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Abstract— Entanglement distribution via probabilistic entan-
glement swapping across a quantum repeater chain connecting
two quantum nodes is a challenging problem. The difficulty
lies in the exponential number of possible swapping struc-
tures within the repeater chain, necessitating efficient search
algorithms, especially as the chain length increases. In this
paper, we first explore the algorithmic design to facilitate the
search for the optimal swapping structure along a repeater
chain, aiming to maximize the entanglement distribution rate.
Second, we examine the computational complexities of various
algorithms and find that prior approaches exhibit excessively
high complexities. Thus, we propose an efficient dynamic
programming-based algorithm, FastHED, that leverages heuris-
tics to expedite the search for the optimal swapping structure.
Our theoretical analysis reveals that the upper bound of the
proposed algorithm’s computational complexity is O(n(logn)3)

(more precisely, O(n(logn)2 log logn) when n → 229),
a significant improvement over the existing algorithm with a
complexity of O(n2 logn), where n denotes the repeater chain’s
length. Additionally, we design a best-first framework to evaluate
the performance of different algorithms. Numerical results show
that our algorithm achieves a higher average entanglement
distribution rate than existing algorithms.

Index Terms— Quantum repeater chain, entanglement distri-
bution, entanglement swapping, dynamic programming.

I. INTRODUCTION

QUANTUM Internet, with its unique quantum advantages,
has gained significant attention in recent years, and

is regarded as an important technical direction for future
communication technologies. Quantum entanglements or EPR
pairs [1], [2] (also referred to as ebits) are the vital resources
for transmitting quantum information in the Quantum Internet.
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They are also critical in other upper-layer applications, such
as quantum conference key agreement [3], [4], clock syn-
chronization [5], [6] and multiparty quantum computation [7].
A central challenge in these applications is efficiently estab-
lishing quantum entanglement for quantum communication.

There are two methods for establishing quantum entan-
glement between two nodes. The first method, known
as entanglement generation, directly creates entanglement
between any two end nodes that are directly linked by a
quantum channel, such as an optical fiber or a free-space
link. However, it suffers from exponential decay [8], [9],
[10], limiting the entanglement distance of the two nodes.
The second method, called entanglement swapping [11], can
generate quantum entanglement between two end nodes that
are far apart. Quantum repeaters play a crucial role in entangle-
ment swapping. Acting as intermediate nodes that connect the
two end nodes through quantum channels, quantum repeaters
can establish long-distance entanglement by leveraging two
short-distance entanglements across two short quantum chan-
nels via Bell State Measurements (BSM). When multiple
quantum repeaters exist between two end nodes, entanglement
swapping can be repeatedly performed at the repeaters to
create a long distance end-to-end entanglement, mitigating the
exponential decay in long-distance entanglement.

Using the aforementioned methods, Quantum entanglement
Routing (QR) [12] has been introduced to determine the opti-
mal scheme for distributing quantum entanglements between
any arbitrary pair of nodes, with the objective of maxi-
mizing the entanglement distribution rate (EDR).1 Solving
the QR problem involves two steps in general. The initial
step entails selecting the most suitable quantum repeaters
to form a quantum path [12], [13], [14], [15], also known
as a quantum repeater chain within the quantum network.
In this repeater chain, adjacent repeaters are interconnected by
quantum channels, referred to as single-hop elementary links.
The collection of all these elementary links constitutes a multi-
hop repeater chain, establishing connectivity between the end
nodes. The second step is to find the optimal entanglement
swapping protocol on the selected repeater chain [11], [16],
[17]. Entanglement swapping is typically probabilistic [12],
[18], [19], [20], [21] because entanglement is swapped condi-
tional on the occurrence of preset photon coincidence events
for photonic entanglement swapping [22], [23]. To realize
entanglement distribution using current quantum technologies,
there are many aspects that need to be optimized for a given
quantum path, such as designing cutoff policies [24] for

1Entanglement distribution rate is the number of distributed entanglements
per unit of time (in ebit per second or eps).
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Fig. 1. This 4-hop non-uniform repeater chain contains quantum channels
with distinct entanglement generation capacities, such as 3 eps on N0 →N1,
16 eps on N1 →N2 and N2 →N3 and 10 eps on N3 →N4. Each swapping
operation would reduce the capacity down to half of the minimum input
capacities (i.e., take p

(k)
swap = 0.5 in (3)). The optimal swapping structure

(OPTS) is better than BDCZ [11] structure. Where L(i, j) denotes the chain
from Ni to Nj . Two corresponding binary trees are illustrated at the bottom
of the figure.

avoiding decoherence and distillation protocols [25] to
improve the fidelity.2 With the development of cutting-edge
quantum technologies, we assume negligible effects from
decoherence and other factors, thus reducing the swapping
protocol optimization problem to a swapping structure opti-
mization problem. Essentially, the swapping structure for a
repeater chain is the order of entanglement swapping opera-
tions. The swapping structure can be viewed as a binary tree
where entanglement swapping operations can be executed in
parallel in the left and right subtrees by iteratively dividing
the repeater chain into two shorter chains. For a uniform
chain, where all the elementary links have the same EDR,
Briegel et al. [11] introduced a strict parallel swapping struc-
ture called BDCZ (named after the authors) to maximize the
EDR. However, in a non-uniform chain where the EDRs on
the elementary links are heterogeneous, a strict symmetric
parallel scheme like BDCZ may not be optimal. For example,
as illustrated in Fig. 1, a better swapping structure exists in
the non-uniform chain, yielding a higher EDR than the strict
parallel swapping structure. In the 4-hop non-uniform repeater
chain as shown in Fig. 1(a), BDCZ (Structure 2) achieves
an end-to-end EDR of 0.75 eps via symmetric entanglement
swapping operations. In contrast, the optimal swapping struc-
ture (OPTS, Structure 1) attains an end-to-end EDR of 1.5 eps
using asymmetric entanglement swapping operations.

There have been several salient studies on designing
algorithms to find the optimal swapping structure in the
non-uniform chain to obtain a higher EDR. Jiang et al. [16]

2Fidelity is an important metric for assessing the disparity between actual
entanglement and perfect entanglement, ranging from 0 to 1. A higher fidelity
value indicates a closer approximation to perfect entanglement.

and Goodenough et al. [17] proposed the regular dynamic
programming (DP) technique for searching for the optimal
swapping structure on a multi-hop chain. They employed a
bottom-up approach, constructing the global optimal structure
by recursively assembling optimal swapping structures on
shorter sub-chains. However, these studies mainly focused on
maximizing the entanglement distribution rate while neglect-
ing the algorithmic computation complexity. Note that an
algorithm with high computational complexity has an inherent
drawback: it may not quickly adapt to changing quantum
network parameters, resulting in an outdated optimal swapping
structure. This leads to a dilemma: whether to adhere to the
previous swapping structure, which may no longer be optimal,
or to rerun the algorithm with the latest parameters. Therefore,
an effective algorithm should not only aim to achieve a
higher EDR, but can also efficiently find the optimal swapping
structure with low computation complexity to accommodate
the time varying nature of quantum networks.

In this paper, we introduce a novel DP-based algorithm, Fast
Heuristic Entanglement Distribution algorithm (FastHED),
designed to reduce the computational complexity of finding
the near-optimal swapping structures. Instead of merely using
a bottom-up approach, FastHED leverages novel pruning tech-
niques to identify the least essential sub-chains by top-down
pruning before starting the DP search. Furthermore, we estab-
lish a recursive expression for swapping-structure dependent
EDR over a multi-hop chain. Additionally, we derive an upper
bound for the computational complexity of FastHED. To eval-
uate the average EDR of various algorithms in entanglement
distribution, we also develop a best-first entanglement distri-
bution framework and integrate it to tackle the entanglement
distribution problem in chains with time varying parameters.
Numerical results show the superiority of FastHED over
existing algorithms.

The remainder of the paper is as follows. In Sec. II, we pro-
vide an overview of related work. In Sec. III, we present the
modeling of quantum network and entanglement distribution
on repeater chains. In Sec. IV, we introduce the problem
structure of heuristic dynamic programming and present the
details of FastHED. In addition, we derive an upper bound
for the computational complexity for FastHED. In Sec. V,
we develop a best-first entanglement distribution framework.
In Sec. VI, we illustrate the superiority of FastHED using
numerical simulations. We conclude and address some poten-
tial problems for future research in Sec. VII.

II. RELATED WORK

Entanglement distribution, a sub-task of Quantum Routing,
is crucial for quantum networking. Existing research mainly
addresses two challenges in the QR problem. The first chal-
lenge, known as path selection [12], [13], [14], [26], [27], [28],
[29], [30], [31], [32], is to design an algorithm to identify the
most suitable repeaters to form a path from the source node to
the destination node. The second challenge, termed swapping
protocol optimization, is to design a swapping protocol on the
selected path to attain a high EDR between the two end nodes.
A core challenge in swapping protocol optimization is known
as swapping structure optimization problem.

Chang and Xue [33] pointed out that the order (swapping
structure) of distributing entanglement significantly impacts
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the EDR. Briegel et al. [11] proposed a parallel structure called
BDCZ to minimize the entanglement distribution waiting time
(maximize the EDR) for a uniform chain. However, when the
elementary links between the repeaters are non-uniform, the
strict symmetric parallel scheme of BDCZ is not optimal as
illustrated in Fig. 1.

