1534

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 2, APRIL 2024

Achieving Multi-Time-Step Segment Routing
via Traffic Prediction and Compressive
Sensing Techniques

Van An Le™, Yusheng Ji

Abstract—Traffic engineering (TE) is one of the most crit-
ical issues in networking, as it enables efficient and reliable
network operations. With the advent of Machine Learning
(ML) techniques, many ML-based TE methods have emerged in
recent years, especially those employing Deep Neural Networks
for future traffic prediction to enhance the performance of
traditional approaches. However, current methods suffer from
two major issues. Firstly, most prior works only solve the TE
problem based on short-term traffic prediction, neglecting the
network traffic dynamics over an extended time period. This
oversight results in high network disturbance when numerous
traffic flows need to be rerouted to adapt to traffic changes.
Secondly, although traffic prediction models rely on historical
traffic data to perform future prediction, ML-based TE studies
often ignore the high overhead for network traffic monitoring.
To address these issues, we propose a traffic prediction-based
routing algorithm in which the routing rules can be applied to
multiple time-steps without requiring changes, ultimately leading
to reduced network disturbance. We employ the segment routing
(SR) technique as the routing algorithm and formulate the
multi-time-step segment routing method that incorporates future
traffic prediction. To address the high monitoring overhead, we
present an approach that combines partial traffic prediction and
compressive sensing techniques to estimate unmeasured data.
Through extensive experiments on real backbone network traffic
datasets, we demonstrate that our proposal can achieve more
than 80% of the optimal performance in reducing maximum
link utilization while significantly reducing the number of routing
changes and traffic monitoring cost.

Index Terms—Traffic engineering, segment routing, traffic
prediction, graph neural network, network monitoring, compres-
sive sensing.

Manuscript received 19 April 2023; revised 28 August 2023; accepted
12 November 2023. Date of publication 4 December 2023; date of current
version 15 April 2024. This research is partially supported by JSPS KAKENHI
Grants with the numbers JP20H00592 and JP21H03424. The associate editor
coordinating the review of this article and approving it for publication was
T. Inoue. (Corresponding author: Yusheng Ji.)

Van An Le was with the Information Systems Architecture Science
Research Division, National Institute of Informatics, Tokyo 101-0003, Japan.
He is now with National Institute of Advanced Industrial Science and
Technology, Tokyo, Japan (e-mail: anle@nii.ac.jp).

Yusheng Ji is with the Information Systems Architecture Science Research
Division, National Institute of Informatics, Tokyo 101-0003, Japan (e-mail:
kei@nii.ac.jp).

Huu Huy Tran and Phi Le Nguyen are with the School of
Information and Communication Technology, Hanoi University of Science and
Technology, Hanoi 11615, Vietnam (e-mail: huy.th183557 @sis.hust.edu.vn;
lenp@soict.hust.edu.vn).

John C. S. Lui is with the Department of Computer Science and
Engineering, The Chinese University of Hong Kong, Hong Kong (e-mail:
cslui @cse.cuhk.edu.hk).

Digital Object Identifier 10.1109/TNSM.2023.3338622

, Fellow, IEEE, Huu Huy Tran, Phi Le Nguyen
and John C. S. Lui

, Member, IEEE,
, Fellow, IEEE

I. INTRODUCTION

HE CISCO Annual Internet Report [1] predicts that there

will be 5.3 billion Internet users by 2023, an increase
from 3.9 billion in 2018. Due to the high demand for Internet
services such as video streaming, and VoIP, backbone network
traffic has experienced exponential growth. As a result, traffic
engineering (TE) tasks like optimizing traffic routing and
network monitoring face significant challenges.

Recently, many studies have leveraged Machine Learning
(ML) and Deep Neural Network (DNN) techniques, combined
with traditional TE solutions, to address network problems.
ML/DNN techniques can be used to predict future traffic
demands or directly generate routing rules [2]. However, these
approaches often suffer from two main problems. Firstly, there
is a problem of high network disturbance or a large number
of rerouting flows, leading to a degradation in the overall
network’s Quality of Service (QoS) [3]. Most of the proposed
solutions only address the routing problem in a single snapshot
(which is called a “time-step” in this paper) or use a short-
term traffic prediction to calculate the routing rules without
considering the long time horizon [4], [5], [6], [7]. Due to
the dynamic behavior of the network traffic, the traffic matrix
often varies over time, and the network controller may need
to reroute many flows to balance the traffic loads, leading
to significant network disturbance and service disruption.
Depending on the traffic fluctuation, network optimization, and
traffic rerouting can be performed with high frequency (e.g., at
every minute). Secondly, the current ML-based TE solutions
impose high network monitoring overhead. Many prior works
only focus on solving routing problems and assuming the
network statistics such as traffic matrix or link utilization
are available. However, with the explosion of traffic and the
expansion of the physical network, obtaining all the network
statistics imposes a high monitoring overhead. In addition,
applying ML/DNN into networking also needs a huge amount
of monitored data for training/predicting processes. Although
the quality of the measurements may have a huge impact
on the performance of the TE solution [8], there are only
a few studies that consider the joint problem of network
monitoring and traffic engineering. Moreover, the scalability
issue of applying ML/DNN techniques is often omitted in
many ML-based TE studies.

To address these issues, this paper proposes a new approach
that uses segment routing to optimize routing over a long

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-7488-2438
https://orcid.org/0000-0003-4364-8491
https://orcid.org/0000-0001-6547-7641
https://orcid.org/0000-0001-7466-0384

LE et al.: ACHIEVING MULTI-TIME-STEP SEGMENT ROUTING

time horizon and mitigates the need for frequent routing
changes. A graph-based deep neural network is used to
accurately predict future traffic demand, and based on the
predicted values, a long-term routing method is proposed to
optimize the routing rules. In this regard, we employ the
segment routing (SR) technique as the routing algorithm and
formulate the multi-time-step segment routing method (called
MTSR) that incorporates future traffic prediction. To reduce
network monitoring overhead, a partial traffic prediction
approach is combined with the compressive sensing technique.
Specifically, a partial future traffic matrix is predicted using
a small amount of observed traffic, and the compressive
sensing technique is used to reconstruct the entire traffic
matrix. This approach reduces monitoring overhead while still
achieving high performance in network routing. This work is
an extension of a previous study [9].

The paper outlines several significant contributions related
to traffic engineering in the face of high network demand and
disturbance and high monitoring overhead.

e We address the issue of network disturbance by introduc-
ing the multi-time-step segment routing (MTSR) method,
which utilizes an Integer Linear Programming formu-
lation and advanced Deep Neural Network models for
multi-step prediction to minimize the number of rerouting
flows over a long time horizon.

e To account for prediction accuracy, we present three
versions of the MTSR and provide a theoretical analysis
of their performance.

e To enhance the practicality of MTSR by reducing
network monitoring cost, we propose an extended
approach called MTSR-CS that combines partial network
traffic prediction with compressive sensing technique.

¢ We conduct extensive experiments using different real
backbone network datasets to evaluate the performance
of our proposed methods and compare them to state-of-
the-art approaches.

The remainder of the paper is organized as follows:
Section II provides an overview of related work and problem
discussion, Section III-C presents our proposed method MTSR
to address the high network disturbance problem, Section IV
presents an extended of MTSR (called MTSR-CS) which can
reduce the network monitoring overhead, Section V provides
extensive experimental results, and finally, we conclude the
paper in Section VI

II. BACKGROUND AND EXISTING WORKS

This section first provides a brief overview of traffic engi-
neering (TE) and related works. Then, we discuss the two
problems which are addressed in this paper.

A. Traditional Traffic Engineering (TE)

The minimization of congestion is widely considered one of
the most significant objectives in traffic engineering. Typically,
achieving this objective involves reducing the maximum link
utilization (MLU) in a network. In theoretical works, the
Multi-Commodity Flow (MCF) problem is often used to
obtain fractional solutions in which traffic flows are split and

1535

Segment Label is

. @ SP(i, k)

Segment Label

Fig. 1. Tllustration of 2-segment routing [12].

directed through various paths. However, in practice, many
ISP networks rely on shortest-path routing techniques, such
as OSPF and IS-IS, due to their simplicity. By adjusting link
weights in a distributed manner, shortest path routing can com-
pute near-optimal forwarding paths. Nonetheless, this method
has drawbacks, such as lengthy re-convergence time and
poor performance when network topology or traffic demands
change. Recent advancements in routing techniques, such
as MPLS and RSVP, have offered increased flexibility and
improved traffic engineering performance by enabling explicit
routing paths. However, MPLS-TE solutions are known to
have long convergence times and a high cost of maintaining
the TE tunnels. Another routing approach, known as oblivious
routing and described in [10] and [11], performs traffic routing
based solely on network topology without any knowledge of
current network traffic. This method is easier to implement and
does not cause the rerouting problem associated with adaptive
routing techniques.

B. Traffic Engineering With Segment Routing

Segment routing is a routing paradigm that operates on
the basis of source routing. It allows the source node (or
ingress node) to embed a list of Segment Identifiers (SIDs)
in the packet header. This segment list serves as a set of
instructions (SR policy) to direct the packet through the
network devices. While SIDs can distinguish both nodes and
links in the network, this paper focuses solely on the node-
segment for simplicity. Packets originating from the source
node must traverse all nodes in the segment list before being
forwarded to the destination. Shortest path routing techniques,
such as OSPF, are used to route the packet within the seg-
ment. Figure 1 demonstrates an instance of 2-segment routing,
wherein a traffic flow originating from node i and destined for
node j is directed through two segments, specifically, the i — k
and k — j segments.

Due to its flexible routing capabilities, SR has been
extensively investigated both theoretically and practically.
Bhatia et al. [12] formulated the TE problem with SR as
a linear programming problem, where only two segments
were considered. Subsequent studies have focused on utilizing
more than two segments. For instance, 3-SR [13] proposed
an optimization model that uses three segments and combines
both node and edge segments. Jadin et al. [14] further
improved the TE problem with SR by fully exploiting n-SR
(n-segment routing with both node and edge segments) and
proposed the first Column Generation-based approach. In prac-
tical approaches, the authors in [15] considered unexpected
traffic fluctuation and link failure problems and proposed a
local search-based algorithm to solve the targeted problems

1536

under a sub-second constraint. Recently, studies by SR
Tunnel [16] and [17] extended the work in [12] by proposing
an optimization model to minimize the number of deployed
SR policies.

