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Abstract—Federated Learning (FL) is a new distributed machine learning (ML) approach which enables thousands of mobile devices

to collaboratively train artificial intelligence (AI) models using local data without compromising user privacy. Although FL represents a

promising computing paradigm, such training process can not be fully realized without an appropriate economic mechanism that

incentivizes the participation of heterogeneous clients. This work targets social cost minimization, and studies the incentive mechanism

design in FL through a procurement auction. Different from existing literature, we consider a practical scenario of FLwhere clients are

selected and scheduled at different global iterations to guarantee the completion of the FL job, and capture the distinct feature of FL

that the number of global iterations is determined by the local accuracy of all participants to balance between computation and

communication. Our auction framework AFL first decomposes the social cost minimization problem into a series of winner

determination problems (WDPs) based on the number of global iterations. To solve each WDP, AFL invokes a greedy algorithm to

determine the winners, and a payment algorithm for computing remuneration to winners. Finally, AFL returns the best solution among

all WDPs. We carried out theoretical analysis to prove that AFL is truthful, individual rational, computationally efficient, and achieves a

near-optimal social cost. We further extend our model to consider multiple FL jobs with corresponding budgets and propose another

efficient algorithm AFL�M to solve the extended problem. We conduct large-scale simulations based on the real-world data and testbed

experiments by adopting FL frameworks FAVOR and CoCoA. Simulation and experiment results show that both AFL and AFL�M can

reduce the social cost by up to 55% compared with state-of-the-art algorithms.

Index Terms—Federated learning, incentive mechanism, auction

Ç

1 INTRODUCTION

THE emergence of federated learning (FL) provides a new
computing paradigm for artificial intelligence (AI) and

its application. Traditional machine learning (ML) trains AI
models centrally, which is privacy-intrusive, especially for
mobile devices which contain owners’ privacy-sensitive
data [1], [2]. Compared to the centralized training process,
FL is a decentralized training approach which distributes
ML jobs to thousands of geo-distributed mobile devices (a.k.
a. clients) [3], [4]. Mobile devices act as the computing nodes
to collaboratively train a ML model using local data, with-
out the risk of privacy disclosure. Major enterprises have
launched FL projects. For example, Gboard, the Google Key-
board on Android, is adopting the FL process to make

typing faster and easier. Mobile phones locally store users’
typing preference every time when Gboard shows a sug-
gested query. FL trains Gboard’s query suggestion model
using history on device to improve user experience in the
next iteration [5].

To fully realize the potential of FL in practice, two types
of challenges need to be addressed: technical and economical.
First, on the technical side, both computation and communi-
cation are the core challenges. The learning process in FL
relies on frequent communication between the cloud server
and mobile clients to update model, until the model con-
verges [4]. To achieve a lower local accuracy1, mobile clients
spend more computation time to train their local models.
Given a required global accuracy of the model, the number
of communication rounds is proportional to the local accu-
racy achieved by all clients [7], [8]. Thus, how to balance
between computation and communication time through the
selection of clients with their local accuracy while guaran-
teeing fast convergence of the model becomes a vital prob-
lem. Second, on the economic side, incentive mechanism
design is an indispensible enabling technology for FL. The
training process in FL is iterative, and needs thousands of
clients to work collaboratively and continuously [4], [9].
However, it is not always practical to assume that mobile
clients are voluntary to fully participate in the complete
training process, since mobile clients consume their own
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1. Here, local accuracy u and global accuracy " represent the relative
gradient difference of loss function between two iterations [6], i.e.,
jjrF ðwðtÞÞjj � ujjrF ðwðt�1ÞÞjj and jjrJðwðtÞÞjj � "jjrJðwðt�1ÞÞjj, where
F ðwÞ and JðwÞ are the loss function of local and global model,
respectively.
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resources such as battery and GPU to calculate local model
updates. Moreover, clients have their own schedule and
may only participate in some particular time periods. There-
fore, incentive mechanisms which pay rewards to compen-
sate the cost of clients are the essential financial catalyst for
making FL a reality.

To overcome aforementioned challenges, one needs to
capture the distinct feature of FL while designing incentive
mechanisms, i.e., the relation between global accuracy and
local accuracy among many mobile clients. Most existing
research in FL focuses on the technical side, and investigates
how to improve the training efficiency or reduce energy cost
[6], [10], [11], [12]. There are only a few studies on the incen-
tive mechanism design in FL. Most work in FL assume that
the same set of clients can fully participate in the whole FL
training process from beginning to end, and select energy-
efficient clients to achieve fairness or utility maximization
[13], [14], [15], [16], which we will discuss in details in Sec-
tion 2. In fact, incentive mechanism design has been well-
studied in other related fields (e.g., mobile crowdsensing or
crowdsourcing) by leveraging several approaches men-
tioned in Section 2. On behalf of one of the representative
incentivizing approaches, auction already showed its supe-
riority. In contrast to other incentive mechanism approaches
(e.g., contract theory [17], [18]) in which clients can only
decide whether or not to accept the contracts, auction ena-
bles clients to bid for any combinations of resources. Mean-
while, traditional fixed pricing cannot exactly capture the
flexible supply-demand relationship between clients and
the cloud server due to the heterogeneous capacities of devi-
ces. Consequently, overpricing and underpricing routinely
occur, jeopardizing the cloud server’s profit as well as the
system’s utility. In contrast, auction is a natural approach to
balance supply and demand, and automatically discover
the right price, so that the cloud server can select clients
with the lowest cost. In addition, auction-based framework
can simultaneously guarantee individual rationality and
truthfulness. Therefore, in this work, we propose a solution
for incentivizing participation in FL as a procurement auc-
tion, AFL. As shown in Fig. 1, the procurement auction con-
sists of multiple sellers (mobile clients) and a single buyer
(the cloud server). The goal of the auction design is social
cost minimization while guaranteeing computational effi-
ciency, truthfulness and individual rationality. Different
from existing literature, we describe a richer and practical

model of FL. We select and schedule clients at different
global iterations to guarantee the completion of the FL job,
and determine the number of global iterations (communica-
tion rounds) by the local accuracy of all participants to bal-
ance between computation and communication. We
summarize our main contributions as follows.

First , we model and formulate the social cost minimiza-
tion problem in FL as an integer linear program (ILP), and
prove it is NP-hard. Different from existing literature that
only determines winners (or selected mobile clients), we also
need to decide how to schedule the participation of winners
and the number of global iterations. To address the challenge
introduced by the variation on the number of global itera-
tions, ourAFL first calculates a range for the number of global
iterations. Then for each fixed number of global iterations
within the range, we formulate a winner determination prob-
lem (WDP). This way,AFL decomposes the original optimiza-
tion problem into a series of WDPs. To reduce computation,
we exclude those bids which violate the communication
round and computation time constraints, and further form a
qualified bids set for each WDP. AFL next invokes an algo-
rithm Awinner to solve each WDP and finally announces the
auction results, including the winning bids which generate
theminimum social cost and the payment towinners.

Second , to determine and schedule winners for each
WDP, we first reformulate each WDP to a new ILP by using
compact exponential technique [19], which is a packing-type
ILP with an exponential number of variables corresponding
to valid schedules. This exponential-sized ILP and its dual
are the foundation of algorithm design and analysis. We
show that the new ILP can be solved by a greedy algorithm
Awinner. Awinner iteratively selects a client with a schedule
which can cover available global iterations at the lowest aver-
age cost, until there are enough participants in the winner
set. Furthermore, a payment scheme based on the critical
value rule [20], [21] is proposed as a subroutine of Awinner to
ensure truthfulness and individual rationality. We conduct
rigorous theoretical analysis to show that AFL is truthful,
individual rational and computationally efficient. Further-
more, we adopt the primal-dual theory to prove that AFL

achieves a good approximation ratio in social cost.
Third , we extend to discuss one new realistic scenario

where there are multiple FL jobs with budget functions. To
illustrate the preference on the FL job’s completion time, the
budget deceases with the completion time monotonically. In
this scenario, there are extreme cases where some clients’
bids are selected by different FL jobs at the same time. To
address it, from the prospective of clients, we consider
rescheduling clients for FL jobs via a greedy fashion. Further-
more, to reduce the time complexity, we apply binary search
to narrow the range of the number of global iterations with-
out compromising social cost greatly. The new auction is pre-
sented in algorithmAFL�M to solve the extended problem.

Last but not the least , we evaluate the performance of
AFL through large-scale simulations based on real-world
data. Numerical results demonstrate that AFL always out-
performs three benchmark algorithms. Moreover, AFL pro-
duces a close-to-optimal social cost with a small ratio
(< 1:3), and reduces the social cost by 65%, 85%, 300%,
compared with Aonline [19], GAA [22] and FedAvg [4], respec-
tively. We further conduct the simulations to examine

Fig. 1. An illustration of federated learning auction.
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AFL�M . AFL�M can achieve a near performance compared
with AFL. Then we conduct extensive testbed experiments
by adopting FL frameworks FAVOR [23] and CoCoA [8] to
evaluate the performance of AFL�M . The results of experi-
ments show that AFL�M reduces the social cost by at least
55% compared with three benchmark algorithms. More-
over, we further discuss the accuracy of the FL job under
different levels of non-IID data/parallelism.

In the rest of the paper, related work is given in Section 2.
The preliminary and system model of FL are introduced in
Sections 3 and 4, respectively. The procurement auction is
presented and analyzed in Sections 5 and 6. Section 7 con-
siders a more practical multiple jobs scenario where each FL
job has a budget function. The results of simulations and
experiments are shown in Sections 8 and 9. Section 10 con-
cludes the paper.