Goodenough et al. [17] proved that the number of all
possible swapping structures in a repeater chain is super-
exponential. Shchukin and van Loock [34] designed a Markov
decision process solution for finding the optimal swapping
structure, but the computational complexity is high due to
the super-exponential size of the state space. There are also
several attempts on reducing the computation complexity of
the entanglement distribution problem. Dai et al. [21] trans-
formed the problem into a linear programming (LP) problem
with polynomial computational complexity. But the number of
decision variables for an n-hop chain is O(n3), thus the com-
plexity of solving this LP optimization exceeds O(n3). In [16],
Jiang et al. first provided a dynamic programming [35] based
solution with polynomial complexity. Other works reduced the
complexity by leveraging heuristics in quantum networks [17],
[20], [36] (e.g., the optimal EDR can be achieved by conduct-
ing quantum operations on entanglements with similar EDRs).
Goodenough et al. [17] leveraged heuristics in the DP-based
algorithm with a computational complexity of O(n2 log n) to
find a near-optimal swapping structure, which is the state-
of-the-art algorithm for a non-uniform chain. This algorithm
outperforms the ones presented in [11], [37], [38], and [39].
Some researchers [19], [40], [41], [42] derived the closed-form
expression of the waiting time in entanglement distribution and
conducted theoretical analyses of various swapping structures’
performance. Nevertheless, it is important to note that finding
the exact expression is computationally intensive. Recently,
a more practical entanglement swapping protocol with imper-
fect quantum memories has been studied; for instance,
Iñesta et al. [24] addressed the short-live quantum memory
problem and Haldar et al. [25] designed a fast and reli-
able entanglement distribution protocol considering imperfect
memories.

In [43] and [44], the authors designed a more general
swapping method (i.e., n-fusion) through Greenberger-Horne-
Zeilinger (GHZ) Measurements for the swapping. Using
GHZ measurements, Zeng et al. [45] significantly enhanced
the EDR.

Our work differs from the existing works primarily in two
key aspects. First, we propose a DP-based solution for swap-
ping structure optimization that is significantly faster than that
in [17]. Our top-down pruning techniques can eliminate redun-
dant computations in the bottom-up DP searching. Second,
we design a best-first framework that can provide insights into:
i) the tradeoff between reducing the computation complexity
of an entanglement distribution algorithm and maximizing the
EDR, and ii) how to leverage a fast algorithm to achieve a
high EDR on a repeater chain with time varying parameters.

III. SYSTEM MODEL

In this section, we first introduce the network model of
a quantum repeater chain and describe how to compute the
EDR of any entanglement swapping structure on a repeater
chain.

Fig. 2. An n-hop repeater chain. Every repeater can perform entanglement
swapping to glue two short entanglements to create a long entanglement.

A. Network Model
Consider an n-hop repeater chain N0 → · · ·Ni → Ni+1 →

· · ·Nn, 0 ↑ i ↑ n, connecting the two end nodes, i.e.,
the source node N0 and the destination node Nn, as shown
in Fig. 2. Let L(i, j) denote the sub-chain from the left
node Ni to the right node Nj in the n-hop repeater chain,
0 ↑ i, j ↑ n and i ↓= j. This repeater chain consists of the
following components:
• Quantum nodes: These nodes can perform a series of quan-

tum operations including quantum bit (qubit) measurements
and quantum information transmission. Each quantum node
has a quantum memory for storing unused entangled qubits.

• Quantum repeaters: Quantum repeaters function as interme-
diate nodes within the repeater chain. Similar to the relay
nodes in classical networks, they can perform entanglement
swapping operations to create long-distance entanglements.
Similar to [46], we assume3 each repeater is equipped
with a sufficient quantum buffer, i.e., a sufficiently-size and
sufficiently long-lived memory for entanglement swapping.
As shown in the red dashed box in Fig. 2, the repeater node
N2 can perform entanglement swapping on two entangled
qubits of two short entanglements, and generate a new
long-distance entanglement connecting N1 and N3.

• Quantum channels: Quantum channels, also known as ele-
mentary links, can connect adjacent nodes directly. For those
non-adjacent nodes with no direct quantum channel links,
the generation of entanglement is only feasible with the
assistance of quantum repeaters.

• Classical communication network: This network intercon-
nects all quantum nodes and transmits the measurement
results of quantum operations.

B. Entanglement Generation Over an Elementary Link
For two adjacent nodes Ni and Ni+1 connected by a

quantum channel, one can establish an eflow4 connecting the
two nodes by implementing Entanglement Generation [8],
[46], [51]. For example, an entangled qubit pair can be
locally prepared at Ni, then Ni sends one of the entangled
qubits to Ni+1 via the quantum channel and an entanglement

3We acknowledge that considering limited quantum memory (e.g., limited
size in [41], short lifespan in [24], [25]) is crucial. However, with advance-
ments of quantum technologies, future quantum repeaters may have sufficient
buffers [47], [48], [49], [50].

4An eflow is a series of quantum entanglements that can connect the two
end nodes of a chain [21].
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Fig. 3. By performing entanglement swapping on Ni+1, one can construct
an eflow over L(i, i+2) from two eflows over L(i, i+1) and L(i+1, i+2).

connecting Ni to Ni+1 is generated [51]. The entanglement
generation attempt may not always succeed. An important
parameter to evaluate the generation capability of Ni →Ni+1

is called entanglement generation success probability p
(i,i+1)
gen .

An entanglement connecting Ni to Ni+1 is successfully gen-
erated with a probability p

(i,i+1)
gen ; otherwise, no entanglement

is obtained. We assume the entangled qubit can be stored in a
quantum memory for a sufficiently long time. By continuously
conducting entanglement generation, an eflow connecting Ni

to Ni+1 can be established with the EDR:

R(i, i + 1) = p
(i,i+1)
gen · f, (1)

where f denotes the operation frequency, i.e., the number of
attempts per second.

C. Entanglement Distribution Over a Multi-Hop Repeater
Chain

For a two-hop sub-chain L(i, i+2), an eflow over L(i, i+2)
can be established from the two eflows over the adjacent ele-
mentary links L(i, i+1) and L(i+1, i+2) with entanglement
swapping operations on Ni+1 as shown in Fig. 3. Let p

(i+1)
swap

be the success probability of entanglement swapping on Ni+1.
We assume that the time required for an entanglement swap-
ping operation, referred to as a swapping duration and denoted
as !s, is close to 0 and even negligible [34]. Then according
to [46], the EDR of the eflow over L(i, i+2) can be expressed
as:

R(i, i + 2) = min {R(i, i + 1), R(i + 1, i + 2)} · p(i+1)
swap . (2)

In other words, the EDR R(i, i+2) of the long eflow between
Ni and Ni+2 relies on the smaller EDRs (the larger waiting
times) of the two short eflows, R(i, i+1) and R(i+1, i+2),
and the success probability of entanglement swapping p

(k)
swap.

More generally, any eflow over a sub-chain L(i, j) can be
constructed from two eflows over its two sub-chains, L(i, k)
and L(k, j), by performing entanglement swapping operations
on the repeater Nk that is between Ni and Nj . Given that
two short eflows with EDRs R(i, k) and R(k, j) have been
established and safely stored in quantum memories and entan-
glement swapping is performed on Nk, the EDR of the eflow
over the sub-chain L(i, j) can be expressed as:

R(i, j) = min {R(i, k), R(k, j)} · p(k)
swap. (3)

Establishing an eflow over an n-hop chain from the eflows
over n elementary links is to distribute entanglements and
perform a sequence of entanglement swapping operations on
the intermediate repeaters in the chain. The order of these
entanglement swapping operations can be represented via a
binary tree, which we refer to as the swapping structure.
As shown in Fig. 4, each node of the binary tree represents

Fig. 4. Each parent (sub-chain L(i, j)) has two children (sub-chains L(i, k)
and L(k, j)), which are separated by a repeater in L(i, j). The optimal
repeater Nk→ that maximizes the EDR of L(i, j) can be identified using (4).

Fig. 5. Following BDCZ, one can construct an eflow over L(0, 4) in two
swapping durations. In the first swapping duration, we perform entanglement
swapping on N1 and N3 to construct eflows over L(0, 2) and L(2, 4)
simultaneously. In the second swapping duration, we perform entanglement
swapping on N2 and construct an eflow over L(0, 4).

a sub-chain, with the root node corresponding to L(0, n) and
the leaf nodes representing the elementary links. In the binary
tree, an eflow over a sub-chain L(i, j) (a parent node) can
be constructed from the eflows over its two sub-chains (its
two children nodes). As shown in Fig. 4, to construct an
eflow over an n-hop chain at the root node (or L(0, n)) of
the binary tree, we first create eflows over the elementary
links at the leaf nodes. Using these eflows over the elementary
links, we can then conduct entanglement swapping operations
simultaneously on the intermediate repeaters to create eflows
over longer sub-chains, and form the corresponding parent
nodes in the first swapping duration. This process is repeated
until the eflow over L(0, n) is constructed. Let the time for
entanglement generation over elementary links be !gen (a
unit of time) and the depth of the binary tree be h, i,e., the
number of all swapping durations required to establish the
desired eflow. After !gen + h!s = !gen, the desired eflow
is obtained since !s can be negligible [34].