C. The High Network Disturbance Problem

The majority of proposed traffic engineering solutions tackle
the routing optimization problem by considering a snapshot
of the traffic demand at the current time-step. Although
optimizing network routing at each time-step may effectively
fulfill the traffic engineering objective, such as minimizing the
peak link utilization, it gives rise to a notable predicament.
This predicament manifests as a considerable volume of data
flows being rerouted to accommodate fluctuations in traffic
demands, subsequently resulting in pronounced disturbances
across the network (e.g., service disruption). The impact of the
network disturbance problem has been examined in a study
conducted by [3]. The findings from this study indicate that the
substantial redirection of flow traffic can lead to a substantial
decline of up to 50% of total network throughput. Furthermore,
the rerouting can cause out-of-order problems in certain flows.
The utilization of oblivious routing techniques [10], [11], [12]
presents a viable method for mitigating the problem of network
disturbance. By calculating the routing rules in advance only
using the network topology (without prior knowledge of the
traffic demand), these methods do not require changing the
path of the network flows. While this approach can reduce
the overhead caused by routing path changes, it may not
perform well under dynamic network behaviors. Additionally,
the oblivious routing method such as Traffic Matrix Oblivious
Segment Routing in [12] is only practical for offline traffic
engineering on relatively small networks as mentioned in [15].

Recently, several studies [18], [19], [20] utilized machine
learning techniques to mitigate this problem. For example,
within the work presented in [18], an approach founded
upon Reinforcement Learning principles was introduced. This
approach involves the identification of a subset of flows termed
as the “critical flow set” which subsequently becomes the
exclusive focus for rerouting. Consequently, the necessity
to reroute flows is constrained, ensuring that the count of
such flows remains within the confines of k% of the total
number of flows within the network (e.g., k = 10%). Further
exploration of this method can be found in studies such
as [19] and [20]. They introduced the integration of a graph
neural network, thereby facilitating the generalization of the
proposed approach to encompass previously untrained network
scenarios. However, this method still results in a large number
of rerouted flows over the time horizon when frequently
executed.

D. The High Network Monitoring Cost of ML-Based
Approach

Recently, machine learning (ML) techniques have been
increasingly utilized to address various networking issues,
including traffic routing, demand prediction, and anomaly
detection. In traffic engineering, ML can be employed to
forecast future traffic demands, enabling proactive calculation

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 2, APRIL 2024

of routing rules to adapt to anticipated changes in traffic
patterns. Previous studies [4], [6], [7], [21] have utilized
diverse Deep Neural Network models, such as Convolutional
Neural Network and Long Short-Term Memory, for traffic
prediction and have obtained promising outcomes compared to
traditional methods. In general, applying ML techniques issues
a significant amount of data for the training and prediction
processes. In the majority of ML-based TE solutions, there
exists an implicit assumption that the necessary data, such as
historical traffic demands, is readily accessible and the cost of
network monitoring is frequently overlooked. To enhance the
practicality of ML-based TE methods, there are some studies
that focus on elevating network monitoring overhead.

For instance, the authors in [7] reduced the monitoring
cost by only measuring a subset of network flows and
proposed a method that exploits the forward and backward
ConvLSTM layers to correct the input data. More recently,
VAE (Variational AutoEncoders) models have been used by
Kakkavas et al. in [22] to learn the distribution from traffic
during the training phase. In the testing phase, the trained
decoder of the VAE model is used to reconstruct the end-to-
end traffic matrix from the links’ load. This approach can be
applied to reduce monitoring overhead since the number of
links is typically less than the number of traffic flows, and
link-level measurements are easier to obtain than flow-level
measurements. However, this approach has not been evaluated
for addressing traffic engineering issues.

III. REDUCING NETWORK DISTURBANCE
LEVERAGING TRAFFIC PREDICTION

In this section, we first provide a concise overview of
the network model and the traffic engineering problem
using segment routing. Then, we present a traffic prediction-
based routing algorithm named Multi-Time-Step Segment
Routing (MTSR) to reduce network disturbance. We formulate
the MTSR problem using three different traffic prediction
approaches, each of which is based on the complexities
inherent in the traffic prediction methods. Finally, we conduct
a theoretical analysis of the three approaches. It is essential to
note that within this section, we assume that historical traffic
data is readily available for utilization in the prediction tasks.
In practical scenarios, this data is typically acquired through
network monitoring modules, which can cause substantial
monitoring overhead. Consequently, to enhance the practicality
of MTSR, we introduce the MTSR-CS approach in Section IV.

A. Network Model

The traffic engineering-based segment routing was first
introduced in [12] as a traffic matrix-aware segment routing
method. Hence, several notations and figures from [12] have
been incorporated in this paper. The network is represented
as a directed graph G = (V, E), where V is the set of nodes
(|IV| = N) and E is the set of links with each link e € F
having a capacity of c(e). The traffic matrix at time-step ¢
is denoted as M; € RNXN, where mfj € M; signifies the
traffic flow from node i to j at time-step ¢. The term “flow
ij” represents the total traffic that enters the network at node

LE et al.: ACHIEVING MULTI-TIME-STEP SEGMENT ROUTING

k
i
= 1 indicates that flow ij is

i and exits at node j. We define the binary variable «
’;j
routed through the intermediate node &, and ai‘?- = 0 otherwise.
It is assumed that a central controller, such as an SDN
controller [23], manages the network by collecting information
about the network, predicting future traffic demands, and
applying the routing policy to devices through PCEP [24].
However, the implementation of the controller is beyond the
scope of this paper.

as
the routing policy, where «

B. Single Time-Step Segment Routing

The 2-SR technique requires selecting a single intermediate
node k for each flow ij, as shown in Figure 1. The traffic
between nodes i and k and between nodes k and j is directed
through the shortest path connecting them. If k£ is equal to
i or j, the flow ij follows the shortest path from i to j. The
problem of segment routing for a single time-step (Py) can
be expressed as an integer linear program [12], where the
variable § € R4 denotes the maximum link utilization in
the network. Although, in practice, # cannot be larger than 1
as the total traffic on a link cannot exceed its capacity, the
problem formulation allows 6 to exceed 1, indicating an over-
congested network.

Py: single time-step segment routing

minimize 0 (1)
dal=1 VijeV 2)
keV

Zngj(e)a%mfj <fc(e) VecE 3)
ik

ak €{0,1} Vij.keV @)

The equation gfj(e) = fix(e) + fij(e) is used to calculate
the total traffic load on a link e for flow ij with intermediate
node k. Here, f;;.(e) = 1 if link e is part of the shortest path
from i to k of flow ij with intermediate node k, and fj(e) =0
otherwise. Eq. (2) and (4) ensure that all traffic from i to j
is routed and it cannot be distributed across multiple paths.
Eq. (3) ensures that the total traffic load on link e is less than
or equal to its capacity.

C. Multi-Time-Step Segment Routing

The problem Py provides a routing policy for a single
time-step . Therefore, we need to resolve problem Py and
update the routing policy every time-step. This approach may
lead to a considerable number of rerouting flows and high
network disturbance. To this end, we propose an extension of
Py, which addresses the segment routing problem by applying
multi-time-step traffic prediction. Our strategy for mitigating
network disturbance revolves around reducing the frequency of
path alterations for traffic flows. This approach involves solv-
ing the TE problem taking into consideration the anticipated
values of forthcoming traffic demand. Figure 2 illustrates the
process within a routing cycle including three tasks. At the
beginning of the cycle (denoted by time-step f), we use
the historical traffic data collected from the previous cycle
to estimate future demands. Subsequently, these forecasted

1537

Traffic prediction

Estimating future traffic
demands using the
monitored data

A routing cycle

Problem solving

Traffic monitoring

- Solving TE problem using
the predicted demands

- Appling routing rules to
the network

Measuring the demands of
all flows in the network
from step t to step t+T

Fig. 2. The tasks within a routing cycle.

demand values are utilized for solving the TE problem. The
routing rules derived from this approach can be applied for
routing the traffic in the network over T time-steps of the
cycle without necessitating frequent updates while retaining
the adaptability required to accommodate dynamic demand
fluctuations. Consequently, the traffic data is measured from
time-step ¢ through time-step ¢+ + 7 and will be used in the
next routing cycle.

In this context, we compare three different prediction
schemes aimed at estimating the future traffic demand for
the subsequent 7 time-steps. First, we provide some nota-
tions regarding the traffic prediction used in this paper. The
proposed approaches are subsequently utilized to formulate
the multi-time-step segment routing problem in three variants,
denoted as Pj, P, and P3, respectively. Each variant is
based on a specific traffic prediction approach, and their
corresponding theoretical analyses are presented. We use a
prediction model § = f(z,w) to estimate the traffic demands
(i.e., traffic matrices) of the next T time-steps using historical
traffic data. Let ¢ be the current time-step. The input of the
prediction model is denoted as x = [M;_1, .., M;_ g], which
contains the previous H traffic matrices. The predicted values
and the model parameters are represented by ¢ and w, respec-
tively. We describe the three traffic prediction approaches
below:

e Full prediction: This approach involves estimating the
traffic matrices of all network flows at every time-step
in the next routing cycle. Therefore, we have § =
[Mey1, . Myy 7]

e Max prediction: In this approach, we only predict the
largest traffic demand for each traffic flow in the next T
steps. The predicted traffic demand matrix is denoted by
§ = [M*] which m;; € M* is the maximum value of
flow ij (¢,7 € V) in the next routing cycle.

o Period-max prediction: This approach involves dividing
the routing cycle into P sub-periods, each of which has
T, time-steps. We then estimate the maximum values of
flow ij in each sub-period. Accordingly, we have § =
MF)(p = 1,.., P)

An example of these three prediction approaches is shown
in Figure 3. While the full prediction approach provides more
information to the routing algorithm about future traffic fluctu-
ation, it may suffer from low prediction accuracy. For example,
the performance of some proposed prediction models [7], [25]

1538

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 2, APRIL 2024

TABLE I
THE DIFFERENCES OF THREE PROBLEM FORMULATIONS

Problem | Routing cycle | Required number of predicted traffic matrices Problem complexity
Py 1 time-step No traffic prediction Low (O(]V] + |E]) constraints)
Py T time-steps T traffic matrices of every time-step in the next cycle High (O(]V]+ T x |EJ) constraints)
Py T time-steps One traffic matrix of maximum demands in the next cycle Low (O(]V] + |E]) constraints)
Ps T time-steps P matrices of maximum demands of every sub-periods in the next cycle | Medium (O(|V| + P x |E|) constraints)
Routing cycle . . .
p A \ plays a critical role in the performance of P;. However, this
t ot 2 T approach might exhibit low prediction accuracy due to the
——F—F—F—F—+ large number of values that need to be predicted. Therefore,
to mitigate the burden on traffic prediction tasks and reduce
Full /X/\/\)N, the problem complexity, we formulate Po and Ps using the
prediction max prediction and period-max prediction methods. Py and
Max /\/X\, Ps can be considered as the relaxed versions of Pj.
prediction 2) Py (MTSR With Max Prediction):
Period-max /\/\’
prediction minimize 0)
Sub-p!riodl Sub-p;riodZ Z OC{Z; - 1 VZ7] € V (10)
keV
Fig. 3. An illustration of three traffic prediction approaches on one
traffic flow. The red crosses indicate the values that need to be predicted Z Z g’Lj a max m 1j < 90() Vee E
corresponding to each method.
(1)
af € {0,1} VijkeV (12)

deteriorates as the number of predicted values increases. On
the other hand, the max prediction approach reduces the
prediction task’s complexity by only estimating the worst-case
scenario of network demands. The third approach can be seen
as a trade-off between the first two methods.