2 RELATED WORK

Federated Learning. In FL, majority of researchers focus on
learning algorithm design with verifiable convergence anal-
ysis, but ignore practical challenges and economic incen-
tives. Several papers studied FL based on practical scenarios.
Smith et al. [10] consider practical systems challenges in FL
such as straggler effort and random drops, and propose an
efficient optimization method to address these issues. Tran
et al. [6] focus on the trade-off between communication and
computation cost, and obtain the optimal number of commu-
nication rounds, accuracy-level and minimum energy cost.
Nishio et al. [11] present a FL protocol, which selects as many
clients as possible to maximize training efficiency under the
stragglers’ effort caused by heterogeneous resources. Con-
sidering devices’ computation capacity and limited network-
ing resources, Wang et al. [12] design a control algorithm to
dynamically adapt aggregation frequency. To speed up the
convergence of FL, Wang et al. [23] select clients (mobile
devices) with non-IID data through deep reinforcement
learning (DRL), rather than selecting randomly like FedAvg
[4]. To solve the problem of network heterogeneity and local
data overlap between devices in FL, Wang et al. [24] develop
an optimization methodology that uses intelligent device
sampling. From the perspective of energy efficiency, Zhan
et al. [25] design an experience-driven method based on DRL
to control devices’ CPU-cycle frequency in a synchronized
setting. Luo et al. [26] design an adaptive FL to minimize
costs (time and energy costs) while ensuring convergence.
Deng et al. [27] focus on users’ incentive and quality of model
aggregation, and propose a novel federated learning system
with quality awareness: FAIR. Wang et al. [28] pay attention
to the problem of long training time and limited resources in
FL, and propose a hierarchical aggregation, resource-effi-
cient federated learning. For the accuracy reduction and
model instability caused by poor samples, Li et al. [29] pres-
ent an efficient and privacy-preserving high-quality sample
selection system. Aiming at the security risks of the mali-
cious attacks and reverse analysis in FL, Wei et al. [30] pro-
pose a user-level differential privacy algorithm to effectively
improve FL’s privacy protection level. For the above work,
their aim is to improve the performance, privacy guarantee
or achieve cost minimization, but neglect the problem of
how to incentivize the participation of clients.

Incentive Mechanisms. In mobile crowdsourcing or
crowdsensing system, there has been a long study on incen-
tive mechanisms, especially using contract theory [17], [18],
auction [31], [32] and game theory [33], [34]. However, there
are only a few studies on the incentive mechanism design
for implementing FL. Kang et al. [15] aim to address unreli-
able updates, and propose a contract-theoretic method to
motivate clients that have a high reputation and high-quali-
fied data to do the update. Ding et al. [35] analyze the incen-
tive mechanism design for FL by using contract theory
when considering multi-dimensional privacy information.
Pandey et al. [14] develop a Stackelberg game-based frame-
work to incentivize clients to participate in training to
achieve utility maximization. Toyoda et al. [13] design an
incentive-aware mechanism for a blockchain-enabled FL
platform by using contest theory to guarantee fairness. Zeng
et al. [16] consider multi-dimensional resources and present
an incentive framework based on game theory to achieve
utility maximization. Weng et al. [36] customize a privacy-
protecting, truthful, accuracy-boosting incentive mecha-
nism based on Bayesian game theory. Le et al. [37] develop
an auction-based incentive mechanism to stimulate clients
in the wireless network scenario. Based on the goal of filter-
ing untrustworthy or low-quality learning parameters from
malicious or inactive learners, Lin et al. [38] propose a feder-
ated edge learning incentive mechanism based on social
networks. Tang et al. [39] formulate an incentive mechanism
for cross-silo federation learning to maximize social welfare.
Jiao et al. [40] maximize the social welfare of a typical FL ser-
vice system and formulate two incentive mechanisms. Lim
et al. [41] present a resource allocation and incentive mecha-
nism design framework for hierarchical federated learning
(HFL) by jointly leveraging evolutionary game theory and
deep learning-based auction. Similarly, Ng et al. [42] pro-
pose a hierarchical two-level incentive mechanism design to
allocate the resources of the data owners and FL workers so
that completing the coded federated learning (CFL) tasks.
Above studies are all based on an impractical assumption
that the same set of clients can fully participate in the com-
plete process from beginning to end. In addition, they fixed
the number of global iterations at the beginning. Different
from the above literature, we select cost-efficient clients and
schedule them at different global iterations. In addition, to
balance between computation and communication, we also
determine that the number of global iterations is affected by
winners’ local accuracy.

3 PRELIMINARY OF FEDERATED LEARNING

The learning process in FL [8] relies on the iterative interac-
tion between the cloud server and clients. In each global
iteration: i) each selected client trains its local model on its
local dataset for a number of local iterations to achieve a
desirable local accuracy; ii) then each client returns its local
model update to the server; iii) the server aggregates all
local model updates and sends back the global model
update to clients. The above process terminates until the
global model accuracy reaches a predefined threshold. For
strongly convex optimization problem in federated learning
(i.e., loss function), the upper bound on the number of
global iterations (Tg) can be expressed according to the
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definitions in [8], [10], as follows:

Tg ¼
Oðlog ð1"ÞÞ
1� umax

; (1)

where " 2 ½0; 1� is the predefined global accuracy and umax 2
½0; 1� is the maximum local accuracy among all clients. Let
TlðuiÞ denote the number of local iterations for client i to achieve
its local accuracy ui, which can be defined as follows [8]:

TlðuiÞ ¼ h � log
�

1

ui

�
; (2)

where h is a positive constant. For ease of exposition, ourwork
focuses more on the system challenges in FL, (i.e., fault-toler-
ance or stragglers efforts) rather than the data characteristics
of FL (i.e., non-IID). So we basically assume that all
clients’ data follow an identical and independent distribution.
Therefore, it is reasonable to believe that one “dropped” client
can be replaced by another client due to the IIDdata character-
istic. In this regard, our work actually uses a simplified ver-
sion of the result of [10]. That is, we do not need to use multi-
task learning to handle the statistical challenge (mentioned in
[10]), so all clients’ trainingmodels are the same.

4 SYSTEM MODEL

4.1 System Overview

As shown in Fig. 1, we consider a typical scenario of FL
which involves a cloud server and a set of clients (e.g.,
smartphone or personal computer). On a FL platform, the
cloud server first broadcasts the information of a FL job to

all clients, including the maximum number of global itera-
tions T (i.e., communication rounds), the duration of one
global iteration tmax

2, the number of participating clients in
each global iteration K3 and the expected global accuracy ".
Let V ð"Þ denote the actual reward the cloud server can
receive with global accuracy ". To incentivize clients, a
”procurement auction” is applied where the server acts as the
auctioneer and each client submits a bid for job participa-
tion. After collecting all bids, the server determines and
pays the selected winners, and then schedules them to col-
laboratively execute the FL job. Let X denote the integer set
f1; 2; . . . ; Xg. Important notations are listed in Table 1.

Once selected, each winner will participate in by submit-
ting its partial update in specific global iteration according
to the schedule, in order to achieve the pre-defined global
accuracy ". During the process of training, one global itera-
tion is a duration when clients use their private personal
data to train local models repeatedly until achieving a local
model accuracy u.

4.2 Auction Model

Bidding Information . Let I denote the number of available
clients. In practice, a client may not be able to fully partici-
pate in the entire training process due to many factors, e.g.,

TABLE 1
List of Notations

I # of clients X integer set f1; . . . ; Xg
pi payment to client i " global accuracy
J # of submitted bids S winner set
V ð"Þ actual reward the cloud server received
T maximum number of global iterations
Tg # of global iterations
Bij bid information of client i’s j-th bid
bij asking price of client i’s j-th bid
vij true cost of client i’s j-th bid
uij local accuracy of client i’s j-th bid
aij starting global iteration of the available time

period of client i’s j-th bid
dij ending global iteration of the available time

period of client i’s j-th bid
cij # of participation rounds of client i’s j-th bid
xij whether or not to accept client i’s j-th bid
yiðtÞ whether or not to schedule client i at t-th iteration
tcmp
i computation time required for client i to perform

one local iteration
tcomi communication time required for client i in

one global iteration
tmax duration of a single global iteration
TlðuijÞ # of local iterations with local accuracy uij
Li the set of feasible schedules of client i
ril client i’s bidding price with schedule l
zil whether or not to accept client i’s schedule l

HT̂g
a harmonic number, which is equal to

PT̂g
t¼1

1
t

v an auxiliary variable defined in line 18 of Alg. 2,
equalsmaxt2T̂ g

vt

2. To avoid the straggler effort caused by the heterogeneous capaci-
ties of clients, we apply a simple synchronous scheme [43]. The FL plat-
form limits the maximum duration of a single global iteration to tmax,
and calculates the number of global iterations T based on the expected
maximum completion time of the FL job and tmax.

3. Typically, the value ofK is fixed and ranges from 10 to 200 [4], [8],
[10], [23].
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battery level or personal schedule [43]. Furthermore, a
client values different periods and local accuracy differ-
ently. Therefore, we assume that each client i submits up
to J bids, and client i’s j-th bid (Bij) is expressed as a
tuple:

Bij ¼ fbij; uij; ½aij; dij�; cijg8j2J ; (3)

where bij is the “claimed” cost that client i wants to charge
for the service. uij is the local accuracy. ½aij; dij� is the avail-
able time period within T , which starts and ends at aij-th
and dij-th global iteration. In period ½aij; dij�, client i can
only participate cij number of global iterations, which is lim-
ited by its battery level, and calculated based on uij. Let vij
be the “true” cost of client i’s j-th bid.

Decision Variables . After receiving all bids from the cli-
ents, the cloud server will make the following decisions: i)
Tg 2 f1; 2; . . .; Tg, the number of global iterations, ii) xij 2
f0; 1g, whether or not to accept client i’s j-th bid, and if so,
iii) yiðtÞ 2 f0; 1g, whether or not to schedule client i at t-th
global iteration, and iv) pi, payment to client i.

Constraints and Assumptions . (1) Requirement of FL train-
ing: The training process of federated learning [8] requires a
fixed number of clients. The above requirement can be mod-
eled as constraint (4), which ensures that at least K clients
are selected for each global iteration.X

i2I
yiðtÞ � K; 8t 2 T g: (4)

(2) Accuracy Requirement: To guarantee the theoretical
accuracy requirement mentioned in Section 3, we rewrite
the Eq. (1) as one specific constraint, shown as (5). For the
ease of presentation, Oðlog ð1"ÞÞ is normalized to 1 when we
consider a fixed global accuracy ". So constraint (5) calcu-
lates the number of global iterations Tg, according to the
maximum local accuracy umax among the winners.

