communication costs discussion. The only prior algorithm for AMA2B [23] needs𝑂 (𝐿𝑀2ω↓1
2 log𝑁 )

communications to achieve a near-optimal regret upper bound, while our SE-AAC-ODC only needs
𝑂 (𝐿𝑀 logω↓1

2 ) communications, much smaller than that of [23] especially when 𝑁 is large.

Regret optimality discussion. We recall MA2B’s regret lower bound [57, §1.2] (also proved for
AMA2B by Chen et al. [23, Appendix C]), lim inf𝑇→≃

𝑈 (𝑇 )

log𝑇 ⊋
∑

𝐿>1
ω𝑀

KL(𝑉𝑀 ,𝑉1 ) , where KL(·, ·) denotes
the KL-divergence between two distributions, and 𝑐𝐿 denotes the reward distribution of arm 𝑃 .
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It can be simpli!ed as lim inf𝑇→≃
𝑈 (𝑇 )

log𝑇 ⊋ 𝑉 ·
∑

𝐿>1
1
ω𝑀
, where 𝑉 is a constant that depends on the

speci!c reward distribution. On the other hand, the regret upper bound of SE-AAC-ODC in (5) can be
rewritten as lim sup𝑇→≃

𝑈 (𝑇 )

log𝑇 ⫅̸ 8(1 + 𝑌)2 ·
∑

𝐿>1
1
ω𝑀

. Therefore, comparing the above asymptotic
regret lower and upper bounds shows that the regret of SE-AAC-ODC is tight up to a constant factor.

Impact of Parameter 𝑌 . Theorem 2 shows a trade-o" between communication𝑂 (
∑

𝐿 log𝑆 ω↓2
𝐿 )

and regret𝑂 (𝑌2 ∑
𝐿 ω

↓1
𝐿 log𝑁 ), and the parameter 𝑌 in SE-AAC-ODC controls the trade-o". That is, a

larger 𝑌 leads to a smaller communication cost but a larger regret upper bound. In Appendix E,
we conduct additional numerical experiments to investigate the impact of 𝑌 on the regret and
communication cost of SE-AAC-ODC, which reveals another interesting observation that the regret
upper bound of SE-AAC-ODC is not sensitive to the choice of 𝑌 .

Without Known Time Horizon 𝑁 . One limitation of SE-AAC-ODC is that it requires the knowl-
edge of time horizon 𝑁 to be known in advance. The time horizon 𝑁 is used to determine the
con!dence interval width in (1) in SE-AAC-ODC and guarantee that the arm elimination proceeds
properly with high probability. Here, we propose two solutions to address this limitation: (i) Prac-
tically, one can replace the 𝑁 in determining ECR

(𝑁)

𝐿 (𝑆) in (2) and arm elimination in (4) with the
current decision round number 𝑆 . This modi!cation would lead to a slightly larger con!dence
interval width and a slightly higher failure probability of arm elimination. But both would be
mitigated as the learning proceeds and the time step 𝑆 increases, and hence one can expect the
algorithm still performs almost the same as the original one. (ii) Theoretically, one can use the
doubling trick [10] to estimate the time horizon 𝑁 in a fully distributed manner. However, this
modi!cation, while maintains the near-optimal regret bound, would increase the communication
cost by a log𝑁 factor, making the communication cost dependent on the time horizon 𝑁 . The
leader-coordinated algorithm proposed in §4 does not require the knowledge of 𝑁 .

Proof idea for communication bound. Detail proof of Theorem 2 is presented in §3.2.1. Here,
we provide a sketch proof for the communication upper bound in (6). There are three contributions
to the communication cost of SE-AAC-ODC: (i) arm elimination noti!cations due to SE, bounded
by 𝐿𝑀 , (ii) token exchanges (send and return) for the implementation of ODC, and (iii) message
sharing according to AAC. Notice that each token sending of (ii) is always together with one message
sending triggered by AAC of (iii) (see Lines 15-16), and each token returning is a consequence of the
token’s previous sending. This implies that the communication cost due to (ii) is upper bounded by
at most twice the communication cost of (iii). Therefore, to bounded the total communication cost,
we only need to bound the communication costs of AAC, i.e., (iii). For any candidate arm 𝑃 ↑ C(𝑆),
AAC in Line 11 triggers one communication when the ratio ECR(𝑁)

𝐿 (𝑋𝐿 (𝑆))/ECR
(𝑁)

𝐿 (𝑆) is greater than
the threshold 𝑌 , and AAC stops communicating about the arm 𝑃 when the arm is eliminated, which
happens when CR

(𝑁)

𝐿 (𝑆) < ω𝐿/2, that is, ECR
(𝑁)

𝐿 (𝑆) < 𝑑ω𝐿 for some constant 𝑑 > 0. Therefore,
the total communication costs for this arm 𝑃 are upper bounded by 𝑂 (𝑀 log𝑆 ω↓1

𝐿 ), where the
multiplicative𝑀 is because the communication is involved with all agents.

3.2.1 Detail Proof of Theorem 2. Applying Hoe"ding’s inequality and union bound, we know that
for any agent𝑅, the following inequality holds with a probability of at least 1 ↓𝑀𝑁 ↓3,

|𝑄 (𝑁)

𝐿 (𝑆) ↓ 𝑄𝐿 | ⫅̸ CR(𝑊𝐿 (𝑋𝐿 (𝑆)) + (𝑊 (𝑁)

𝐿 (𝑆) ↓ 𝑊 (𝑁)

𝐿 (𝑋𝐿 (𝑆)))), (7)

where we recall that 𝑋𝐿 (𝑆) is the last time slot that agents conduct communication to synchronize
the observations of arm 𝑃 before time slot 𝑆 .
We denote the decision made at a time slot 𝑆 as a Type-I decision when (7) holds for any agent

𝑅 ↑ M and arm 𝑃 ↑ K at this time slot 𝑆 ; otherwise, we denote it as a Type-II decision.
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We note that, as long as the decision is Type-I, the elimination condition in (4) always correctly
eliminates suboptimal arms, and, therefore, when there is only one arm remaining in the candidate
arm set C(𝑆), it is the optimal arm for sure. In the next two steps, we bound the probability that
there are any Type-II decisions and the number of pulling times of any suboptimal arm when there
are only Type-I decisions respectively.

Step 1. Upper bound the probability of any Type-II decision occurring. Belowwe bound the
probability of the event that there exists any con!dence interval not containing its corresponding
true reward mean.

P(⇐(𝑃,𝑅, 𝑆), |𝑄 (𝑁)

𝐿 (𝑆) ↓ 𝑄𝐿 | > CR(𝑊𝐿 ↘ (𝑋𝐿 (𝑆)) + (𝑊 (𝑁)

𝐿 (𝑆) ↓ 𝑊 (𝑁)

𝐿 (𝑋𝐿 ↘ (𝑆)))))

⫅̸ P(⇐(𝑃,𝑅, 𝑆,𝑊), |𝑄 (𝑁)

𝐿 (𝑆) ↓ 𝑄𝐿 | > CR(𝑊))

⫅̸
∑

(𝐿,𝑁,𝑂 ,𝑃)↑ (K⇒M⇒T⇒T)

P( |𝑄 (𝑁)

𝐿 (𝑆) ↓ 𝑄𝐿 | > CR(𝑊))

⫅̸
∑

(𝐿,𝑁,𝑂 ,𝑃)↑ (K⇒M⇒T⇒T)

𝑀𝑁 ↓3 = 𝐿𝑀2𝑁 ↓1 .

Step 2. Upper bound the number of times of pulling suboptimal arms.

L!""# 3. At any time 𝑆 ⫅̸ 𝑁 , if the optimal arm lies in the candidate set and an agent𝑅 makes
a Type-I decision with pulling a suboptimal arm 𝑃 , i.e., 𝑒 (𝑁)

(𝑆) = 𝑃 , we have 𝑊𝐿 (𝑆) ⫅̸
8(1+𝑆 )2 log𝑇

ω2
𝑀

.

Therefore, the total number of pulling times of arm 𝑓 in the whole time horizon is upper bounded as
follows,

𝑊𝐿 (𝑁 ) ⫅̸
8(1 + 𝑌)2 log𝑁

ω2
𝐿

+𝑀 .

P&%%’. Arm 𝑃 is pulled at some time 𝑆

(𝑊)
=⇑ 𝑃 ↑ C(𝑆) for agent 𝑏 ful!lls Lemma 1
(𝑋 )
=⇑ 𝑄 (𝑅 )𝐿 (𝑆) + CR(𝑊𝐿 (𝑋𝐿 (𝑆)) +𝑀 (𝑊 (𝑅 )

𝐿 (𝑆) ↓ 𝑊 (𝑅 )
𝐿 (𝑋𝐿 (𝑆))))

⊋ 𝑄 (𝑅 )𝐿 ↘ (𝑆) ↓ CR(𝑊𝐿 ↘ (𝑋𝐿 ↘ (𝑆)) +𝑀 (𝑊 (𝑅 )
𝐿 ↘ (𝑆) ↓ 𝑊 (𝑅 )

𝐿 ↘ (𝑋𝐿 ↘ (𝑆)))) for any 𝑃 ↘ ↑ C(𝑆)

(𝑌 )
⇓⇑ 𝑄 (𝑅 )𝐿 (𝑆) + 2CR(𝑊𝐿 (𝑋𝐿 (𝑆)) +𝑀 (𝑊 (𝑅 )

𝐿 (𝑆) ↓ 𝑊 (𝑅 )
𝐿 (𝑋𝐿 (𝑆)))) ⊋ 𝑄 (𝑅 )𝐿 ↘ (𝑆) for any 𝑃 ↘ ↑ C(𝑆)

(𝑍 )
=⇑ 𝑄 (𝑅 )𝐿 (𝑆) + 2CR(𝑊𝐿 (𝑆)) ⊋ 𝑄 (𝑅 )𝐿 ↘ (𝑆) for any 𝑃 ↘ ↑ C(𝑆)

=⇑ 𝑄 (𝑅 )𝐿 (𝑆) + 2CR(𝑊𝐿 (𝑆)) ⊋ 𝑄 (𝑅 )1 (𝑆)

(𝑎 )
=⇑ 𝑄𝐿 + (2 + 𝑌)CR(𝑊𝐿 (𝑆)) ⊋ 𝑄1 ↓ 𝑌CR(𝑊1 (𝑆))

=⇑ 2(1 + 𝑌)CR(𝑊𝐿 (𝑆)) ⊋ 𝑄1 ↓ 𝑄𝐿 = ω𝐿 (8)

=⇑ 𝑊𝐿 (𝑆) ⫅̸
8(1 + 𝑌)2 log𝑁

ω2
𝐿

,

where (a) is because the candidate arm sets C(𝑆) are the same for all agents (including arm 𝑏), (b)
is by the de!nition of candidate arm set, (c) is because arms in the candidate arm set are evenly
explored in a round-robin manner, (d) is from the de!nition of arm 𝑏 in (14), and (e) is by applying
Lemma 1.
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Lastly, since the pulling of arm 𝑃 in the critical time slot 𝑆 is not counted, the total pulling times
of arm 𝑃 may be increased by𝑀 at most, i.e.,

𝑊𝐿 (𝑁 ) ⫅̸
8(1 + 𝑌)2 log𝑁

ω2
𝐿

+𝑀 .

⫆̸

Combining the results of Steps 1 and 2, the group regret is upper bounded as follows,

E[𝑈(𝑁 )] ⫅̸
∑
𝐿>1

𝑊𝐿 (𝑁 ) ⇒ ω𝐿 + 𝐿𝑀2𝑁 ↓1
⇒𝑁

⫅̸
∑
𝐿>1

8(1 + 𝑌)2 log𝑁
ω𝐿

+

∑
𝐿>1

𝑀ω𝐿 + 𝐿𝑀2.

Step 3. Upper bound communication costs. If there are any Type-II decisions, the total
communication times is at most 𝐿𝑀2.

Assume there is no Type-II decision. In the proof of Lemma 3, we have a middle step (8): for any
suboptimal arm 𝑃 , denoting 𝑔𝐿 as the last time slot that the arm was pulled, we have

2(1 + 𝑌)CR(𝑊𝐿 (𝑔𝐿 )) ⊋ ω𝐿 .

Recall that 𝑋𝐿 (𝑆) is the latest communication round about arm 𝑃 on or before time slot 𝑆 . Then,
ECR

(𝑁)

𝐿 (𝑋𝐿 (𝑔𝐿 )) is the ECR at the latest communication for arm 𝑃 which can be upper bounded as
follows,

ECR
(𝑁)

𝐿 (𝑋𝐿 (𝑔𝐿 ))
(𝑊)
= CR(𝑊𝐿 (𝑋𝐿 (𝑔𝐿 ))) ⊋ CR(𝑊𝐿 (𝑔𝐿 )) ⊋

ω𝐿

2(1 + 𝑌)
,

where equality (a) is because 𝑋𝐿 (𝑔𝐿 ) is a communication time slot in which the estimated con!dence
radius (ECR) is equal to CR. Recall the initial ECR(𝑁)

𝐿 (0) = 1 by de!nition. The total number of times
of communication on arm 𝑃 is upper bounded as follows,

log𝑆

(
ECR

(𝑁)

𝐿 (0)

ECR
(𝑁)

𝐿 (𝑋𝐿 (𝑔𝐿 ))

)
⫅̸ log𝑆

(
2(1 + 𝑌)

ω𝐿

)
.

