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Abstract

Traditional graph systems mainly use the iteration-based
model which iteratively loads graph blocks into memory for
analysis so as to reduce random I/Os. However, this iteration-
based model limits the efficiency and scalability of running
random walk, which is a fundamental technique to analyze
large graphs. In this paper, we propose GraphWalker, an
I/O-efficient graph system for random walks by deploying
a novel state-aware I/O model with asynchronous walk up-
dating. GraphWalker is efficient to handle very large disk-
resident graphs consisting of hundreds of billions of edges
with only a single commodity machine, and it is also scalable
to run tens of billions of random walks with thousands of
steps long. Experiments on our prototype system show that
GraphWalker can achieve more than an order of magnitude
speedup when running a large amount of long random walks
when compared with DrunkardMob, which is tailored for ran-
dom walk based on the classical system GraphChi, as well as
two state-of-the-art single-machine graph systems, Graphene
and GraFSoft. Furthermore, comparing with the most recent
distributed system KnightKing, which optimizes for random
walks and runs on cluster machines, GraphWalker achieves
comparable performance with only a single machine, thereby
making it a more cost-effective alternative.

1 Introduction
To improve the performance of analyzing large graphs on
a single-machine, many out-of-core graph processing sys-
tems are proposed [6, 10, 11, 20, 24, 29, 31, 37, 42, 43, 49].
One major effort of these systems is to reduce random disk
I/Os. Generally, when a graph is too large to fit into the
memory, these systems partition the entire graph into many
subgraphs, and store each subgraph as a block on disk, e.g.,
shard in GraphChi [24]. To carry graph analysis, they adopt
an iteration-based model. In each iteration, blocks are se-
quentially loaded into memory, then analysis related to the
loaded subgraph is performed. This way, it turns massive
random I/Os into a series of sequential I/Os, and guarantees
synchronized analysis over all blocks in each iteration.

Random walks have been proven to be efficient to analyze
large graphs [7,12,15,19,23,26,27,36,38]. For example, Per-
sonalized PageRank (PPR) [12, 23] starts thousands of walks
from the source vertex to compute visit frequencies in order to

approximate PageRank values. SimRank (SR) [19] computes
the similarity for a vertex pair by first starting many random
walks from each of the vertex pair, and then computing the
expected meeting time. Random walk domination (RWD)
[27] starts walks from all vertices to measure the influence
diffusion over the whole graph. To compute PPR for all
vertices, and all-pair similarity, it is also required to start
random walks from every vertex, which results in massive
concurrent walks.

We observe that current graph systems with the iteration-
based model cannot efficiently support random walks. The
major limitations are three folds. First, due to the high
randomness nature, many walks are unevenly scattered at dif-
ferent parts of the graph, so some subgraphs may contain only
few walks. However, the iteration-based model is unaware
of these walk states, and just sequentially loads all needed
subgraphs into memory for analysis, so it results in very low
I/O utilization. Second, as the iteration-based model ensures
a synchronized analysis, all walks move exactly one step in
each iteration. As a result, the walk updating efficiency is
also limited and thus further exacerbates the I/O efficiency.
This is true especially for applications demanding long walks.
Lastly, due to the randomness of walks, the number of walks
at each vertex varies dynamically, so existing graph systems
usually use massive dynamic arrays to record the walks cur-
rently traveling through each edge or each vertex in the graph.
However, this indexing design requires large memory space
and thus limits the scalability of handling very large graphs.