Tg �
1

1� uijxij
; 8i 2 I ; 8j 2 J : (5)

(3) Bid Restriction: the number of participation rounds for
each client (i.e.,

P
t2T g

yiðtÞ) is equal to the number of
claimed rounds in its bid, as shown in constraint (6).X

t2T g

yiðtÞ ¼
X
j2J

cijxij; 8i 2 I : (6)

(4) The Duration of Global Iteration: The time for client i’s
j-th bid to compute the local update in one global iteration
consists of two parts: computation time TlðuijÞtcmp

i and com-
munication time tcomi . For simplicity, suppose that when a
client registered at the FL platform, the cloud server can
access its information. So tcmp

i and tcomi can be considered as
constants. This time duration constraint for one global itera-
tion can be formulated as:

xij � ðTlðuijÞtcmp
i þ tcomi Þ � tmax; 8i 2 I ; 8j 2 J : (7)

(5) Decision Variable Restriction: The relationship between
yiðtÞ and xij is formulated by constraint (8). That is, one cli-
ent can participate in training only when it is selected by the
cloud server (xij¼1).

yiðtÞ ¼ 1 only if xij ¼ 1; t 2 ½aij; dij�; 8i 2 I ; 8j 2 J : (8)

(6) XOR Bidding Rule: Even each client submits up to J
bids, only one bid can be accepted. This is because each cli-
ent can only participate in one time period due to its battery
capacity. Therefore, constraint (9) specifies that at most one
bid of each client can be accepted.X

j2J
xij � 1; 8i 2 I : (9)

Auction Preliminary . We next introduce some definitions
in auction design. The cloud server’s utility is:

userver ¼ V ð"Þ �
X
i2I

pi; (10)

Then client i’s utility is:

ui ¼
pi � vij; if xij ¼ 1
0; otherwise

�
(11)

In general, clients are selfish and tend to maximize their
own utilities. They may even lie about their true cost to get
a higher utility. We instead focus on the utilities of the entire
FL system, and target social welfare maximization. Therefore,
it is necessary to elicit truthful bids from clients.

Definition 1. (Truthful in bidding price): An auction is truthful
in bidding price if and only if each client’s utility is maximized
when it bids with its true cost, i.e., for all bij 6¼ vij,
uiðvijÞ � uiðbijÞ.

Definition 2. (Individual Rationality): An auction is individual
rational if each client’s utility is non-negative, i.e., uiðbijÞ � 0.

Definition 3. (Social Welfare, Social cost): The social welfare of
the FL system is the aggregate utility of the cloud sever and cli-
ents, and equals V ð"Þ �

P
i2I
P

j2J vijxij. When V ð"Þ is a
fixed value, one can ignore it. Note that in the optimizing pro-
cess, maximizing social welfare is equivalent to minimizing the
social cost, i.e.,

P
i2I
P

j2J vijxij.

4.3 Social Cost Minimization Problem

Problem Formulation . Under truthful bidding (bij ¼ vij), the
social cost minimization problem can be formulated into the
following integer linear program (ILP):

minimize
X
i2I

X
j2J

bijxij (12)

subject to:

ð4Þ � ð9Þ;
xij; yiðtÞ 2 f0; 1g; 8i 2 I ; 8j 2 J ; 8t 2 T g; (12g)

Tg 2f1; 2; . . .; Tg: (12h)

Challenges. Note that even a simplified version of ILP (12)
without constraints (5), (7) and (12 h) is still NP-hard, which
is equivalent to the set cover problem [44]. The challenge
becomes more complicated when this problem involves a
non-trivial variable Tg which relates to all winners. More-
over, two sets of binary variables determine clients’ partici-
pation schedules, and eventually affect the total social cost.
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5 AUCTION DESIGN

5.1 Overview of Auction Design

Algorithmic Idea. To solve the ILP (12), we present an auc-
tion framework, AFL, to determine the winning bids and
corresponding schedules to minimize the social cost with a
bounded approximation ratio. The high level algorithmic
idea of AFL is shown in Fig. 2.

i. AFL first computes the range of Tg according to cli-
ents’ local accuracy. Then for each fixed T̂ g within
the range, it formulates a winner determination
problem (WDP). The input of each WDP is a quali-
fied bids set which satisfies constraints (5) and (7).
AFL then decomposes ILP (12) into several WDPs.
AFL next calls Awinner to solve each WDP and finally
outputs the winning bids which generate the mini-
mum social cost.

ii. In Section 5.2, we show how to determine the win-
ners for each WDP. We first encode xij and yiðtÞ into
one variable and reformulate each WDP into ILP
(13). To solve it, we design an approximation algo-
rithm Awinner based on a greedy strategy to select
winning bids and schedule clients’ participation.

iii. In Section 5.3, we show how to charge winners for
each WDP. We propose a payment algorithm
Apayment which is a subroutine of Awinner based on the
critical value rule [20], [21].

Algorithm 1. FL Auction Framework AFL

Input: T ,K, Bij; 8i; j;
Output: T �

g ,minicost, S�;
1: Initialize tij ¼ TlðuijÞtcmp

i þ tcomi ; 8i; j; S� ¼ P� ¼ J T̂g
¼ ? ,

minicost ¼ 1;
2: Find the minimum local accuracy umin of all bids;
3: T0 ¼ b1=ð1� uminÞc;
4: for T̂g ¼ T0 to T do
5: umax ¼ d1� 1=T̂ge;
6: J T̂g

¼ fði; jÞ8i;jjuij � umax&tij � tmax&aij þ cij � T̂gg;
7: (S;P; costðT̂gÞ)=AwinnerðJ T̂g

; T̂g;KÞ;
8: if costðT̂gÞ < minicost then
9: T �

g ¼ T̂g,minicost ¼ costðT̂gÞ, S� ¼ S, P� ¼ P;
10: end if
11: end for
12: for all xij ¼¼ 1; 8xij 2 S� do
13: Accept client i’s j-th bid and schedule client i according to

yiðtÞ 2 lij; Pay pi 2 P� to client i;
14: end for

Auction Framework. Our FL auction AFL is presented in
Algorithm 1. Let tij be the time for client i’s j-th bid to com-
pute and transmit the local update in one global iteration.
Line 1 initializes all variables. Given the local accuracy of all

bids, AFL selects the minimum local accuracy to compute
the initial value T0 for Tg in lines 2-3. Then, AFL enumerates
the number of global iterations T̂g from T0 to T and com-
putes the feasible maximum local accuracy umax for different
T̂g according to Eq. (1) in lines 4-5. Next, umax, tmax and T̂g are
used to get a set of qualified bids J T̂g

for Awinner (line 6). In
line 7, algorithm Awinner returns winners’ set S, the payment
set P and the corresponding social cost costðT̂gÞ. AFL then
compares the resulting costs at different T̂g, and records the
best solution which achieves the minimum social cost (lines
8-10). Finally, AFL announces the auction result in lines 12-
14.

5.2 Winner Determination

To solve each WDP and determine the winners, we next
present the algorithmic design of Awinner.

1) Problem Reformulation
For each fixed T̂g, there is a WDP with a qualified bid set

J T̂g
. Recall that each WDP is equivalent to a simplified ver-

sion of ILP (12) without constraints (5), (7) and (12 h). Note
that two decision variables xij and yiðtÞ have a natural pre-
cedence correlation. To address this problem, we apply
compact exponential technique [19] to reformulate the WDP
to the following ILP (13) by encoding xij and yiðtÞ into a
new decision variable zil.

minimize
X
i2I

X
l2Li

rilzil (13)

subject to: X
i2I

X
l:yiðtÞ2l

zil � K; 8t 2 T̂ g; (13a)

X
l2Li

zil �1; 8i 2 I ; (13b)

zil 2 f0; 1g; 8l 2 Li; 8i 2 I : (13c)

In the above ILP (13), Li is the schedule set of client i. A
feasible schedule l is a vector l ¼ ffxijg8ði;jÞ2J

T̂g
; fyiðtÞg8i;tg

which satisfies constraints (6) and (8). The value of ril equals
the corresponding bij based on l. zil denotes whether or not
to select client i’s schedule l. Note that the number of feasi-
ble schedules zil for client i is exponential, due to combina-
torial property of variables xij and yiðtÞ (i.e., the number of

feasible schedules for client i is up to
P

j
dij�aij

cij

� �
). Con-

straint (13 a) is equivalent to constraint (4). And constraint
(13 b) ensures that one client can be selected according to at
most one schedule. It is clear that a feasible solution to ILP
(13) is also a feasible solution to the WDP, and vice versa,
with the same objective value.

Dual Problem. In order to analyze the performance of
Awinner, we formulate the dual problem of ILP (13) by relax-
ing the integer constraint (13 c) into 0 � zil � 1, and intro-
duce dual variables gðtÞ, qi and �il to constraint (13 a), (13 b)
and zil � 1, respectively. Then, the dual problem of relaxed
ILP (13) is:

maximize
X
t2T̂ g

KgðtÞ �
X
i2I

X
l2Li

�il �
X
i2I

qi (14)

Fig. 2. Main idea of FL auction AFL.
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subject to: X
t:yiðtÞ2l

gðtÞ � �il � qi � ril; 8l 2 Li; 8i 2 I ; (14a)

gðtÞ; �il; qi �0; 8t 2 T̂ g; 8l 2 Li; 8i 2 I : (14b)

2) Winner Determination and Scheduling
Main Idea. To get a feasible solution of the exponential-

sized ILP (13), we design an efficient algorithm Awinner

which selects schedules iteratively based on a greedy strat-
egy. We say the t-th global iteration is available if the number
of selected clients in the t-th global iteration is less than K.
Awinner starts with an empty set. In each iteration, Awinner

selects a client with a schedule which can cover available
global iterations at the lowest average cost. Then Awinner adds
the selected client with its corresponding schedule to the
winner set. This process terminates until there are enough
participants in the winner set.