Let us clarify how to derive the swapping structure from
a binary tree. Fig. 5 shows an example of the entanglement
distribution process on a 4-hop chain. We assume the eflows
over all elementary links are established at the beginning of
the entanglement distribution procedure. In the first swapping
duration, we select two eflows over L(0, 1) (a leaf node)
and L(1, 2) (another leaf node), and perform entanglement
swapping on N1 to construct an eflow over L(0, 2) (a par-
ent node). At the same time, we can perform entanglement
swapping on N3 to construct an eflow over L(2, 4) using
eflows over L(2, 3) and L(3, 4). In the next swapping duration,
we select the two eflows over L(0, 2) and L(2, 4), and perform
entanglement swapping on N2 to construct an eflow over
L(0, 4). The swapping structure in Fig. 5 can be represented
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TABLE I
NOTATIONS

as {(0, 4, 2)}→ {(0, 2, 1), (2, 4, 3)}, where each tuple (i, j, k)
indicates the operation of entanglement swapping on Nk to
construct an eflow over L(i, j) from eflows over L(i, k) and
L(k, j). The notation {·} represents a group of entanglement
swappings indicated by the tuples that can be performed
simultaneously. Another example of a swapping structure
{(0, 4, 1)}→ {(1, 4, 3)}→ {(1, 3, 2)} is shown in Fig. 1(b).

The goal of entanglement distribution is to find the opti-
mal swapping structure for constructing the eflow over an
n-hop chain with the maximum EDR. In other words, finding
the optimal repeaters for conducting entanglement swapping.
To find the optimal repeater that maximizes the EDR of the
eflow over L(i, j), one can search through all the intermediate
repeaters and calculate the EDRs of the corresponding eflow
using (3). Hence, we establish the following recurrence struc-
ture for the maximum EDR of the entanglement between Ni

and Nj for i ↑ j → 2,

R(i, j) = max
i+1→k→j↑1

{
min {R(i, k), R(k, j)} · p(k)

swap

}
. (4)

Note that if the EDRs of all the nodes (sub-chains) in a
binary tree satisfy (4), the associate swapping structure is
optimal and yields the maximum EDR for L(0, n).

IV. HEURISTIC DYNAMIC PROGRAMMING
FOR EDR MAXIMIZATION

In this section, we introduce a dynamic programming
algorithm designed to identify the optimal swapping struc-
ture using the recurrence structure in (4). Following that,
we present two pruning techniques for this algorithm using
heuristics.

A. Dynamic Programming Algorithm
A brute-force search for the optimal swapping structure

in (4) requires splitting the n-hop chain into halves recursively.
However, this approach is impractical due to the exponen-
tial growth in computation time for searching all possible

Algorithm 1 Pure DP Search (Pure-DP)
Input: Chain length n, Entanglement generation

probability p
(i,i+1)
gen ,↔i ↗ [0, n→ 1], Swapping

probability p
(k)
swap,↔k ↗ [1, n→ 1]

Output: The indices of optimal repeaters S, the
entanglement distribution rates R, and the
optimal swapping structure O

1 for i ↗ [0, n→ 1] // Compute the EDRs of the elementary
links do

2 R(i, i + 1) ↘ 1/p
(i,i+1)
gen ;

3 end
4 for d ↗ [2, n] // Compute bottom-up do
5 for i ↗ [0, n→ d] // C-loop do
6 j = i + d;
7 for k ↗ [i + 1, j → 1] // K-loop do
8 Find the optimal repeater Nk→ with the

highest EDR among all Nk using (4);
9 end

10 // Save the results
11 S(i, j) ↘ k

↓;
12 R(i, j) ↘ min{R(i, k↓), R(k↓, j)} · p(k)

swap;
13 end
14 end
15 O ↘ FINDORDER(S, 0, n); // The details are shown in

Algorithm 2
16 return S, R and O

swapping structures as the repeater chain length increases.
Therefore, the dynamic programming-based algorithm was
introduced in [16] and [17] to leverage the swapping struc-
tures of sub-chains to reduce the redundant computation and
improve the computational efficiency.

Specifically, with the recurrence structure in (4), one can
establish long eflows from short eflows over sub-chains using a
bottom-up approach. There are O(n2) sub-chains as 0 ↑ i ↑ n

and 0 ↑ j ↑ n. For each sub-chain L(i, j), a naive algorithm
needs to search O(n) (j→i→2) times for the optimal repeater
Nk→ from Ni+1 to Nj↑1. To keep track of the swapping
structures in the sub-chains, the indices of the optimal repeater
for the sub-chains are saved in a two-dimensional (2D) array
S ↗ Z(n+1)↔(n+1), and the entry S(i, j) of S records the
index of the optimal repeater for L(i, j). The EDRs of the
sub-chains are saved in a 2D array R ↗ R(n+1)↔(n+1), and
the entry R(i, j) of R records the maximum EDR of the eflow
over L(i, j).

Such an algorithm is called Pure-DP and is presented in
Algorithm 1. The optimal swapping structure O is initialized
as an empty queue, and the EDRs of the elementary links are
computed in Line 2.5 The first two for-loops (from Lines 4
and 5 to Lines 13 and 14) are called sub-chain search loops
(C-loop) as they traverse all the sub-chains. The for-loop from
Line 7 to Line 8, termed as near-optimal repeater search
loop (K-loop), is to find the optimal repeater for every sub-
chain. In Line 4, d represents the position of the upper right
diagonal line of S and R. For instance, as shown in Fig. 6,

5Hereafter, we use [a, b] to denote the set of integers between a and b.
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Algorithm 2 Findorder
Input: S, i, j

Output: the swapping structure Q

1 Initialize U as a set {(i, j, S(i, j))}; // The last group in
the swapping structure

2 Initialize Q as an empty queue and push U to Q; // Q is
a queue of sets

3 while U is not empty do
4 Initialize a new set U

↗; // The next group
5 for (̃i, j̃, S(̃i, j̃)) ↗ U and ĩ < j̃ → 1 do
6 Insert (̃i, S(̃i, j̃), S(̃i, S(̃i, j̃))) and

(S(̃i, j̃), j̃, S(S(̃i, j̃), j̃)) to U
↗; // Except the

elementary links
7 end
8 Push U

↗ to Q;
9 U ↘ U

↗;
10 end
11 return Q;

Fig. 6. The search process of Algorithm 1.

for a 4-hop repeater chain, when d = 1, the C-loop would
search for all the elementary links L(i, i + 1) and compute
the upper-right diagonal (the longest red arrow) entries of R
and S. When d = 2, the C-loop searches all the sub-chains
of length 2 and compute the upper-right diagonal (the second
longest red arrow) of R and S. Thus, iterating d from 2 to
n follows a bottom-up search manner as shown by the blue
arrow in Fig. 6. In Line 15, Algorithm 1 recovers the optimal
swapping structure O for an n-hop repeater chain from S using
the function FINDORDER presented in Algorithm 2.

In Algorithm 2, the output Q is the optimal swapping
structure defined in Sec III-C. We use a set U (consisting
of tuples) to store a group {·} of a swapping structure Q.

Specifically, the eflow over chain L(i, j) is established by
performing entanglement swapping on the repeater NS(i,j) in
the end of a swapping duration. Thus, in Line 1, U is initialized
with U = {(i, j, S(i, j))} to represent the end group. We push
U to the queue Q in Line 2. We then use U to construct
the remaining groups (the previous swapping duration) for
establishing an eflow over L(i, j). We traverse all tuples in U

to identify the tuples in the next group (the previous swapping
duration). For ease of description, we use U

↗ to represent
the next group of U . For each tuple (̃i, j̃, S(̃i, j̃)) in U ,
to establish the eflow over L(̃i, j̃), the eflows over L(̃i, S(̃i, j̃))
and L(S(̃i, j̃), j̃) should have been established. By perform-
ing entanglement swapping operations on NS(̃i,S(̃i,j̃)) and
NS(S(̃i,j̃),j̃), one can establish the eflows over L(̃i, S(̃i, j̃))
and L(S(̃i, j̃), j̃), respectively. We insert the two tuples
(̃i, S(̃i, j̃), S(̃i, S(̃i, j̃))) and (S(̃i, j̃), j̃, S(S(̃i, j̃), j̃)) to U

↗ in

Line 6. Until all the tuples in U have been traversed, we obtain
U
↗ and push it to Q in Line 8. Then, we update U as U

↗

in Line 9 to construct the next group of U
↗. The while-

loop from Line 3 to Line 10 stops when U
↗ becomes empty,

indicating that U is the first swapping duration (group). The
computational complexity of Algorithm 2 is O(j → i) with
the input of i and j. This is because we traverse all tuples
in Q and the number of tuples is equal to the number of
intermediate nodes in L(i, j), i.e., j → i → 1. Therefore, the
computational complexity for finding the optimal swapping
structure of L(0, n) from S is O(n).

Now let us present the computational complexity of
Algorithm 1. For the C-loop, its computational complexity is
O(n2) as there are total O(n2) sub-chains. For the K-loop,
the computational complexity is O(n) as K-loop searches all
intermediate repeaters in the sub-chain L(i, j). Hence, the total
computational complexity of Pure-DP shown in Algorithm 1
for searching for the optimal repeaters is O(n3).