Various design efforts are made in recent years to im-
prove the I/O efficiency of the iteration-based model, e.g.,
DynamicShards [43] and Graphene [29] dynamically adjust
the layout of graph blocks to reduce the loading of useless
data in each iteration. CLIP [6] proposes the re-entry scheme
and Lumos [42] proposes the cross-iteration value propaga-
tion technique, and both of them aim to make full use of
the loaded blocks to avoid loading the corresponding graph
portions in future iterations. These systems greatly improve
the performance, but they do not take into account the ran-
dom walk features. To efficiently support parallel random
walks, DrunkardMob [23]proposes several optimizations to
reduce the memory usage of walk indexes so as to support
a large amount of random walks. However, its scalability
is still limited, e.g., it costs 2.3 hours to run one billion
random walks with ten-step long on a medium-scale graph



YahooWeb [5], and it is even unable to run random walks on
very large graphs like CrawlWeb [3] due to its high memory
consumption. KnightKing [46] is the most recent distributed
graph system which is also optimized for random walks.
It provides a unified framework to support various random
walks, and mainly focuses on optimizing the walking process
without addressing disk I/Os.

To address the I/O efficiency problem so as to efficiently
support fast and scalable random walks, we develop
GraphWalker, which is an I/O-efficient and resource-
friendly graph system. GraphWalker mainly focuses on
improving the I/O efficiency by developing a state-aware
I/O model with asynchronous walk updating. It also utilizes
a lightweight block-centric walk management scheme
to improve memory efficiency. In summary, our main
contributions are as follows.

• We develop a novel state-aware I/O model, which lever-
ages the state of each random walk to preferentially load
the graph block with the most walks from disk into
memory, so as to improve the I/O utilization. We also
propose a walk-conscious caching scheme to improve
cache efficiency.

• We adopt an asynchronous walk updating scheme based
on the re-entry method [6], which allows each walk to
move as many steps as possible so as to fully utilize the
loaded subgraph and greatly accelerate the progress of
random walks. To address the straggler issues caused
by asynchronous update, we also employ a probabilistic
approach to balance the progress of each walk.

• We propose a lightweight block-centric indexing scheme
to manage walk states and adopt a fixed-length walk
buffering strategy to reduce the memory cost for record-
ing walk states. We also develop a disk-based walk
management scheme and use asynchronous batched I/Os
to write walk states back to disk so as to support running
massive random walks in parallel on huge graphs.

• We implement a prototype and conduct extensive ex-
periments to demonstrate its efficiency. Results show
that GraphWalker can achieve more than an order of
magnitude speedup compared with the random-walk-
specific system DrunkardMob [23], as well as two state-
of-the-art single-machine graph systems, Graphene [29]
and GraFSoft [20]. Furthermore, GraphWalker is more
resource friendly as its performance is even comparable
with the state-of-the-art distributed random walk system
KnightKing [46] running on a cluster of machines.

2 Background and Motivation
We first introduce the storage and computation process of the
iteration-based model, then analyze its limitations in support-
ing random walks.

2.1 Iteration-based Graph Computation
For simplicity, we take GraphChi [24], the pioneering single-
machine iteration-based graph system, as an example to il-
lustrate its key idea. We like to point out that this iteration-
based model is widely used in many graph systems like
[10,11,20,29,37,42,43,49]. GraphChi splits all vertices into
disjoint intervals and associates each interval with a shard,
which stores all the edges whose destination vertices lie in
this interval. Edges in each shard are sorted according to their
source vertices. For example, for the graph in Figure 1(a), its
data organization in shards is illustrated in Figure 1(b).

To perform analysis, GraphChi loads all subgraphs iter-
atively by using the parallel sliding window (PSW), which
is illustrated in Figure 1(c). In each iteration, it loads the
subgraphs in a round-robin order and guarantees synchro-
nization between all computation tasks over the whole graph.
Specifically, at each time slot, GraphChi loads one subgraph
corresponding to one interval into memory for analysis. It
first loads the in-edges from its corresponding shard, then
loads the out-edges from other shards. As edges are sorted
by source vertices in each shard, at most P sequential disk
reads are needed to load the subgraph corresponding to one
interval if there are P shards. Then GraphChi traverses the
vertices of the loaded subgraph and conduct computation.
This way, GraphChi transfers random accesses to a series of
sequential accesses and greatly improves the performance of
disk-resident graph processing.