1) P1 (MTSR With Full Prediction): We present the
problem formulations of the multi-time-step segment routing,
denoted by P;, P2, and P35, which are based on three
traffic prediction approaches. First, we provide the problem
formulation for P; using the output of the full prediction
approach. Let M = [My, Mo, ..., M) be the predicted traffic
matrices for the next 7 time-steps, where the index ¢ for the
current time-step is omitted for simplicity. To formulate P,
we extend the problem Py for T future steps by introducing
additional constraints that correspond to the traffic demands at
each step.

minimize 0 5)
dali=1 VijevV (6)
keV
ZZQU a m <fc(e) Vee E;NVte T

(7N
af €{0,1} Vij ke V (8)

It can be observed that P; differs from Py due to the
link capacity constraints (7). More specifically, in P, the
routing policy afj must satisfy the link capacity constraints
for each time-step in the future. The increased number of
constraints makes P; more intricate than Py. Additionally, Py
necessitates predicting all the traffic matrices for the next T
time-steps, which remains a significant challenge even with

the latest deep learning models. Notably, prediction accuracy

In problem P», the formulation only takes into account the
maximum values of each flow ij over the next T time-steps.
This approach results in the same number of constraints as
that of Py. Furthermore, it only requires the prediction of a
single traffic matrix with elements representing the maximum
value of each traffic flow.

3) P3 (MTSR With Period-Max Traffic Prediction):

minimize 0 (13)
daf=1 VijevV (14)
keV
ZZgZJ 041] ?elax mj < fc(e) Ve € E;VT,

(15)
af; €{0,1} Vij,keV (16)

Similar to P2, we formulate P3 using the maximum values
of flow ij in each sub-period T),. To solve P3, we only need
to predict P traffic matrices, which represent the maximum
traffic of every flow #j in each sub-period T),. The differences
between the proposed problem formulations are summarized
in Table 1. In general, the number of required predicted traffic
matrices depends on the method used to estimate future traffic.

D. Theoretical Analysis

In this part, we theoretically analyze the performance ratios
of Py, and P3 to Pq. Denote (07,), (05,0a3), and (03, a3)
as the optimal solutions obtained by solving Pp, P2, and Ps,
respectively. We denote u(t, e, «) the utilization of link e
when we apply routing policy aj, in routing cycle t. Then,

LE et al.: ACHIEVING MULTI-TIME-STEP SEGMENT ROUTING

the maximum link utilization of the network when applying

routing policy (aj,), denoted as u(as,), is defined as follows:

> ij 2ok 95‘(6)(0‘;)2”1%
c(e)

*
p

):max

) :maxu(t,e,a A

*
u(a Vt,e

p

Theorem 1:

o 07 =u(a)): 05 > u(a3); 65 > u(al)

o 07 <05 <63

Theorem 2: Let e* be the link with the largest capacity, and
e5 be the link where the equal sign of constraint (11) in Py
holds; Then, the performance ratio of Py to P; (i.e., g—?t) is
upper bounded by A, which is calculated as follows.

_ ZZ] maxg mltj C(e*)

A= 17)

max max; mfj c (65)

The proofs are presented in Appendix A. According to
Theorem 1, when applying the routing policies obtained
from solving the MTSR problem, the actual maximum link
utilization of the network is less than its theoretical 6*. In
addition, since the performance of Pg is bounded by P ang
Py (ie., 07 < 035 < 05), we will derive the upper bound of z—%

which will also be the upper bound of z—%ﬁ Assume that all the
network links have the same capacity, the performance ratio A
largely depends on the current network situation in the routing
cycle. If all flows in the network have similar demands and
are stable within the routing cycle, the value of A\ could be
much greater than 1. However, the network traffic is usually
unbalanced where a small number of elephant flows accounted
for a large portion of total network traffic, especially in ISP and
data center networks [26], [27], [28]. Due to the unbalanced
traffic flows, we may have Zij maxy mf- A max; max; mfj
Therefore, the more unbalanced and dynamic the traffic flows,
the lower the performance ratio A is.

According to Theorem 2, by solving the MTSR problem
with formulation P2, we can significantly reduce the problem
complexity while still achieving a good performance for the
routing policy. In addition, Po only requires the predicted val-
ues of the maximum demand instead of the predicted demands
of every time-steps in the next routing cycle. By doing so, Pa
alleviates the difficulty in the traffic prediction task. Therefore,
we formulate the MTSR problem using Po formulation. In
addition, by using the maximum traffic prediction, we can
easily extend the method to n-segment routing. There are
several n-segment routing algorithms (e.g., SRLS [15]) that
take the traffic matrix as input to compute routing rules. Hence,
we can use the maximum traffic matrix which is obtained
from the prediction model as the input for these n-segment
routing algorithms. In the remaining part of this paper, when
mentioning the MTSR without any specification, we mean the
MTSR with formulation Ps.

E. Traffic Prediction-Based Graph Neural Network

As mentioned in the previous section, accurately predicted
traffic matrices are required as input for all the problem
formulations, except in the case we don’t consider traffic

1539

Fully connected

UONN[OAUOD
[erodway,
UONN[OAUOD

Fig. 4. The structure of GWN model.

prediction for Py, i.e., using current traffic for TE. Note
that, our objective is not to develop a new prediction model
but to leverage the existing models for addressing the traffic
engineering problem. There is a large number of proposed
models for traffic matrices prediction such as in [5], [7]. Here
we adopt the prediction model to meet the requirements of
our problem formulations. For example, in problem Pp, at the
beginning of each routing cycle, the prediction model uses the
historical data of the last H time-steps to predict the traffic of
the next T time-steps. In Po, the prediction model only needs
to infer the maximum demand for each traffic flow.

In this paper, we use Graph WaveNet (GWN) [25] as the
prediction model. Motivated by [29], GWN adopts stacked
dilated casual convolutions to extract temporal features in the
historical traffic data. Its structure is depicted in Figure 4. The
model comprises multiple layers, with each layer consisting
of two principal modules: the temporal convolution module
and the graph convolution module. The temporal convolution
module utilizes dilated causal convolution to capture a node’s
temporal trends, while the graph convolution module extracts
a node’s features based on its structural information. The
final output is obtained by combining the outputs of all
layers through a fully connected layer. It should be noted
that each layer may include multiple blocks, each comprising
the two modules. GWN model was originally developed for
predicting transportation traffic. In order to adapt GWN for
network traffic prediction, we treat each traffic flow (i.e.,
source-destination flow ij) as a node in the graph, with the
traffic volume of the flow serving as the attribute of the
node. Since we do not have an explicit graph that represents
the relationships among traffic flows, we employ the self-
adjacency matrix module described in [25]. This module
includes two learnable vectors that can dynamically learn the
relationships among flows based on the current input data.

By combining the temporal convolution and the graph con-
volution modules, GWN is able to handle spatial-temporal data
(e.g., traffic flows) and achieve better prediction accuracy than
other time-series models such as Long Short-Term Memory
(LSTM) and Auto-Regressive Integrated Moving Average
(ARIMA). The implementation of GWN for traffic prediction
used in this work can be found at [30].

F. Obtaining Routing Rules

After getting the predicted traffic demand, we need to solve
the optimization problem (e.g., P2) to obtain the routing rules.
To solve the MTSR problem, we can use optimization solvers

1540

or heuristic algorithms. However, MTSR is an integer pro-
gramming problem with a vast search space, thus traditional
optimization solvers are hardly scaled to large topologies with
more than 20 nodes [15]. Thus, using heuristic or meta-
heuristic algorithms would be a practical way to solve this
problem rapidly. Gay, Hartert, and Vissicchio proposed a local
search algorithm called SRLS [15] to solve the n-segment
routing algorithm. We adapted the algorithm SRLS [15] and
proposed an algorithm called Local Search 2 Segment Routing
(LS2SR) that can effectively solve the MTSR problem (with
P> formulation) by exploiting the intrinsic structure of 2-
segment routing. We also improved LS2SR by adding a
mechanism to refine the routing policy from the previous
cycle, thereby reducing the routing policy variation over
different routing cycles. The details of this method have
been presented in our prior study [9]. We have evaluated
the scalability of LS2SR with different network sizes (see
Appendix B) to show that LS2SR can work on large-scale
networks and achieve comparable performance with SRLS.

IV. PARTIAL TRAFFIC PREDICTION
AND COMPRESSIVE SENSING

In the previous sections, we have presented the multi-
time-steps segment routing (MTSR) strategy to address the
network disturbance by utilizing future traffic prediction. The
performance of MTSR relies on the accuracy of the traffic
prediction model (i.e., GWN) which requires a large amount
of data for the training and predicting processes. Note that, in
Section III-C, we assume the data for traffic prediction tasks
are available. However, collecting the historical data of all
flows causes the problem of high network monitoring cost. As
mentioned in Section II-D, this problem is often omitted in the
prior ML-based TE studies. To enhance the practicality of our
proposed method, we introduce an extension of MTSR called
MTSR-CS which combines the MTSR and the compressive
sensing technique. In MTSR-CS, network measurements and
traffic predictions are selectively conducted solely for a subset
of flows. Subsequently, a comprehensive matrix is reconstructed
from the partial traffic predictions using compressive sensing
before being used to calculate the routing rules.