B. K-Loop Pruning Technique
In this subsection, we introduce a heuristic pruning tech-

nique, K-loop pruning, proposed in [17] to improve Pure-DP.
As shown in Algorithm 1, Pure-DP searches for the optimal

repeaters among all nodes for every sub-chain in the K-loop
in Line 7. However, there is no need to search all the nodes.
[17] introduced the following heuristic: the optimal eflow over
a long repeater chain with i1+i2 hops can be established using
the eflow on its two short disjoint sub-chains with i1 and i2

hops with high probability as long as,

|i1 → i2| ↑ 2 log(i1 + i2). (5)

By letting n = i1 + i2 in (5), it follows that i1, i2 ↗
[n/2→log n, n/2+log n], which indicates that the index of the
optimal repeater for an n-hop chain is in [n/2→ log n, n/2 +
log n] with high probability. The base of the log function is 2 in
this paper. Goodenough et al. [17] proved that such a heuristic
is sufficient and proposed a pruning technique to reduce the
complexity of Pure-DP. Specifically, for a sub-chain L(i, j),
the search interval for the optimal repeater can be narrowed by
using (5), and the recurrence structure in (4) can be rewritten
as:

R(i, j) = max
k

{min{R(i, k), R(k, j)} · p(k)
swap},

(i+j)
2 → log(j → i) ↑ k ↑ (i+j)

2 + log(j → i). (6)

By incorporating the pruning technique in (6), [17] proposed
an algorithm known as NOPTS-DP (Near-OPTimal Structure
Dynamic Programming). NOPTS-DP suggested a minor mod-
ification of Pure-DP, achieved by replacing the search interval
in Line 7 in Algorithm 1 with the search interval from (6).
The algorithm is near-optimal, although there would be some
exceptional cases where the indices of the optimal repeaters
are not in the search interval. We would like to point out that
NOPTS-DP performs well even in these exceptional cases,
as the repeaters identified by NOPTS-DP are close to the
optimal ones.

Compared with Pure-DP, NOPTS-DP has a lower compu-
tational complexity. Specifically, with the pruning technique
in (6), the length of the search interval in the K-loop is reduced
from O(n) to O(log n) and the C-loop is the same as that in
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Pure-DP. Hence, the computational complexity of NOPTS-DP
is O(n2 log n).

In the following, for ease of presentation, we use a 2D array,
K ↗ Z(n+1)↔(n+1), to store the lengths of the search intervals
in the K-loop in Algorithm 1. Specifically, for the NOPTS-DP
algorithm, K(i, j) equals log(j→i) as the length of the search
interval for the sub-chain L(i, j) is 2 log(j → i) as indicated
in (6). As such, the search interval for the sub-chain L(i, j)
in the K-loop can be expressed as follows,

I(i, j) = [ (i+j)
2 →K(i, j), (i+j)

2 + K(i, j)]. (7)

Using K, we narrow the search interval for the K-loop to speed
up the search for the near-optimal swapping structure, and we
call such pruning technique as the K-loop pruning technique.

C. Further Complexity Reduction in NOPTS-DP
It is important to note that the K-loop pruning technique in

NOPTS-DP is not the only method for reducing computational
complexity. There are other efficient techniques that can also
reduce complexity by leveraging the same heuristic in (5).
In this subsection, our objective is to design an algorithm
that maximizes the reduction of computational complexity
in Pure-DP using heuristic in (5). We introduce our C-loop
pruning technique, present an efficient algorithm for com-
puting the C-loop pruning array, describe our fast heuristic
entanglement distribution algorithm FastHED, and conclude
with a discussion on the two pruning techniques.

1) C-Loop Pruning Technique: Our C-loop pruning tech-
nique also uses the heuristic in (5). First, we introduce two
key concepts.

The first concept is “division”, denoting the derivation of
children sub-chains from their parent sub-chains using (5).
Fig. 7(a) shows the relation between a parent sub-chain
(the square marked with striped shading) and its children
sub-chains (the blue squares). For any sub-chain L(i, j), its
children are collected in {L(i, k), L(k, j)|k ↗ [( i+j

2 )→log(j→
i), ( i+j

2 ) + log(j → i)]}. The details of a division are shown
in Algorithm 3. Algorithm 3 takes inputs of a set L of sub-
chains (parent set) and K-loop array K, and returns the set L̃
of children sub-chains. In Line 2 to 7, for each L(i, j) ↗ L,
we obtain its children as shown in Fig. 7(a) and insert the
children to the children set L↗. The output is the union of
children of every sub-chains in L.

Now let us introduce the second key concept.
Definition 1 (Level): We call the set of new sub-chains

created by division from L = {L(0, n)} for s times (s ≃ 0)
as the s-th level children sub-chains and denote the children
set as L(s).

By Definition 1, L(0) is the set of the 0th level sub-chains,
{L(0, n)}, with no division. With divisions, we can find all the
descendant sub-chains of the ancestor chain L(0, n). Division
on L(0) generates the set of 1st level sub-chains L(1) =
L(1)

1

⋃
L(1)

2 as its children, where L(1)
1 = {L(0, i1)|i1 ↗

[n/2→ log n, n/2 + log n]} and L(1)
2 = {L(i1, n)|i1 ↗ [n/2→

log n, n/2 + log n]}. Here, we use a notation L(s)
k (called

a child set) to denote a component of a set L(s) (called
a children set). Upon the s-th division, we have 2s child
sets L(s)

k , k ↗ [1, 2s] at level s, and the children set L(s)

is a union of these child sets, i.e., L(s) =
⋃2s

k=1 L
(s)
k . Now

Algorithm 3 Findchildren
Input: a set of tuples representing the parent sub-chains

L, K-loop pruning array K.
Output: a set of tuples representing the children

sub-chains L̃.
1 Initialize L̃ as an empty set;
2 for L(i, j) ↗ L do
3 Determine I(i, j) from K(i, j) as per (7);
4 for k ↗ I(i, j) do
5 Insert L(i, k) and L(k, j) to L̃;
6 end
7 end
8 return L̃;

let us explain how to obtain child sets at level s from the
children set L(s↑1). Note that L(s↑1) also can be expressed
as a union of child sets at level s → 1:

⋃2s↑1

k=1 L(s↑1)
k . For

all children of L(s↑1)
k , they are categorized into two groups,

namely a left child set and a right child set. The left child set is
L(s)

2k↑1 =
⋃

k↘I(i,j){L(i, k)|↔L(i, j) ↗ L(s↑1)
k } and the right

child set is L(s)
2k =

⋃
k↘I(i,j){L(k, j)|↔L(i, j) ↗ L(s↑1)

k }. For
each child set L(s↑1)

k at level s→ 1, it is associated with two
child sets, indexed as 2k→ 1 and 2k at level s. The left child
set L(s)

2k↑1 contains all the sub-chains with the left end nodes
Ni, while the right child set L(s)

2k contains the sub-chains with
the right end nods Nj for each L(i, j) ↗ L(s↑1)

k . Thus, when
k is even, L(s)

k is the right child set of L(s↑1)
k/2 . Conversely,

L(s)
k is the left child set of L(s↑1)

(k↑1)/2 when k is odd. At the
bottom level ⇐log n⇒ → 1, we would have the sub-chains at all
the levels for the chain L(0, n). The set of these sub-chains is
defined as L =

⋃≃log n⇐↑1
s=0 L(s). Fig. 7(d) and Fig. 7(e) show

two instances of L for a 16-hop chain L(0, 16) and a 256-hop
chain L(0, 256), respectively, where the sub-chains in L in the
figures are colored in dark blue.

Take a 16-hop chain as an example, as shown in
Fig. 7(b)-7(d), the small square at the i-row and the j-column
represents the sub-chain L(i, j). The collection of the squares
(marked in dark blue) in the upper part of Fig. 7(b) represents
L(1)

1 , and the collection of the squares (marked in dark blue)
in the right part of Fig. 7(b) represents L(1)

2 .
Now we explain the relation of children sets between any

two adjacent levels. Essentially, L(s+1) is the children set
of L(s). Hence, L(s+1) can be obtained from L(s) using
Algorithm 3. Fig. 7(c) shows L(2) of a 16-hop chain, which
can be obtained from L(1) shown in Fig. 7(b). Finding
the near-optimal repeater for any sub-chain L(i, j) at level
s requires the knowledge of the EDRs of all its children
sub-chains at level s + 1. In other words, the EDRs of
sub-chains in {L(i, k), L(k, j)|k ↗ [( i+j

2 )→log(j→i), ( i+j
2 )+

log(j → i)]} should be computed before the EDR of L(i, j).
Once the EDRs of the sub-chains in L(s+1) are available,
we can derive the near-optimal repeater indices and EDRs
of the sub-chains in L(s) using (6). These sub-chains can be
repeatedly used to calculate the EDRs of their parent sub-
chains until reaching the ancestor chain L(0, n). Therefore,
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Fig. 7. Example of the C-loop pruning array construction for 16-hop and
256-hop. The level 2 array in Fig. 7(c) can be obtained from level 1 array in
Fig. 7(b) following the rule as shown in Fig. 7(a).

finding the near-optimal swapping structure for the ancestor
chain involves computing the EDRs of the descendant sub-
chains.