2.2 Limitations in Supporting Random Walks
A random walk proceeds by starting at a source vertex, then
repeats the process of randomly selecting a neighbor to visit.
Many applications often need to simultaneously run massive
random walks [12, 27, 44, 47]. When supporting massive
parallel random walks, graph systems with the iteration-based
model suffer from several limitations, e.g., low I/O utilization
and low walk updating rate, as well as high memory cost
for managing walks. In the following, we analyze these
limitations in details.
Limitation 1: Low I/O utilization. First of all, the iteration-
based model leads to low I/O utilization for random walks,
which is defined as the number of edges used for updating
walks divided by the number of edges loaded in one I/O, i.e.,
a subgraph loading. The main reason is that walks may be
unevenly scattered across the entire graph after a few steps
even if they started from the same source vertex. As a result,
even if there are only few walks in some blocks, they are still
required to be loaded into memory, so it brings extremely low
I/O utilization. Some recent works like DynamicShards [43]
and Graphene [29] adopt an on-demand I/O strategy to dy-
namically adjust graph block layout and skip loading blocks
which do not contain any walks so as to reduce the loading of
useless edges, but the low I/O utilization problem is still not
fully addressed. As long as there is one walk in a block, then
this block still has to be loaded into memory for computation.
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(a) Example graph (b) Data organization in shards (c) Graph loading with parallel sliding window
Figure 1: Storage and I/O model in GraphChi

We also run experiments to demonstrate the skewed walk
distribution and low I/O utilization. We use DrunkardMob to
run 104, 106 and 108 walks of length ten on the Friendster
graph consisting of 68.3 million vertices, and consider start-
ing random walks from a single source (SSRW) or multiple
random sources (MSRW). Please refer to §4.1 for detailed
experiment setting. Figure 2(a) shows the average I/O uti-
lization, which is 3.1 ⇥ 10�6, 3.2 ⇥ 10�4 and 0.032 for
SSRW with 104, 106 and 108 walks, respectively, and the
results are similar for MSRW. We point out that the I/O
utilization is very low, especially for the case of small number
of walks. Figure 2(b) further shows the distribution of walks
over blocks after four iterations when running 106 walks
started from a single source, which demonstrates heavily
skewed distribution. We also run the same experiments with
Graphene, the average I/O utilization is 6.1⇥10�3, 3.1⇥10�3

and 0.032 for MSRW when running 104, 106 and 108 walks,
respectively. We find that Graphene can greatly improve the
I/O utilization when the number of walks is small, but the I/O
efficiency is still limited when running massive walks.

In our GraphWalker, we propose a state-aware I/O model,
which loads graph blocks by considering the states of walks.
Precisely, it always preferentially chooses to load the block
with the maximum number of walks so as to make more walks
get updated by using an I/O. Our experiment results show that
GraphWalker brings 2⇥ to 4⇥ I/O utilization (see §4.2.3).
Limitation 2: Low walk updating rate. The iteration-based
model also leads to low walk updating rate, which is defined
as the sum of walked steps of all walks in the loaded subgraph
divided by the total steps needed to walk. This is because
with the iteration-based model, each walk can only move one
step in each iteration in a synchronized pace, which severely
wastes the data in memory as many walks can still make more
moves over the loaded subgraph. To demonstrate, we run
106 random walks started from a single vertex by using the

104 106 108

#Walks

10-7

10-5

0.1%

10%

A
vg

.I
/O

 u
til

iz
a
tio

n

SSRW

MSRW

0 20 40

Interval ID

10
2

10
3

10
4

10
5

#
W

a
lk

s

(a) I/O utilization (b) Distribution of walks
Figure 2: I/O utilization under different walk settings and the
distribution of number of walks over blocks (intervals).

same setting as above. Figure 3(a) shows the walk updating
rate. We find that all walks together move only 1K steps on
average in one I/O, except for the first one, but we have total
109 steps to walk, so the updating rate is as low as 10�6.
We also count the fraction of walks that still remain in the
first block in each iteration as shown in Figure 3(b). We find
that on average, 75.3% walks still remain in the first block,
and they could move more steps in the current iteration, so it
results in the low walk updating rate. Recently, CLIP [6] pro-
poses a re-entry method and Lumos [42] proposed the cross-
iteration value propagation technique to reuse the loaded data
to improve the I/O and computing efficiency, but it also brings
extra cost as it accesses the whole subgraph multiple times.