A. Compressive Sensing-Based Network Traffic
Reconstruction

According to compressive sensing theory, the signal can be
reconstructed or recovered from a few samples by exploiting
the sparsity characteristic of the original signal. Therefore,
compressive sensing can be used in reconstructing the network
traffic from a few measurement data as follows.

7=0X (18)

where X € RF*1 is a vector that contains the traffic volume
of all flows. F = N x N is the total number of source-
destination flows in the network (NN is the number of nodes).
Note that, instead of using a N x N matrix to represent
the network traffic, it is represented by a vector that has F
elements). Z € RL*1 represents the measured traffic volumes.
L is the number of flows that are measured (L < F). & €

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 2, APRIL 2024

Traffic matrix
X)

Measurement Measurement matrix —
2) (@) -

S "

e H
1 Measured flow
5 0 B Unmeasured flow D

Partial traffic measurement. The traffic matrix X is represented as a

Fig. 5.
vector.

Step 1: Predicting the maximum demands of L Step 2: Obtaining the maximum demands of a
flows in he ng g cycle F flows using compr

Reconstructing
traffic using
compressive

sensing

Maximum
demands of

Predicting
future traffic
demands

all F flows

Historical traffic data of L
flows in H time-steps (L < F)

Predicted values of maximum
demands of L flows
(ie.2)

Step 3: Calculating the rou

E (ie. X)
& the LS2SR algorithm

rans 0aNx
" Local search Routing
: - 2-SR rules

Fig. 6. Illustration of partial traffic prediction and matrix reconstruction using
compressive sensing.

{0,1}1>F is a binary matrix to indicate the measured flows.
Figure 5 shows an example of partial traffic measurement.

However, since network traffic X is not sparse in practice,
compressive sensing cannot be directly applied to reconstruct
X from Z. To overcome this problem, the authors in [31] use
a transformation matrix D € RF X to sparsely project X in
the transformation domain D as:

X =DS (19)

where S € RFX! is a sparse projection of X. From
Eq. (18)—(19), we have:

7 = ®DS (20)

Since S is a sparse vector, we can apply compressive
sensing to reconstruct S from the measurement Z. Then the
full network traffic X can be obtained by using Eq. (19).

B. Reconstruct the Traffic Matrix From the Partial Traffic
Prediction

In contrast to the approach proposed in [31], our method-
ology does not utilize compressive sensing to reconstruct
the network traffic itself. Rather, we leverage it to recon-
struct the maximum traffic demand from a partial traffic
prediction. The conceptual framework behind this is presented
in Figure 6. The routing algorithm (MTSR) takes a traffic

LE et al.: ACHIEVING MULTI-TIME-STEP SEGMENT ROUTING

gtoa
—veor

I B B g E]:‘
IO

Each vector has F elements

[T T

Training set contains the
maximum traffic matrices

Historical network traffic
matrices (NxN matrix)

Fig. 7. Generating the training dataset from historical traffic matrices.

matrix that contains the anticipated values of the maximum
demand of all traffic flows in the next routing cycle. Our
approach reduces the monitoring overhead by reconstructing
this matrix from a partial traffic prediction. To this end, we first
estimate the maximum demands of L flows via a prediction
model. Subsequently, compressive sensing is applied to obtain
the maximum traffic demands of all flows. Finally, the routing
rules are calculated via the LS2SR algorithm [9]. Thus, instead
of monitoring and predicting the entire traffic matrix, we
monitor and predict the future demands of a subset of traffic
flows, thereby decreasing the monitoring overhead.

In order to implement the methodology outlined in [31], it
is necessary to define the following terms: Let Z (as defined
in Eq. (18)) be a vector composed of elements representing
the predicted values of the maximum demands of L monitored
flows. Let X denote the vector comprising the predicted
maximum demands of all F flows. The proposed technique
is composed of two phases, namely the training phase and
the testing phase. In the training phase, a training dataset is
utilized to calculate the transformation matrix D, which is
subsequently employed to train the prediction model. In the
testing phase, partial traffic prediction of a subset of flows (Z)
is carried out at the onset of each routing cycle. The maximum
demand of other flows X is then reconstructed from Z using
compressive sensing and the transformation matrix D. The
routing rules are subsequently computed utilizing the LS2SR
algorithm. The specifics of the process will be elucidated in
the ensuing sections.

C. Training Phase

The training phase comprises two fundamental tasks,
namely the acquisition of the transformation matrix D and
the training of the prediction model. The training dataset
encompasses the historical measured traffic volume of all
flows. Nonetheless, as the focus of the max prediciton is
centered on the maximum demand during a routing cycle, the
original dataset is converted into the set of maximum traffic
matrices, as depicted in Figure 7. The maximum matrix is
constructed by computing the maximum values of each flow
over T time-steps within each routing cycle. Subsequently, the
resulting matrix is flattened into a vector that comprises F
elements. Thereafter, the generated data is employed to train
the prediction model and acquire the transformation matrix D.

The transformation matrix D can be acquired by solving the
optimization problem:
2D

minimize

1541

(22)

s, <
S(i) >0
i=1,2,..,T

(23)
(24)

where D € REXF and § =

(5(1),8(2),...,8(1)) €
RFXT

are two unknown variables. Furthermore, X =
(X(1),X(2),...,X(T)) € RF*T denotes T vectors within
the training set, and each column S(i) C S is a sparse
representation of the traffic vector X (i). The parameter K is
an upper bound on the number of non-zero entries in the sparse
representation.

As reported in [31], the Alternative Least Square (ALS)
algorithm can be employed to obtain the solution to the
aforementioned problem. Firstly, we randomly assign values
to the transformation matrix D. Subsequently, given D, ALS
is utilized to determine S. Based on the obtained S, we can
then update the values of D. The iterative updates of S and
D continue until certain termination criteria (e.g., maximum
iteration) are met. The updating process of D can be described
as follows. Initially, one column of the transformation matrix D
is updated at a time. Let dj, be the k™ column of D, and 3k be
the k% row of S (where k =1,2,..., F). The multiplication
DS is decomposed into the sum of M rank 1 matrices: DS =
ijl d;3;. We have:

M
AfDS‘:Xde]S‘] (25)
j=1
M
= | X =D dis | - ddp (26)
i#k
= E), — di 8, 27

Then, to update the k" column of D, we solve the following
optimization problem:

minimize || By, — dy, 35> (28)
S(z’)HO <K (29)

§ =0 (30)
1=1,2,..T;k=1,2,...,F (€2))

We use Singular Value Decomposition (SVD) to update dj,
and S. For the details of solving the above problem, please
refer to [31]. Then, we repeat the process above to update
other columns of D.

D. Testing Phase

1) Traffic Reconstruction: During the testing phase, there
are three main tasks to be accomplished: predicting the
future traffic (i.e., Z), reconstructing vector X, and calculating
network routing rules. At the beginning of each routing cycle,
we estimate the maximum future demands of L flows using
the monitored data obtained from the last cycle. After that,
we reconstruct the vector X from the partial prediction. Let
Z € RLX! pe the predicted traffic values. We solve an
optimization problem to find the sparse representation S using

1542

the transformation matrix D, the measurement matrix ¢, and
the predicted traffic vector Z.

S = argmin ||S||o (32)
Z =®DS (33)
S>0 (34)

Then, we get the reconstruction results of X using Eq. (19).

2) Selecting Monitored Flows: After applying the routing
rules, we determine which flows (a set of L flows) will be
monitored in the routing cycle. We measure the demand of
these flows within the routing cycle (from time-step ¢ to time-
step ¢ + T. The monitored data is used as input to perform
the max prediction in the next routing cycle. Intuitively, the
large flows in traffic volume tend to have a significant impact
on the routing performance, However, accurately monitoring
the L largest flows is not feasible since all traffic flows
need to be measured beforehand. Therefore, we propose a
simple monitoring scheme based on the traffic volumes of
L monitored flows from the previous cycle. The new set of
selected flows is a combination of L largest flows from the
previous set and a randomly selected (1—¢) L flows from other
traffic flows, where 0 < ¢ < 1. Note that when performing
max prediction, we estimate the maximum traffic demand of
L flows that have been measured in the preceding routing
cycle. Therefore, the traffic data for executing max prediction
is available.

V. EVALUATION

We design four different experiments to evaluate our
approach in both hypothetical and practical scenarios with
different backbone networks including real and synthetic
datasets. The experiment’s results can be reproduced at [30].
In the initial two experiments, we evaluate the performance of
the MTSR method under the assumption that data pertaining
to all traffic flows can be accurately measured. Subsequently,
we examine the performance of the MTSR-CS method with
different numbers of monitored flow (e.g., L). In the last
experiment, we study the impact of several factors including:
(1) different prediction models, and (2) the routing cycle length
T. In addition, other ablation studies such as the scalability
assessment of the routing algorithm LS2SR and the time
dedicated to traffic prediction/reconstruction are presented in
Appendix B.

A. Datasets and Performance Metrics

We conducted experiments on four datasets: Abilene, Geant,
Germany, and Gnnet-40, available at [32], [33]. Abilene and
Geant are well-known public datasets that are used for
evaluating traffic routing algorithms in many studies such
as [9], [18], [34]. Among these datasets, Gnnet-40 is one
of the synthetic network datasets used in the Graph Neural
Networking challenge 2021 [33]. Details of the datasets are
presented in Table II. Figure 8 illustrates the differences in
traffic among all the datasets. Figure 8(a) is a cumulative dis-
tribution function (CDF) of the traffic demands in the network,
normalized to the range [0, 1]. Among these datasets, Gnnet-
40 exhibits a uniform distribution in traffic demands, while

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 2, APRIL 2024

TABLE II
DETAILS OF THE REAL TRAFFIC DATASETS

Dataset No. nodes | No. links | Monitoring granularity
Abilene 12 30 5 (min)

Geant 22 72 15 (min)
Gnnet-40 40 72 5 (min)
Germany 50 72 5 (min)

The change in the monitored flow set

anW%ail

(a) Traffic distribution (CDF plot). (b) Traffic dynamicity.