Since all arms are pulled in a round-robin manner, the communication cost on the optimal arm is
upper bounded by log𝑆

(
2(1+𝑆 )

ω2

)
where ω2 is the smallest reward gap.

Summing the above two type cases yields the communication upper bound as follows,

∑
𝐿>1

log𝑆

(
2(1 + 𝑌)

ω𝐿

)
+ log𝑆

(
2(1 + 𝑌)

ω2

)
+ 𝐿𝑀2 .

As each communication round above needs 2(𝑀 ↓ 1) communications and the noti!cation of
arm elimination needs (𝐿 ↓ 1)𝑀 communications in total, the !nal communication costs are upper
bounded by

∑
𝐿>1

2𝑀 log𝑆

(
2(1 + 𝑌)

ω𝐿

)
+ 2𝑀 log𝑆

(
2(1 + 𝑌)

ω2

)
+ 2𝐿𝑀3.
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4 LEADER-COORDINATED ALGORITHMS FOR AMA2B

This section devises leader-coordinated algorithms for AMA2B and analyzes their theoretical perfor-
mance in terms of regret and communication. In §4.1, we present a leader-follower scheme inspired
by the synchronous MA2B [57] and extend it to address a special case of AMA2B where the agent
asynchronicity follows stochastic patterns. In §4.2, we propose a leader relay algorithm for the gen-
eral asynchronous scenario. In §4.3, we combine both algorithms and present a leader-coordinated
algorithm for AMA2B as well as its theoretical guarantees.

4.1 LF: A Leader-Follower Scheme
The leader-coordinated algorithm assigns one agent as the leader, denoted as 𝑏 , and the rest as
followers. The leader explores arms and recommends its estimated optimal arm to followers, while
the followers keep pulling the arm recommended by the leader. The leader-follower scheme was !rst
introduced by Wang et al. [57] for fully synchronous MA2B. In the synchronous setting, the active
decision rounds of all agents are the same, and arbitrarily selecting an agent as the leader would
work. However, in the asynchronous case, the leader selection is nontrivial. The main challenge
lies in how to select a competent leader.

Algorithm 2 LF: Leader’s decision-making procedure
1: Input: the leader agent index 𝑏
2: Initialize: KL-UCB index 𝑕𝐿 (𝑆) ↗ 0, reward mean estimate 𝑄 (𝑅 )𝐿 (𝑆) ↗ 0, and estimated optimal

arm in previous active time slot 𝑒 ↘ ↗ 0, exploration arm set D(𝑆) ↗ ⇔

3: for all 𝑆 ↑ T
(𝑅 ) do

4: if D(𝑆) = ⇔ then
5: Update 𝑄 (𝑅 )𝐿 (𝑆),𝑊 (𝑅 )

𝐿 (𝑆),𝑕𝐿 (𝑆) of all arms 𝑃 ↑ K

6: 𝑒 (𝑆) ↗ argmax𝐿↑ [𝑀 ]
𝑄𝐿 (𝑆) 𝐿 Empirical optimal arm

7: if 𝑒 (𝑆) ω 𝑒 ↘ then 𝐿 Empirical optimal arm changes

8: Send the new empirical optimal arm 𝑒 (𝑆) to all followers
9: 𝑒 ↘ ↗ 𝑒 (𝑆)
10: end if
11: 𝑖 (𝑆) ↗ 𝑒 (𝑆)
12: D(𝑆) ↗ {𝑃 ↑ [𝐿] : 𝑕𝐿 (𝑆) > 𝑄𝑏 (𝑂 ) (𝑆)} 𝐿 Arms with high KL-UCB indices

13: else
14: 𝑖 (𝑆) ↗ argmax𝐿↑D(𝑂 ) 𝑕𝐿 (𝑆)
15: D(𝑆) ↗ D(𝑆) \ {𝑖 (𝑆)}
16: end if
17: Pull arm 𝑖 (𝑆), observe its reward observation
18: end for

Leader-coordinated algorithm for stochastic AMA2B. To illustrate how leader selection im-
pacts the performance of the leader-follower scheme, we consider the stochastic AMA2B, where the
asynchronous activation rounds of each agent𝑅 follows a Bernoulli process with known frequency
parameter 𝑗 (𝑁) , i.e., the agent pulls an arm when the realization of the Bernoulli random variable is
equal to 1. Also, without loss of generality, we assume 1/𝑗 (𝑁)

↑ N+ for every agent𝑅. Let 𝑊 (𝑅 )
𝐿 (𝑆)

and 𝑄 (𝑅 )𝐿 (𝑆) denote the number of pulls and the reward mean estimate for arm 𝑃 of leader 𝑏 at time
slot 𝑆 . Let 𝑕𝐿 (𝑆) denote the Kullback-Leibler Upper Con!dence Bounds (KL-UCB) index [18] of
arm 𝑃 for leader 𝑏 at time 𝑆 (as only leader uses KL-UCB index, we omit the 𝑕 (𝑅 )

𝐿 (𝑆)’s superscript),
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Algorithm 3 LF: Follower𝑅’s procedure
1: Initialize: 𝑖 (𝑆) = 0
2: for all 𝑆 ↑ T

(𝑁) do
3: if receive recommended arm 𝑒 (𝑆) from leader then
4: 𝑖 (𝑆) ↗ 𝑒 (𝑆)
5: end if
6: Pull arm 𝑖 (𝑆)
7: end for

de!ned as 𝑕𝐿 (𝑆) := sup{𝑘 ⊋ 0 : 𝑊 (𝑅 )
𝐿 (𝑆) kl(𝑄 (𝑅 )𝐿 (𝑆),𝑘) ⊋ log 𝑆 + 4 log log 𝑆}, where kl(𝑙,𝑚) is the

KL-divergence between two Bernoulli distributions with means 𝑙 and 𝑚.
We present the leader’s decision-making procedure in Algorithm 2. Based on the KL-UCB index,

we construct an exploration arm set D(𝑆) containing arms with large KL-UCB indices. During each
leader active decision round 𝑆 ↑ T

(𝑅 ) , if the exploration arm set D(𝑆) is empty (i.e., all arms in the
set have been explored once), the leader 𝑏 updates the empirical mean estimates 𝑄 (𝑅 )𝐿 (𝑆), number
of pulling times 𝑊 (𝑅 )

𝐿 (𝑆), and KL-UCB indices 𝑕𝐿 (𝑆) of all arms (Line 5), as well as its empirical
optimal arm estimate 𝑒 (𝑆), which is the arm with the largest reward mean estimate (ties are broken
arbitrarily) (Line 6). If the empirical optimal arm 𝑒 (𝑆) changes (i.e., di"ers from the empirical optimal
arm in the previous active time slot, denoted as 𝑒 ↘), the leader updates this new arm recommendation
𝑒 (𝑆) to all followers (Lines 7-8). Then, leader 𝑏 pulls the empirical optimal arm 𝑒 (𝑆) once (Line 11).
After that, the leader updates the exploration arm set D(𝑆) that contains all arms whose KL-UCB
indices 𝑕𝐿 (𝑆) are greater than the largest empirical reward mean (i.e., arm 𝑒 (𝑆)’s reward mean
estimate) (Line 12). Otherwise, if the exploration arm set D(𝑆) is non-empty, the leader picks an
arm with the largest KL-UCB index in D(𝑆) to explore and then eliminates this explored arm from
set D(𝑆). Meanwhile, the followers keep pulling the most recently recommended arm by the leader
during their active decision rounds (Algorithm 3).

Regret and communication analysis for stochastic AMA2B. Next, we present regret and
communication upper bounds of Algorithm 2 for stochastic AMA2B for picking any agent 𝑏 as the
leader in Proposition 4.

P&%(%)*+*%, 4. For stochastic AMA2B, with any agent 𝑏 ↑ M as the leader, and 0 < 𝑛 <
min𝐿>1

𝑐𝑀↓1↓𝑐𝑀
4 , Algorithm 2’s regret and communication is upper bounded by

𝑈(𝑁 ) ⫅̸
∑
𝐿ω1

ω𝐿 (log𝑁 + 4 log log𝑁 )
kl(𝑄𝐿 + 𝑛, 𝑄1 ↓ 𝑛)

+

∑
𝑁↑M 𝑗 (𝑁)

𝑗 (𝑅 )
(2𝐿2𝑛↓2 + 57𝐿) + 𝐿𝑛↓2, (9)

𝑉 (𝑁 ) ⫅̸ 4𝐿2𝑀𝑛↓2 + 114𝐿𝑀 . (10)

Proof of Proposition 4 is given in Appendix B.1. The second term of the regret bound in (9)
corresponds to the cost due to asynchronicity. The term (2𝐿2𝑛↓2 + 57𝐿) upper bounds the number
of leader active decision rounds at which the leader recommends the false optimal arm. The multi-
plicative factor

∑
𝑁↑M 𝑗 (𝑁)

/𝑗 (𝑅 ) — the ratio of the summation of all agent activation frequencies
over the leader activation frequency — transfers the number of active decision rounds in which the
leader makes false optimal arm recommendations to the expected total number of active rounds
that all agents pull these false recommendations. In the stochastic AMA2B scenario, the multiplicative
factor is minimized by choosing the agent with the largest activation frequency as the leader, in
which case the term

∑
𝑁↑M 𝑗 (𝑁)

/𝑗 (𝑅 ) is upper bounded by 𝑀 . If the selected leader has a rather
low activation frequency, this term may be fairly large.
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Algorithm 4 Relay: Leader relay

1: Input: time horizon 𝑁 , number of agents𝑀 , switch budget 𝑍 , 𝑜𝑂 ↗ 2/
↖
𝑆

2: Initialize: mini-batch 𝑁 ↘
↗ ↙𝑁 /𝑍∝, 𝑆 ↗ 1, 𝑏 (𝑆) ↗ uniformly draw one agent fromM

3: for 𝑆 ↑ T do
4: Observe the activation status 𝑚 (𝑅 (𝑂 ) )

(𝑆) of agent 𝑏 (𝑆)
5: if 𝑆 |𝑁 ↘ then 𝐿 When 𝑆 = 𝑁 ↘, 2𝑁 ↘, . . .

𝐿 Follow Tsallis-INF to update counters and distribution 𝜴(𝑆 +𝑁 ↘
)

6: 𝑚 (𝑁)
(𝑆) ↗

{∑𝑂
𝑑=𝑂↓𝑇 ↘ 𝑚 (𝑅 (𝑂 ) )

(𝑋)/𝑝 (𝑅 (𝑂 ) )
(𝑆), if𝑅 = 𝑏 (𝑆)

0, otherwise
for all agent𝑅

7: 𝑞 (𝑁)
(𝑆) ↗

∑
𝑑 :𝑑 |𝑇 ↘,𝑑⫅̸𝑂 𝑚

(𝑁)
(𝑋)/𝑁 ↘ for all agent𝑅 𝐿 Scale down by mini-batch 𝑁 ↘

8: 𝑝 (𝑁)
(𝑆 +𝑁 ↘

) ↗ 4(𝑜𝑂 (𝑞 (𝑁)
(𝑆) ↓𝑉 (𝑆)))↓2 for all agent𝑅,

where 𝑉 (𝑆) is a normalization parameter such that
∑

𝑁↑M 𝑝 (𝑁)
(𝑆 +𝑁 ↘

) = 1
9: Draw next leader 𝑏 (𝑆 + 1) according to the distribution 𝜴(𝑆 +𝑁 ↘

) = (𝑝 (𝑁)
(𝑆 +𝑁 ↘

))𝑁↑M

10: else
11: 𝑏 (𝑆 + 1) ↗ 𝑏 (𝑆) 𝐿 Fix the leader agent inside a mini-batch

12: end if
13: end for

In order words, to avoid a large second term in the regret upper bound, one should choose a
competent leader 𝑏 whose activation frequency is in the same order as those of followers, so that the
regret cost due to the leader’s false arm recommendation is not large. However, in general AMA2B,
one does not know agents’ activation frequencies a prior, and thus !xing one leader is not a good
strategy anymore.

4.2 Relay: A Leader Relay Algorithm
In this subsection, we present a leader relay algorithm that dynamically switches the leadership
among agents such that the sequence of leaders composes a “competent leader”. Denote by 𝑚 (𝑁)

(𝑆)
the activation status of agent𝑅 at time slot 𝑆 : 𝑚 (𝑁)

(𝑆) = 1 if agent𝑅 is active at time 𝑆 ; otherwise,
𝑚 (𝑁)

(𝑆) = 0. Denote 𝑏 (𝑆) as the leader at time slot 𝑆 . The aim of leader relay can be roughly
interpreted as maximizing the total number of active decision rounds of the leader sequence, i.e.,
max

∑
𝑂 𝑚

(𝑅 (𝑂 ) )
(𝑆), facing agents with adversarial activations. This task can be cast as adversarial

bandits [5]. The term 𝑚 (𝑁)
(𝑆) corresponds to the reward of a virtual arm (agent)𝑅, and the term

𝑏 (𝑆) as the pulled virtual arm (leader agent) at time slot 𝑆 . The virtual arm (leader agent) sequence
chosen by the leader relay algorithm together composes the “leader”. If two consecutive pulled
arms (agents) are di"erent, i.e., 𝑏 (𝑆 ↓ 1) ω 𝑏 (𝑆), we call it a leadership switch. As switches incur
communication costs for transferring the contents of algorithm registers, we need to devise an
adversarial bandit algorithm with low switches.