In GraphWalker, we propose an asynchronous walk up-
dating scheme based on the re-entry technique to allow walks
to move as many steps as possible within the currently
loaded subgraph without extra subgraph accesses.With our
asynchronous walk updating scheme, GraphWalker greatly
increases the walk updating rate and reduces the completion
time of all walks. We also develop a probabilistic approach
to balance walk progress so as to address the straggler issues.
Limitation 3: High memory cost for managing walk data.
Since the number of walks at each vertex is dynamic and
unpredictable, walks are usually stored with massive dynamic
arrays, e.g., GraphChi associates each edge with a dynamic
array to store the walks currently traveling through the edge.
This design incurs high memory cost, e.g., it needs at least
26.4 GB space to store only the walk array indexes, not
including the walk states information, for a medium scale
graph like YahooWeb [5], which has 1.4 billion vertices and
6.6 billion edges.Some systems use a vertex-centric way to
manage walks [6,10,29], but it also incurs high memory cost,
e.g., 5.6 GB to store the walk array indexes for YahooWeb.

DrunkardMob encodes the states of a walk into a 32-bit or
64-bit representation and puts walks of adjacent 128 vertices
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still remain in the first block in each iteration.



into the same walk buffer to reduce the total size of walk
indexes. It reduces the size of walk array indexes to 1/128
of that of the vertex-centric management, e.g., only 44.8 MB
for YahooWeb. However, each walk buffer in DrunkardMob
is also managed with a dynamic array, so it still suffers from
the scalability problem. First, as it creates too many dynamic
arrays for large graphs, e.g., 11.2 million for YahooWeb, it
causes frequent memory re-allocation, which not only intro-
duces memory fragmentation, but also brings extra time cost
and limits the graph scale that could be analyzed. Second,
DrunkardMob keeps all walks in memory, so the number of
walks is limited by memory space, e.g., 10 billion walks cost
at least 40GB memory. Besides, it also incurs high cost to
flush walk indexes to disk as they are related to many files.

In our GraphWalker, we adopt a block-centric method
to manage walk data, so it greatly reduces the size of walk
indexes. We also use fixed-length buffers to cache walks so as
to avoid frequent memory re-allocation. With our lightweight
scheme, both the scale of graphs and the number of walks that
can be handled are no longer limited by memory capacity.

3 Design of GraphWalker
In this section, we first introduce the main idea of
GraphWalker, which is an I/O-efficient and resource-
friendly design targeted for random walks on single machine.
We then present the details of its key design techniques,
including state-aware graph loading, asynchronous walk
updating, and lightweight walk management.

3.1 Main Idea
We target for supporting not only a very large number of
walks, say tens of billions of walks, but also very long walks,
say thousands of steps for each walk. To achieve this goal,
the main idea is to adopt a state-aware model which leverages
the states of each walk, e.g., the current vertex at which the
walk stays. Briefly speaking, unlike the iteration-based model
which blindly loads graph blocks sequentially, the state-aware
model chooses to load the graph block containing the largest
number of walks, and makes each walk move as many steps as
possible until it reaches the boundary of the loaded subgraph.
By doing this, walks can get updated as much as possible
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within each I/O. As a result, both the low I/O utilization and
low walk updating rate problems can be efficiently addressed.