Algorithm 2.Winner Determination Algorithm Awinner

Input: J T̂g
, T̂g,K;

Output: S, P, cost;
1: Initialize S ¼ P ¼ C ¼ G ¼ ? , cost ¼ 0, gS

t ¼ 0, 8t;
2: while RðSÞ < KT̂g do
3: Sort T̂ g global iterations according to gS

t in nondecreasing
order; Save the order as ~T ;

4: for all bids in J T̂g
do

5: Select the top cij global iterations in ~T and within time
period ½aij; dij� to form the representative schedule lij;

6: Compute RilijðSÞ; Save/update schedule ði; lijÞ in sets C
and G;

7: end for
8: ði�; l�Þ ¼ argminði;lijÞ2C

rilij
Rilij

ðSÞ ;

9: zi�l� ¼ 1;fðt; li� Þ ¼ ri� l�
Ri� l� ðSÞ

; 8t 2 F i�l� ;

10: pi� ¼ ApaymentðC; ði�; l�Þ; RilijðSÞÞ;
11: ði#; l#Þ ¼ argminði;lijÞ2G

rilij
Rilij

ðSÞ ;

12: fðt; li#Þ0 ¼ ri# l#

Ri# l# ðSÞ ; 8t 2 F i#l# ;

13: C ¼ Cnð
S

lði�; lÞÞ;
14: S ¼ S

S
ði�; l�Þ; G ¼ Gnði�; l�Þ ;

15: end while
16: ct

max ¼ maxt2½aij;dij�frilijg; 8t 2 T̂ g;

17: ct
min ¼ minlfffðt; lÞg

S
ffðt; li#Þ0gg; 8t 2 T̂ g;

18: vt ¼ ct
max=c

t
min; 8t 2 T̂ g; v ¼ maxt2T̂ g

vt;

19: hfðtÞ ¼ maxlffðt; lÞg, gðtÞ ¼ hfðtÞ=ðHT̂g
vÞ; 8t 2 T̂ g;

20: for all zil ¼¼ 1 do
21: �ilij ¼

P
t:t2F il

ðhfðtÞ � fðt; lÞÞ=ðHT̂g
vÞ;

22: Save pi to P; cost ¼ costþ rilij ;
23: end for

Average Cost. Let S ¼ fði1; l1Þ; ði2; l2Þ; . . .g be a set where
ði1; l1Þ is client i1’s l1-th schedule. gS

t ¼
P

ði;lÞ2S:yiðtÞ2l 1
denotes the number of clients which are scheduled at the
t-th global iteration in set S. The utility of set S is its valid
contribution, which is defined as RðSÞ ¼

P
t2T̂ g

minðgSt ; KÞ.
The increased utility of adding client i’s l-th schedule to S is:

RilðSÞ ¼ RðS
[

ði; lÞÞ �RðSÞ

¼
X
t2T̂ g

ðminðgS
S

ði;lÞ
t ; KÞ �minðgSt ; KÞÞ (15)

The average cost of schedule l is ril
RilðSÞ

. At the beginning, S
is an empty set. In each iteration, the schedule with the min-
imum average cost is added to set S, until there are enough
participants. Although the number of feasible schedules for
client i’s j-th bid is up to dij�aij

cij,

� �
for each bid, we only need

to consider one representative schedule which generates the
maximum utility. Let lij denote the representative schedule
for client i’s j-th bid. lij consists of cij global iterations which
have the smallest gS

t within the time period ½aij; dij�.
Algorithm Details. The winner determination algorithm

Awinner is shown in Algorithm 2. Here C is a candidate set
which records representative schedules for selection during
each iteration. G is a grand set which records unselected rep-
resentative schedules. Let F il be the set that stores the cur-
rent available global iterations in client i’s l-th schedule. Line
1 initializes sets and variables. Note that the default value of
all primal and dual variables is zero. In lines 2-15, the while
loop selects schedules iteratively until all global iterations
have K participants. Lines 3-7 compute the representative
schedule lij for each bid. Line 8 selects the schedule ði�; l�Þ
with the smallest average cost. Then, the corresponding var-
iable zi�l� is updated to 1, and its average cost fðt; li�Þ is
recorded in line 9. Line 10 calls the subroutine Apayment to
calculate the payment for each new selected schedule
ði�; l�Þ. Lines 11-12 record auxiliary variables for updating
dual variables. Lines 13-14 update sets C, S and G. To satisfy
constraint (14 b), set C removes all remaining schedules of
client i�. Then, the winner set S adds the new selected
schedule ði�; l�Þ, and set G excludes it. In order to bound the
approximation ratio, Awinner updates dual variables. The
value of dual variable gðtÞ is calculated in lines 16-19, where
HT̂g

¼
PT̂g

t¼1
1
t is a harmonic number. Finally, lines 20-23

compute value of dual variable �ilij for each selected sched-
ule and save winners’ information.

Example. We illustrate the process of Awinner by a simple
example. Suppose T̂g ¼ 3 and K ¼ 1. For any client i 2 I , it
only submits one bid with a form of Bi1ðbi1; ½ai1; di1�; ci1Þ.
There are three qualified bids in set J 3: B11ð$2; ½1; 2�; 1Þ,
B21ð$6; ½2; 3�; 2Þ, B31ð$5; ½1; 3�; 2Þ. First, Awinner initializes
RðSÞ ¼ 0 and gS

t ¼ 0; 8t 2 ½1; 2; 3�.
� In the first iteration, the candidate set C includes

three representative schedules: l11 ¼ f1g; l21 ¼
f2; 3g; l31 ¼ f1; 2g. Since RðSÞ < 3, Awinner computes
r11

R11ðSÞ ¼ 2, r21
R21ðSÞ ¼ 3, r31

R31ðSÞ ¼ 2:5. ð1; l11Þ is selected
since it has the minimum average cost. Its corre-
sponding payment is calculated as p1 ¼ R11ðSÞ �
r31

R31ðSÞ ¼ 2:5. Next, Awinner updates S ¼ fð1; l11Þg and

RðSÞ ¼ 1, and then removes l11 from set C.
� In the second iteration, the candidate set C contains

two representative schedules: l21 ¼ f2; 3g, l31 ¼
f2; 3g. Because RðSÞ < 3, Awinner computes r21

R21ðSÞ
¼

3, r31
R31ðSÞ ¼ 2:5. ð3; l31Þ is selected. The corresponding

payment is p3 ¼ R31ðSÞ � r21
R21ðSÞ ¼ 6. So S ¼

fð1; l11Þ; ð3; l31Þg and RðSÞ ¼ 3. l31 is removed from
set C. The while loop in Awinner terminates since
RðSÞ ¼ KT̂g ¼ 3 now.
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5.3 Payment Design

We next discuss how to calculate the payment for winners.
The basic idea is to calculate the payment based on the criti-
cal bid, i.e., the schedule which has the second smallest
average cost. (Please see Theorem 1 for details). Apayment is
shown in Alg. 3. Line 1 finds the critical bid ði;0 l0Þ and line 2
calculates the payment for each new selected schedule
ði�; l�Þ based on the critical value rule [20], [21].

Algorithm 3. Payment Algorithm Apayment

Input: C, ði�; l�Þ, RilijðSÞ;
Output: pi� ;
1: ði0; l0Þ ¼ argminði;lijÞ2C:ði;lijÞ6¼ði�;l�Þ

rilij
Rilij

ðSÞ ;

2: pi� ¼ Ri�l� ðSÞ � ri0 l0
Ri0 l0 ðSÞ

;
3: return pi� ;

6 THEORETICAL ANALYSIS

In this section, we analyze the property of AFL in terms of
truthfulness, individual rationality, correctness, time com-
plexity and approximation ratio.

6.1 Truthfulness and Individual Rationality

Lemma 1. AFL is schedule-monotonic, i.e., 8i 2 I ; 8l; ~l 2 Li, if
ri~l < ril and Ri~lðSÞ ¼ RilðSÞ, zil ¼ 1 implies zi~l ¼ 1.

Proof. When client i’s schedule l was selected, then it has
the lowest average cost ril

RilðSÞ
in the current iteration. If cli-

ent i changes its cost to a smaller one ri~l (< ril) and
others remain the same,

r
i~l

RilðSÞ
< ril

RilðSÞ
implies that this

schedule will still be selected in the current iteration by
the greedy algorithm Awinner. Hence, Lemma 1 holds. tu

Lemma 2. The payment to all selected schedules are critical, i.e.,
suppose that a selected schedule (zi�l� ¼ 1) has a bidding price
~ri�l� ( 6¼ ri�l� ), then this schedule will win if ~ri�l� � pi� , and
will fail otherwise.

Proof. According to Apaymemt, schedule ði;0 l0Þ has the second
smallest average cost in set C at the current iteration.
Then, the payment pi� ¼ Ri�l�ðSÞ � ri0l0

Ri0l0 ðSÞ
ensures that

~ri�l�
Ri� l� ðSÞ

� ri0l0
Ri0 l0 ðSÞ

when ~ri�l� � pi� and ~ri�l�
Ri�l� ðSÞ

� ri0l0
Ri0l0 ðSÞ

when

~ri�l� � pi� . Consequently, each winning schedule is paid
with a critical value. tu

Theorem 1. AFL is a truthful auction.

Proof. (Truthfulness in bidding price bij): The Myerson’s theo-
rem [20], [21] shows that a reverse auction is truthful in
bidding price if the following conditions are satisfied: (i)
the result of auction ðzilÞ is monotonically non-decreasing
with the decrease of bidding price ril; and (ii) the pay-
ment of each selected schedule is calculated based on the
critical value. Combining Lemma 1 and 2, we finish this
part of proof.

(Truthfulness in local accuracy uij):We first prove that cli-
ent i will not report a smaller local accuracy u0ij than its
true local accuracy uij. A smaller local accuracy leads to a
longer computation time, which will risk failing to satisfy
the time limitation of one single communication round,

i.e., constraint (7). Even if client i submits a smaller local
accuracy and it is selected by the FL platform, client i can-
not achieve the local accuracy that it claimed. Therefore,
the FL platformwill refuse to paywhen this happened.

If client i bids with a larger local accuracy, it would
reduce the probability of being accepted by the FL platform.
This is because the larger local accuracy may not satisfy the
accuracy requirement of FL job, i.e., constraint (5). Thus, cli-
entswill notmisreport the local accuracy of their bids.