To ensure that the leader sequence is competent, the leader relay algorithm needs to guarantee
that the activation frequency of the leader sequence is comparable to any single agent’s activation
frequency. Speci!cally, the leader sequence needs to have ε(𝑋) active decision rounds for any time
slot 𝑋 ⫅̸ 𝑁 , that is,

∑𝑑
𝑂=1 𝑚

(𝑅 (𝑂 ) )
(𝑆) = ε(𝑋). To achieve that, we need to pick an adversarial bandits

algorithm with an anytime𝑂 (
↖
𝑀𝑁 ) regret upper bound (see the Proof sketch of Theorem 5 below).

We use the Tsallis-INF (implicitly normalized forecaster) algorithm [65] as the base algorithm,
and then employ the mini-batch technique [2, 3] to convert Tsallis-INF to an algorithm with low
switches. Denote by 𝑍 ↑ N+ the number of switches allowed (switch budget) in leader relay, and
set the mini-batch length 𝑁 ↘ = ↙𝑁 /𝑍∝. The mini-batch technique divides the given time horizon
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𝑁 into around ′𝑁 /𝑁 ↘
∞ mini-batches, each of which contains 𝑁 ↘ time slots. Then, the mini-batched

algorithm treats each mini-batch as one “time slot” (i.e., !xes its action in the mini-batch), where
the reward of an action on one “time slot” is the cumulative reward of constantly choosing this
action over all 𝑁 ↘ time slots within the mini-batch in the original algorithm. Next, we present the
details of the mini-batched Tsallis-INF (i.e., leader relay) algorithm.

The leader relay (Relay) algorithm, presented in Algorithm 4, is executed by the leader sequence
{𝑏 (𝑆)}𝑂 ↑T for all time slots in T . In each time slot 𝑆 ↑ T , the leader agent 𝑏 (𝑆) collects its activation
status 𝑚 (𝑅 (𝑂 ) )

(𝑆) (Line 4). Only at the end of each mini-batch, i.e., 𝑆 |𝑁 ↘ or when 𝑆 = 𝑁 ↘, 2𝑁 ↘, . . .,
the leadership switch may happen (Line 5). For these time slots 𝑆 = 𝑁 ↘, 2𝑁 ↘, . . ., the algorithm
performs the Tsallis-INF algorithm to decide the next leader agent (Lines 6–9). Speci!cally,
the algorithm !rst updates the estimates 𝑚 (𝑁)

(𝑆) according to the collected activation statuses
{𝑚 (𝑅 (𝑂 ) )

(𝑋)}𝑂↓𝑇 ↘⫅̸𝑑⫅̸𝑂 in this past mini-batch for this leader agent 𝑏 (𝑆) and set the estimates of other
follower agents𝑅 ω 𝑏 (𝑆) as zero (Line 6). Then, according to all estimates {𝑚 (𝑁)

(𝑋)}𝑑 :𝑑 |𝑇 ↘,𝑑⫅̸𝑂 in all
past mini-batches, the algorithm updates a counter 𝑞 (𝑁)

(𝑆) for all agents𝑅 ↑ M, scaling down by a
𝑁 ↘ factor for the mini-batch technique (Line 7). Next, following the implicitly normalized forecaster
(INF) principle [4, 65], the algorithm updates the virtual arm (agent) sample probability in Line 8
and samples the next leader agent according to this probability distribution in Line 9. For other
time slots not at the end of a mini-batch, the algorithm !xes on the same leader agent (Line 11).
Next, we provide the leader relay algorithm’s theoretical guarantee in Theorem 5.

T$!%&!" 5 (L!#-!& &!.#/ 01#&#,+!!) 2%"(!+!,+ .!#-!& )!3!,2!). Given 𝑍 = 𝑉1𝑀3

leadership switch budget where 𝑉1 > 0 is a universal constant, for any time slot 𝑋 ⫅̸ 𝑁 , the total
number of active decision rounds of the leader sequence chosen by Algorithm 4 is at least 𝑋/2𝑀 , or
formally,

∑𝑑
𝑂=1 𝑚

(𝑅 (𝑂 ) )
(𝑆) ⊋ 𝑑

2𝑒 , where 𝑏 (𝑆) is the leader chosen by Algorithm 4 at time slot 𝑆 .

Theorem 5 guarantees that at any time slot 𝑋 , the leaders in the sequence are active for at
least 𝑋/2𝑀 rounds, composing a competent leader sequence. Hence, the multiplicative factor∑

𝑁↑M 𝑗 (𝑁)
/𝑗 (𝑅 ) in the second term of (9) is upper bounded by 2𝑀2 in the general AMA2B setting.

The introduction of Algorithm 4 and its corresponding Theorem 5 to leader selection is especially
designed to address the asynchronous AMA2B setting and thus an unique contribution, which is not
covered by existing synchronous settings. The proof of Theorem 5 relies on a novel combination
from two distinct areas: adversarial bandits and asynchronous agents.

Proof sketch for Theorem 5. Detail proof of Theorem 5 is presented in §4.2.1. Below, we
provide an intuitive proof sketch. The original Tsallis-INF algorithm achieves a regret upper
bound of 𝑂 (

↖
𝑀𝑁 ) for adversarial bandits. By extending it with the mini-batch technique, where

switches occur at most 𝑍 = 𝑂 (𝑀3
) times, the leader-relay algorithm aggregates every 𝑂 (𝑁 /𝑀3

)

consecutive time slots into a mini-batch. Within each mini-batch, Tsallis-INF makes a single
decision at the start and maintains it throughout the mini-batch. This results in a mini-batched
Tsallis-INF algorithm with 𝑂 (𝑁 /𝑀) regret. By choosing 𝑍 = 64𝑀3, this regret becomes 𝑁 /2𝑀 .
Given that the agent with the highest overall activation frequency (the benchmark for the adversarial
bandit’s regret) will have at least𝑁 /𝑀 action rounds, the leader-relay algorithm guarantees that the
leader (sequence) is active for at least 𝑁 /2𝑀 rounds, which is comparable to the active frequency
of any single agent, and therefore, is competent.

4.2.1 Detail Proof of Theorem 5. We !rst prove a lemma on the leader relay algorithm’s “regret”
upper bound.
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Algorithm 5 LF-Relay: Leader’s procedure
1: for all 𝑆 ↑ T do
2: if 𝑆 ↑ T

(𝑅 (𝑂 ) ) then 𝐿 Decision-making
3: Leader 𝑏 (𝑆) runs the decision making procedure (Algorithm 2)
4: end if
5: Run leader relay (Algorithm 4) to decide the next leader 𝑏 (𝑆 + 1)
6: if 𝑏 (𝑆) ω 𝑏 (𝑆 + 1) then 𝐿 Leadership switch

7: Transfer register contents of Algorithms 2 and 4 to new leader 𝑏 (𝑆 + 1).
8: end if
9: end for

L!""# 6. Algorithm 4 guarantees that, for any time horizon 𝑁 ,

max
𝑁↑M

𝑇∑
𝑂=1

𝑚 (𝑁)
(𝑆) ↓

𝑇∑
𝑂=1

𝑚 (𝑅 (𝑂 ) )
(𝑆) ⫅̸

4𝑁
↖
𝑀

↖
𝑍

, (11)

where 𝑏 (𝑆) is the leader choosing by Algorithm 4 at time slot 𝑆 .

P&%%’ %’ L!""# 6. The lemma is proved by applying the mini-batch technique Altschuler and
Talwar [2, Theorem 6] to the Tsallis-INF algorithm [65, Theorem 1] for adversarial bandits.
We !rst recall the original regret upper bound of Tsallis-INF in adversarial bandits [65, Theo-

rem 1], which is

max
𝑁↑M

𝑇∑
𝑂=1

𝑚 (𝑁)
(𝑆) ↓

𝑇∑
𝑂=1

𝑚 (𝑅 ↘ (𝑂 ) )
(𝑆) ⫅̸ 4

↖
𝑀𝑁 ,

where the 𝑏 ↘ (𝑆) is the arm/agent chosen by the original Tsallis-INF algorithm.
The leader Relay algorithm in Algorithm 4 is a 𝑁 ↘-mini-batched version of Tsallis-INF. The

mini-batch size is𝑁 ↘ = ↙𝑁 /𝑍∝, and the leader may be switched by the Tsallis-INF algorithm every
𝑁 ↘ decision rounds. According to Altschuler and Talwar [2, Theorem 6], the regret upper bound of
the mini-batched algorithm is

max
𝑁↑M

𝑇∑
𝑂=1

𝑚 (𝑁)
(𝑆) ↓

𝑇∑
𝑂=1

𝑚 (𝑅 (𝑂 ) )
(𝑆) ⫅̸ 4

↖
𝑀𝑍 ⇒

𝑁

𝑍
⫅̸

4𝑁
↖
𝑀

↖
𝑍

,

where the 4
↖
𝑀𝑍 is because the mini-batched version has in total 𝑍 batches, and the 𝑇

𝑓 is due to
that the reward of a mini-batch is scaled up by the mini-batch size 𝑁 ↘. ⫆̸

Notice that at least one active agent exists in each time slot. Hence, the highest number of active
decision rounds of a single agent is at least 𝑁 /𝑀 , i.e.,

max
𝑁↑M

𝑇∑
𝑂=1

𝑚 (𝑁)
(𝑆) ⊋

𝑁

𝑀
.

Substituting the above inequality and 𝑍 = 64𝑀3 to (11) in Lemma 6 yields

𝑇∑
𝑂=1

𝑚 (𝑅 (𝑂 ) )
(𝑆) ⊋ max

𝑁↑M

𝑇∑
𝑂=1

𝑚 (𝑁)
(𝑆) ↓

4𝑁
↖
𝑀

↖
𝑍

⊋
𝑁

2𝑀
.
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4.3 LF-Relay: Leader-Coordinated Bandit Algorithm & Its Theoretical Analysis
Combining the leader relay policy in Algorithm 4 and the leader decision procedure in Algorithm 2,
we propose the leader-coordinated AMA2B algorithm in Algorithm 5. For each time slot 𝑆 , if active at
this time 𝑆 , this leader 𝑏 (𝑆) runs the leader procedure in Algorithm 2 (Line 3). Then, the leader 𝑏 (𝑆)
runs the leader relay algorithm to decide the next leader 𝑏 (𝑆 + 1) (Line 5). If there is a leadership
switch, i.e., 𝑏 (𝑆) ω 𝑏 (𝑆+1), then leader 𝑏 (𝑆) transfers its data, i.e., all register contents of Algorithms 2
and 4, to new leader 𝑏 (𝑆 + 1) (Line 7).
In Theorem 7, we present the regret and communication analysis of LF-Relay in Algorithm 5.

Proof of Theorem 7 is presented in Appendix B.2.

T$!%&!" 7. For general AMA2B, given 0 < 𝑛 < min𝐿>1
𝑐𝑀↓1↓𝑐𝑀

4 and the number of leadership
switches in Algorithm 4 as 𝑍 = 64𝑀3, Algorithm 5’s regret and communication cost satisfy,

𝑈(𝑁 ) ⫅̸
∑
𝐿>1

ω𝐿 (log𝑁 + 4 log log𝑁 )
kl(𝑄𝐿 + 𝑛, 𝑄1 ↓ 𝑛)

+ 2𝑀2
(2𝐿2𝑛↓2 + 57𝐿) + 𝐿𝑛↓2, (12)

𝑉 (𝑁 ) ⫅̸ 4𝐿2𝑀𝑛↓2 + 114𝐿𝑀 + 64𝑀3. (13)

Communication and regret bounds comparison between LF-Relay and SE-AAC-ODC. The
LF-Relay algorithm achieves a time-independent constant communication cost 𝑂 (𝐿2𝑀ω↓2

2 +𝑀3
)

(assuming 𝑛 = ω2/4 in (13)). But its order is worse than the 𝑂 (𝐿𝑀 logω↓1
) cost of the fully

distributed SE-AAC-ODC in (6). On the other hand, letting 𝑁 → ≃ and 𝑛 → 0, the regret upper
bound in (12) becomes lim sup𝑇→≃

𝑈 (𝑇 )

log𝑇 ⫅̸
∑

𝐿>1
ω𝑀

kl(𝑐𝑀 ,𝑐1 ) . This tightly matches the MA2B’s regret
lower bound [57, §1.2], which implies that LF-Relay is (asymptotically) optimal. As bounded in
terms of the !ne-grained KL-divergence, this regret of LF-Relay in (12) is tighter than that of
SE-AAC-ODC in (5) based on the coarse-grained reward gaps ω𝐿 . To sum up, although both algorithms
achieve near-optimal regret and constant communications, LF-Relay has a better regret bound,
while SE-AAC-ODC enjoys lower communications.

Beyond Bernoulli reward distributions. While in the above analysis of the fully distributed
and leader-coordinated algorithms we focus on Bernoulli reward distributions, the proposed al-
gorithms can be extended to general sub-Gaussian reward distributions. The fully distributed
algorithm (SE-AAC-ODC) only needs to modify a multiplicative factor of its con!dence interval
according to the sub-Gaussian scale, and the leader-coordinated algorithm (LF-Relay) needs to
replace its KL-UCB index with the empirical KL-UCB index [18]. However, the analysis of the leader-
coordinated algorithm needs a non-trivial modi!cation as the analysis related to the empirical
KL-UCB index is much more involved.