Fig. 8. The distribution and dynamicity of all traffic datasets.

the others demonstrate an ‘“elephant-mice” flow distribution,
where more than 80% of flows are small flows. Next, we
visualize the differences in the top L largest flow sets over
routing cycles in Figure 8(b) (e.g., L = 20% of the total flows,
T = 6 time-steps). The figure reveals that in Gnnet-40, the
top L largest flow set changes rapidly over the routing cycle.
More than 80% of the top L largest flows in the current cycle
are replaced by other flows in the next cycle. The traffic data
is divided into three sets, namely train, validation, and test,
based on the time horizon, which corresponds to 70%, 10%,
and 20% of the complete dataset, respectively. Although the
monitoring granularity of the datasets is relatively large, our
problem formulation and proposed approach can be generally
applied to the network systems that have finer monitoring
granularity.

We evaluate the performance of our proposed approach
using two main metrics: the MLU ratio (ry,;,) and the
rerouting disturbance (RD) adopted from [18]. The MLU ratio
is calculated using Eq. (35) where #* is the maximum link
utilization of the network obtained using Pgy. Since in Py, the
routing rule is computed for every time-step using the current
traffic demand, the MLU of Py can be considered as optimal
results. Therefore, r,,;, = 1 means that the routing algorithm
achieves as good as the routing rule as the optimal routing.

0*

Tmlu = 3

(35)

The rerouting disturbance (RD) is defined in Eq. (36) as the
ratio of the number of rerouting flows to total traffic flows in
a time-step. In Eq. (36), f, is the number of rerouting flows
per time-step, and F = N x N is the total number of traffic
flows.

_fr
RD =%

We employ the Mean Absolute Error (MAE) as a metric
for assessing the accuracy of predictive and reconstructive
values in the tasks of future traffic forecasting and traffic
matrix reconstruction. The MAE is calculated using Eq. (37)

(36)

LE et al.: ACHIEVING MULTI-TIME-STEP SEGMENT ROUTING

Empirical CDF of the MLU ratio Empirical CDF of the MLU ratio

-
)
-
)

— P
08{ — P2
— P — P

o

®
o

~

o
o
o
o

1
=
1
=

Probability
Probability

o
~
o
o

0.0

o
)

0.5 0.6 0.7 0.8 0.9 1.0 0.875 0.900 0.925 0.950 0.975 1.000
MLU Ratio MLU Ratio

(a) Abilene network (b) Geant network

Fig. 9. The empirical CDF MLU ratio of three MTSR methods.
100 0.99
0.98
058
096
6, 6, 0.97
g, 0.94 a5
092 096
050 0ss
088 0.94
T B % s w15 1o 15 20 S % w0 s 1 s
Routing cycle Routing cycle
(a) Abilene network (b) Geant network
Fig. 10. The MLU ratio 61/6o over routing cycles. 1 and 6o are the

maximum link utilization of the network obtained using methods Py and Pso,
respectively.

where I' is the total number of predicted/reconstructed values,
y; denotes the anticipated or reconstructed value, while y;
signifies the ground-truth value.

r
Ly
MAE:f§|yi—yi| (37)
7=l

B. Experiment 1: Performance Comparison of Three MTSR
Approaches

In the first experiment, we assess the performance of
the multi-time-step segment routing with different traffic
prediction methodologies, denoted as Py, P2, and Ps3, respec-
tively. These approaches are segment routing algorithms that
employ full, max, and period-max traffic prediction techniques,
as described in Section III-C. The objective of this experiment
is to determine the best MTSR approach in the absence of
prediction errors. For this purpose, we assume that future
traffic matrices can be accurately predicted by utilizing the
actual traffic matrices from the test set as input. We use the
solver from the PuLP library [35] to solve all the problems and
obtain the optimal solutions. In all experiments, the routing
cycle length T for MTSR schemes is set to 12.

Figure 9 presents the empirical cumulative distribution
function (CDF) of the MLU ratio (7,) on the Abilene
and Geant datasets. The results demonstrate that all MTSR
approaches exhibit strong performance, achieving approx-
imately 90% of the optimal results. Among the three
approaches P7 yields the highest performance, followed by
P3; and P,, respectively. However, the differences between
their performances are marginal. Figure 10 illustrates the
performance ratio g—; across different routing cycles. As
evidenced by the results, P, which uses the max prediction
approach, can attain over 90% the performance of P; with
full prediction in both datasets.

1543

TABLE III
THE PARAMETERS OF THE GWN MODEL AND THE EXPERIMENT SETTING

Model parameters
Number of layers 3 Hidden units 32
Number of blocks N Batch size 256
per layer
Convolu}lon s 2 Learning rate 0.001
kernel size
Convolution’s
stride 2 Drop out 0.3
Training parameters
Number of Number of train
input step H 15 epoch 300
. Early stop condition (when model
Routing cycle .
6 does not improve after a number 50
length T .
of training epoch)

The observations reveal three key benefits of address-
ing the MTSR problem by adopting the max prediction
approach (Ps): (a) mitigating the complexity of the problem,
(b) alleviating the challenges associated with traffic prediction,
and (c) attaining performance that is comparable to other
approaches. Consequently, for the rest of this paper, we refer
to MTSR as P» utilizing the max prediction approach.

C. Experiment 2: Performance Comparison of Different
Routing Algorithms

We conduct an experimental evaluation to assess the
performance of the proposed MTSR approach, which uti-
lizes the max prediction approach (P2), and compare its
performance with other routing algorithms. To predict future
traffic matrices, we train a Graph WaveNet (GWN) model [25].
The prediction model leverages data from the last H time-steps
to predict the maximum demand matrices of each flow in the
next routing cycle. The implementation of the Graph WaveNet
model utilized in this study is adopted from [36]. Table III
displays the parameters of the GWN model and the experiment
settings employed in the training and testing phase.

At the beginning of each cycle, we utilize the predicted
traffic matrices to solve the problem and obtain the routing
policy. Subsequently, the actual traffic matrix is utilized to
calculate the maximum link utilization for each time-step. We
adopt the proposed LS2SR algorithm [7] to solve the MTSR
problem, with the predicted traffic serving as the input. We set
the routing cycle length to T = 6 and the number of historical
steps utilized for the prediction model to H = 15. We set the
values of 8 = 16 and « = 1, which are adopted from [15].

We compare the performance of our proposed MTSR
approach against several other routing algorithms, including
Py (same as in Experiment 1), Traffic Matrix Oblivious
Segment Routing (OR) [12], shortest path routing based
on link’s weight (SP), critical flow rerouting using Deep
Reinforcement Learning (CFR-RL), TopK Critical (C-TopK),
TopK, and our proposed MTSR algorithm. In order to have
a fair comparison, we set the value of k% to 10% for CFR-
RL, TopK, and TopK Critical, which were adopted from [18].
Note that, in [18], new routing paths for the critical flows are
obtained by solving the MCF problem, but we solve it using
2-segment routing. Since the network traffic is measured every
five minutes (e.g., Abilene), in this paper, we set a limited time

1544

Empirical CDF of the MLU ratio Empirical CDF of the MLU ratio

1.0 — R
— s
— CFRRL

— OR

— s

— CFRRL
CTopk

—— Topk
— MTSR /,//

e

Probability
Probability
°
o

°
S
°
=

0.0 ——

02 03 04 05 06 07 08 09 10 03 04 05 06 07 08 09 10
Tmiy Tmiu

(a) Abilene network (b) Geant network

Fig. 11. The empirical CDF of MLU ratio.
50
60
ga0 gm
g g
30 <
220
10
10
0 Po OR SP CFRRL CTopK TopK MTSR 0 Po OR SP. CFRRL CTopK TopK MTSR
Routing algorithms Routing algorithms
(a) Abilene (b) Geant
Fig. 12. The comparison in the rerouting disturbance.

for solving the routing rules as 60 seconds for all the routing
algorithms. The time for running the traffic prediction task is
negligible as shown in Appendix B.

Figures 11 and 12 present the empirical CDF of the MLU
ratio and the rerouting disturbance, respectively. The results
demonstrate that MTSR can significantly reduce network
disturbance while achieving over 80% of the optimal routing
performance in both datasets. Additionally, MTSR outper-
forms other routing algorithms in terms of MLU ratio.
Regarding rerouting disturbance, CFR-RL can keep the dis-
turbance at a similar value to our method by setting a
maximum number of flows that can be rerouted per step (10%).
However, in larger networks such as the Geant network, the
rerouting disturbance of CFR-RL is considerably higher than
our method. Shortest path routing and Oblivious Segment
Routing cause no rerouting disturbance but are not adaptive
to dynamic network demands, often resulting in high MLU.

D. Experiment 3: Performance Evaluation of MTSR-CS

The objective of this experiment is to assess the effective-
ness of the MTSR-CS technique, which has been developed
with the purpose of minimizing the monitoring overhead,
while simultaneously maintaining the routing performance.
The degree of monitoring overhead is quantified by the number
of monitored flows, denoted by L. It is intuitive that as the
value of L increases, the monitoring overhead also increases.
Thus, in this experiment, we vary the value of L from 10%
to 100% of total number of flows and measure the MLU
ratio (7,). Regarding our proposed monitoring scheme
(Section IV-D2), the new set of selected flows is a combination
of L largest flows from the set of previous routing cycle and
a randomly selected (1 — ¢)L flows from other traffic flows.
In this experiment, we set ¢ = 0.5. It is important to note that
in the case of L = 100%, we carry out the MTSR method in

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 2, APRIL 2024

— MTSR (ML)
0.9 — MTSRCS (M)

— MTSR (ML)
0.96] = MTSRCS (ML)

20 40 60 80 100 20 40 60 80 100
Percentage of monitored flows (%) Percentage of monitored flows (%)

(a) MLU on Abilene dataset (b) MLU on Geant dataset

Fig. 13. The MLU of MTSR and MTSR-CS with different percentages of
monitored flows.

the same manner as in the second experiment, i.e., without the
utilization of compressive sensing.