(Truthfulness in available time period ½aij; dij� and the num-
ber of participation rounds cij): If client i reports a longer
available time period and it is accepted by the FL plat-
form, client i may not be able to participate in some
rounds due to its actual schedule. Hence, the FL platform
will refuse to pay when this happened. If client i claims a
shorter available time period, the average cost of that bid
may increase and it will further reduce the probability of
acceptance. The reason is that the average cost is calcu-
lated based on the increased utility of adding one sched-
ule, i.e., RilðSÞ, and the value of RilðSÞ may reduce
because a shorter available time period will narrow down
the range that the schedule l can select. In summary, there
is no incentive to misreport the available time period.

Similarly, clients who submit a larger number of partici-
pation roundswould not get the payment from the FLplat-
form, since they actually can not provide the service as they
claimed. On the other hand, a smaller number of participa-
tion rounds submitted by clients results in a higher average
cost, reducing the likelihood of acceptance. Therefore, cli-
entswill notmisreport the number of participation rounds.

In conclusion, AFL is a truthful auction.
tu

Theorem 2. AFL achieves individual rationality.

Proof. The payment of selected schedule ði�; l�Þ is based on
the critical value. It is clear that ði;0 l0Þ’s average cost will
be no less than ði�; l�Þ’s, i.e., ri�l�

Ri� l� ðSÞ
� ri0l0

Ri0 l0 ðSÞ
. Then, we

have ri�l� � Ri�l� ðSÞ � ri0l0
Ri0 l0 ðSÞ

¼ pi� . Furthermore, Theorem

1 ensures truthfulness, i.e., vi�l� ¼ ri�l� . Therefore, each cli-

ent’s utility, ui�l� ¼ pi� � vi�l� � 0, is always non-negative.

tu

6.2 Correctness and Time Complexity

Lemma 3. Awinner produces a feasible solution to ILP (13) and
LP (14).

Proof. We first prove that Awinner in Alg. 2 returns a feasible
solution to ILP (13). If there exists enough clients, Alg. 2
has at least one feasible solution and it can terminate
either before or when set C ¼ ? . When Alg. 2 terminates,
the ending condition of the while loop can guarantee that
constraint (13 a) is satisfied. Then, constraint (13 b) is not
violated since line 13 in Alg. 2 removes all remaining
schedules corresponding to bids of client i� from set C.
Constraint (13 c) holds because the default value of zilij is
zero and it is updated to 1 only when client i’s lij-th
schedule is selected. In conclusion, Awinner generates a
feasible solution to ILP (13). tu

We next prove that Awinner in Alg. 2 returns a feasible solu-
tion to LP (14) in two cases.
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Case 1: If client i’s l-th schedule is not selected by Alg. 2.
we first sort all global iterations in client i’s l-th schedule in
non-decreasing according of gS

t , and denote it as ~t ¼
ft1; t2; . . .; tjcijjg. Let tk be the k-th global iteration in ~t. If tk is
available (i.e. gS

tk
� K), schedule l has at least k available global

iterations. Thus, the average cost for client i’s l-th schedule to
cover available global iterations is no larger than ril

k . Note that
ct

max is the maximum bidding pricing in t-th global iteration,
and ct

min is the minimum average cost. Therefore, the cost of

tk-th global iteration hfðtkÞ is no larger than ril
k

c
tk
max

c
tk
min

, when

tk-th global iteration hasK participants. ThenX
t:yiðtÞ2l

gðtÞ � �il � qi ¼
X

t:yiðtÞ2l
gðtÞ

¼ 1

HT̂g
v

X
t:yiðtÞ2l

hfðtÞ �
ril

HT̂g
v

Xjcijj
k¼1

1

k

ctk
max

c
tk
min

¼ ril
HT̂g

v
Hjcijjv � ril

HT̂g
v
HT̂g

v ¼ ril:

Therefore, constraint (14 a) can be satisfied when client
i’s l-th schedule is not selected.

Case 2: If client i’s l-th schedule is selected by Alg. 2.
Then, we haveX

t:yiðtÞ2l
gðtÞ � �il � qi ¼

X
t:yiðtÞ2l

gðtÞ � �il

¼ 1

HT̂g
v

 X
t:t2lnF il

hfðtÞ þ
X
t2F il

fðt; lÞ
!

¼ 1

HT̂g
v

 X
t:t2lnF il

hfðtÞ þ ril

!

� ril
HT̂g

 XjlnF il j

k¼1

1

kþ jF ilj
þ 1

v

!

� ril

 
Hjcijj �HjF ilj þ 1

HT̂g

!
� ril:

Recall that F il represents a set involves those global itera-
tions within schedule l that still available. And lnF il denotes
the set of non-available global iterations in schedule l. Similarly,
we order all global iterations in set lnF il as ft1; t2; . . .; tjlnF iljg.
If tk-th global iteration is just non-available after client i’s l-th

schedule is selected, its cost hfðtÞ should be atmost ril
kþjF ilj

c
tk
max

c
tk
min

.

Hence, constraint (14 a) can also be satisfied.

In summary, Awinner generates a feasible solution to ILP
(13) and LP (14).

Lemma 4. The running time of Awinner is OðIT̂g ðlog ðT̂gÞ
þIJÞÞ.

Proof. Line 1 of Awinner in Alg. 2 first defines and initializes
variables in OðT̂gÞ steps. The while loop (lines 2-15) runs at
most I iterations since the number of clients can be
selected is at most I. Sorting all global iterations within
T̂ g needs at least OðT̂glog ðT̂gÞÞ steps. The inner for loop in
lines 4-7 selects and updates the representative schedule
for each bid, which can be calculated in OðIJT̂gÞ steps. To
find a schedule ði�; l�Þ or ði#; l#Þ, we need to search all
schedules within the corresponding set, which takes

OðIJÞ steps. Then, computing the payment in Alg. 3,
updating three related sets C;G and S, and recording its
cost can be done within OðIJT̂gÞ steps. Consequently, the
running time of the while loop in Alg. 2 is OðIT̂gðlog ðT̂gÞ þ
IJÞÞ. Lines 16-19 calculate dual variable gðtÞ, which take
OðIJT̂gÞ steps. The second for loop takes OðIJÞ steps to
calculate dual variable �il, save corresponding payment
pi, and record the total cost. In conclusion, the time com-
plexity of Awinner is OðIT̂gðlog ðT̂gÞ þ IJÞÞ. tu

Theorem 3. AFL produces a feasible solution to ILP (12) in poly-
nomial time.

Proof. We first prove the time complexity of AFL. Lines 1-2,
and 12-14 of AFL can be finished within OðIJÞ steps. Line
6 in Alg. 1 needs to search all bids, which takes OðIJÞ
steps. According to Lemma 4, we know that the time
complexity of Awinner is OðIT̂gðlog ðT̂gÞ þ IJÞÞ. Therefore,
the for loop in Alg. 1 which includes Alg. 2 can be done
within OðIT 2ðlog ðT Þ þ IJÞÞ steps. In summary, the time
complexity of AFL is OðIT 2ðlog ðT Þ þ IJÞÞ. tu

Next, we discuss the correctness of AFL. Constraint (12 h)
holds since we enumerate T̂g in the for loop (lines 4-11).
Before solving ILP (13), we pick those bids which satisfy
constraint (5) and (7) at different fixed T̂g and form a quali-
fied set J T̂g

for ILP (13) (line 6). Therefore, constraint (5)
and (7) hold. Finally, the correctness of AFL can be guaran-
teed by combining Lemma 3.

In conclusion, AFL produces a feasible solution to ILP
(12) in polynomial time.

6.3 Approximation Ratio

Here, we prove that the theoretical approximation ratio of
AFL is HT̂�

g
v. Furthermore, the value of HT̂�

g
v is around 1.1,

which will be verified in our simulations in Section 8.

Definition 4. (Approximation Ratio): The approximation ratio
of an algorithm A for a minimization problem is the upper
bound ratio of the objective value of the solution found by A
over the objective value returned by an optimal algorithm.

Lemma 5. Let P andD be the objective values of the primal prob-
lem (13) and the dual problem (14) returned by Awinner. tD �
P with t ¼ HT̂g

v, where HT̂g
¼
PT̂g

t¼1
1
t and v is defined in line

18 of Awinner. Awinner is a t-approximation algorithm.

Proof. The objective value of dual problem (14) is

D ¼ 1

HT̂g
v

X
t2T̂ g

KhfðtÞ �
1

HT̂g
v

X
ði;lÞ

X
t:t2F il

ðhfðtÞ � fðt; lÞÞ

¼ 1

HT̂g
v

 X
t2T̂ g

KhfðtÞ �
X

t:t2F il

X
ði;lÞ

hfðtÞ
!

þ 1

HT̂g
v

X
ði;lÞ

X
t:t2F il

fðt; lÞ

� 1

HT̂g
v

X
ði;lÞ

X
t2T̂ g

fðt; lÞ:
tu

For each global iteration in set F il, the number of selected
clients is no larger than K. Hence, the first term of the sec-
ond equality is larger than 0. Meanwhile, fðt; lÞ is assigned
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a value only when t-th global iteration belongs to set F il.
Therefore, it is rational to extend the range of t in the term
1=ðHT̂g

vÞ
P

ði;lÞ
P

t:t2F il
fðt; lÞ from t : t 2 F il to t 2 T̂ g.

Then, the objective value of primal problem (13) is

P ¼
X
ði;lÞ2S

ril ¼
X
ði;lÞ

X
t2T̂ g

fðt; lÞ:

The above equation holds since when client i’s l-th sched-
ule is selected by Awinner, ril is evenly distributed to varia-
bles fðt; lÞ, i.e., all global iterations in F il.

Obviously, HT̂g
v �D � P . Let P � denote the optimal

objective value of ILP (13). We have P � � D according to LP
duality [45]. Consequently, P=P � � P=D � HT̂g

v ¼ t.
Therefore, the approximation ratio of Awinner is t.

Theorem 4. The approximation ratio of AFL is t� where
t� ¼ HT̂�

g
v.