5 NUMERICAL EXPERIMENTS
In this section, we !rst simulate a multi-server recommendation system application to verify the
performance of the proposed algorithms. For recommendation servers, their decision times/rounds
depend on when and how often clients visit their corresponding webpage and are often di"erent,
unknown, and asynchronous. Speci!cally, we numerically study𝑀 servers (i.e., agents) coopera-
tively recommending 𝐿 advertisements (i.e., arms) with Bernoulli rewards whose reward means
are uniformly randomly taken from the advertisement recommendation dataset, Ad-Click [35]
from Kaggle. We let server𝑅’s non-stationary client request arrival times follows a sine function,
sin(𝑗𝑁 + 𝑆/30), where the phase shifts 𝑗𝑁 = 𝑅/5,𝑅 ↑ {1, ...,𝑀} di"er for di"erent servers. We
report the number of communications and regrets after 𝑁 = 80 000 time slots averaged over 30
independent trials, and we plot the standard deviation as the shaded area.
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(a) Communications

(b) Regrets

Fig. 3. Comparison with baselines

(a) Increase Agents

(b) Increase Arms

Fig. 4. Vary AMA2B parameters

(a) Communications

(b) Regrets

Fig. 5. Cognitive Radio Simulation

We compare our SE-AAC-ODC with 𝑌 = 5 and LF-Relay with 𝑍 = 𝑀3 to prior algorithms
from [23, 59], namely UCB-ODC, UCB-IBC, SE-ODC, and SE-IBC, with 𝑌 = 3 (the de!nition of their
𝑌 parameter is di"erent), when there are 𝑀 = 10 servers recommending 𝐿 = 16 advertisements.
The simulation results are presented in Figure 3. Figure 3a shows that our proposed algorithms,
LF-Relay and SE-AAC-ODC, incur signi!cantly fewer communication rounds than other baselines,
validating our constant communication theoretical upper bounds. Figure 3b shows that LF-Relay
achieves the smallest regret among all algorithms, and SE-AAC-ODC has the smallest regret among all
SE-based algorithms. Figures 3a and 3b together show that, among the SE-AAC-ODC and LF-Relay,
SE-AAC-ODC incurs fewer communications round while has larger regret and LF-Relay incurs a
little bit more communications while achieves smaller regret.
We then compare SE-AAC-ODC with 𝑌 = 5 with LF-Relay with 𝑍 = 𝑀3 in two scenarios: 1) the

number of advertisements !xed at 𝐿 = 16, and the number of servers increases from 𝑀 = 10
to 𝑀 = 30 with step size 5, and 2) the number of servers !xed at 𝑀 = 10, and the number of
advertisements increases from 𝐿 = 16 to 𝐿 = 32 with step size 4. The results are presented
in Figure 4. Figure 4a shows that the number of servers (i.e., agents) in$uences the number of
communications more than group regret, especially for LF-Relay. Figure 4b shows that the number
of advertisements (i.e., arms) has a moderate impact on both communications and regrets for both
SE-AAC-ODC and LF-Relay. Figure 4 further validates that, among the two proposed algorithms,
SE-AAC-ODC enjoys lower communications, while LF-Relay wins in regret.

Finally, we simulate a popular multi-agent bandit application: the cognitive radio network [45].
The setup involves 𝑀 = 10 agents and 𝐿 = 10 channels, where the agents’ activation patterns
follow ON/OFF two-state Markov chains [25] with transition probabilities from Modi et al. [45,
Table II]. The arm reward means are determined based on the channel availability rates from Cai
et al. [17, Table 1]. Figure 5 presents the regret and communication performance of the proposed
SE-AAC-ODC algorithm (𝑌 = 2) and LF-Relay (𝑍 = 4𝑀4), alongside baseline algorithms UCB-ODC,
UCB-IBC, SE-ODC, and SE-IBC (𝑌 = 3). The results are averaged over 60 independent trials, with the
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corresponding standard deviations represented as shaded areas. Figure 5a con!rms that both LF-
Relay and SE-AAC-ODC incur signi!cantly fewer communication rounds than the baseline algorithms.
Additionally, Figure 5b indicates that all algorithms exhibit larger regret standard deviations due to
increased randomness in agent activation times. Consistent with earlier simulations, among the
proposed algorithms, SE-AAC-ODC demonstrates superior communication e#ciency, while LF-Relay
achieves lower regret.

6 CONCLUSION AND FUTURE DIRECTIONS
This paper addresses the asynchronous multi-agent multi-armed bandits problem by introducing
two innovative algorithms: SE-AAC-ODC, designed for fully distributed scenarios, and LF-Relay,
intended for leader-coordinated scenarios. Both algorithms achieve near-optimal regret and have
horizon-independent communication costs. Speci!cally, SE-AAC-ODC features a tighter communica-
tion upper bound, whereas LF-Relay provides a tighter regret upper bound.

While both algorithms’ regret upper bounds align with the asymptotic lower bound (with SE-AAC-
ODC being slightly o" due to missing constants), evaluating the e"ectiveness of their communication
upper bounds remains challenging due to the absence of corresponding lower bounds. Existing
lower bounds are limited to synchronous settings, such as the ϑ(𝑀) bound from Wang et al. [58,
Theorem 2], and are also somewhat loose compared to the communication upper bounds even in
synchronous settings, as noted by [57, 61]. As synchronous MA2B is a special case of asynchronous
AMA2B, it is reasonable to expect that the communication lower bounds for the asynchronous setting
will be at least as high as those for the synchronous setting, i.e., a ϑ(𝑀) lower bound is expected
for asynchronous AMA2B. Comparing with this lower bound shows that the communication upper
bounds of SE-AAC-ODC is tight in terms of the number of agents𝑀 , while the communication upper
bound of LF-Relay is not tight. A promising direction for future research is to establish more
sophisticated communication lower bounds for the asynchronous multi-agent multi-armed bandits
problem.
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A DEFERRED PROOFS FOR FULLY DISTRIBUTED ALGORITHM
A.1 Proof of Lemma 1
We pick an agent 𝑏 with the highest number of times of pulling arm 𝑃 in the time slots from 𝑋𝐿 (𝑆)
to time 𝑆 (break tie arbitrarily), that is,

𝑏 := argmax
𝑁↘ ↑M

𝑂∑
𝑄=𝑑𝑀 (𝑂 )

{𝑒 (𝑁
↘
)
(𝑎) = 𝑃} = argmax

𝑁↘ ↑M

(
𝑊 (𝑁↘

)

𝐿 (𝑆) ↓ 𝑊 (𝑁↘
)

𝐿 (𝑋𝐿 (𝑆))
)
, (14)

where 𝑒 (𝑁↘
)
(𝑎) denotes the arm that agent𝑅↘ pulls at time slot 𝑎 . Recall that the estimate 𝑄 (𝑅 )𝐿 (𝑆) is

obtained by averaging 𝑊𝐿 (𝑋𝐿 (𝑆)) + 𝑊
(𝑅 )
𝐿 (𝑆) ↓ 𝑊 (𝑅 )

𝐿 (𝑋𝐿 (𝑆)) samples, where 𝑊𝐿 (𝑋𝐿 (𝑆)) is the number of
samples of arm 𝑃 among all agents at time slot 𝑋𝐿 (𝑆). Hence, the following equation holds with
probability 1 ↓𝑀𝑁 ↓3,

|𝑄 (𝑅 )𝐿 (𝑆) ↓ 𝑄𝐿 |
(𝑊)
⫅̸ CR(𝑊𝐿 (𝑋𝐿 (𝑆)) + 𝑊

(𝑅 )
𝐿 (𝑆) ↓ 𝑊 (𝑅 )

𝐿 (𝑋𝐿 (𝑆)))

(𝑋 )
⫅̸ CR(𝑊𝐿 (𝑋𝐿 (𝑆)))

(𝑌 )
< 𝑌CR(𝑊𝐿 (𝑋𝐿 (𝑆)) +𝑀 (𝑊 (𝑅 )

𝐿 (𝑆) ↓ 𝑊 (𝑅 )
𝐿 (𝑋𝐿 (𝑆))))

(𝑍 )
< 𝑌CR(𝑊𝐿 (𝑆)),

where inequality (a) is proved below by Hoe"ding’s inequality and union bound, inequality (b) is
due to that the con!dence radius becomes larger with a smaller number of samples, inequality (c)
is due to that the condition in Line 11 of Algorithm 1 is false at time slot 𝑆 (> 𝑋𝐿 (𝑆)), and inequality
(d) is because that the agent 𝑏 has the highest number of times of pulling arm 𝑃 during 𝑋𝐿 (𝑆) to 𝑆 ,
that is, 𝑊𝐿 (𝑋𝐿 (𝑆)) +𝑀 (𝑊 (𝑅 )

𝐿 (𝑆) ↓ 𝑊 (𝑅 )
𝐿 (𝑋𝐿 (𝑆))) ⊋ 𝑊𝐿 (𝑆).
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Below, we present the detailed steps for proving inequality (a) as follows,

P
(
|𝑄 (𝑅 )𝐿 (𝑆) ↓ 𝑄𝐿 | ⫅̸ CR(𝑊𝐿 (𝑋𝐿 (𝑆)) + 𝑊

(𝑅 )
𝐿 (𝑆) ↓ 𝑊 (𝑅 )

𝐿 (𝑋𝐿 (𝑆)))
)

= P

(
|𝑄 (𝑅 )𝐿 (𝑆) ↓ 𝑄𝐿 | ⫅̸

√
4 log𝑁

𝑊𝐿 (𝑋𝐿 (𝑆)) + 𝑊
(𝑅 )
𝐿 (𝑆) ↓ 𝑊 (𝑅 )

𝐿 (𝑋𝐿 (𝑆))

)

= 1 ↓ P

(
|𝑄 (𝑅 )𝐿 (𝑆) ↓ 𝑄𝐿 | >

√
4 log𝑁

𝑊𝐿 (𝑋𝐿 (𝑆)) + 𝑊
(𝑅 )
𝐿 (𝑆) ↓ 𝑊 (𝑅 )

𝐿 (𝑋𝐿 (𝑆))

)

(𝑊1)
⊋ 1 ↓

𝑒 ·𝑂∑
𝑃=1

P

(
|𝑄 (𝑅 )𝐿 (𝑆) ↓ 𝑄𝐿 | >


4 log𝑁

𝑊

𝑊𝐿 (𝑋𝐿 (𝑆)) + 𝑊 (𝑅 )
𝐿 (𝑆) ↓ 𝑊 (𝑅 )

𝐿 (𝑋𝐿 (𝑆)) = 𝑊

)

⇒ P
(
𝑊𝐿 (𝑋𝐿 (𝑆)) + 𝑊

(𝑅 )
𝐿 (𝑆) ↓ 𝑊 (𝑅 )

𝐿 (𝑋𝐿 (𝑆)) = 𝑊
)

⊋ 1 ↓
𝑒 ·𝑂∑
𝑃=1

P

(
|𝑄 (𝑅 )𝐿 (𝑆) ↓ 𝑄𝐿 | >


4 log𝑁

𝑊

𝑊𝐿 (𝑋𝐿 (𝑆)) + 𝑊 (𝑅 )
𝐿 (𝑆) ↓ 𝑊 (𝑅 )

𝐿 (𝑋𝐿 (𝑆)) = 𝑊

)

(𝑊2)
⊋ 1 ↓

𝑒 ·𝑂∑
𝑃=1

𝑁 ↓4 ⊋ 1 ↓𝑀𝑁 ↓3,

where inequality (a1) is due to union bound, and inequality (a2) is by applying Hoe"ding’s inequality.

B PROOFS FOR LEADER-COORDINATED BANDIT ALGORITHMS
B.1 Proof of Proposition 4

All over this proof, we only consider the reward mean estimates 𝑄 (𝑅 )𝐿 (𝑆) of the leader 𝑏 , and there is
no appearance of other agents. Hence, we omit the (𝑏) superscript.

Step 1. Bound the number of times that the leader recommends the wrong optimal arm.
Given 0 < 𝑛 < min𝐿>1

(𝑐𝑀↓1↓𝑐𝑀 )
4 , we !rst de!ne several subsets of time slots that leader 𝑏 is active

as follows,

A := {𝑆 ↑ T
(𝑅 ) : 𝑒 (𝑆) ω 1},

B := {𝑆 ↑ T
(𝑅 ) : |𝑄𝑏 (𝑂 ) (𝑆) ↓ 𝑄𝑏 (𝑂 ) | ⊋ 𝑛},

G := {𝑆 ↑ T
(𝑅 ) : 𝑕1 (𝑆) < 𝑄1 (𝑆)},

H := {𝑆 ↑ A \ (B ∈ G) : |𝑄1 (𝑆) ↓ 𝑄1 | ⊋ 𝑛}.

L!""# 8. A ∈ B ∋ B ∈ G ∈H and hence, E[|A|] ⫅̸ E[|B|] + E[|G|] + E[|H |].