In contrast, NOPTS-DP needs to compute the sub-chains
marked in light blue (except the sub-chains in the lower left
triangular region) in Fig. 7(d) and Fig. 7(e). These sub-chains
have no contribution in finding the near-optimal repeater in
L(0, n) since they are outside the searching interval in (6).

We use a 2D boolean array C ↗ Z(n+1)↔(n+1) to indicate
the existence of a sub-chain in L and let C(i, j) of C be 1 (0) if
L(i, j) ↗ L (L(i, j) /↗ L). For example, for L shown Fig. 7(e),
we set the entries of C that correspond to the sub-chains
marked in blue and other entries to 0. Thus, C contains the
information of all sub-chains that need to be computed for
finding the near-optimal swapping structure in L(0, n) with the
heuristic in (5). As FastHED prunes the redundant computation
in NOPTS-DP for the input chain, the searching processes of
the two algorithms are identical, resulting in the same output
swapping structure.

2) Construction of the C-Loop Pruning Array C: The sub-
chains in L between two adjacent levels have overlaps as
they are created by dividing the chain L(0, n) for multiple
times. For example, Fig. 7(b) and Fig. 7(c) show the 1st-
level sub-chains L(1) and 2nd level sub-chains L(2) of the
16-hop chain L(0, 16), respectively. L(1) overlaps with L(2)

as the sub-chains L(0, 4), L(0, 5), . . . , L(0, 10) in the first row

Algorithm 4 Construction of C-Loop Pruning Array C
Input: Chain size n, K-loop pruning array K
Output: C-loop pruning array C

1 Initialize L as an set {(0, n)}; // Representing L(0, n) at
0-th level

2 Initialize L as an empty set and L ↘ L
⋃

L;
3 Mark (0, n) as IsOverlapped = 1 and set IsOverlapped =

0 for all (i, j) by default;
4 for s ↗ [0, ⇐log n⇒ → 1] do
5 Initialize a new set L↗; // The next level
6 L̃ ↘ FINDCHILDREN(L,K); // see Algorithm 3
7 for (i, j) ↗ L̃ do
8 if (i, j) with IsOverlapped = 0 then
9 Mark (i, j) as IsOverlapped = 1;

10 Insert (i, j) to L↗;
11 end
12 end
13 L ↘ L↗;
14 L ↘ L

⋃
L;

15 end
16 C ↘ L; // Transform L into a 2D array

and L(4, 16), L(5, 16), . . . , L(10, 16) appear in both L(1) and
L(2). Such overlaps between the children sets at the adjacent
levels result in redundant search of near-optimal repeaters in
the same sub-chain.

To address this issue, we introduce a C-loop pruning con-
struction algorithm in Algorithm 4. Let the tuple (i, j) ↗
L represent the sub-chain L(i, j) that must be computed
for finding the near-optimal swapping structure for L(0, n).
To construct C, we would first construct L.

The construction of L starts with L = L = {(0, n)} in
Line 2. Each tuple is associated with a Boolean variable,
IsOverlapped, used to determine whether a tuple overlaps
with others. We first create the children set L̃ of L using
FINDCHILDREN in Line 6. Note that the new tuples in L̃ may
have overlaps with those in L. Hence, we need to eliminate the
overlapped tuples using IsOverlapped from Line 7 to Line 12.
The set without overlapped tuples is saved in L↗. We thus insert
it to L and update L and L with L ↘ L↗ in Line 13 and 14,
respectively. Specifically, if a new tuple is not overlapped
with previous tuples, i.e., IsOverlapped = 0, we mark it as
IsOverlapped = 1 and insert it to the non-overlap set L↗ in
Line 9 and 10. Thus, the overlaps are eliminated. At last,
we construct C using L in Line 16: we set C(i, j) to 1 (0),
if the tuple (i, j) ↗ L ((i, j) /↗ L).

3) Further Discussions on K and C: We can apply
the K-loop and C-loop pruning techniques to Pure-DP in
Algorithm 1 with K and C, resulting in our algorithm
FastHED. The utilization of the two pruning techniques in
FastHED is shown in Algorithm 5. Algorithm 5 is a modifica-
tion of Algorithm 1 and incorporates an additional input of the
K-loop pruning array K. We first construct the corresponding
C-loop pruning array C of the K-loop pruning array K
in Line 1. Note that the construction of C is before the
DP search following a top-down manner starting with the
ancestor L(0, n). Then we start the DP search. In Line 8,
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Algorithm 5 Fast Heuristic Entanglement Distribution
(FastHED, Modified From Algorithm 1)
Input: The same as Algorithm 1 and pruning array K
Output: The same as Algorithm 1

1 C ↘ Algorithm 4 (n, K); // Construct C-loop pruning
array

2 for i ↗ [0, n→ 1] do
3 R(i, i + 1) ↘ 1/p

(i,i+1)
gen ;

4 end
5 for d ↗ [2, n] do
6 for i ↗ [0, n→ d] do
7 j = i + d;
8 if C(i, j) == 1 // C-loop pruning then
9 Determine I(i, j) with K(i, j) using (7);

10 for k ↗ I(i, j) // K-loop pruning do
11 Find the optimal repeater Nk→ ;
12 end
13 S(i, j) ↘ k

↓;
14 R(i, j) ↘ min{R(i, k↓), R(k↓, j)} · p(k)

swap;
15 end
16 end
17 end
18 O ↘ FINDORDER(S, 0, n);
19 return S, R and O

using the C-loop pruning technique, we only need to search
the sub-chains with C(i, j) == 1 as other sub-chains are
redundant for L(0, n). In Line 9, using the K-loop pruning
technique, we can narrow the search interval with K(i, j)
using (7).

The relation between K and C is as follows. K determines
the search intervals of K-loop in NOPTS-DP. C represents
all the useful sub-chains needed to be computed for L(0, n)
by leveraging K. Algorithm 4 shows how to obtain C from
any given K. C depends on the specific pruning array K. For
instance, one can set the value of K-loop pruning array as
K(i, j) = ⇐w log(j → i)⇒, where 1 ↑ w ↑ 2. In particular,
one would narrow the search interval of K-loop by selecting a
small w to search for the optimal repeaters, especially for long
chains, as it is more likely that the optimal repeater appears
in the middle of the chain when the chain is long.

D. Analysis

We present a performance analysis of FastHED, including
computational complexity, classical communication complex-
ity and the function of EDR over the length of a chain.

We first theoretically analyze the computational complexity
of Algorithm 5 for FastHED as the following Theorem. The
proof is presented in Appendix A.

Theorem 1: For an n-hop repeater chain, the compu-
tational complexity of FastHED is upper bounded by
O(n(log n)2 log log n), if log n → 2 log log n ↑ (2 log n)/3
(n ↑ 229), and O(n(log n)3), otherwise.

We then analyze the complexity of Algorithm 4. Since it
requires O(log n) time to find the near-optimal repeater in the
K-loop in Algorithm 5, we have the following corollary,

Corollary 1: The number of sub-chains to be computed is
O(n(log n)2) (precisely, O(n log n log log n) when n ↑ 229).
FINDCHILDREN in Algorithm 3 finds 2 log(j → i) children
sub-chains for each parent sub-chain L(i, j). Thus, the total
computational complexity of Algorithm 4 can be expressed as
the product of the size of L and the complexity of FINDCHIL-
DREN. By Corollary 1, the total number of sub-chains (the size
of L) is O(n(log n)2) (O(n log n log log n) when n ↑ 229).
Therefore, the computational complexity for the construction
of C (Algorithm 4) is O(n(log n)3) (O(n(log n)2 log log n)
when n ↑ 229).

In addition, we discuss the classical communication com-
plexity and how the EDR falls as a function of the length of
a repeater chain for FastHED in our supplementary materials.

V. BEST-FIRST ENTANGLEMENT
DISTRIBUTION FRAMEWORK

In this section, we first introduce a best-first entanglement
distribution framework aimed at evaluating the average EDR
performance of algorithms mentioned in Sec. IV. Then, the
framework is integrated to tackle the swapping structure
optimization in a chain with time varying parameters.

In the practical distribution of entanglements, the conducted
swapping structure has a great impact on the EDR. Therefore,
a good swapping structure should be conducted as soon as
possible for high EDR.

Heuristic DP algorithms (NOPTS-DP and our FastHED
algorithm) leverage K(i, j) = ⇐w log(j → i)⇒, where
1 ↑ w ↑ 2, to reduce computational complexity. Moreover,
the values for w are not necessarily the same for all the sub-
chains. This leads to distinct swapping structures and different
EDRs when using heuristic DP search algorithm with different
w (different K). Hence, we randomly select m different K
by randomly selecting m different values of w for each sub-
chain. With these m different K, we run the heuristic DP
search (NOPTS-DP or ours) for m times, where the i-th run
takes Ti time. We assume that the parameters of the repeater
chain (such as pgen and pswap) remain unchanged throughout
all runs.