To further illustrate the above idea and analyze its benefits,
we still consider the example graph in Figure 1(a). Suppose
that we have to run three random walks which start at node 0
and have to move four steps. Figure 4 shows the process of
graph loading and walk updating with the state-aware model.
Specifically, in the first I/O, graph block b0 is loaded into
memory as it contains all the three walks. With the loaded
graph block b0, walk w0 and w1 move two steps, and w2

moves only one step as it requires other graph blocks which
are not in memory for walking more steps. As two walks
fall into block b2, in the second I/O, block b2 is loaded into
memory, and walk w0 finishes and w1 can move one step.
Finally, both the remaining two walks are in block b1, so we
load b1 into memory, and all walks can be finished. Note that
only three I/Os are required in this example. However, for the
iteration-based model, it may need 12 I/Os, because it uses
four iterations, and generates three I/Os in each iteration.
Remark. We would like to emphasize that the state-aware
model is different from the on-demand I/O model proposed
in DynamicShards [43] and Graphene [29]. Note that the
on-demand I/O model dynamically adjusts the graph blocks
layout in each iteration and skips the blocks without contain-
ing any walks, but it still follows the iteration-based manner.
Besides, even if there is only one walk in a block, it has to
load the block into memory for analysis.

Based on the above idea, we develop an I/O-efficient graph
system, GraphWalker, which supports fast and scalable ran-
dom walks. GraphWalker mainly consists of three parts: (1)
State-aware graph loading, (2) Asynchronous walk updating,
and (3) Block-centric walk management. The overall design
of GraphWalker is also illustrated in Figure 5. In the follow-
ing subsections, we present its design in details.

3.2 State-Aware Graph Loading
Graph data organization and partition. GraphWalker
manages graph data with the widely used Compressed Sparse
Row (CSR) format, which sequentially stores the out neigh-
bors of vertices as a csr file on disk, and uses an index file
to record the beginning position of each vertex in the csr
file. GraphWalker partitions a graph into blocks according
to vertex IDs. Specifically, we sequentially add vertices and
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their out-edges into a block according to the ascending order
of their IDs until the data volume in the block exceeds a pre-
defined block size, and then we create a new block. Figure 6
shows the data layout of the example graph in Figure 1(a).
Besides, this lightweight graph data organization decreases
the storage cost of each subgraph, and thus reduces the time
cost of graph loading. As GraphWalker partitions a graph
by simply reading through the index file once to record the
beginning vertex of each block, it is also flexible to adjust
block size for different applications.

For setting the graph block size, we find that a trade-off ex-
ists. That is, using smaller blocks can avoid loading more data
which are not needed for updating random walks, while using
larger blocks can have more walks getting updated in each
subgraph loading. Besides, different analysis tasks require
different walk scales, and thus prefer different block sizes.
Lightweight tasks with a small number of walks prefer a small
block size as the I/O utilization can get improved under this
setting. In contrast, heavyweight tasks with a large number of
walks prefer a large block size as large block size can increase
the walk updating rate. Based on this understanding, we use
an empirical analysis (see §4.4), and set the default block size
as 2(log10 R+2) MB, where R is the total number of random
walks. For example, in the case of running one billion walks,
the default block size is 2 GB, which is usually smaller than
the memory capacity of a commodity machine, so it is easy
to keep a graph block in memory.
Graph loading and block caching. GraphWalker con-
verts the graph format and partitions graph blocks in pre-
processing phase. During the phase of running random walks,
GraphWalker chooses a graph block and loads it into mem-
ory according to the the states of walks, and in particular, it
loads the block containing the largest number of walks. After
finishing analysis over the loaded graph block, it then chooses
another block to load in the same way.

To ease the impact of block size and improve cache effi-
ciency, GraphWalker also enables block caching by develop-
ing a walk-conscious caching scheme to keep multiple blocks
in memory. The rationale is that blocks with more walks
are more likely to be needed again in near future. Thus, the
graph loading process with block caching works as follows.
As illustrated in Figure 7, we first select a candidate block
based on the state-aware model, to load this block, we check
whether it is cached in memory or not. If it is already in
memory, then we directly access memory to perform analysis.
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Figure 7: State-aware graph loading with block caching

Otherwise, we load it from disk, and also evict out the block
in memory containing the fewest walks if the cache is full.
The maximum number of blocks cached in memory depends
on the usable memory size.