P&%%’ %’ L!""# 8. Let 𝑆 ↑ A \ (B ∈ G). To prove this lemma, one only needs to show 𝑆 ↑ H ,
which can be derived as follows,

𝑄1 (𝑆)
(𝑊)
⫅̸ 𝑄𝑏 (𝑂 )

(𝑋 )
⫅̸ 𝑄𝑏 (𝑂 ) + 𝑛

(𝑌 )
⫅̸ 𝑄1 ↓ 𝑛,

where inequality (a) is due to the de!nition of 𝑒 (𝑆), inequality (b) is because 𝑆 ε B, and inequality
(c) is due to the de!nition of 𝑛. ⫆̸

L!""# 9. E[|B|] + E[|G|] + E[|H |] ⫅̸ 2𝐿2𝑛↓2 + 57𝐿

P&%%’ %’ L!""# 9. We !rst present two useful lemmas adapted from prior literature as follows,
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L!""# 10 (A-#(+!- ’&%" [57, L!""# 8]). Let 𝑃 ↑ K , and 𝑟 > 0. De!ne F (𝑆) the 𝑠-algebra
generated by arm rewards {𝑇𝐿 (𝑎)}1⫅̸𝑄⫅̸𝑂 ,𝐿↑K . Let E be a random set of rounds such that for all
𝑆, {𝑆 ↑ E} ↑ F𝑂↓1. Assume that for all 𝑆 ↑ E, we have 𝑊𝐿 (𝑆) ⊋ 𝑟

∑𝑂
𝑄=1 {𝑆 ↑ E}. Then, for all 𝑛 > 0,

we have

E

[∑
𝑂⊋1

{𝑆 ↑ E, |𝑄𝐿 (𝑆) ↓ 𝑄𝐿 | ⊋ 𝑡}

]
⫅̸

1
𝑟𝑛2

.

L!""# 11 (A-#(+!- ’&%" [57, L!""# 9]). Under Algorithm 2, we have∑
𝑂⊋1

P[𝑕1 (𝑆) ⫅̸ 𝑄1] ⫅̸ 57𝐿 .

Next, we respectively upper bound E[|B|], E[|G|], and E[|H |] .
Show E[|B|] ⫅̸ 𝐿2𝑛↓2. We denote B𝐿 := {𝑆 ↑ B : 𝑒 (𝑆) = 𝑃} for all arm 𝑃 ↑ K . Due to

the exploration design of Algorithm 2, we have 𝑊𝐿 (𝑆) ⊋ (1/𝐿)
∑𝑂

𝑄=1 {𝑆 ↑ B𝐿 }. Then applying
Lemma 10 with E = B𝐿 and 𝑟 = 1/𝐿 , we have E[|B𝐿 |] ⫅̸ 𝐿𝑛↓2. Therefore, with a union bound,
we have E[|B|] ⫅̸

∑
𝐿↑K E[|B𝐿 |] ⫅̸ 𝐿2𝑛↓2 .

Show E[|G|] ⫅̸ 57𝐿 . Applying Lemma 11 leads to this upper bound.
Show E[|H |] ⫅̸ 𝐿𝑛↓2. Notice that 𝑆 ↑ H guarantees that

𝑕1 (𝑆)
(𝑊)
⊋ 𝑄1

(𝑋 )
⊋ 𝑄𝑏 (𝑂 ) + 𝑛

(𝑌 )
⊋ 𝑄𝑏 (𝐿 ) (𝑆),

where inequality (a) is because 𝑆 ε G, inequality (b) is due to the de!nition of 𝑛, and inequality (c) is
because 𝑆 ε B. Since 𝑕1 (𝑆) ⊋ 𝑄𝑏 (𝑂 ) (𝑆), the optimal arm 1 is inside the exploration arm set D(𝑆), and
Algorithm 2 thus explore this arm at least once every 𝐿 rounds, i.e., 𝑊𝐿 (𝑆) ⊋ (1/𝐿)

∑𝑂
𝑄=1 {𝑆 ↑ H}.

Applying Lemma 10 with E = H and 𝑟 = 1/𝐿 yields E[|H |] ⫅̸ 𝐿𝑛↓2. ⫆̸

Step 2. Bound the regret of leader exploring suboptimal arms. Denote Q𝐿 := {𝑆 ↑ T
(𝑅 )

\

(A ∈ B) : 𝑖 (𝑆) = 𝑃} for suboptimal arm 𝑃 ω 1. We show that,

E[|Q𝐿 |] ⫅̸
log𝑁 + 4 log log𝑁
kl(𝑄𝐿 + 𝑛, 𝑄1 ↓ 𝑛)

+ 𝑛↓2.

Denote 𝑢𝐿 (𝑆) :=
∑𝑂

𝑄=1 {𝑆 ↑ Q𝐿 } as the number of times that 𝑆 ↑ Q𝐿 happens up to time 𝑆 . We
set 𝑢0 :=

log𝑇+4 log log𝑇
kl(𝑐𝑀+𝑔,𝑐1↓𝑔) as a threshold.

We then de!ne two subset of Q𝐿 as follows,

Q𝐿,1 := {𝑆 ↑ Q𝐿 : |𝑄𝐿 (𝑆) ↓ 𝑄𝐿 | ⊋ 𝑛},

Q𝐿,2 := {𝑆 ↑ Q𝐿 : 𝑢𝐿 (𝑆) ⫅̸ 𝑢0}.

Next, we show that Q𝐿 △ Q𝐿,1 ∈ Q𝐿,2. Let 𝑆 ↑ Q𝐿 \ (Q𝐿,1 ∈ Q𝐿,2). For this 𝑆 , we have

𝑕𝐿 (𝑆)
(𝑊)
⊋ 𝑄𝑏 (𝑂 ) (𝑆)

(𝑋 )
= 𝑄1 (𝑆)

(𝑌 )
⊋ 𝑄1 ↓ 𝑛

(𝑍 )
> 𝑄𝐿 + 𝑛

(𝑎 )
> 𝑄𝐿 (𝑆), (15)

where inequality (a) is due to 𝑆 ↑ Q𝐿 , inequality (b) is because 𝑆 ε A, inequality (c) is due to 𝑆 ε B,
inequality (d) is due to the de!nition of 𝑛, and inequality (e) is for 𝑆 ↑ Q𝐿,1. Since 𝑆 ε Q𝐿,2, we also
have

𝑊𝐿 (𝑆) ⊋ 𝑢𝐿 (𝑆) > 𝑢0. (16)
Then, we have

𝑢0 kl(𝑄𝐿 (𝑆), 𝑄1 ↓ 𝑛)
(𝑊)
⫅̸ 𝑊𝐿 (𝑆) kl(𝑄𝐿 (𝑆), 𝑄1 ↓ 𝑛)

(𝑋 )
⫅̸ 𝑊𝐿 (𝑆) kl(𝑄𝐿 (𝑆),𝑕𝐿 (𝑆))

(𝑌 )
⫅̸ log𝑁 + 4 log log𝑁 ,

where inequality (a) is by (16), inequality (b) is by (15) and 𝑃𝑣 (𝑢,𝑤) increases with respect to 𝑤 when
𝑢 < 𝑤, and inequality (c) is by the de!nition of KL-UCB index 𝑕𝐿 (𝑆).
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Substituting 𝑢0 =
log𝑇+4 log log𝑇
kl(𝑐𝑀+𝑔,𝑐1↓𝑔) into the above inequality leads to

kl(𝑄𝐿 (𝑆), 𝑄1 ↓ 𝑛) ⫅̸ kl(𝑄𝐿 + 𝑛, 𝑄1 ↓ 𝑛).

Noticing that kl(𝑢,𝑤) decreases with respect to 𝑢 when 𝑢 < 𝑤, we have 𝑄𝐿 (𝑆) > 𝑄𝐿 + 𝑛, which
contradicts 𝑆 ε Q𝐿,1. Therefore, we know Q𝐿 \ (Q𝐿,1 ∈ Q𝐿,2) = ⇔, i.e., Q𝐿 △ Q𝐿,1 ∈ Q𝐿,2 .
Next, we upper bound E[|Q𝐿,1 |] and E[|Q𝐿,2 |]. To bound E[|Q𝐿,1 |], we apply Lemma 10 with

E = Q𝐿,1 and 𝑟 = 1 (notice that the arm 𝑃 is played at most once after each D(𝑆) renewing), then
we have E[|Q𝐿,1 |] ⫅̸ 𝑛↓2. For E[|Q𝐿,2 |], we have

E[|Q𝐿,2 |] ⫅̸ 𝑢0 =
log𝑁 + 4 log log𝑁
kl(𝑄𝐿 + 𝑛, 𝑄1 ↓ 𝑛)

.

Combining both upper bound together yields the upper bound for E[|Q𝐿 |] .
Step 3. Bound the total regret in stochastic case.We note that the regret costs due to Steps 1

and 2 are orthogonal. For Step 1, the total regret cost of the leader 𝑏 is upper bounded as follows,
1 · E[|A ∈ B|] ⫅̸ 2𝐿2𝑛↓2 + 57𝐿 .

When the leader makes wrong arm recommendations, the rest agents (followers) would also pull
suboptimal arms and thus pay regret costs. Since the leader makes a wrong recommendation for |A|

active decision rounds, the total arm pulls during these leader active rounds are
∑

𝑁ω𝑅 𝑗
(𝑁)

/𝑗 (𝑅 )
|A|.

Hence, the total costs due to followers’ mistaken pulling are upper bounded as follows,

E
∑

𝑁ω𝑅 𝑗
(𝑁)

𝑗 (𝑅 )
|A|


⫅̸

∑
𝑁ω𝑅 𝑗

(𝑁)

𝑗 (𝑅 )
(2𝐿2𝑛↓2 + 57𝐿) .

Summing the above two terms together yields an upper bound for the regret cost in Step 1 as
follows, ∑

𝑁↑M 𝑗 (𝑁)

𝑗 (𝑅 )
(2𝐿2𝑛↓2 + 57𝐿).

For Step 2, the regret cost is only from the leaders’ exploration, which is upper bounded as
follows, ∑

𝐿ω1

ω𝐿 · E[|Q𝐿 |] ⫅̸
∑
𝐿ω1

ω𝐿
log𝑁 + 4 log log𝑁
kl(𝑄𝐿 + 𝑛, 𝑄1 ↓ 𝑛)

+ 𝐿𝑛↓2.

Summing the regret costs from Steps 1 and 2 yields the regret upper bound as follows,

𝑈(𝑁 ) ⫅̸
∑
𝐿ω1

ω𝐿
log𝑁 + 4 log log𝑁
kl(𝑄𝐿 + 𝑛, 𝑄1 ↓ 𝑛)

+

∑
𝑁↑M 𝑗 (𝑁)

𝑗 (𝑅 )
(2𝐿2𝑛↓2 + 57𝐿) + 𝐿𝑛↓2 .

Communication. Communication only happens when the leader updates its arm recommenda-
tion to followers. Therefore, the total number times of recommendations is at most 2E[|A|] times,
and in each communication, the leader sends𝑀 ↓ 1 messages to each followers. Hence, the actually
communications are upper bounded by

𝑉 (𝑁 ) ⫅̸ 4𝐿2𝑀𝑛↓2 + 114𝐿𝑀 .

B.2 Proof of Theorem 7
The proof procedure of Theorem 7 are almost the same as that of Theorem 4. The only di"erence
appears in bounding the regret cost due to Step 1 (from stochastic case to adversarial case).
For 𝑆 ↑ A—time slots in which the leader recommends the wrong arm, the leader agents pay

at most E[|A ∈ B|] ⫅̸ 2𝐿2𝑛↓2 + 57𝐿 regret. Meanwhile, the cost due to followers pulling the
suboptimal arm recommendation is upper bounded as follows,

(𝑀 ↓ 1) · 2𝑀 · (2𝐿2𝑛↓2 + 57𝐿),
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where𝑀 ↓ 1 is the number of followers, and 2𝑀 is due to that the leader(s) chosen by Algorithm 4
are active at least every 2𝑀 decision rounds (see Theorem 5). Together, the regret cost due to step 1
becomes

2𝑀2
(2𝐿2𝑛↓2 + 57𝐿).

For communications, besides the leader recommendation, there are additional communication
due to leader relay which is 𝑍 = 64𝑀3. Hence, the total communication cost is upper bounded as
follows,

4𝐿2𝑀𝑛↓2 + 114𝐿𝑀 + 64𝑀3.

C PRIVACY PROTECTION MECHANISMS
In multi-agent/distributed learning, it is critical to protect user’s sensitive data from privacy risks,
so as to encourage users to participate and collaborate with the agents in the learning process.
Speci!cally, using the example mentioned in the introduction, imagine that𝑀 hospitals (i.e., agents)
are collaborating with each other to conduct a clinical trial (i.e., bandit problem) to study how
di"erent treatments (i.e., arms) can a"ect a disease. Each hospital will choose a speci!c treatment
for participating patients (i.e., users) based on past observations of treatment e"ects. However,
due to privacy concerns about health data leakage, the patients may not be willing to share the
actual e"ects of the treatments with the hospital, which prevents the agents from learning from
patient feedback. To ensure privacy, we use the notion of di"erential privacy (DP), which is a
de facto standard for reasoning about information leakage [29]. As de!ned in De!nition 12, DP
implies that for any neighboring records, after an 𝑡-DP mechanism, their statistical behaviors are
indistinguishable. In this case, it is di#cult for any attacker to determine which record is the source
of the given output.