Now let us describe our best-first framework. The entangle-
ments are distributed while the search algorithms are running.
During the first run (T1), we use the swapping structure of
BDCZ to distribute entanglement and we denote its corre-
sponding EDR as ω0. By the end of T1, we complete the 1st
run and obtain a new swapping structure. The corresponding
EDR is ω1 and we start the second run. At the time t =
T1 + T2, according to the obtained EDRs (ω1 and ω2), we
select the better swapping structure that results the higher
EDR to be conducted in T2. This procedure continues and we
keep selecting the best swapping structure among the obtained
ones so far for the subsequent run, thereby calling it best-first.
Therefore, during the distribution process, we can obtain an
EDR of ω0 in T1, max{ω0, ω1} in T2, and max

0→j<i
{ωj} in Ti.

We can obtain the average EDR over the m runs:

ω =
∑m

i=1 Ti max0→j<i{ωj}∑m
i=1 Ti

. (8)

The details of our best-first framework for distributing
entanglement are outlined in Algorithm 6 and illustrated in
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Algorithm 6 The Best-first Framework
Output: The desired entanglements

1 Select m K-loop pruning arrays {Ki|1 ↑ i ↑ m};
2 Qcurr ↘ BDCZ; // BDCZ swapping structure
3 for i in [1, m] do
4 // At the beginning of the i-th run (Ti).
5 Conduct Qcurr to distribute entanglement;
6 Select Ki as current K-loop pruning array;
7 (Q, ωi) ↘ Heuristic-DP-search(Ki);
8 // Update Qcurr in the end of the i-th run.
9 if Q is better than Qcurr (i.e., ωi ≃ max

0→j<i
{ωj}) then

10 Qcurr ↘ Q;
11 end
12 end

Fig. 8. The best-first framework for entanglement distribution.

Fig. 8. Specifically, We first select a series of K-loop pruning
arrays in Line 1. At the beginning of each run (Ti), we conduct
the selected swapping structure to distribute entanglement in
Line 5, which corresponds to the Distributing Module in
Fig. 8. Simultaneously, we begin running Heuristic DP search
algorithm with the newly selected K-loop pruning array Ki

to find the swapping structure and compute its corresponding
EDR in Line 6 and 7. Subsequently (Line 9 to 11), we compare
the newly obtained swapping structure Q with the current
conducted one Qcurr based on their EDRs and select the better
one as the structure for the subsequent run, as shown in the
Computing Module in Fig. 8. In this framework, it is clear that
the average EDR can be enhanced by conducting the better
swapping structure once it is identified. This motivates the
development of a fast algorithm.

The proposed best-first framework can be integrated to
tackle the swapping structure optimization problem in a chain
with time varying parameters. A chain with time varying
parameters refers to a scenario where the success probabilities
fluctuate over time. This is because that quantum devices may
be not always stable (i.e., influenced by circumstances) and
the quantum memory suffers from decoherence [52], [53]. For
entanglement distribution on a chain with varying parameters,
we incorporate a Monitor Module (marked in gray in Fig. 8)

Fig. 9. Runtime and EDR under different chain lengths.

into our best-first framework. The Monitor Module captures
the varying parameters and updates them as soon as possible
as the input for input into the Computing Module. Upon
receiving new parameters, the Computing Module terminates
the current run and initiates a new run with new parameters.
Hence, a fast algorithm is required to quickly respond to
varying parameters, avoiding outputting an outdated swapping
structure with outdated input parameters.

VI. NUMERICAL RESULTS

In this section, we first present the EDRs and runtimes of the
three algorithms mentioned in Sec. IV. Second, we examine
the effects of different K-loop pruning arrays on the EDR.
In addition, we evaluate the EDRs of the three algorithms
using our best-first framework. At last, we compare the three
algorithms under a chain with time varying parameters.

A. EDR and Runtime of Different Algorithms
We conduct experiments of entanglement distribution

on repeater chains of varying lengths and examine the
EDRs of swapping structures computed by different algo-
rithms. We consider a non-uniform repeater chain where
the elementary chains have different entanglement generation
probabilities. According to [8], [9], and [21], we randomly
vary p

(i,i+1)
gen from 0.2 to 0.5, set the operation frequencies f

of the elementary chains to 100 Hz, and set p
(k)
swap to 0.8.6 We

compare FastHED (Algorithm 5) with two existing algorithms:
Pure-DP (Algorithm 1) and NOPTS-DP [17]. Both NOPTS-
DP and FastHED are heuristic dynamic programming search
algorithms, and we leverage the same heuristic: K(i, j) =
log(j → i),↔i < j ↗ [0, n], resulting in an identical EDR
of the two algorithms. Hence, when discussing the EDR,
we unify NOPTS-DP and FastHED under a single notation,
Heuristic-DP We also conduct experiments on the strict par-
allel symmetric swapping structure (BDCZ) and the strict
Serial Swapping structure (SS). SS is a swapping structure
that sequentially performs swapping operations from the left
end node to the right end node. We run our experiments on a
machine with an Intel i7-12700@2.1GHz processor and 16GB
RAM. The results are the average of 1000 Monte Carlo trials
(10 Monte Carlo trials for n ≃ 211).

Fig. 9 shows the runtimes and EDRs of the three algorithms
on repeater chains with length n ranging from 22 (4) to
213 (8,192) hops. Note that the DP-based algorithms can

6Although 0.5 is an upper bound for the success probability of photonic
swapping, the probability can be increased to exceed 0.5 in [54] and [55].
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handle repeater chains with arbitrary lengths, while BDCZ is
specifically designed for chains with lengths that are powers
of 2. To benchmark with BDCZ, we conduct experiments using
chains with lengths that are powers of 2.

As shown in Fig. 9(a), on short chains with no more than 25-
hops, NOPTS-DP and FastHED exhibit longer runtimes than
Pure-DP as they both require additional runtime to compute
the K-loop pruning arrays. However, such additional runtimes
in NOPTS-DP and FastHED are insignificant compared to the
runtime of searching the near-optimal swapping structures in
long repeater chains. This can be verified by the trend that the
runtime of FastHED is much lower than other algorithms when
the length of the chain exceeds 26 (64) hops. Especially, for
an 8,192-hop chain, Pure-DP requires average 2,297 seconds
(about 0.64 hours) to find the optimal swapping structure,
NOPTS-DP finds a near-optimal structure within a few min-
utes, and FastHED finds the same near-optimal structure in
1 second. The reason is that NOPTS-DP reduces the search
space for the optimal swapping structure by leveraging the
K-loop pruning technique and FastHED can further prune
the search space by using both C-loop and K-loop pruning
techniques. Following specific rules (strict parallel symmetric
or serial), the constructions of swapping structures in BDCZ
or SS do not require optimal swapping structure searching
algorithms. Hence, the runtime of BDCZ or S is 0, as shown
at the bottom of Fig. 9(a).

As can be observed in Fig. 9(b), FastHED, NOPTS-DP,
and Pure-DP all have larger EDRs than the SS structure. The
reason is that a near-optimal or optimal swapping structure
resulting from FastHED, NOPTS-DP, and Pure-DP would sig-
nificantly increase the EDR compared to the serial swapping
structure. Moreover, FastHED and NOPTS-DP have almost the
same EDRs as the Pure-DP since FastHED and NOPTS-DP
both can find near-optimal structures that perform closely to
the optimal one computed by Pure-DP.

In addition, we conduct experiments to show the effects
on EDR of standard deviations of success probabilities. Our
FastHED can adapt to success probabilities across all regions.
In the following, we demonstrate how effectively FastHED
responds to different parameters. We conduct two experiments
for different standard deviations of link success probabilities
and swap success probabilities, respectively.

First, we fix p
(k)
swap at 0.8, randomly take the link suc-

cess probability from [0.35 → εg, 0.35 + εg], and vary the
standard deviation εg from 0.05 to 0.3, for a 1024-chain.
As illustrated in Fig. 10(a), with increasing εg , the EDRs
decrease of all algorithms and the advantage obtained from
optimizing becomes lager. This is because the chain becomes
less homogeneous with a larger εg . Due to using a fixed
heuristic, the heuristic DP exhibits a lower EDR compared
to Pure-DP as εg increases. This observation further motivates
the development of different heuristics to better accommodate
such heterogeneous chains. The following Sec. VI-B shows
how different heuristics used in DP-based algorithms influence
the EDR.

Second, the main results of different standard deviations of
swap success probabilities are illustrated in Fig. 10(b). In this
experiment, the p

(k)
swap of each repeater is randomly taken

from 0.8 → εs to 0.8 + εs. We vary the standard deviation
εs from 0 to 0.2 for a 1024-hop chain, where the link success

Fig. 10. Effects of standard deviations of success probabilities.

Fig. 11. EDRs of different algorithms in our best-first framework.

probability is randomly taken from [0.2, 0.5]. Due to the fixed
swapping structure, BDCZ cannot adapt to the heterogeneous
swap success probabilities, resulting in a decreasing EDR as
the chain becomes less homogeneous, while the DP-based
algorithms adapt well after swapping structure optimization.

B. Effects of K-Loop Pruning Arrays on EDR and Runtime
We set 4 different Ks and compute the corresponding

swapping structures using the heuristic DP search algorithms
(NOPTS-DP and FastHED) to examine the effects of K-loop
pruning arrays on EDR. Specifically, for each K, we set
K(i, j) (↔i ↗ [0, n → 2], j ↗ [i + 1, n]) for an n-hop chain
as follows,

• K1(i, j) = log(j → i). K1 serves as the baseline, where
we set the search intervals according to (6) using the basic
heuristic in (5).