As depicted in Figure 13, our results indicate that the use
of compressive sensing leads to a significant improvement in
Tmiu, particularly when L < 30% total flows. In comparison
with the conventional approach of full traffic monitoring
(L = 100% total flows), the MTSR-CS method successfully
reduces the monitoring overhead while still achieving com-
parable routing performance. Notably, in the Geant network,
MTSR-CS is able to obtain the same performance result by
monitoring only 10% to 20% of the total number of flows.
This observation can be attributed to the uneven distribution
of traffic in the Geant network, where a mere 10% of the
flows (i.e., 48/484 flows) correspond to more than 80% of
the total network traffic. By monitoring only 10% of the
flows, we can effectively capture the traffic data of all the
large flows within the network. Consequently, MTSR-CS
with L = 10% of total flows can achieve similar routing
performance to the case of full network monitoring. Note that
in this experiment, MTSR only performs traffic prediction for
the selected flows and refrains from employing compressive
sensing techniques to reconstruct the entire traffic matrix. As
a result, its performance does not exceed that of MTSR-CS,
which incorporates compressive sensing methodologies.

Subsequently, we conduct the experiment using all four
datasets to evaluate the impact of different traffic distributions
on the matrix reconstruction and routing tasks. Here, we
compare the MTSR-CS approach using different monitoring
schemes and visualize the reconstruction error (MAE) and the
routing performance (MLU ratio) in Figure 14 and Figure 15
respectively. In total, we have three monitoring schemes:
Random, TopK, and our proposed monitoring scheme (see
Section IV-D2). In the TopK monitoring scheme, we assume
that the data of the L largest flows can be measured during
each routing cycle. On the other hand, in the Random scheme,
L flows are randomly selected for monitoring in each routing
cycle.

Generally, it is observed that a lower reconstruction error
of the traffic matrix corresponds to an enhanced rout-
ing performance. Considering Abilene, Geant, and Germany
datasets, our proposed scheme yields similar results to the
TopK scheme in terms of reconstruction error, thereby achiev-
ing the same routing performance as the TopK approach, while
significantly outperforming the Random monitoring scheme.
The proposed monitoring scheme is considered a trade-off

LE et al.: ACHIEVING MULTI-TIME-STEP SEGMENT ROUTING

018 — Topk
— RANDOM
—— PROPOSAL

0.16 —+ ToPK
— RANDOM
— PROPOSAL

Mean Absolute Error
°

0.08

2 0 60 80 100
Percentage of monitored flows (%)

(b) Geant dataset

20 0 60 80
Percentage of monitored flows (%)

(a) Abilene dataset

>

— PROPOSAL — PROPOSAL

-

Mean Absolute Error
w S
o

Mean Absolute Error

B

20 40 60 80 100 20 40 60 80 100
Percentage of monitored flows (%) Percentage of monitored flows (%)

(c) Germany dataset. (d) Gnnet-40 dataset.

Fig. 14.
schemes.

The MAE of reconstructed matrices using different monitoring

— ToPK
— RANDOM
0.90{ — PROPOSAL

—+ ToPK
0.88 — RANDOM
— PROPOSAL

2 0 60 80 100
Percentage of monitored flows (%)

(b) MLU ratio on Geant dataset

20 0 60 80
Percentage of monitored flows (%)

(a) MLU ratio on Abilene dataset

—+ ToPK

—+ ToPK
0.68 — RANDOM 0.958
— PROPOSAL

— RANDOM
— PROPOSAL
0.956
0.954

0.952

Tt

0.950

0.948

0.946

0.944

100

2 60 80 100 2 60 80
Percentage of monitored flows (%) Percentage of monitored flows (%)

(¢c) MLU ratio on Germany (d) MLU
dataset dataset

ratio on Gnnet-40

Fig. 15. The routing performance (MLU) of MTSR-CS using different
monitoring schemes.

method between the Random and TopK monitoring schemes.
Although the TopK monitoring scheme yields the best results,
it is deemed impractical due to the strong assumption that the
L largest flows can be identified prior to monitoring.

In the case of Gnnet-40, which has a uniform traffic
distribution, distinct outcomes are observed. Notably, the
TopK scheme exhibits the poorest performance among the
monitoring schemes. This decline in the performance of TopK
can be attributed to the rapid alteration of the monitored flow
set throughout the routing cycle, as discussed in Section V-A.
In the TopK scheme, measurements are conducted on the L
largest flows, and this data is subsequently employed in the
next routing cycle. Given that the majority of these flows will
not constitute the largest flows in the following routing cycle,
utilizing data from the prior cycle results in high reconstruction

1545

Mean Absolute Error
s o o o o
Mean Absolute Error
58 L8

o 50 100 150 200 250 300
Epoch

(a) Abilene

°

50 100 150 200 250
Epoch

(b) Geant

Fig. 16. The MAE of different prediction models in case H = 15 and T = 6.

le-2

le-2
14 —— GWN
12{ —+ LSTM
512 5 — GRU
I & 40] — STGCN
gro £ | - mTeNN
S — GWN <
5 o6 — LST™M §os
= —+— GRU =
04 —— steeN —————1 0
p—""" —+ MTGNN

4 14 4 14

6 8 10 12
Routing cycle length (T)

(b) Geant network.

6 8 10 12
Routing cycle length (T)

(a) Abilene network.

Fig. 17.
to 15.

The prediction errors of different models with 7' varying from 3

errors and consequently lower MLU ratios. In conclusion, our
proposed scheme not only demonstrates greater practicality
compared to the TopK scheme but also exhibits the capacity
to attain commendable performance across varying network
sizes and traffic patterns.

E. Ablation Studies

In this section, we perform ablation studies to evaluate the
performance of different prediction models and investigate the
impact of the routing cycle length, and traffic distribution on
the proposed routing algorithm.

1) The Performance of Different DNN-Based Models: We
demonstrate the effectiveness of the Graph WaveNet (GWN)
model for long-term traffic prediction by comparing its
prediction error with that of other deep neural network (DNN)
models, namely LSTM [37], GRU [38], STGCN [39], and
MTGNN [40]. We conduct the maximum traffic prediction
with varying prediction steps 7, which represent the length
of the routing cycle, and investigate their impact on both the
prediction error (measured as Mean Absolute Error) and the
routing performance (measured as MLU ratio). We consider
routing cycles of length 3 to 15 steps and perform each
experiment five times to obtain the average results. Figure 16
illustrates the training processes of five different DNN models.
Graph-based models including GWN, STGCN, and MTGNN
can outperform RNN-based methods in the training process.
Among them, GWN demonstrates superior performance in
reducing the prediction error.

2) The Impact of the Routing Cycle Length: The relation-
ship between the number of prediction steps and the error is
illustrated in Figure 17. Overall, the GWN model outperforms
the other prediction models in terms of MAE. In all cases,
GWN achieves a reduction in prediction error ranging from
40% to 70% compared to the other models. Additionally,

1546

—————— —+— GWN 0.98 —— GWN

095 — LST™™ ‘—i\{ 006 \—!— LSTM

—— GRU — GRU
—+ STGCN 0.94 —+ STGCN

—— MTGNN

. —H MTGNN ST os2

4 [3 & 10 12 14 4 [3 & 10 12 14
Routing cycle length (T) Routing cycle length (T)

(a) Abilene network. (b) Geant network.

Fig. 18.
3 to 15.

The routing performance of different models with 7' varying from

Figure 17 shows that increasing the length of the routing cycle
leads to an increase in the prediction error. Figure 18 displays
the MLU ratio of the network when using the predicted
traffic demands from different prediction models. The results
reveal that having the smallest error in traffic prediction, as
achieved by the GWN model, helps to improve the MLU ratio.
Furthermore, an increase in the length of the routing cycle
leads to a degradation in network routing performance.

VI. CONCLUSION AND DISCUSSION
A. Conclusion

This paper presents a study on the use of multi-time-step
segment routing (MTSR) with long-term traffic prediction to
address the high network rerouting disturbance and high traffic
monitoring overhead. To achieve this, we proposed a solution
that utilizes traffic prediction to perform traffic engineering
while reducing the number of flows that need to be rerouted.
Given the complexity of the problem and the difficulty of
multi-step traffic prediction, we formulated three versions
of the MTSR problem and provided theoretical MTSR. We
introduce an extension called MTSR-CS which combines the
MTSR and the compressive sensing technique. In MTSR-
CS, we only monitor and predict a subset of flows and use
compressive sensing technique to reconstruct the full matrix
from the partially predicted values, and hence, reduce the
network monitoring overhead.

Our evaluation of different network datasets showed that
our proposed approach can significantly reduce network
disturbance and meet the requirements for minimizing the
maximum link utilization. The experimental results on MTSR-
CS demonstrated that the monitoring cost can be significantly
reduced while maintaining routing performance comparable to
full network monitoring.

B. Discussion and Future Directions

There are two main differences in our network model
compared to other studies that use segment routing as the
traffic routing scheme. First, we only use 2-segment routing
(2-SR) [12] instead of utilizing n-segment routing (n-SR) [15].
As pointed out in [12], [41], [42], [43], [44], using 2-SR
can achieve a close performance to n-segment routing while
significantly reducing the problem complexity. In addition, the
set of possible paths between two nodes in n-SR is generally
larger than that of 2-SR, which increases the probability

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 2, APRIL 2024

of path changes and network disturbance when solving the
routing problem. Therefore, using 2-SR can naturally reduce
the network disturbance. However, even when using 2-SR,
the network disturbance remains high, as demonstrated by the
experimental results presented in Section V. Second, since our
main targets are to reduce the number of flow rerouting and the
network monitoring overhead, we will not consider a network
in which a traffic flow can be arbitrarily split and routed
into different paths or ECMP routing. However, our problem
formulation can easily be applied to the network system with
arbitrarily split flows or ECMP routing by considering the

variable of i in our problem formulation as a real number

(ie., ag € [0,1] representing the split ratio of flow ij). It
is important to emphasize that this adjustment exclusively
pertains to the “problem solving” task (in Fig. 2) of our
approach, and there exists no disparity in the training process
of the deep neural network for traffic prediction.

Currently, our methods rely on a centralized controller for
executing multiple tasks including collecting network traffic,
performing traffic prediction, solving the routing problem,
and distributing the routing rules. Nevertheless, when applied
to large-scale networks, this approach brings forth several
challenges, notably the risk of single-point failure, heightened
network monitoring overhead, and substantial delays in the
distribution of routing rules. Therefore, we intend to confront
the aforementioned issues specific to large-scale networks
through the implementation of an ML-based distributed
routing algorithm levering the Multi-agent Reinforcement
Learning technique [45].