D!’*,*+*%, 12 (𝑡4-*’’!&!,+*#. (&*5#2/ (𝑡4DP)). For 𝑡 > 0, a randomizedmechanism𝑥 : D → R𝑕

is said to be 𝑡-DP on D ∋ R𝑕 ↘ if for any neighboring 𝑢, 𝑢 ↘ ↑ D where
∑

𝑖↑ [𝑕 ↘ ] {𝑢𝑖 ω 𝑢 ↘𝑖 } = 1 and a
measurable subset 𝑦 of R𝑕 , we have P{𝑥 (𝑢) ↑ 𝑦} ⫅̸ 𝑧𝑗 · P{𝑥 (𝑢 ↘) ↑ 𝑦}.

In the above de!nition of DP, 𝑡 is called the privacy budget, where smaller 𝑡 implies higher levels
of privacy protection. When 𝑡 = ≃, there is no privacy protection.

Relatedworks about di!erential privacy. There is extensive literature on studying di"erential
privacy (DP) in multi-armed bandits [8, 24, 28, 41, 47, 50, 54, 55, 62, 63]. Our work uses the notion
of local DP, which has been studied under the single-agent MAB [47], the single-agent linear
contextual MAB [62], and distributed linear contextual bandits with partial feedback [41]. Ren
et al. [47] studies the DP in single-agent MAB, which largely inspires our privacy protection
mechanism. However, we consider a new asynchronous multi-agent MAB setting and prove a series
of important privacy/regret/communication guarantees. Other notions for DP, including central
DP [8, 55], shu%e DP [24, 54, 63], joint DP [28, 50, 63], etc., pose weaker privacy protections for
MAB models, but they may achieve better trade-o"s between regret, communication, and privacy.
Studying these DP notions for AMA2B will be left as interesting future works.

In this work, we focus on user-level local di"erential privacy (LDP), which allows the algorithm
to be agnostic about privacy. For this reason, this notion is presently adapted by Apple and Google
for their large-scale systems2. In what follows, we give its formal de!nitions (§C.1), mechanisms
(§C.2), theoretical guarantees (§C.3), and numerical experiments (§C.4).

2https://desfontain.es/privacy/real-world-di"erential-privacy.html
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Algorithm 6 Convert-to-Bernoulli(𝑡) (CTB (𝑡)) Mechanism
Input: A random reward 𝛥 ↑ [0, 1] from the user
Output: An independent sample following 𝑥 (𝛥 ) ▽ Bernoulli( 𝑘𝑎

𝑁
+1↓𝑘

1+𝑎𝑁 )

C.1 User-Level Local Di!erential Privacy (LDP)
To de!ne user-level LDP, we need to specify the user model and the threat model to supplement
the model described in §2. Speci!cally, we denote 𝛩 = (𝛬 (𝑁)

(𝑆))𝑂 ↑T(𝐿) ,𝑁↑M be a sequence of∑
𝑁↑M 𝑁 (𝑁) unique users. At each time 𝑆 ↑ T

(𝑁) , user 𝛬 (𝑁)
(𝑆) comes to be served by agent𝑅,

who obtains reward 𝑇 (𝑁)

𝐿 (𝑆) after the agent𝑅 recommends arm 𝑃 (𝑁)
(𝑆) to the user. In this context,

each user 𝛬 (𝑁)
(𝑆) is identi!ed by their reward responses given to all possible actions recommended

to them.
For the threat model, the users do not trust the agent or other users, and the privacy burden

lies on the user himself. In this case, each user 𝛬 (𝑁)
(𝑆) needs to (1) release a private version of

their reward feedback 𝑇 (𝑁)

𝐿 (𝑆) via a 𝑡-DP mechanism 𝑥 , where 𝑥 could be privacy protection
software or trusted third-party plugins embedded in the user’s devices or terminals, and the non-
private data will not leave the control of the user unless they are processed and released by these
software/plugins; and (2) the agents should make recommendations only based on the private
releases. For any random vectors 𝑇 and 𝛯 , we use 𝑇 ↑ 𝑠 (𝛯 ) to denote that 𝑇 is determined by 𝛯
plus some random factors independent of 𝛯 and the bandit instance. Formally, user-level LDP is
de!ned as follows in De!nition 13.

D!’*,*+*%, 13 (U)!&4.!5!. 𝑡4LDP). For 𝛱 > 0, we say the learning process satis!es 𝑡-LDP if (1) there
is an 𝑡-DP mechanism 𝑥 : D → R, and (2) Action 𝑃 (𝑁)

(𝑆 + 1) ↑ 𝑠
 
𝑃 ( 𝑙 )

(𝑎),𝑥 (𝑇 ( 𝑙 )
𝐿 ( 𝑂 ) (𝑄 )

(𝑎))

𝑄⫅̸𝑂, 𝑙↑M


for any agent𝑅 and time 𝑆 .

Note that user-level LDP is a strong DP guarantee in the sense that it ensures that any attacker
(which could be any other user, an agent, or an adversary outside the agents) cannot infer too much
about any user’s sensitive information (e.g., preference, reward feedback) or determine whether an
individual participated in the learning process. Other DP notions, such as agent-level DP (where
the agent containing the user can be trusted) [63], will also be satis!ed by the post-processing of
DP data if user-level LDP is preserved [29].

C.2 Convert-to-Bernoulli (CTB) Mechanism
To guarantee user-level LDP, one can adopt the widely-used Laplace mechanism [29] (i.e., adding
Laplace noises to data records). However, adding Laplace noise makes the reward unbounded, which
signi!cantly increases regret and hinders the algorithm from obtaining constant communication
costs. Inspired by [47], we use a simple yet e"ective Convert-to-Bernoulli (CTB) mechanism, which
converts the rewards bounded in [0, 1] to Bernoulli responses. The CTB mechanism is described in
Algorithm 6.

For our algorithm, CTB mechanism𝑥 is agnostic to the algorithm, in the sense that we only need
to change the way the agent obtains the reward of Line 9 of Algorithm 1. In particular, agent𝑅
now obtains arm 𝑃’s reward observation 𝑥 (𝑇 (𝑁)

𝐿 (𝑆)) with parameter 𝑡 as in Algorithm 6. The rest
of the algorithm remains exactly the same.

C.3 Privacy, Regret, and Communication Guarantees
Here we present our privacy results, together with the new regret and communication cost. We
also compare the non-private and private regret/communication costs.
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(a) Private comm (b) Private regrets

Fig. 6. Performance of SE-AAC-ODC-CTB

(a) Private comm (b) Private regrets

Fig. 7. Performance of LF-Relay-CTB

T$!%&!" 14. SE-AAC-ODC (Algorithms 1), LF (Algorithm 2) and LF-Relay (Algorithm 5) with
CTB(𝑡) (Algorithm 6) all satisfy user-level 𝑡-LDP.

T$!%&!" 15. The regret and communication cost of Algorithm 1 with CTB (𝑡) (Algorithm 6) are
upper bounded as follows,

𝑈(𝑁 ) ⫅̸
∑
𝐿>1

8(1 + 𝑌)2 log𝑁
ω𝐿

·

(
𝑧𝑗 + 1
𝑧𝑗 ↓ 1

)2
+

∑
𝐿>1

𝑀ω𝐿 + 𝐿𝑀2,

𝑉 (𝑁 ) ⫅̸
∑
𝐿>1

2𝑀 log𝑆

(
2(1 + 𝑌)

ω𝐿
·

(
𝑧𝑗 + 1
𝑧𝑗 ↓ 1

))
+ 2𝑀 log𝑆

(
2(1 + 𝑌)

ω2
·

(
𝑧𝑗 + 1
𝑧𝑗 ↓ 1

))
+ 2𝐿𝑀3.

R!"#&6 1 (R!0&!+ 2%"(#&*)%,). Compared with non-private SE-AAC-ODC in the fully distributed
setting, the regret increases by at most a factor of

 𝑎𝑁+1
𝑎𝑁↓1

2 factors, which is the cost for privacy protection.
Since 𝑎𝑁+1

𝑎𝑁↓1 ⫅̸ 1 + 2
𝑗 , this factor approaches 1 as 𝑡 approaches in!nity.

R!"#&6 2 (C%""1,*2#+*%, 2%)+ 2%"(#&*)%,). When we compare communication cost bounds
with non-private algorithms, private SE-AAC-ODC algorithm increases by at most a factor of log

 𝑎𝑁+1
𝑎𝑁↓1


,

which still remains independent of time horizon 𝑁 .

T$!%&!" 16. Let 𝑄𝐿,𝑗 = 1
2 + (𝑄𝐿 ↓

1
2 ) ·

𝑎𝑁↓1
𝑎𝑁+1 and 0 < 𝑛𝑗 < min𝐿>1

(𝑐𝑀↓1,𝑁↓𝑐𝑀,𝑁 )
4 . For general

AMA2B, with the number of leadership switches in Algorithm 4 as 𝑍 = 64𝑀3, Algorithm 5 with CTB(𝑡)
(Algorithm 6)’s regret and communication cost satisfy,

𝑈(𝑁 ) ⫅̸
∑
𝐿>1

ω𝐿 (log𝑁 + 4 log log𝑁 )
kl(𝑄𝐿,𝑗 + 𝑛𝑗 , 𝑄1,𝑗 ↓ 𝑛𝑗)

+ 2𝑀2
(2𝐿2𝑛↓2𝑗 + 57𝐿) + 𝐿𝑛↓2𝑗 , (17)

𝑉 (𝑁 ) ⫅̸ 4𝐿2𝑀𝑛↓2𝑗 + 114𝐿𝑀 + 64𝑀3. (18)

C.4 Numerical Experiments for Privacy Protection Mechanism
In this subsection, we report the empirical performance of SE-AAC-ODC-CTB algorithm with di"erent
privacy budgets 𝛱 = ≃, 2, 1, 0.8, 0.6 in (see other detail setup in §5). Figures 6 and 7 show that the
number of communications and regrets of SE-AAC-ODC-CTB and LF-Relay-CTB increase as the
privacy level increases (i.e., as 𝛱 decreases) in AMA2B.

D PROOFS FOR PRIVACY PROTECTION OF FULLY-DISTRIBUTED AND
LEADER-FOLLOWER ALGORITHMS

D.1 Proof of Theorem 14
P&%%’ %’ T$!%&!" 14. To prove the privacy guarantee, we need to check the two requirements

of the De!nition 13.
For requirement i), we rely on the key proposition as follows, which proves that CTB(𝑡) is 𝑡-DP.
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P&%(%)*+*%, 17 (L!""# 5 %’ [47]). CTB(𝑡) mechanism (Algorithm 6) is 𝑡-DP on [0,1], and the
returned sample follows the Bernoulli distribution with mean 𝑄𝐿,𝑗 = 1

2 + (𝑄𝐿 ↓
1
2 ) ·

𝑎𝑁↓1
𝑎𝑁+1 .

For requirement ii), since the private version of fully-distributed algorithms and leader-follower
algorithms only use the observation from CTB, which satis!es requirement ii). ⫆̸

D.2 Proof of Theorem 15
P&%%’ %’ T$!%&!" 15. Notice that after applying CTB, Proposition 17 ensures that the means

of the private (Bernoulli) observations become 1 > 𝑄1,𝑗 > 𝑄2,𝑗 ⊋ . . . ⊋ 𝑄𝑀,𝑗 > 0, where arm 1 is still
the unique optimal arm. For the sub-optimal arm 𝑃 , the sub-optimality gap becomes ω𝐿,𝑗 ⫋ 𝑎𝑁↓1

𝑎𝑁+1ω𝐿

when bounding the number of times 𝑊𝐿 (𝑁 ) until sub-optimal arms will not be pulled. For each
pull of arm 𝑃 , the algorithm will still pay ω𝐿 regret. Speci!cally, we slightly adapt the proof from
Section A and show the following lemma.

L!""# 18. Assume 𝑀 agents independently sample an arm 𝑃 associated with an i.i.d. reward
process with unknown mean 𝑄𝐿 as Algorithm 1 (with threshold parameter 𝑌 > 1), and 𝑊𝐿 (𝑆) is the
total available samples of all agents. For any 𝑆 , there exists an agent 𝑏 such that, with probability 1↓𝛴 ,
we have

|𝑄 (𝑅 )𝐿 (𝑆) ↓ 𝑄𝐿,𝑗 | ⫅̸ 𝑌CR(𝑊𝐿 (𝑆), 𝛴).