Proof. Suppose that the optimal number of global iterations
is T̂ �

g . Let C
� denote the optimal social cost. Let C# be the

social cost returned by AFL. C denotes the cost of corre-
sponding solution returned by Awinner under fixed T̂ �

g .
Then, we have C# � C. Hence, C#=C� � C=C� � HT̂�

g
v ¼

t�. Therefore, we can conclude that AFL in Alg. 1 is a
t�-approximation algorithm. tu

7 EXTENSION TO MULTIPLE JOBS SCENARIO

In this section, we discuss one realistic FL scenario where
there are multiple FL jobs with corresponding budget func-
tions. We reformulate the social cost minimization problem
in Section 7.1. Then we present our improved algorithm
framework AFL�M in Section 7.2 and further analyze its
properties in Section 7.3.

7.1 System Model

In practice, the cloud server may receive requests of training
jobs (models) for different purposes, such as traffic crowd-
sensing [46], location prediction [47], air pollution monitor-
ing [48]. In this section, we will discuss how to select
participated clients in the multiple jobs’ scenario. Assume
that there are M FL jobs. Different from the single job sce-
nario, FL platform needs to further determine how to select
proper participated clients for each FL job to minimize the
social cost. To be more practical, we further introduce the
concept of budget for FL jobs. Note that one FL job’s owner
hopes that his job can complete as soon as possible, which
can be characterized by the budget. That is, the budget of
job decreases monotonically with its completion time, i.e.,
the number of global iterations Tgm. In this regard, we
assume that FL job m is associated with one specific budget
function FBmðTgmÞ, which decreases with Tgm monotoni-
cally. In summary, we have to deal with the case of process-
ing multiple FL jobs with different budgets. Here, each
client can submit bids to multiple jobs according to its pref-
erence, but it can only participate in one job due to its lim-
ited battery capacity. We assume that client i submits up to
J bids for each FL job m, and client i’s j-th bid for FL job m
(Bijm) can be expressed as a tuple:

Bijm ¼ fbijm; uijm; ½aijm; dijm�; cijmg8j2J ;8m2M; (16)

where bijm is the “claimed” cost that client i wants to charge
for the service. uijm is the local accuracy. ½aijm; dijm� is the
available time period within T , which starts and ends at
aijm-th and dijm-th global iteration.

Problem Reformulation .Under truthful bidding (bijm ¼ vijm)
and the budget function, the social costminimization problem
can be reformulated into the following integer linear program
(ILP):

minimize
X
m2M

X
i2I

X
j2J

bijmxijm (17)

subject to: X
i2I

yimðtÞ � Km; 8t 2 T gm; 8m 2 M; (17a)

Tgm � 1

1� uijmxijm
; 8i 2 I ; 8j 2 J ; 8m 2 M; (17b)X

t2T gm

yimðtÞ ¼
X
j2J

cijmxijm; 8i 2 I ; 8m 2 M; (17c)

xijm � ðTlmðuijmÞtcmp
im þ tcomim Þ � tmax;

8i 2 I ; 8j 2 J ; 8m 2 M; (17d)

yimðtÞ ¼ 1 only if xijm ¼ 1; t 2 ½aijm; dijm�;
8i 2 I ; 8j 2 J ; 8m 2 M; (17e)X

m2M

X
j2J

xijm � 1; 8i 2 I ; (17f)

X
i2I

X
j2J

pimxijm � FBmðTgmÞ; 8m 2 M; (17g)

xijmbijm � pim; 8i 2 I ; 8j 2 J ; 8m 2 M; (17h)

xijm; yimðtÞ 2 f0; 1g; 8i 2 I ; 8j 2 J ; 8t 2 T gm; 8m 2 M;

(17i)

Tgm 2f1; 2; . . .; Tg; 8m 2 M: (17j)

Constraints (17 a)-(17 f) are the same as constraints (4)-
(9). Especially, constraint (17 f) indicates each client can
only be accepted one bid even in the multiple job scenario
due to its limited battery capacity. Constraint (17 g) ensures
that the total payment of the selected clients will not exceed
the budget of jobm. Constraint (17 h) limits the value of pim.
Note that we add one extra subscriptm to all related param-
eters to identify FL job m. The value of budget is a constant
when T̂gm is fixed according to the function FBmðTgmÞ.
Therefore, the reformulation of WDP (17) with a fixed T̂gm is
consistent with the ILP (13).

7.2 Algorithm Design

To address ILP (17), we present a revised auction frame-
work AFL�M , as shown in Alg. 4 to select bids and corre-
sponding schedules for jobs. AFL�M includes two
subroutines: i) an algorithm to determine the value of T �

gm to
achieve the lowest social cost for each job; ii) a winner deter-
mination algorithm named Awinner�M , which aims to select
proper clients and corresponding schedules via a greedy
fashion for each job.

7.2.1 Auction Framework AFL�M

We first invoke Alg. 5 to derive the value of T �
gm and the can-

didate set J T̂gm
for each job in parallel (line 2). However,

there are specific cases that some clients’ bids are selected by
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several different FL jobs at the same time. Recall that each cli-
ent can only be accepted at most one bid. To address those
extreme cases, from the prospective of clients, we consider
rescheduling clients for FL jobs via a greedy fashion. That is,
if one client’s bid has been selected by multiple jobs, we will
assign this client for the job with smaller rescheduling cost.
The extra cost caused by rescheduling one client4 (i.e.,
rescheduling cost recost) for jobm equals the cost difference
between the pre-selected bid and the critical client i0 bid, i.e.,
bi0jm � bijm. Let �i denote a tuple, which records the job m
that client i is selected for and the corresponding replace
cost, i.e., �i ¼ fm; recostilijmg. In Alg. 4, lines 3-25 select cli-
ents for all jobs until there are enough clients selected for
each job to participate in the training process. Especially, line
4 uses Awinner�M to select one client i� who can participate in
one specific time period for each job, and calculate its
recosti�l�

ijm
. Note that it is possible that some FL jobs cannot

be completed due to the limited number of clients. Therefore,
we intend to preferentially allocate clients for those jobs that
achieve T �

gm, since it can effectively maximize the total social
welfare, i.e., social cost. Lines 5-13 choose the jobwith smaller
rescheduling cost for client i, and further update �i. Other
jobs which have selected client i through Alg. 5 will remove
the corresponding schedule of client i from the winner set
Sm. Lines 15-23 judge whether job m is valuable to train. Let
P̂mðT̂gmÞ denote one job’s utility, which equals the difference
between job’s budget with T̂gm and the overall payment, i.e.,

P̂mðT̂gmÞ ¼ FBmðT̂gmÞ �
P

i2I pim. In line 15, if P̂mðT �
gmÞ < 0,

the FL platform will reject job m and remove it from the job
set M. Lines 16-20 update flagm with 1 if the job’s training
requirement is satisfied, and flagm ¼ 0 otherwise.

7.2.2 Subroutine for Finding T �
gm

To reduce the time complexity of traversing T̂gm, we first
build a curve of the social cost by sampling a number of
global iterations T̂gm with a fixed interval. Then we can
observe a specific value T̂ 0

gm with the smallest social cost
among samples. Note that T̂ 0

gm we obtained through sam-
pling is close to the optimal T �

gm, which has the smallest
social cost. To avoid falling into the local optimum, we
adopt the method of “jumping out” [49]. That is, we can
search in other directions to jump out the local optimum
point by adding a random perturbation through Cauchy
mutation. To achieve a more precise result, we further apply
binary search to a range nearby T̂ 0

gm. The modified algo-
rithm Alg. 5 is shown as below.

In Alg. 5, lines 3-13 sample a global iterations T̂gm in the
range ½Tm

0 ; T �, with a fixed interval between them. Note that
t represents the fixed interval, which defined as t ¼
dðT � Tm

0 Þ=ae. Here a denotes the number of samples. Lines
6-8 use Alg. 2 to calculate one possible solution for each
WDP with fixed T̂gm. The condition in line 10 (P̂mðT̂gmÞ � 0)
is needed to avoid violating constraint (17 g). After compar-
ing all qualified samples, we finally get the value of T̂ 0

gm,
which has the smallest cost among them (Lines 10-12). Then
we apply binary search to the range nearby T̂ 0

gm, i.e., the

range ½T�
m; Tþ

m � (Lines 14-26). Note that parameter y used for
computing T�

m is a constant, which can be adjusted accord-
ing to the experiment’s setting. Finally, we effectively find
the near optimal T �

gm with the smallest social cost cost�m.

Algorithm 4. FL Auction With Multi Jobs AFL�M

Input:M , T ,Km, Bijm; 8i; j;m;
Output:

P
m2M costm, fSmg8m, fT �

gmg8m, fflagmg8m;
1: Initialize �i; 8i; T �

gm ¼ 0, flagm ¼ 0, costm ¼ 0, RmðSmÞ ¼ 0,
Sm ¼ Pm ¼ ? , 8m;

2: Parallel calculate T �
gm for each jobm using Alg. 5;

3: while
P

m2M flagm � M do

4: Parallel select clients for each uncompleted job m using
Alg. 6;

5: form 2 M do
6: Find set �i that involves jobm;
7: if �i 6¼ ? then
8: Compare the recostilijm0 of job m0 in �i with

recostilijm of job m, save the job with smaller
replace cost in �i;

9: For job ~m with larger recost, S ~mnði; lij ~mÞ,
J T �

g ~m
nð
S

lði; lij ~mÞÞ, zilij ~m ¼ 0, remove pi ~m from
P ~m, cost ~m ¼ cost ~m � rilij ~m , recompute R ~mðS ~mÞ;

10: else
11: Save recosti�l�

ijm
to �i;

12: end if
13: end for
14: form 2 M do
15: if P̂mðT �

gmÞ � 0 then
16: if RmðSmÞ � KmT

�
gm then

17: flagm ¼ 1;
18: else
19: flagm ¼ 0;
20: end if
21: else
22: Reject jobm,M ¼ Mnm, flagm ¼ 0;
23: end if
24: end for
25: end while
26: for all xijm ¼¼ 1; 8xijm 2 Sm; 8m do
27: Accept client i’s j-th bid for job m and schedule client i

according to yimðtÞ 2 lijm; Pay pim 2 Pm to client i;
28: end for

Note that Awinner�M shown in Alg. 6 is similar to Awinner.
Rather than selecting bids and corresponding schedules at
one time, Awinner�M just selects one bid based on the current
schedule of job m, and calculates the corresponding replace
cost.