APPENDIX A
THEORETICAL ANALYSIS

Theorem 3:

o 07 =u(a)); 05 > u(az); 05 > u(ay)
o 07 <03 <05

Proof: According to (7), we have:

k k
D i ok gij(e)(af)ijmfj

x>
o ()

is the optimal solution of P17, the following equation

(tea)Vte

As 07
holds:

Sy Sk ok(e) (o) m .
(e) :U(a1)

9*:m
L,

Concerning Ps, we have:

Ezj Zk g@] (6)() maxg mt]

65 > © Vi, e
sz Zk}glj()() Z_] Vi, e
c(e)
£)E b2
= 05 > max Zij ok gij(e)(QQ)ij g _ w(od)

Vt,e c(e)

Similarly, we have: 63 > u(c3). Now, we are going to prove
that 0] < 65 < 603.

LE et al.: ACHIEVING MULTI-TIME-STEP SEGMENT ROUTING

First, we will prove the following hypothesis: “If (a3, 63)
is a feasible solution of Ps, then it is also a feasible solution
of P1; if (aa,09) is a feasible solution of Pa, then it is also
a feasible solution of P3". According to this hypothesis, we
derive that 67 < 63 and 65 < 65.

According to (15), we have:

Zzgm

As maxie T, mZ] > m
that

> D asle)(as);
iy ok

It means that (asg,03) satisfies constraint (7), thus it is a
feasible solution of Pj.
Similarly, according to (11) we have:

Zzgu

Let T is an arbitrary sub-period of 7, then maxc 7, m Z <
maX;c 7 m . Therefore, from (40), we have:

ZZ%

It means that («g,#2) satisfies constraint (15), thus it is a
feasible solution of Psg |

Theorem 4: Let e* be the link with the largest capacity,
and e3 be the link where the equal sign of constraint (11) in
P5 holds; Then, the performance ratio of P to P; is upper
bounded by A, which is calculated as follows.

maxm < O3c(e) VTp,e (38)
- (Vt € Tp), from (38), we can derive

mitj < Osc(e) Vt,e 39)

ma%(m < bc(e) Ve (40)

max m < bac(e) VTp,e (41)

t
A= o My cle”) 42)
maxg maxij mZ 0(62)
Proof: According to (11), we have
k
DD gi(e3)(ad)f maxmy = O3c(e3) (43)
iy k
We also have
k k t t
DD ai(es)(a3)y maxmy <3 maxmy; - (44)
iy ok 7
Therefore, from (43) and (44), we deduce that
* * t
O5c(e3) < thax M (45)

ij
Concerning P71, from constraint (7) and the assumption that
e* has the largest capacity, we have

fie(e”)= ZZ% ajmy;

As DDk glj()a m!. ;j is the total amount of traffic
routed through link e at time-step ¢, it should be greater than
or equal to the traffic of any pair ij routed through e, it means

that
ZZQU a m - > m?x mt] (G

) > 07c(e Vt;Ve (46)

1547

time (second)

464 (Geant) 1600 (Grnet.40) 84 (Geant) 1600 (Gnnet.40)
Number of flows. Number of flows.

(a) The run time of traffic predic- (b) The run time of traffic recon-
tion. struction
Fig. 19. The run time of traffic prediction and traffic reconstruction tasks.

Eq. (47) holds for all time-steps t. Therefore, from (46)
and (47), we deduce that

9?0(6 1j

*) > max max m}; (48)
t %)
Finally, from (45) and (48), we have

ZZJ max¢ m, c(e)

(@2)

49
9{ T max maxg; m 49

APPENDIX B
ABLATION STUDIES

1) Traffic Prediction and Reconstruction Time: In this part,
we measure the running time of the traffic prediction and matrix
reconstruction tasks in the proposed MTSR and MTSR-CS
methods (Fig. 19). All of the experiments are conducted in
a single machine with 40 cores of Intel Xeon Silver 4210R
CPU @ 2.40GHz, and an NVIDIA GeForce RTX 3090 card
(cuda version 12.1). According to Fig. 19, the prediction and
reconstruction times of MTSR and MTSR-CS are less than
0.5 seconds even with the large network. Therefore, the time
for estimating future traffic demand is negligible. In addition,
the prediction time in MTSR-CS can be smaller since we only
consider L traffic flows.

2) The Scalability of the Proposed Routing Algorithm: To
evaluate the performance of our proposed methods in cases
of large-scaled networks, we use REPETITA dataset [46].
The dataset contains more than 200 topologies of the real
backbone network, whose number of nodes varies from 4
to more than 100. For each topology, five traffic matrices
were generated and adjusted so that the optimal values of the
MLU (obtained from solving the MCF problem) are around
90%. This is the same dataset that was used to evaluate the
scalability of the SRLS approach in [15]. The dataset was
divided into three groups based on the number of nodes in
the network topology. Group 1 comprised networks with less
than 20 nodes, Group 2 comprised networks with 20 to 40
nodes, and Group 3 contained large networks with more than
40 nodes. We compared the performance of our approach
with SRLS [15] and the Shortest Path (SP) routing approach.
It is worth noting that SRLS used n-segment routing for
solving the TE problem while LS2SR only used 2-segment
routing.

We conducted the experiment using five synthetic traffic
matrices of each topology and calculated the MLU, the number
of rerouting flows per time-step (RC), and the average delay as

1548

1.0
0.8
0.6
0.4

0.2

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 2, APRIL 2024

[LS2SR
SRLS
[

1.0

0.8

0.6

0.2

[LS2SR
SRLS
1 sp

Fig. 20.
topology.

10
08
0.6
04

0.2

100 200

300
MLU (%)

400

(a) Small networks

40 800 1000

0 600
MLU (%)

(b) Medium networks

1.0

0.8

0.6

0.4

0.2

0.

100

150

200
MLU (%)

250 3

00

(c) Large networks

The maximum link utilization of different groups of network

[LS2SR
SRLS

1.0

0.8

0.6

0.2

[LS2SR
SRLS

Fig. 21.

10
08
0.6
04

0.2

0 50
Number of rerouting flows per time-step

200

(a) Small networks

0
Numbe

300 400 500
 of rerouting flows per time-step

(b) Medium networks

1.0

0.8

0.6

0.4

0.2

0.

—

LS2SR
SRLS

2
Number of rerouting flows per time-

600

-step

(c) Large networks

The number of rerouting flows per time-step of different groups of
network topology.

[LS2SR
SRLS
1 sp

1.0

0.8

0.6

0.2

[LS2SR
SRLS
1 sp

Fig. 22.
topology.

0 10000 20000

Delay

30000

(a) Small networks

5000 10000

Delay

15000 20000

(b) Medium networks

1.0

0.8

0.6

0.4

0.2

0.

—

—

LS25R
SRLS
sp

[

5000 10000 15000 20000 25000

(c) Large networks

The average delay per time-step of different groups of network

performance metrics. The delay was computed by averaging
the delay of all the traffic flows, which was calculated as the
sum of link delays in its path. The link delays provided in
the REPETITA dataset represented the geometrical distance
between two nodes. Note that since SP has zero rerouting
flow, its results were not shown in Fig. 21. The results
of the experiment, shown in Fig. 20, Fig. 21, and Fig. 22,
indicate that our proposed approach, LS2SR, achieved the

same performance in terms of MLU as SRLS. However,
LS2SR had the best results in reducing the number of rerouting
flows and had similar results compared to SP, consistently
outperforming SRLS regarding the average delay metric.

(1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

REFERENCES

“Cisco annual Internet report (2018-2023),” Cisco Syst., Inc., San Jose,
CA, USA, White Paper, 2020.

Y. Xiao, J. Liu, J. Wu, and N. Ansari, “Leveraging deep reinforcement
learning for traffic engineering: A survey,” IEEE Commun. Surveys Tuts.,
vol. 23, no. 4, pp. 2064-2097, 4th Quart., 2021.

R. Carpa, M. D. De Assunng, O. Gliick, L. Levare, and J.-C. Mignot,
“Evaluating the impact of SDN-induced frequent route changes on TCP
flows,” in Proc. 13th Int. Conf. Netw. Serv. Manag. (CNSM), 2017,
pp. 1-9.

J. Wang et al., “Spatiotemporal modeling and prediction in cellular
networks: A big data enabled deep learning approach,” in Proc. IEEE
Conf. Comput. Commun., 2017, pp. 1-9.

A. Azzouni and G. Pujolle, “NeuTM: A neural network-based frame-
work for traffic matrix prediction in SDN,” in Proc. IEEE/IFIP Netw.
Oper. Manag. Symp., 2018, pp. 1-5.

X. Cao, Y. Zhong, Y. Zhou, J. Wang, C. Zhu, and W. Zhang, “Interactive
temporal recurrent convolution network for traffic prediction in data
centers,” IEEE Access, vol. 6, pp. 52765289, 2018.

V. A. Le, P. Le Nguyen, and Y. Ji, “Deep convolutional LSTM network-
based traffic matrix prediction with partial information,” in Proc.
IFIP/IEEE Symp. Integr. Netw. Serv. Manag. (IM), 2019, pp. 261-269.
V. A. Le, T. T. Le, P. L. Nguyen, H. T. T. Binh, R. Akerkar, and
Y. Ji, “GCRINT: Network traffic imputation using graph convolutional
recurrent neural network,” in Proc. IEEE Int. Conf. Commun., 2021,
pp. 1-6.

V. A. Le, T. T. Le, P. L. Nguyen, H. T. T. Binh, and Y. Ji, “Multi-
time-step segment routing based traffic engineering leveraging traffic
prediction,” in Proc. IFIP/IEEE Int. Symp. Integr. Netw. Manag. (IM),
2021, pp. 125-133.

Y. Azar, E. Cohen, A. Fiat, H. Kaplan, and H. Racke, “Optimal oblivious
routing in polynomial time,” in Proc. 35th Ann. ACM Symp. Theory
Comput., 2003, pp. 383-388.

H. Ricke, “Optimal hierarchical decompositions for congestion
minimization in networks,” in Proc. 14th Annu. ACM Symp. Theory
Comput., 2008, pp. 255-264.

R. Bhatia, F. Hao, M. Kodialam, and T. Lakshman, “Optimized network
traffic engineering using segment routing,” in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), 2015, pp. 657-665.

V. Pereira, M. Rocha, and P. Sousa, “Traffic engineering with three-
segments routing,” IEEE Trans. Netw. Service Manag., vol. 17, no. 3,
pp. 1896-1909, Sep. 2020.