P&%%’. We pick an agent 𝑏 with the highest number of times of pulling arm 𝑓 in the time slots
from 𝑋𝐿 (𝑆) to time 𝑆 , that is,

𝑏 ↑ argmax
𝑁↘ ↑M

𝑂∑
𝑄=𝑑𝑀 (𝑂 )

{𝑒 (𝑁
↘
)
(𝑎) = 𝑓}. (19)

Note that the estimate 𝑄 (𝑅 )𝐿 (𝑆) is obtained by averaging 𝑊𝐿 (𝑋𝐿 (𝑆)) + 𝑊 (𝑅 )
𝐿 (𝑆) ↓ 𝑊 (𝑅 )

𝐿 (𝑋𝐿 (𝑆)) samples.
Hence, the following equation holds with probability 1 ↓ 𝛴 .

|𝑄 (𝑅 )𝐿 (𝑆) ↓ 𝑄𝐿,𝑗 |
(𝑊)
⫅̸ CR(𝑊𝐿 (𝑋𝐿 (𝑆)) + 𝑊

(𝑅 )
𝐿 (𝑆) ↓ 𝑊 (𝑅 )

𝐿 (𝑋𝐿 (𝑆)), 𝛴)

(𝑋 )
⫅̸ CR(𝑊𝐿 (𝑋𝐿 (𝑆)), 𝛴)

(𝑌 )
< 𝑌CR(𝑊𝐿 (𝑋𝐿 (𝑆)) +𝑀 (𝑊 (𝑅 )

𝐿 (𝑆) ↓ 𝑊 (𝑅 )
𝐿 (𝑋𝐿 (𝑆))), 𝛴)

(𝑍 )
< 𝑌CR(𝑊𝐿 (𝑆), 𝛴),

where inequality (a) is by Hoe"ding’s inequality, inequality (b) is due to that the con!dence radius
becomes larger with a smaller number of samples, inequality (c) is due to that the condition in Line 11
is false at time slot 𝑆 (> 𝑋𝐿 (𝑆)), and inequality (d) is because that the agent 𝑏 has the highest number
of times of pulling arm 𝑃 during 𝑋 (𝑅 )𝐿 (𝑆) to 𝑆 , that is, 𝑊𝐿 (𝑋𝐿 (𝑆))+𝑀 (𝑊 (𝑅 )

𝐿 (𝑆)↓𝑊 (𝑅 )
𝐿 (𝑋𝐿 (𝑆))) ⊋ 𝑊𝐿 (𝑆). ⫆̸

Now we follow steps 1-3 in Section A.
Step 1. Upper bound the probability of any Type-II decision occurring.
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P(⇐(𝑃,𝑅, 𝑆), |𝑄 (𝑁)

𝐿 (𝑆) ↓ 𝑄𝐿,𝑗 | > CR(𝑊𝐿 ↘ (𝑋𝐿 (𝑆)) + (𝑊 (𝑁)

𝐿 (𝑆) ↓ 𝑊 (𝑁)

𝐿 (𝑋𝐿 ↘ (𝑆))), 𝛴))

⫅̸ P(⇐(𝑃,𝑅, 𝑆,𝑊), |𝑄 (𝑁)

𝐿 (𝑆) ↓ 𝑄𝐿,𝑗 | > CR(𝑊, 𝛴))

⫅̸
∑

(𝐿,𝑁,𝑂,𝑃)↑ (K⇒M⇒T⇒T)

P( |𝑄 (𝑁)

𝐿 (𝑆) ↓ 𝑄𝐿,𝑗 | > CR(𝑊, 𝛴))

⫅̸
∑

(𝐿,𝑁,𝑂,𝑃)↑ (K⇒M⇒T⇒T)

𝛴 = 𝐿𝑀𝑁 2𝛴 .

Step 2. Upper bound the number of times of pulling suboptimal arms

L!""# 19. At any time 𝑆 ⫅̸ 𝑁 , if the optimal arm lies in the candidate set and an agent makes
a Type-I decision with pulling a suboptimal arm 𝑓 , i.e., 𝑒 (𝑁)

(𝑆) = 𝑓 , we have 𝑊𝐿 (𝑆) ⫅̸
2(1+𝑆 )2 log𝑚↓1

ω2
𝑀,𝑁

.

Therefore, the total number of pulling times of arm 𝑓 in the whole time horizon is upper bounded as
follows,

𝑊𝐿 (𝑁 ) ⫅̸
2(1 + 𝑌)2 log𝛴↓1

ω2
𝐿,𝑗

+𝑀 .

Combining the results of Steps 1 and 2, the regret is upper bounded as follows,

E[𝑈(𝑁 )] ⫅̸
∑
𝐿>1

𝑊𝐿 (𝑁 ) ⇒ ω𝐿 + 𝐿𝑀𝑁 2𝛴 ⇒𝑁

⫅̸
∑
𝐿>1

2(1 + 𝑌)2 log𝛴↓1

ω𝐿
·

(
𝑧𝑗 + 1
𝑧𝑗 ↓ 1

)2
+

∑
𝐿>1

𝑀ω𝐿 + 𝐿𝑀𝑁 3𝛴

𝑚↗𝑇 ↓3

⫅̸
∑
𝐿>1

6(1 + 𝑌)2 log𝑁
ω𝐿

·

(
𝑧𝑗 + 1
𝑧𝑗 ↓ 1

)2
+ 2𝐿𝑀 .

Step 3. Upper bound communication costs For communication, the bound also holds by
replacing ω𝐿 with ω𝐿,𝑗 . Speci!cally, if there are any Type-II decisions, the total communication
times is at most

𝐿𝑀𝑁 3𝛴 .

Assume there is no Type-II decision. Following the proof of Lemma 3, we have a similar middle
step (20): for any suboptimal arm 𝑃 , denoting 𝑔𝐿 as the last time slot that the arm was pulled, we
have

2(1 + 𝑌)CR(𝑊𝐿 (𝑔𝐿 ), 𝛴) ⊋ ω𝐿,𝑗 .

Hence, the last ECR(𝑁)

𝐿 (𝑁 ) can be upper bounded as

ECR
(𝑁)

𝐿 (𝑁 )
(𝑊)
= CR(𝑊𝐿 (𝑔𝐿 ), 𝛴) ⊋

ω𝐿,𝑗

2(1 + 𝑌)
,

where inequality (a) is because after round 𝑔𝐿 there is no further pulling on arm 𝑃 . Recall the initial
ECR

(𝑁)

𝐿 (0) = 1. The total number of times of communication on arm 𝑓 is upper bounded as follows,

log𝑆

(
ECR

(𝑁)

𝐿 (0)

ECR
(𝑁)

𝐿 (𝑁 )

)
⫅̸ log𝑆

(
2(1 + 𝑌)

ω𝐿,𝑗

)
.

Since all arms are pulled in a round-robin manner, the communication cost on the optimal arm is
upper bounded by log𝑆

(
2(1+𝑆 )
ω2,𝑁

)
where ω2,𝑗 is the smallest reward gap.
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Summing the above two type cases yields the communication upper bound as follows,
∑
𝐿>1

log𝑆

(
2(1 + 𝑌)

ω𝐿
·

(
𝑧𝑗 + 1
𝑧𝑗 ↓ 1

))
+ log𝑆

(
2(1 + 𝑌)

ω2
·

(
𝑧𝑗 + 1
𝑧𝑗 ↓ 1

))
+ 𝐿𝑀𝑁 3𝛴 .

As each communication round above needs 2(𝑀 ↓ 1) communications and the noti!cation of
arm elimination needs (𝐿 ↓ 1)𝑀 communications in total, the !nal communication costs are upper
bounded by

∑
𝐿>1

2𝑀 log𝑆

(
2(1 + 𝑌)

ω𝐿
·

(
𝑧𝑗 + 1
𝑧𝑗 ↓ 1

))
+ 2𝑀 log𝑆

(
2(1 + 𝑌)

ω2
·

(
𝑧𝑗 + 1
𝑧𝑗 ↓ 1

))
+ 2𝐿𝑀2𝑁 3𝛴 .

⫆̸

P&%%’ %’ L!""# 19.

Arm 𝑃 is pulled at time 𝑆
(𝑊)
=⇑ 𝑃 ↑ C(𝑆) for agent 𝑏 ful!lls Lemma 18
(𝑋 )
=⇑ 𝑄 (𝑅 )𝐿 (𝑆) + CR(𝑊𝐿 (𝑋𝐿 (𝑆)) +𝑀 (𝑊 (𝑅 )

𝐿 (𝑆) ↓ 𝑊 (𝑅 )
𝐿 (𝑋𝐿 (𝑆))), 𝛴)

⊋ 𝑄 (𝑅 )𝐿 ↘ (𝑆) ↓ CR(𝑊𝐿 ↘ (𝑋𝐿 ↘ (𝑆)) +𝑀 (𝑊 (𝑅 )
𝐿 ↘ (𝑆) ↓ 𝑊 (𝑅 )

𝐿 ↘ (𝑋𝐿 ↘ (𝑆))), 𝛴) for any 𝑃 ↘ ↑ C(𝑆)

(𝑌 )
=⇑ 𝑄 (𝑅 )𝐿 (𝑆) + 2CR(𝑊𝐿 (𝑋𝐿 (𝑆)) +𝑀 (𝑊 (𝑅 )

𝐿 (𝑆) ↓ 𝑊 (𝑅 )
𝐿 (𝑋𝐿 (𝑆))), 𝛴) ⊋ 𝑄 (𝑅 )𝐿 ↘ (𝑆) for any 𝑃 ↘ ↑ C(𝑆)

(𝑍 )
=⇑ 𝑄 (𝑅 )𝐿 (𝑆) + 2CR(𝑊𝐿 (𝑆), 𝛴) ⊋ 𝑄 (𝑅 )𝐿 ↘ (𝑆) for any 𝑃 ↘ ↑ C(𝑆)

=⇑ 𝑄 (𝑅 )𝐿 (𝑆) + 2CR(𝑊𝐿 (𝑆), 𝛴) ⊋ 𝑄 (𝑅 )1 (𝑆)

(𝑎 )
=⇑ 𝑄𝐿,𝑗 + (2 + 𝑌)CR(𝑊𝐿 (𝑆), 𝛴) ⊋ 𝑄1,𝑗 ↓ 𝑌CR(𝑊1 (𝑆), 𝛴)

=⇑ 2(1 + 𝑌)CR(𝑊𝐿 (𝑆), 𝛴) ⊋ 𝑄1,𝑗 ↓ 𝑄𝐿,𝑗 = ω𝐿,𝑗 (20)

=⇑ 𝑊𝐿 (𝑆) ⫅̸
2(1 + 𝑌)2 log𝛴↓1

ω2
𝐿,𝑗

where (a) is because the candidate arm sets C(𝑆) are the same for all agents (including arm 𝑏), (b)
is by the de!nition of candidate arm set, (c) is because arms in the candidate arm set are evenly
explored in a round-robin manner, (d) is from the de!nition of arm 𝑏 in (19), and (e) is by applying
Lemma 18.

Lastly, since the pulling of arm 𝑓 in the critical time slot 𝑆 is not counted, the total pulling times
of arm 𝑓 may be increased by𝑀 at most, i.e.,

𝑊𝐿 (𝑁 ) ⫅̸
2(1 + 𝑌)2 log𝛴↓1

ω2
𝐿,𝑗

+𝑀 .

⫆̸

D.3 Proof of Theorem 16
P&%%’ %’ T$!%&!" 16. Since the proof of Theorem 16 is quite similar to that in Section B, we

only highlight the key steps that di"er. Based on Proposition 17, the mean of private observation
is 𝑄𝐿,𝑗 = 1

2 + (𝑄𝐿 ↓
1
2 ) ·

𝑎𝑁↓1
𝑎𝑁+1 . Let 0 < 𝑛𝑗 < min𝐿>1

𝑐𝑀↓1,𝑁↓𝑐𝑀,𝑁
4 , the new events are several subsets of
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time slots that leader 𝑏 is active as follows,

A := {𝑆 ↑ T
(𝑅 ) : 𝑒 (𝑆) ω 1},

B := {𝑆 ↑ T
(𝑅 ) : |𝑄𝑏 (𝑂 ),𝑗 (𝑆) ↓ 𝑄𝑏 (𝑂 ),𝑗 | ⊋ 𝑛𝑗 },

G := {𝑆 ↑ T
(𝑅 ) : 𝑕1 (𝑆) < 𝑄1,𝑗 (𝑆)},

H := {𝑆 ↑ A \ (B ∈ G) : |𝑄1(𝑂 ),𝑗 ↓ 𝑄1,𝑗 | ⊋ 𝑛𝑗 }.

L!""# 20. A ∈ B ∋ B ∈ G ∈H and hence, E[|A|] ⫅̸ E[|B|] + E[|G|] + E[|H |]

P&%%’ %’ L!""# 20. Let 𝑆 ↑ A \ (B ∈ G). To prove this lemma, one only needs to show 𝑆 ↑ H ,
which can be derived as follows,

𝑄1 (𝑆)
(𝑊)
⫅̸ 𝑄𝑏 (𝑂 ),𝑗

(𝑋 )
⫅̸ 𝑄𝑏 (𝑂 ),𝑗 + 𝑛𝑗

(𝑌 )
⫅̸ 𝑄1,𝑗 ↓ 𝑛𝑗 ,

where inequality (a) is due to the de!nition of 𝑒 (𝑆), inequality (b) is because 𝑆 ε B, and inequality
(c) is due to the de!nition of 𝑛𝑗 . ⫆̸

L!""# 21. E[|B|] + E[|G|] + E[|H |] ⫅̸ 2𝐿2𝑛↓2𝑗 + 57𝐿

P&%%’ %’ L!""# 21. We respectively upper bound E[|B|], E[|G|], and E[|H |] .
Show E[|B|] ⫅̸ 𝐿2𝑛↓2𝑗 . We denote B𝐿 := {𝑆 ↑ B : 𝑒 (𝑆) = 𝑃} for all arm 𝑃 ↑ K . Due to

the exploration design of Algorithm 2, we have 𝑊𝐿 (𝑆) ⊋ (1/𝐿)
∑𝑂

𝑄=1 {𝑆 ↑ B𝐿 }. Then applying
Lemma 10 with E = B𝐿 and 𝑟 = 1/𝐿 , we have E[|B𝐿 |] ⫅̸ 𝐿𝑛↓2𝑗 . Therefore, with a union bound,
we have E[|B|] ⫅̸

∑
𝐿↑K E[|B𝐿 |] ⫅̸ 𝐿2𝑛↓2𝑗 .