7.3 Theoretical Analysis

In this section, we also analyze truthfulness, individual
rationality, correctness, and time complexity of AFL�M .

Theorem 5. AFL�M is a truthful auction and achieves individ-
ual rationality.

Proof. We omit the proof here as it is similar to AFL’s proof.
tu

Theorem 6. AFL�M produces a feasible solution to ILP (17) in
polynomial time.

4. In the remainder of this paper, we do not differentiate between a
client and a bid unless otherwise stated since each client can only be
accepted at most one bid.
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Proof. We first analyze the time complexity of Alg. 5. Lines
1-2, and line 27 of Alg. 5 can be finished within OðIJÞ
steps. Line 7 and line 18 in Alg. 5 need to search all bids,
which takes OðIJÞ steps. According to Lemma. 4, the
time complexity of Awinner is OðIT̂gðlog ðT̂gÞ þ IJÞÞ. The for
loop cycle að	 T̂gmÞ times which is a constant. Therefore,
the for loop in Alg. 5 which includes Alg. 2 can be done
within OðaIT ðlog ðT Þ þ IJÞÞ steps. Then, the while loop in
line 15-26 is a traditional binary search whose complexity
is within Oðlog ðyÞÞ, which also can be regarded as a con-
stant. So the while loop in Alg. 5 can be done within
OðT ðlog ðT Þ þ IJÞÞ steps. In summary, the time complex-
ity of Alg. 5 is OðIT ðlog ðT Þ þ IJÞÞ. tu

Algorithm 5. Subroutine for Finding T �
gm

Input: T ,Km, Bijm, 8i; j;m;
Output: J T�

gm
, T �

gm;
1: Initialize tijm ¼ TlmðuijmÞtcmp

i þ tcomi ; 8i; j; Sm ¼ Pm ¼
J T�

gm
¼ ? , cost�m ¼ 1, 8m; J T̂gm

¼ ? ; 8T̂gm;

2: Find the minimum local accuracy ummin of all bids;

3: Tm
0 ¼ b1=ð1� umminÞc, t ¼ dðT � Tm

0 Þ=ae, T̂gm ¼ Tm
0 ;

4: for i = 1, 2, � � � , a do

5: Given T̂gm ¼ minfT̂gm þ t; Tg;
6: ummax ¼ d1� 1=T̂gme;
7: J T̂gm

¼ fði; j;mÞ8i;j;mjuijm � ummax&tijm � tmax&aijm
þcijm � T̂gmg;

8: (Sm;Pm; costðT̂gmÞ)=AwinnerðJ T̂gm
; T̂gm;KmÞ;

9: Calculate P̂mðT̂gmÞ;
10: if costðT̂gmÞ < cost�m and P̂mðT̂gmÞ � 0 then

11: T 0
gm ¼ T̂gm, cost

�
m ¼ costðT̂gmÞ;

12: end if
13: end for
14: T�

m ¼ maxðTm
0 ; T 0

gm � yÞ, Tþ
m ¼ T 0

gm;

15: while T�
m � Tþ

m do

16: T̂gm ¼ T�
m þ ðTþ

m � T�
mÞ=2;

17: ummax ¼ d1� 1=T̂gme;
18: J T̂gm

¼ fði; j;mÞ8i;j;mjuijm � ummax&tijm � tmax&aijm
þcijm � T̂gmg;

19: (Sm;Pm; costðT̂gmÞ)=AwinnerðJ T̂gm
; T̂gm;KmÞ;

20: Calculate P̂mðT̂gmÞ;
21: if costðT̂gmÞ < cost�m and P̂mðT̂gmÞ � 0 then

22: T �
gm ¼ T̂gm, J T�

gm
¼ J T̂gm

, cost�m ¼ costðT̂gmÞ,
Tþ
m ¼ T̂gm � 1;

23: else
24: T�

m ¼ T̂gm þ 1;

25: end if
26: end while
27: AFL : Lines 12-14;

Then we analyze the time complexity of AFL�M . In line 2
of Alg. 4, calculating the near optimal T �

gm for each job paral-
lelly needs OðITMðlog ðT Þ þ IJÞÞ steps. To analyze the time
complexity of the while loop (lines 3-25), we need to consider
the worst case for one job, that is each selected client for one

job is already preempted by others jobs. Note that this worse
case can be regarded as excluding all other jobs’ clients, and
its time complexity is OðIÞ. Therefore, this while loop needs
to execute at most 2IM steps since there areM jobs. In Alg. 4,
lines 5-13 and 14-24 can be finished within OðMÞ steps. Note
thatAwinner�M can be regarded as one round ofAwinner’swhile
loop. Hence, the time complexity of Awinner�M is
OðT̂gmðlog ðT̂gmÞ þ IJÞÞ. So the line 4 of Alg. 4 is executed at
most OðMT̂gmðlog ðT̂gmÞ þ IJÞÞ times. In summary, the time
complexity ofAFL�M isOðITM2ðlog ðT Þ þ IJÞÞ.

Next, we prove the correctness ofAFL�M . Constraint (17 g)
holds sincewe only identify the bids that satisfy the condition
P̂mðT̂gmÞ � 0 in lines 10-12 and lines 21-25 of Alg. 5. Mean-
while, lines 15-23 in Alg. 4 also guarantee constraint (17 g)
not being violated. Constraint (17 h) is satisfied due to Theo-
rem 5. Then we only sample the number of global iterations
within the range ½Tm

0 ; T � in the for loop and the while loop,
which can guarantee constraint (17 j). And constraint (17 b)
and (17 d) both hold because of the qualified set J T̂gm

at dif-

ferent number of global iterations T̂gm in line 7 and line 18 of
Alg. 5.Moreover, the other constraints of ILP (17) can be satis-
fied in Alg. 6, which already discuss in Lemma 3. Then, con-
straint (17 f) is not violated since line 14 in Alg. 6 removes all
remaining schedules of client i� from set Cm and line 5-13 in
Alg. 4 only select one schedule of client i�. Constraint (17 a)
holds because of the condition in lines 16-20 of Alg. 4.

Algorithm 6.Winner Determination AlgorithmAwinner�M

Input: J T�
gm
, RmðSmÞ, T �

gm, Pm, costm, Sm, 8m;
Output: recosti�l�

ijm
;

1: Initialize Cm ¼ Gm ¼ J T�
gm
, gSm

t ¼ 0, 8t;
2: Awinner: Lines 3-14;
3: Save pim to Pm, costm ¼ costm þ rilijm , J T�

gm
¼ Cm;

4: recosti�l�
ijm

¼ ri0l0
ijm

� ri�l�
ijm

;

In conclusion, Alg. 4 produces a feasible solution to ILP
(17) in polynomial time.

8 PERFORMANCE EVALUATION

8.1 Evaluation Setup

System Settings. For fair comparison, we follow the similar
setting in [4], [6]. By default, there are 1000 (I) clients and
each client submits 5 (J) bids [4]. Assume that the maxi-
mum number of global iterations equals 50 and each global
iteration needs 20 clients to train collaboratively, i.e., T ¼ 50
and K ¼ 20 [4], [23]. tcmp

i and tcomi are randomly picked
within the range of [5,10] and [10,15], respectively [6]. The
local accuracy uij of all bids are uniformly distributed in
[0.3,0.8] [10], [8]. We calculate the number of local iterations
TlðuijÞ according to a simplified equation: TlðuijÞ ¼
d10ð1� uijÞe [4]. In our simulations, we do not consider the
case that two available time periods overlap since they can
be considered as one time period from the perspective of cli-
ents. Therefore, we select 2J non-repeated random numbers
within the range ½1; T �, and sort them in non-decreasing
order to form J available time periods. The starting time
(aij) and the ending time (dij) of each time period equal two
adjacent random numbers in the order, respectively. The
number of participation rounds (cij) is randomly generated
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within the range [1, dij � aij]. Finally, the claimed cost of
bids are uniformly distributed in the range of [10,50]. The
default value of tmax is set to 60 [6].

Benchmark Algorithms. To evaluate the performance of
AFL, we provide a thorough analysis by comparing AFL

with the following benchmark schemes: compare it with
three benchmark algorithms:

� FedAvg [4]: FedAvg selects clients randomly and
averagely aggregates the weights of the local models
from all selected clients.

� Greedy Approximation Algorithm (GAA) [22]: GAA
greedily selects bid with the larger normalized value,
which refers to the average bid’s value per unit
requested resource. The bid’s value is concerned
with the satisfaction level of the server and the bid’s
claimed cost. Here we adapt it by redefining the nor-

malized value as
�

TlðuijÞ
uij

� bijÞ=ðh1tcomi þ h2t
cmp
i

�
.

� Aonline [19]: Aonline first calculates the unit payment of
each global iteration based on a payment function.
Then it selects the client with larger utility and
schedules the client according to the best schedule
that maximizes its utility.

8.2 Performance of AFL

Performance ratio. The performance ratio of an algorithm A
for a minimization problem ¼ the objective value of the
solution found by A = the objective value returned by an
optimal algorithm. We first study the performance ratio of
Awinner. To ensure there are enough bids, we assume that all
bids can satisfy constraint (5) and (7). Fig. 3 depicts the
trend of Awinner’s performance ratio under different number
of global iterations (T̂g) and bids per client (J). We can
observe that Awinner has a small ratio (< 1:3) and the ratio
becomes smaller as T̂g decreases and J increases. This result
is coincident with the theoretical analysis in Lemma 5 that
T̂g determines HT̂g

. In addition, the increase of J will
decrease the length of time period (i.e. jdij � aijj) since we
select 2J non-repeated random numbers to form J time
periods for each client. The value of ct

min increases when the
length of time period decreases. Therefore, parameter v

eventually decreases. Next, we also study the impact of the
number of clients (I) and bids per client (J) on performance
ratio of AFL. Fig. 4 shows performance ratios of all algo-
rithms under different I and J . We can observe that the per-
formance ratio of AFL is the smallest and not affected
greatly by the change of I and J . One reason is that AFL can
find the best solution by enumerating the number of global
iterations Tg from T0 to T .