M. Jadin, F. Aubry, P. Schaus, and O. Bonaventure, “CG4SR: Near
optimal traffic engineering for segment routing with column generation,”
in Proc. IEEE Conf. Comput. Commun., 2019, pp. 1333-1341.

S. Gay, R. Hartert, and S. Vissicchio, “Expect the unexpected: Sub-
second optimization for segment routing,” in Proc. IEEE Conf. Comput.
Commun., 2017, pp. 1-9.

T. Schiiller, N. Aschenbruck, M. Chimani, M. Horneffer, and
S. Schnitter, “Traffic engineering using segment routing and considering
requirements of a carrier IP network,” IEEE/ACM Trans. Netw., vol. 26,
no. 4, pp. 1851-1864, Aug. 2018.

T. Schiiller, N. Aschenbruck, M. Chimani, and M. Horneffer, “Failure
resiliency with only a few tunnels—Enabling segment routing for traffic
engineering,” [EEE/ACM Trans. Netw., vol. 29, no. 1, pp. 262-274,
Feb. 2021.

J. Zhang, M. Ye, Z. Guo, C.-Y. Yen, and H. J. Chao, “CFR-RL: Traffic
engineering with reinforcement learning in SDN,” IEEE J. Sel. Areas
Commun., vol. 38, no. 10, pp. 2249-2259, Oct. 2020.

M. Ye, J. Zhang, Z. Guo, and H. J. Chao, “FlexDATE: Flexible and
disturbance-aware traffic engineering with reinforcement learning in
software-defined networks,” IEEE/ACM Trans. Netw., vol. 31, no. 4,
pp. 1433-1448, Aug. 2023.

M. Ye, Y. Hu, J. Zhang, Z. Guo, and H. J. Chao, “Reinforcement
learning-based traffic engineering for QoS provisioning and load balanc-
ing,” in Proc. IEEE/ACM 31st Int. Symp. Qual. Serv. (IWQoS), 2023,
pp. 1-10.

L. Nie, D. Jiang, L. Guo, and S. Yu, “Traffic matrix prediction and
estimation based on deep learning in large-scale IP backbone networks,”
J. Netw. Comput. Appl., vol. 76, pp. 16-22, Dec. 2016.

LE et al.: ACHIEVING MULTI-TIME-STEP SEGMENT ROUTING

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]
[36]
[37]
[38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

G. Kakkavas, M. Kalntis, V. Karyotis, and S. Papavassiliou, “Future
network traffic matrix synthesis and estimation based on deep generative
models,” in Proc. Int. Conf. Comput. Commun. Netw. (ICCCN), 2021,
pp. 1-8.

“Software-defined networking: The new norm for networks,” ON
Foundation, Luzern, Switzerland, White Paper, 2012.

S. Sivabalan et al., “PCEP extensions for segment routing,” Internet Eng.
Task Force, RFC 8664, 2014.

Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang, “Graph wavenet for
deep spatial-temporal graph modeling,” in Proc. Int. Joint Conf. Artif.
Intell., 2019, pp. 1907-1913.

L. A. Dias Knob, R. P. Esteves, L. Z. Granville, and L. M.
Rockenbach Tarouco, “Mitigating elephant flows in SDN-based IXP
networks,” in Proc. IEEE Symp. Comput. Commun. (ISCC), 2017,
pp. 1352-1359.

F. Tang, H. Zhang, L. T. Yang, and L. Chen, “Elephant flow
detection and load-balanced routing with efficient sampling and clas-
sification,” IEEE Trans. Cloud Comput., vol. 9, no. 3, pp. 1022-1036,
Jul.-Sep. 2021.

W. Wang, Y. Sun, K. Salamatian, and Z. Li, “Adaptive path isolation
for elephant and mice flows by exploiting path diversity in datacenters,”
IEEE Trans. Netw. Service Manag., vol. 13, no. 1, pp. 5-18, Mar. 2016.
A. v. D. Oord et al., “WaveNet: A generative model for raw audio,”
2016, arXiv:1609.03499.

github.com. [Online]. Available: https://github.com/vananle/TNSM2023
D. Jiang, W. Wang, L. Shi, and H. Song, “A compressive
sensing-based approach to end-to-end network traffic reconstruc-
tion,” IEEE Trans. Netw. Sci. Eng., vol. 7, no. 1, pp. 507-519,
Jan.—Mar. 2020.

S. Orlowski, M. Piéro, A. Tomaszewski, and R. Wessily, “SNDIib
1.0—Survivable network design library,” in Proc. 3rd Int. Netw. Optim.
Conf. (INOC 2007), 2007, pp. 276-286. [Online]. Available: https://
onlinelibrary.wiley.com/action/showCitFormats?doi=10.1002%2Fnet.
20371

(Barcelona Neural Netw. Center, Barcelona, Spain). Graph Neural
Networking Challenge 2021 Creating a Scalable Network Digital
Twin. 2021. [Online]. Available: https://bnn.upc.edu/challenge/
gnnet2021/

M. Ye, J. Zhang, Z. Guo, and H. J. Chao, “DATE: Disturbance-
aware traffic engineering with reinforcement learning in software-defined
networks,” in Proc. IEEE/ACM 29th Int. Symp. Qual. Serv. (IWQOS),
2021, pp. 1-10.

S. Mitchell. “Pulp 2.7.0.” github.com. 2022. [Online]. Available: https://
coin-or.github.io/pulp/

github.com. 2019. [Online]. Available: https://github.com/nnzhan/Graph-
WaveNet

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735-1780, 1997.

K. Cho et al., “Learning phrase representations using RNN encoder-
decoder for statistical machine translation,” 2014, arXiv:1406.1078.

B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional
networks: A deep learning framework for traffic forecasting,” in Proc.
27th Int. Joint Conf. Artif. Intell., 2018, pp. 3634-3640.

Z. Wu, S. Pan, G. Long, J. Jiang, X. Chang, and C. Zhang,
“Connecting the dots: Multivariate time series forecasting with graph
neural networks,” in Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discov.
Data Min., 2020, pp. 753-763.

F. Hao, M. Kodialam, and T. V. Lakshman, “Optimizing restoration
with segment routing,” in Proc. 35th Annu. IEEE Int. Conf. Comput.
Commun., 2016, pp. 1-9.

T. Settawatcharawanit, Y.-H. Chiang, V. Suppakitpaisarn, and Y. Ji, “A
computation-efficient approach for segment routing traffic engineering,”
IEEE Access, vol. 7, pp. 160408-160417, 2019.

X. Li and K. L. Yeung, “Traffic engineering in segment routing using
MILP,” in Proc. IEEE Int. Conf. Commun. (ICC), 2019, pp. 1-6.

P. L. Ventre et al., “Segment routing: A comprehensive survey of
research activities, standardization efforts, and implementation results,”
IEEE Commun. Surveys Tuts., vol. 23, no. 1, pp. 182-221, 1st Quart.,
2021.

T. Li et al., “Applications of multi-agent reinforcement learning in
future Internet: A comprehensive survey,” [EEE Commun. Surveys Tuts.,
vol. 24, no. 2, pp. 1240-1279, 2nd Quart., 2022.

S. Gay, P. Schaus, and S. Vissicchio, “Repetita: Repeatable experiments
for performance evaluation of traffic-engineering algorithms,” 2017,
arXiv:1710.08665.

1549

Van An Le received the B.E. degree in computer
engineering from the University of Technology, Ho
Chi Minh City, Vietnam, in 2016, and the Ph.D.
degree in informatics from The Graduate University
for Advanced Studies, SOKENDALI, Tokyo, Japan, in
2022. He is currently a Postdoctoral Researcher with
the National Institute of Advanced Industrial Science
and Technology, Japan. His research interests
include machine learning, network resource manage-
ment, and mobile-edge computing.

Yusheng Ji (Fellow, IEEE) received the B.E.,
M.E., and D.E. degrees in electrical engineering
from the University of Tokyo. She joined the
National Center for Science Information Systems,
Tokyo, Japan, in 1990. She is currently a Professor
with the National Institute of Informatics, Tokyo,
and the Graduate University for Advanced Studies,
SOKENDALI, Japan. Her research interests include
network resource management and mobile comput-
ing. She is an Associate Editor of IEEE Vehicular
Technology Magazine, served as an Editor for
IEEE TRANSACTIONS OF VEHICULAR TECHNOLOGY, a TPC Co-Chair
of INFOCOM 2023, a General Co-Chair of ICT-DM 2018, MSN2020,
BigCom2023, a Symposium Co-Chair of IEEE GLOBECOM 2012, 2014, and
ICC 2020, and a Track Co-Chair of IEEE VTC 2016 Fall and 2017 Fall. She
is a Distinguished Lecturer of IEEE Vehicular Technology Society.

Huu Huy Tran received the bachelor’s degree from
the Hanoi University of Science and Technology,
Hanoi, Vietnam, in 2023, where he is cur-
rently a Research Assistant with the School of
Information and Communication Technology. His
research interests include optimization, time-series
prediction, machine learning, and deep learning.

Phi Le Nguyen (Member, IEEE) received the B.E.
and M.S. degrees from the University of Tokyo in
2007 and 2010, respectively, and the Ph.D. degree
in informatics from The Graduate University for
Advanced Studies, SOKENDAI, Tokyo, Japan, in
2019. She is currently a Lecturer with the School of
Information and Communication, Hanoi University
of Science and Technology, Vietnam. Her research
interests include network architecture, optimization,
and artificial intelligence.

John C. S. Lui (Fellow, IEEE) received the
Ph.D. degree in computer science from UCLA.
He is currently the Choh-Ming Li Chair Professor
with the Department of Computer Science and
Engineering, The Chinese University of Hong
Kong. His current research interests are in online
learning algorithms and applications (e.g., multi-
armed bandits and reinforcement learning), quantum
Internet, machine learning on network sciences and
networking systems, network economics, large scale
storage systems, and performance evaluation theory.
He is an active consultant to industry, believing that it is an effective way to
do technology transfer and a wonderful way to learn about real and relevant
research problems. He is an Elected Member of the IFIP WG 7.3, a Fellow of
ACM and Hong Kong Academy of Engineering Sciences, a Senior Research
Fellow of the Croucher Foundation, and was the past Chair of the ACM
SIGMETRICS from 2011 to 2015.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