Show E[|G|] ⫅̸ 57𝐿 . Applying Lemma 11 leads to this upper bound.
Show E[|H |] ⫅̸ 𝐿𝑛↓2𝑗 . Notice that 𝑆 ↑ H guarantees that

𝑕1 (𝑆)
(𝑊)
⊋ 𝑄1,𝑗

(𝑋 )
⊋ 𝑄𝑏 (𝑂 ),𝑗 + 𝑛𝑗

(𝑌 )
⊋ 𝑄𝑏 (𝐿 ) (𝑂 ),𝑗 ,

where inequality (a) is because 𝑆 ε G, inequality (b) is due to the de!nition of 𝑛𝑗 , and inequality (c) is
because 𝑆 ε B. Since 𝑕1 (𝑆) ⊋ 𝑄𝑏 (𝑂 ) (𝑆), the optimal arm 1 is inside the exploration arm set D(𝑆), and
Algorithm 2 thus explore this arm at least once every 𝐿 rounds, i.e., 𝑊𝐿 (𝑆) ⊋ (1/𝐿)

∑𝑂
𝑄=1 {𝑆 ↑ H}.

Applying Lemma 10 with E = H and 𝑟 = 1/𝐿 yields E[|H |] ⫅̸ 𝐿𝑛↓2𝑗 . ⫆̸

Step 2. Bound the regret of leader exploring suboptimal arms. Denote Q𝐿 := {𝑆 ↑ T
(𝑅 )

\

(A ∈ B) : 𝑖 (𝑆) = 𝑃} for suboptimal arm 𝑃 ω 1. We show that,

E[|Q𝐿 |] ⫅̸
log𝑁 + 4 log log𝑁

kl(𝑄𝐿,𝑗 + 𝑛𝑗 , 𝑄1,𝑗 ↓ 𝑛𝑗)
+ 𝑛↓2𝑗 .

Denote 𝑢𝐿 (𝑆) :=
∑𝑂

𝑄=1 {𝑆 ↑ Q𝐿 } as the number of times that 𝑆 ↑ Q𝐿 happens up to time 𝑆 . We
set 𝑢0 :=

log𝑇+4 log log𝑇
kl(𝑐𝑀,𝑁+𝑔𝑁 ,𝑐1,𝑁↓𝑔𝑁 ) as a threshold.

We then de!ne two subset of Q𝐿 as follows,

Q𝐿,1 := {𝑆 ↑ Q𝐿 : |𝑄𝐿 (𝑆) ↓ 𝑄𝐿,𝑗 | ⊋ 𝑛𝑗 },

Q𝐿,2 := {𝑆 ↑ Q𝐿 : 𝑢𝐿 (𝑆) ⫅̸ 𝑢0}.

Next, we show that Q𝐿 △ Q𝐿,1 ∈ Q𝐿,2. Let 𝑆 ↑ Q𝐿 \ (Q𝐿,1 ∈ Q𝐿,2). For this 𝑆 , we have

𝑕𝐿 (𝑆)
(𝑊)
⊋ 𝑄𝑏 (𝑂 ) (𝑆)

(𝑋 )
= 𝑄1 (𝑆)

(𝑌 )
⊋ 𝑄1,𝑗 ↓ 𝑛𝑗

(𝑍 )
> 𝑄𝐿,𝑗 + 𝑛𝑗

(𝑎 )
> 𝑄𝐿 (𝑆), (21)
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where inequality (a) is due to 𝑆 ↑ Q𝐿 , inequality (b) is because 𝑆 ε A, inequality (c) is due to 𝑆 ε B,
inequality (d) is due to the de!nition of 𝑛𝑗 , and inequality (e) is for 𝑆 ↑ Q𝐿,1. Since 𝑆 ε Q𝐿,2, we also
have

𝑊𝐿 (𝑆) ⊋ 𝑢𝐿 (𝑆) > 𝑢0. (22)
Then, we have

𝑢0 kl(𝑄𝐿 (𝑆), 𝑄1,𝑗 ↓ 𝑛𝑗)
(𝑊)
⫅̸ 𝑊𝐿 (𝑆) kl(𝑄𝐿 (𝑆), 𝑄1,𝑗 ↓ 𝑛𝑗)

(𝑋 )
⫅̸ 𝑊𝐿 (𝑆) kl(𝑄𝐿 (𝑆),𝑕𝐿 (𝑆))

(𝑌 )
⫅̸ log𝑁 + 4 log log𝑁 ,

where inequality (a) is by (22), inequality (b) is by (21) and 𝑃𝑣 (𝑢,𝑤) increases with respect to 𝑤 when
𝑢 < 𝑤, and inequality (c) is by the de!nition of KL-UCB index 𝑕𝐿 (𝑆).

Substituting 𝑢0 =
log𝑇+4 log log𝑇

kl(𝑐𝑀,𝑁+𝑔𝑁 ,𝑐1,𝑁↓𝑔𝑁 ) into the above inequality leads to

kl(𝑄𝐿 (𝑆), 𝑄1,𝑗 ↓ 𝑛𝑗) ⫅̸ kl(𝑄𝐿,𝑗 + 𝑛𝑗 , 𝑄1,𝑗 ↓ 𝑛𝑗).

Noticing that kl(𝑢,𝑤) decreases with respect to 𝑢 when 𝑢 < 𝑤, we have 𝑄𝐿 (𝑆) > 𝑄𝐿 + 𝑛𝑗 , which
contradicts 𝑆 ε Q𝐿,1. Therefore, we know Q𝐿 \ (Q𝐿,1 ∈ Q𝐿,2) = ⇔, i.e., Q𝐿 △ Q𝐿,1 ∈ Q𝐿,2 .
Next, we upper bound E[|Q𝐿,1 |] and E[|Q𝐿,2 |]. To bound E[|Q𝐿,1 |], we apply Lemma 10 with

E = Q𝐿,1 and 𝑟 = 1 (notice that the arm 𝑃 is played at most once after each D(𝑆) renewing), then
we have E[|Q𝐿,1 |] ⫅̸ 𝑛↓2𝑗 . For E[|Q𝐿,2 |], we have

E[|Q𝐿,2 |] ⫅̸ 𝑢0 =
log𝑁 + 4 log log𝑁

kl(𝑄𝐿,𝑗 + 𝑛𝑗 , 𝑄1,𝑗 ↓ 𝑛𝑗)
.

Combining both upper bound together yields the upper bound for E[|Q𝐿 |] .
Step 3. Bound the total regret in stochastic case.We note that the regret costs due to Steps 1

and 2 are orthogonal. For Step 1, the total regret cost of the leader 𝑏 is upper bounded as follows,

1 · E[|A ∈ B|] ⫅̸ 2𝐿2𝑛↓2𝑗 + 57𝐿 .

When the leader makes wrong arm recommendations, the rest agents (followers) would also pull
suboptimal arms and thus pay regret costs. Since the leader makes wrong recommendation for |A|

active decision rounds, the total arm pulls during these leader active rounds are
∑

𝑁ω𝑅 𝑗
(𝑁)

/𝑗 (𝑅 )
|A|.

Hence, the total costs due to followers’ mistaken pulling are upper bounded as follows,

E
∑

𝑁ω𝑅 𝑗
(𝑁)

𝑗 (𝑅 )
|A|


⫅̸

∑
𝑁ω𝑅 𝑗

(𝑁)

𝑗 (𝑅 )
(2𝐿2𝑛↓2𝑗 + 57𝐿).

Summing the above two terms together yields an upper bound for the regret cost in Step 1 as
follows, ∑

𝑁↑M 𝑗 (𝑁)

𝑗 (𝑅 )
(2𝐿2𝑛↓2𝑗 + 57𝐿).

For Step 2, the regret cost is only from the leaders’ exploration, which is upper bounded as
follows, ∑

𝐿ω1

ω𝐿 · E[|Q𝐿 |] ⫅̸
∑
𝐿ω1

ω𝐿
log𝑁 + 4 log log𝑁
kl(𝑄𝐿 + 𝑛𝑗 , 𝑄1 ↓ 𝑛𝑗)

+ 𝐿𝑛↓2𝑗 .

Summing the regret costs from Steps 1 and 2 yields the regret upper bound as follows,

𝑈(𝑁 ) ⫅̸
∑
𝐿ω1

ω𝐿
log𝑁 + 4 log log𝑁

kl(𝑄𝐿,𝑗 + 𝑛𝑗 , 𝑄1,𝑗 ↓ 𝑛𝑗)
+

∑
𝑁↑M 𝑗 (𝑁)

𝑗 (𝑅 )
(2𝐿2𝑛↓2𝑗 + 57𝐿) + 𝐿𝑛↓2𝑗 .

Communication. Communication only happens when the leader updates its arm recommenda-
tion to followers. Therefore, the total number times of recommendations is at most 2E[|A|] times,
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and in each communication, the leader sends𝑀 ↓ 1 messages to each followers. Hence, the actually
communications are upper bounded by

𝑉 (𝑁 ) ⫅̸ 4𝐿2𝑀𝑛↓2𝑗 + 114𝐿𝑀 .

For the proof for adversarial case, it is the same as the proof for Theorem 5, that is, with an
additional 64𝑀3 communication costs, and we omit it for simplicity. ⫆̸

E NUMERICAL EXPERIMENTS FOR THE IMPACT OF 𝑌 PARAMETER
In this section, we conduct additional numerical simulations to investigate the impact of parameter
𝑌 on our SE-AAC-ODC algorithm.

Please see the !gures in our uploaded !le. We conduct four sets of experiments evaluating the
performance (group regret and total communication costs) of SE-AAC-ODCwith 𝑌 = 2, 3, 4, 5, 6, 7, 8, 9.
We found that, in all four sets of experiments, communication costs reduce as 𝑌 increases; however,
group regret has no clear trend of growth as 𝑌 increases.
Speci!cally, in Figure 8, we !rst consider the setup in the main paper (16 arms with Bernoulli
rewards with average rewards uniformly randomly taken from Ad-Click [36], 10 agents with
activation frequency of agent𝑅 follows a sine function, sin(𝑗𝑁 + 𝑆/30), where the phase shifts
𝑗𝑁 =𝑅/5,𝑅 ↑ {1, ...,𝑀} di"er for di"erent agents) and report the number of communications and
regrets after 𝑁 = 30 000 time slots averaged over 100 independent trials with standard deviation
plotted as the shaded area. In Figure 8, we observe that group regret decreases once when 𝑌
increases from 4 to 5, once when 𝑌 increases from 6 to 7, and once when 𝑌 increases from 7 to
8. To verify that this phenomenon is common, we further conduct experiments with the same
setting but just fewer agents (5 agents) whose results are reported in Figure 9 and experiments with
synchronous agents (all agents are active in all time slots) whose results are reported in Figures 10
and 11.

Besides the intuition that reducing communication costs should increase regret, there is another
mechanism in our fully distributed algorithm that opposes the increase in regret. This e"ect is
attributed to our successive elimination policy. When an agent eliminates an arm, it broadcasts
this decision to all other agents, prompting them to also remove the arm from their candidate set.
As 𝑌 increases, communication frequency decreases, leading to a lack of synchronization in local
observations among agents. Consequently, agents may eliminate di"erent suboptimal arms based
on their varying stochastic observations, which speeds up the overall arm elimination process
and reduces regret. From this perspective, reducing communication may also reduce this regret,
contradicting the intuition that reducing communication costs should increase regret. Thus, the
interplay between these two factors leads to an unclear trend in group regret.
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(a) Group Regret (b) Communication

Fig. 8. Asynchronous, 10 agents: 16 arms with Bernoulli rewards with average rewards uniformly randomly
taken fromAd-Click [36], 10 agents with activation frequency of agent𝑅 follows a sine function, sin(𝑗𝑁+𝑆/30),
where the phase shi#s 𝑗𝑁 = 𝑅/5, 𝑅 ↑ {1, ...,𝑀} di"er for di"erent agents. We report the number of
communications and regrets a#er𝑁 = 30 000 time slots averaged over 100 independent trials, and we plot the
standard deviation as the shaded area.

(a) Group Regret (b) Communication

Fig. 9. Asynchronous, 5 agents: 16 arms with Bernoulli rewards with average rewards uniformly randomly
taken from Ad-Click [36], 5 agents with activation frequency of agent𝑅 follows a sine function, sin(𝑗𝑁 +𝑆/30),
where the phase shi#s 𝑗𝑁 = 𝑅/5, 𝑅 ↑ {1, ...,𝑀} di"er for di"erent agents. We report the number of
communications and regrets a#er𝑁 = 30 000 time slots averaged over 100 independent trials, and we plot the
standard deviation as the shaded area.

(a) Group Regret (b) Communication

Fig. 10. Synchronous, 10 agents: 16 arms with Bernoulli rewards with average rewards uniformly randomly
taken from Ad-Click [36], 10 agents all active in every time slots in time horizon 𝑁 = 30 000. We report the
number of communications and regrets averaged over 100 independent trials, and we plot the standard
deviation as the shaded area.
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(a) Group Regret (b) Communication

Fig. 11. Synchronous, 5 agents: 16 arms with Bernoulli rewards with average rewards uniformly randomly
taken from Ad-Click [36], 5 agents all active in every time slots in time horizon 𝑁 = 30 000. We report the
number of communications and regrets averaged over 100 independent trials, and we plot the standard
deviation as the shaded area.
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