• K2(i, j) =
{

2 log(j → i), if j→i > n/3,

log(j → i), otherwise.
K2 extends the search intervals for the sub-chains with

lengths longer than n/3 to twice the length in K1, aiming
to improve the swapping structures for long sub-chains.

• K3(i, j) =
{

2 log(j → i), if j→i < 2n/3,

log(j → i), otherwise.
K3 extends the search intervals for the sub-chains with

lengths shorter than 2n/3 to twice the length in K1,
trying to find better swapping structures for short sub-
chains.

• K4(i, j) = 2 log(j → i). K4 extends all search intervals
to twice the length in K1 to improve swapping structures
for all the sub-chains.

Using the same parameter setup as in Sec. VI-A, we study
the EDRs and runtimes of different algorithms with different
Ks on a 1, 024-hop chain. We run Monte Carlo experiments
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TABLE II
RUNTIME, EDR AND OPTIMAL RATIO OF DIFFERENT ALGORITHMS WITH DIFFERENT KS

Fig. 12. EDRs on a chain with varying parameters.

where we repeatedly conduct entanglement distribution exper-
iments 1,000 times and present average results in Table II.

Table II shows the runtimes, EDRs, and the optimal ratios
of different algorithms with different Ks. The optimal ratio is
the ratio of the number of experiments with errors less than
1% from the optimal EDR to the total number of experiments.
We use the optimal ratio to measure the difference between the
EDR of the near-optimal swapping structure and the EDR of
the optimal one. In Table II, the C-loop runtime represents the
additional time needed for computing the C-loop pruning array
(Algorithm 4) in FastHED. The DP search time corresponds
to the time for searching the near-optimal swapping structures
in NOPTS-DP and FastHED with given K. The total runtime
of FastHED is the sum of the C-loop runtime and the DP
search time. The total runtimes of NOPTS-DP are the same
as its corresponding DP search times as it does not need
to compute C. As shown in Table II, the total runtime of
FastHED is lower than that of other algorithms. This validates
our analysis that our FastHED algorithm has a much lower
computational complexity in Sec. A. The optimal ratios of
both NOPTS-DP and FastHED both increase as the search
intervals extend from K1 to K4. The reason is that extending
the search intervals could increase the probability of finding
the optimal repeater within the extended interval and therefore
result in larger EDRs.

C. EDR Under Best-first Framework
We use the same parameter setup as in Sec. VI-A and run

different algorithms in our best-first framework on a 1, 024-
hop repeater chain with timespan T = 5.5 seconds. In the
timespan T , we use the four Ks described in Sec. VI-B over
four runs sequentially to compute the swapping structures,
namely, K1 for the 1st run, K2 for the 2nd run, K3 for the
3rd run, and K4 for the 4th run.

As shown in Fig. 11, the better swapping structure is always
selected first to be conducted by each algorithm and FastHED
converges to the optimal EDR faster than NOPTS-DP and

Pure-DP. Thus, the total average EDR of FastHED is higher
than that of NOPTS-DP. After the 4th run, the EDRs of
FastHED and NOPTS-DP closely approach the optimal EDR
using the extended search interval specified in K4. Thus, the
average EDR of FastHED is much higher than Pure-DP since
Pure-DP requires a much longer time to compute the optimal
swapping structure.

D. EDR on a Chain With Time Varying Parameters

To simulate the time varying nature of a chain, we assume
success probabilities fluctuate over time following a specific
period. We conduct experiments on a 1024-hop repeater
chain and randomly take the entanglement generation success
probability from [0.2, 0.5] and swap success probability from
[0.7, 0.9]. We leverage heuristics (Ks) identical to those in
Sec. VI-C, and the timespan is set to 10 s. The typical value
of the decoherence time is about 1.46 s [52], [53]. According
to this, we set the varying period of success probabilities to
range from 0.1 s to 10 s (i.e., the varying frequency from 10 Hz
to 0.1 Hz). The comparison of the average EDRs of the three
algorithms is illustrated in Fig. 12(a). Specifically, we examine
how the EDR changes over time for different varying periods
of 0.5, 1, and 5 s in Figs. 12(b), 12(c) and 12(d).

As can be observed in Fig. 12(a), the average EDR decreases
with the increasing varying frequency for each algorithm.
Our FastHED performs better than the other two algorithms
when the varying frequency is below 10 Hz. Due to the
high computational complexity, NOPTS-DP and Pure-DP
degenerate to perform similarly as BDCZ when the varying
frequency exceeds 0.4 and 2 Hz, respectively. As shown in
Figs. 12(b), 12(c) and 12(d), when an algorithm’s runtime
exceeds the varying period, it always selects BDCZ structure
for entanglement distribution, as the output swapping structure
becomes outdated. Therefore, it is crucial to design a fast
algorithm to quickly respond to the time varying parameters.
Our FastHED outperforms both NOPTS-DP and Pure-DP
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since it exhibits the lowest computational complexity among
the three algorithms.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a fast heuristic entanglement
distribution algorithm (FastHED) that finds the near-optimal
swapping structure for a repeater chain with a low com-
putational complexity. We design a novel heuristic pruning
technique in FastHED and significantly reduce the redundant
computations in existing algorithms. Meanwhile, we establish
an upper bound on the complexity of FastHED, O(n(log n)3)
(more precisely, O(n(log n)2 log log n) when n ↑ 229), rep-
resenting a significant improvement over the state-of-the-art
algorithm with O(n2 log n). In addition, we develop a best-
first entanglement distribution framework to select the best
swapping structure for distributing entanglement, with the
objective of increasing average EDR. We conduct experiments
to show that our algorithm FastHED has a lower computational
complexity and higher average EDR than existing algorithms
on chains with both static and time varying parameters.

Last but not least, we hope that our results may inspire some
future work. For example, it would be interesting to extend
our results to accommodate multiple entanglement demands
in a repeater chain. It may also be worthwhile to devise a fast
algorithm for an arbitrary network topology.

APPENDIX A
PROOFS OF THEOREM 1

In this appendix, we analyze the computational complexity
of FastHED.

We define the sub-chain with the minimum left node index
and the minimum right node index within the children set L(s)

k
at level s as the leftmost sub-chain, and the sub-chain with the
maximum left node index and the maximum right node index
within the children set L(s)

k at level s as the rightmost sub-
chain. Fig. 13 gives an illustration of both the leftmost and
the rightmost sub-chains.

We define ϑ
(s)
k as the index of the left node of the leftmost

sub-chain in L(s)
k+1,↔k ↗ [1, 2s→ 1]. Similarly, we define ϖ

(s)
k

as the index of the right node of the rightmost sub-chain in
L(s)

k ,↔k ↗ [1, 2s → 1]. The subscript k, ranging from 1 to
2s → 1, denotes the index of ϑ

(s)
k (ϖ(s)

k ) at level s as we have
2s → 1 child sets. Let ϑ

(s)
0 = ϖ

(s)
0 = 0 and ϖ

(s)
2s = ϑ

(s)
2s = n.

The ϑ
(s)
k and ϖ

(s)
k are defined using different child sets, L(s)

k+1

and L(s)
k , respectively, to offer a simplified definition for the

segments, as detailed below.
Definition 2 (Segment): A segment, denoted as [ϑ(s)

k ;ϖ(s)
k ],

represents a group of adjacent nodes within an n-hop chain.
Here, ϑ

(s)
k is the index of the left node of the leftmost sub-

chain in L(s)
k+1 and ϖ

(s)
k is the index of the right node of the

rightmost sub-chain in L(s)
k .

We can use the segments to identify the child sets at
each level. Each pair of two adjacent segments ([ϑ(s)

k , ϖ
(s)
k ]

and [ϑ(s)
k+1, ϖ

(s)
k+1]) at level s determines a sub-chain

L(ϑ(s)
k , ϖ

(s)
k+1), k ↗ [0, 2s → 1]. For k ↗ [0, 2s → 1], L(s)

k+1
is a subset of the set of all sub-chains that belong to

Fig. 13. An illustration of children sets and segments for a 32-hop chain.
The collection of the dashed arrowed lines under the chain denotes L(2)

3 ,
while the collection of the solid arrowed lines represents L(2)

4 . The two thick
arrowed lines represent the leftmost and the rightmost sub-chains in L(2)

3 .

Fig. 14. Example of segment construction of 32-hop chain. The colored
arrows mean the computation of a new segment.

L(ϑ(s)
k , ϖ

(s)
k+1)). For instance, in Fig 13, the sub-chains (rep-

resented by the green double arrowed lines) in L(2)
3 all lie in

L(ϑ(2)
2 , ϖ

(2)
3 ).

For example, at level 0, there are two segments
[ϑ(0)

0 ;ϖ(0)
0 ] = [0; 0] and [ϑ(0)

1 ;ϖ(0)
1 ] = [n;n]. At level 1,

a new segment [ϑ(1)
1 ;ϖ(1)

1 ] = [n/2 → log n;n/2 + log n]
can be generated using the division technique. This segment
represents the group of the intermediate repeaters for a n-hop
chain, fulfilling the condition specified in (5). As depicted in
Fig. 14, the red numbers under level 3 indicate the indices of
the segments in level 3, ranging from 0 to 23.