Social Cost. Figs. 5 and 6 further plot the social cost under
different numbers of clients (I) and bids per client (J). In both
Figs. 5 and 6, we can see that AFL outperforms three bench-
mark algorithms. Furthermore, the social cost of AFL in Fig. 5
will decrease slightly with the increase of I since there is
higher probability to select bids with lower average cost. On
the contrary, the cost of all algorithms increasewhen the value
of J increases in Fig. 6. Since the length of time periods will
decrease if the number of bids per clients (J) increases, the

Fig. 7. Social cost at different fixed T̂g.

Fig. 6. Social cost under different J.

Fig. 4. Performance ratio of AFL.

Fig. 3. Performance ratio of Awinner.

Fig. 5. Social cost under different I.
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average cost gets higher when the claimed cost remains the
same. As a result, the total cost of all algorithms become
larger. Fig. 7 illustrates the social cost at different fixed T̂g

within the range [T0; T ]. From Fig. 7, we can find thatAFL still
generates the lowest social cost. Moreover, we can see that all
algorithms achieve the smallest cost when T̂g ¼ 26. This is
because the computation cost occupies a large proportion of
the total cost at the early stage and it drops with the increase
of T̂g. When the number of global iterations T̂g is close to 26,
all algorithms find the balance point between the computation
and communication cost. After that, the total cost grows grad-
ually with the increase of T̂g, since the communication cost
dominates the total cost.

Running Time. In Fig. 8, we investigate the running time of
AFL and Aonline under different number of clients, measured
by tic and toc function in MATLAB. We evaluate the running
time on our laptop with an Intel Core i7-4270HQ and 8-GB
RAM memory. To minimize the error, we use the average
result of five tests. We observe that the running time ofAFL is
not affected greatly by the number of clients. Furthermore,
AFL can finish within 60 seconds evenwith a large input scale
(I ¼ 9000, J ¼ 10), and runs fast thanAonline.

Individual Rationality. Finally, Fig. 9 compares payment
and claimed cost of all winners selected by AFL. We can see
that the payment for the winner is always larger than its cor-
responding claimed cost. Therefore, one can observe that
the property of individual rationality can be satisfied and
each winner’s utility is non-negative.

8.3 Performance of of AFL�M

Assume that there are 10 (M ¼ 10) FL jobs that needed to
train. We use a tailored exponential function FBmðTgmÞ ¼ a �
e�bTgm as the default budget function, where a 2
½1000; 2000�; b 2 ½0:001; 0:01�. Other parameter settings are
consistent with the above setting. Km are set within the
range [10,20]. Similarly, we evaluate the performance of
AFL�M through large-scale simulations. Other benchmark
algorithms are adjusted to accommodate to the scenario
with multiple FL jobs. For ease of comparison, Fig. 10
depicts the social cost of AFL and AFL�M under different
number of clients/bids per client. Especially, to demon-
strate the interference of multiple jobs, we compare the
average cost of one job achieved by AFL�M with the cost of
AFL. We can observe that the difference between the cost of
AFL and AFL�M decreases with the increase of number of
clients. This is because there are more clients for the cloud
platform to select. On the contrary, the difference increases
with the increases of the number of bids per client. This phe-
nomenon is reasonable since the large number of bids per
client means that client preemption will be more likely to
happen, whereas at most one bid of each client can be
accepted according to constraint (17 f). Fig. 11 investigates
the performance of algorithms under different numbers of
jobs (M). The result from Fig. 11 illustrates that the social
cost of AFL�M increases with the number of jobs. Especially,
we can observe that social cost of AFL�M does not increase
any more when it meets a larger number of jobs because of
resource scarcity (client).

Fig. 8. Running time of AFL and Aonline. Fig. 11. Social cost under different numbers of jobs.

Fig. 9. Payment versus claimed cost of winning bid.

Fig. 10. Social cost under different I and J.

Fig. 12. Different budget functions.
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To test the effect of the sensitivity of the FL job’s budget
function, we adopt three types of typical functions as fol-
lows [50].

� Linear Function: f1ðxÞ ¼ �axþ b, - a 2 ½10; 20�; b 2
½1000; 2000�.

� Polynomial Function: f2ðxÞ ¼ ax2 þ bxþ c, - a 2
½0:01; 0:1�; b 2 ½10; 15�; c 2 ½1000; 2000�.

� Exponential Function (default): f3ðxÞ ¼ a � e�bx, - a 2
½1000; 2000�; b 2 ½0:001; 0:01�.

We conduct five independent tests of AFL�M and record
the average results in Fig. 12. To satisfy constraint (17 g), the
value of budget function must be at least the corresponding
payment. In other words, the region that the curve of bud-
get function above the payment is available for AFL�M . In
Fig. 12, we can observe that functions f2ðxÞ and f3ðxÞ can
achieve better performance than function f1ðxÞ, i.e., the min-
imum payments of f2ðxÞ and f3ðxÞ are both smaller than
f1ðxÞ’s. Therefore, the balance between communication and
computation (i.e., the minimum social cost) may be not
achieved under the interference of FL jobs’ budget
functions.

9 TESTBED IMPLEMENTATION

In this section, we conduct testbed experiments by adopting
FL frameworks FAVOR [23] and CoCoA [8] to evaluate the
performance of our algorithm. Here, we only present the
results of implementing AFL�M since AFL and AFL�M both
not affect the training process.

9.1 Implementation

Note that our proposed auction methods focus more on the
auction process and are actually client selection algorithms.
Therefore, the real implementation of the auction process
can be taken as a selection component to combine within
existing federated platforms. The information exchanging
steps that involved in the auction process can be simply
achieved through the FL platform’s inherent Internet con-
nection between the FL platform and clients. With the
Python threading library, we adopt and simulate numerous
clients in the FL environment by using lightweight threads.
Each thread (i.e., client) will run one real-world PyTorch
model on three typical datasets MNIST, Fashion-MNIST
and CIFAR-10. In the auction process, all clients will submit
their bids to one virtual machine which served as the cloud
server. Limited by the computation scale, we only simulate
the winners as threads rather than all clients. Besides, the
training data of each client is a subset of the typical dataset.
Unless explicitly stated, parameters (e.g., number of local
iterations TlðuijÞ) are consistent with the settings of simula-
tion. To guarantee the theoretical convergence of the FL
model, we adopt the parameter aggregation methods of
CoCoA [8] corresponding to the training accuracy to update
the global model. In our experiments, we train a CNN
model with two 5
 5 convolution layers, with each layer

TABLE 2
Parameter Settings of Three Datasets

Dataset First/Second layer # of Batch sizes T

output channels

MNIST [51] 20/50 10 50
Fashion-MNIST [52] 16/32 100 50
CIFAR-10 [53] 6/16 50 70

Fig. 14. Social cost under different J.

Fig. 13. Social cost under different I.

Fig. 15. FL training process under different levels of non-IID data.
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followed by 2
 2 max pooling. Note that the number of cli-
ents per global iteration (K) is set to 10. In addition, several
specific parameters of the datasets are listed in Table 2.

9.2 Evaluation Results

Social Cost. Figs. 13 and 14 demonstrate that the social cost
under different number of clients/bids per client, respec-
tively. Compared with the simulation results shown in Sec-
tion 8, the results is similar. That can be a strong evidence to
state that our proposed algorithm always outperforms
FedAvg [4], GAA [22] and Aonline [19] even in testbed
experiments.

Different levels of Non-IID Data. Recall that we assume
all clients’ data follow an identical and independent distri-
bution, i.e., IID. However, in practice, the data distribution
among data samples of clients is usually not independent
and identically distributed (IID), which is also a main con-
cern in FL. Therefore, we further investigate the accuracy of
FL training process under different levels of non-IID data.
For clarity, we use one specific metric s to represent differ-
ent levels of non-IID data. The metric s 2 ½0; 1� denotes the
proportion of data of other labels that including in the data-
set of one client. In this regard, the smaller s is, the stronger
the non-IID distribution of data samples among clients is.
For instance, s ¼ 0:6 indicating that 60% of the data belongs
to other labels and the remaining 40% of the data belongs to
one corresponding label. Here, Fig. 15 depicts the accuracy
tendency on three different levels of non-IID data. Our
experiment results show that it needs more number of
global iterations when s decreases.

Different levels of Parallelism. In addition, we study
the effect of parallelism (i.e., the number of clients per
global iteration, K) in the FL training process, shown in
Fig. 16. Figs. 16a, 16b and 16c further demonstrate the
accuracy tendency of the FL job’s training process on
MNIST, Fashion-MNIST and CIFAR-10, respectively. We
can observe that the performance of federated learning
does not be affected greatly when increasing the parallel-
ism, i.e., the value of K.

10 CONCLUSION

Federated learning (FL) is shown as a remarkable privacy-
preserving approach to train machine learning jobs with-
out exchanging data samples. Besides technical challenges
that are being studied in the literature, economic incentives
of such distributed machine learning process is also critical

for realizing practical applications. In this paper, we pro-
pose a reverse auction to incentivize the participation of
heterogeneous clients. Different from previous research,
we select and schedule winners (or mobile clients) to exe-
cute training job in different global iterations, with a goal
of social cost minimization. In addition, the number of
global iterations is determined by the global accuracy and
local accuracy. Both theoretical analysis and large-scale
simulations based on the real-world data verified that our
proposed auction is truthful, individual rational, computa-
tionally efficient, and achieves near-optimal social cost.
The superiority of our algorithm over benchmark algo-
rithms is also confirmed by large-scale simulations and
testbed experiments. In addition, we discuss one realistic
scenario where there are multiple FL jobs with correspond-
ing budget functions and further propose an effective
solution.

In practice, one may not be able to obtain the actual local
accuracy and there may be some variations in the training
process due to hardware specifications. Furthermore, clients
may drop out with high probability since the network con-
nection (4G or WiFi) can be unstable. As a future direction,
it is interesting to further study a more realistic scenario
that combines these considerations.
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