The segments at level s can be derived from those at the
upper level s→ 1. Using the division technique, the left node
of the leftmost sub-chain in L(s)

2k↑1 is just the left node of the
leftmost sub-chain in L(s↑1)

k . Similarly, the right node of the
rightmost sub-chain in L(s)

2k is the right node of the rightmost
sub-chain in L(s↑1)

k . Therefore, a segment at level s with an
even index 2k, ↔k ↗ [0, 2s↑1] can be written as:

[ϑ(s)
2k ;ϖ(s)

2k ] = [ϑ(s↑1)
k ;ϖ(s↑1)

k ]. (9)

For a segment at level s with an odd index 2k + 1,↔k ↗
[0, 2s↑1→1], as defined earlier, ϑ

(s)
k represents the left node of

the leftmost sub-chain in a children set. The leftmost sub-chain
in L(s↑1)

k+1 is L(ϑ(s↑1)
k , ϑ

(s↑1)
k+1 ). This leftmost sub-chain deter-

mines the leftmost sub-chain in L(s)
2k+2, and its left node index

can be written as:

ϑ
(s)
2k+1 = (ϑ(s↑1)

k+1 +ϑ
(s↑1)
k )/2→log(ϑ(s↑1)

k+1 →ϑ
(s↑1)
k ), (10)

Similarly, the index of the right node of the rightmost
sub-chain in L(s)

2k+1 can be written as:

ϖ
(s)
2k+1 = (ϖ(s↑1)

k+1 + ϖ
(s↑1)
k )/2 + log(ϖ(s↑1)

k+1 → ϖ
(s↑1)
k ), (11)
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For example, Fig. 14 shows the computation process for
generating a new segment level by level, where (10) and (11)
are shown as the red and blue arrows, respectively.

Using (9) to (11), we can prove the following lemma that
reveals a consistent pattern of the left endpoint and the right
endpoint in all the segments.

Lemma 1: The k-th segment [ϑ(s)
k ;ϖ(s)

k ] at level s contains
a specific node, referred to as the regular node, positioned at
index ⇐kn/2s⇒ within an n-hop chain. In other words, ϑ

(s)
k ↑

⇐kn/2s⇒ ↑ ϖ
(s)
k .

Using Lemma 1, we can establish an upper bound for the
length of the sub-chain L(ϑ(s)

k , ϖ
(s)
k+1) as follows.

Lemma 2: Denote the length of the sub-chain
L(ϑ(s)

k , ϖ
(s)
k+1) as l

(s)
k+1 = ϖ

(s)
k+1 → ϑ

(s)
k , and l

(s)
k+1 is

upper bounded by l
(s) = (n/2s) + 2slogn → s(s → 1)

for k ↗ [0, 2s → 1].
Due to page limits, we refer the reader to our supplementary
materials for the proofs of Lemma 1 and Lemma 2.

Remark 1: Lemma 2 implies that the length ϱ
(s) = n/2s +

2slogn → s(s → 1) of segments at any level s is upper
bounded by max

0→s→log n
{ϱ(s)} = O((log n)2). Now we analyze

the computational complexity of FastHED.
To proceed, we first devise an algorithm modified from

FastHED, which, due to page limits, is detailed in our
supplementary materials and yields a higher computational
complexity than FastHED. The modified algorithm includes
two steps. First, at level s, we employ NOPTS-DP to
compute the swapping structures and EDRs for sub-chains
L(ϑ(s)

k , ϖ
(s)
k+1), k ↗ [0, 2s → 1], as determined by (9)-(11). Note

that all the sub-problems of L(ϑ(s)
k , ϖ

(s)
k+1) have been solved

using NOPTS-DP, thereby covering L(s)
k+1. Second, leveraging

these results, we can compute the swapping structures and
EDRs for sub-chains at level s → 1 (e.g., L(s↑1)). Thus,
we can compute the swapping structures and EDRs the n-
hop chain. This computation proceeds in a bottom-up manner,
similar to Algorithm 5, and the search for sub-chains that
have already been computed by NOPTS-DP can be omit-
ted. The primary difference between the modified algorithm
and Algorithm 5 is the utilization of NOPTS-DP. Due to
|L(s)

k+1| ↑ |L(ϑ(s)
k , ϖ

(s)
k+1)|2/2, the computational complexity

of the modified algorithm upper bounds Algorithm 5 in the
first step. The remaining details of the modified algorithm are
identical to Algorithm 5.

Thus, the modified algorithm has a higher complexity
than FastHED. For the modified algorithm, its computational
complexity ς(n, s) can be expressed as:

ς(n, s) ↑ 2s
φ(l(s)) +

∑s↑1

h=0
ch log(l(h)), (12)

where the right side of (12) can be split into two parts:
ςA(n, s) = 2s

φ(l(s)) represents the computational complexity
of running NOPTS-DP for the 2s sub-chains at level s,
and ςB(n, s) =

∑s↑1
h=0 ch log(l(h)) represents the remaining

computational complexity of Algorithm 5 based on the results
of NOPTS-DP. At each level h, there are ch = |L(h)| sub-
chains and each sub-chain requires at most log(l(h)) time in
the K-loop as its length is upper bounded by l

(h) by Lemma 2.
Using Lemma 1 to Lemma 2 and (12), we present the proof

for Theorem 1 as follows.

Proof: Initially, we analyze the computational complexity
ςA(n, s). Note that ςA(n, s) is a convex function with respect
to s. We can utilize the minimum of ςA(n, s) (w.r.t. s)
to analyze the complexity upper bound of FastHED. It is
challenging to derive a closed-form expression to find the
minimizer s

↓ of ςA(n, s) as s is discrete. Thus, we introduce a
continuous variable s̃ and consider ςA(n, s̃) to determine s̃

↓.
Then we can estimate s

↓ by discretizing s̃
↓. Take the first

derivative of ςA(n, s̃) with respect to s̃:

dςA(n, s̃)
ds̃

= 2s̃[(2 log(l(s̃)) + 1/ln 2) · l(s̃) · dl
(s̃)

ds̃

+ ln 2 · φ(l(s̃))], (13)

where dl(s̃)

ds̃ = → ln 2 ·n/2s̃ +2 log n→2s̃+1. We choose spe-
cific values of s̃ to identify the zero point of the derivative. Let
s̃ = log n→ k log(log n) for k ↗ Z. That is, 2s̃ = n/(log n)k.
We can find the optimal k that minimizes ςA(n, s̃).

It can be verified that dωA(n,s̃)
ds̃ is negative when k = 3 and

positive when k = 1. The zero point occurs between k = 3 and
k = 1, i.e., around s = log n→ 2 log log n.

Next, we analyze the computational complexity of ςB(n, s).
We have:

ςB(n, s) =
s↑1∑

h=0

ch log(l(h))

↑
s↑1∑

h=0

2h(ϱ(h))
2
log(l(h))

↑ 2s( max
0→h→s↑1

{(ϱ(h))2 log(l(h))}). (14)

The first inequality holds since the number of the child sets
at level h is 2h and the number of sub-chains in each child
set is upper bound by (ϱ(h))2. This is because the number
of the left (or right) nodes of sub-chains in a children set at
level h is less than ϱ

(h). The second inequality holds since

(ϱ(h))
2
log(l(h)) ↑ max

0→h→s↑1
{(ϱ(h))2 log(l(h))} and

s↑1∑
h=0

2h ↑
2s. We have:

(ϱ(h))2 log(l(h))
↑ 4h

2(log n)2(log(n/2h) + log(2h log n))
= O((log n)2h2(log(n/2h)) + O((log n)4 log log n), (15)

where, the inequality holds when h ↑ log n. For ease of
description, we denote ↼(h) = h

2(log(n/2h). From (14)
and (15), we can derive the upper bound of ςB(n, s) as
follows,

ςB(n, s) = O(2s) · O( max
0→h→s↑1

{(ϱ(h))2 log(l(h))})

= O(2s) · O((log n)2 max
0→h→s↑1

↼(h))

+ O(2s) · O((log n)4 log log n). (16)

It can be verified that h
↓ = (2 log n)/3 is the maximum point

for ↼(h), i.e., O( max
0→h→log n

↼(h)) = O((log n)3).

For log n→ 2 log log n ↑ (2 log n)/3, we take s = log n→
2 log log n. We have ςA(n, s) = O(n(log n)2 log log n). As
s ↑ h

↓, we have O( max
0→h→s↑1

↼(h)) = O((log n)2 log log n),

resulting in ςB(n, s) = O(n(log n)2 log log n). Thus,
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O(n(log n)2 log log n) is an upper bound of FastHED. The
condition of log n → 2 log log n ↑ (2 log n)/3 also can be
rewritten as n ↑ 229.

For log n→ 2 log log n > (2 log n)/3, we use the maximum
of ↼(h) to obtain ςB(n, s) = O(n(log n)3). We take s =
log n → 2 log log n for ςA(n, s) = O(n(log n)2 log log n).
Hence, O(n(log n)3) is an upper bound of FastHED.

This completes the proof of Theorem 1.
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