We emphasize that this walk-conscious block caching
scheme differs from conventional page cache in the following
aspects. First, we do not adopt prefetching as the state-aware
model does not prefer to access graph blocks sequentially.
Second, page cache manages data in memory at a page
granularity, while we manage at a block granularity so as
to fit the block-based graph loading and computing. Last
but not least, the eviction policy also leverages walk states,
which is different from LRU. Our experiments show that the
walk-conscious block caching scheme always outperforms
conventional page cache scheme.

3.3 Asynchronous Walk Updating
Note that in iteration-based systems, after loading a graph
block, each walk in the loaded subgraph walks only one step,
which induces to very low walk updating rate. In fact, after
walking one step, many walks are still staying at the vertices
in the current subgraph, so they can be further updated with
more steps. To improve the I/O efficiency, some works use
the loaded data re-entry [6], which allows the walks to reuse
the loaded data. Lumos [42] uses cross-iteration value propa-
gation to formalize reusing of loaded data for the subsequent
iteration in order to provide synchronous guarantees. The
idea is to re-enter the subgraph again to walk one more step
by traversing the vertices in the subgraph again. Moreover,
one can also keep re-entering the subgraph until all of the
walks reach the boundary of the subgraph.

However, the re-entering scheme may cause local straggler
problem. That is, many walks are able to move one step at
the first time when the graph block was just loaded, and as
the number of re-entries increases, most walks may reach
the boundary of the subgraph, and only few walks remain
in the subgraph, and they cost multiple re-entries to finish.
Our experiments show that the last 20% of walks in a block
may cost 60% of re-entries. These re-entries have very low
utilization and cost a lot of time. We also find that simply
stopping walking over the currently loaded subgraph after
certain re-entries cannot address the local straggler problem
either, and it does not reduce the completion time as the last
few walks still remain in the subgraph and we still need to



Figure 8: Asynchronous walk updating in parallel

re-load it with extra I/Os to finish the walks.
To further improve the I/O utilization and walk updating

rate, GraphWalker adopts an asynchronous walk updating
strategy, which allows each walk to keep updating until it
reaches the boundary of the loaded graph block. After fin-
ishing a walk, we choose another walk to process until all
walks in the current graph block are processed. Then we load
another graph block based on the state-aware model described
above. Figure 8 shows an example of processing two walks
within the same graph block. To accelerate the computation,
we also use multi-threading to update walks in parallel. We
emphasize that with our asynchronous walk updating model,
we completely avoid useless visits of vertices and eliminate
the local straggler problem.

However, the state-aware model may lead to the global
straggler problem. That is, some walks may move very fast
and make a large progress as the graph data they needed can
always be satisfied, while some other walks may move very
slowly as they may be trapped in some coldblocks which
are not loaded into memory for a long time. As a result,
GraphWalker can quickly complete most walks, but takes a
long time to finish the remaining few walks. Our experiments
show that a few walks often incur nearly half of total I/Os.

To address the global straggler problem, we introduce a
probabilistic approach into the state-aware graph loading pro-
cess in GraphWalker. The idea is to give stragglers a chance
to move some steps such that they can catch up the progress of
most walks. Specifically, every time when we choose a graph
block to load, we assign a probability p to choose the block
containing walks with the slowest progress, i.e., with the
smallest number of walked steps, and with probability 1� p,
we still load the block with the most walks. Note that the
global straggler problem will be mitigated more efficiently as
p increases, but the efficiency of the majority of walks will
decrease. So there is a trade-off for setting p. Based on our
empirical analysis, we find that p = 0.2 is an appropriate
setting, and we can get 20% improvement in some cases.

3.4 Block-Centric Walk Management
We record each walk with three variables, source, current
and step, which indicate the start vertex, the offset of the
current vertex in the block, and the number of moved steps,
respectively. We record each walk with 64 bits. The number
of bits allocated for each variable is shown in Figure 9. This
data structure can support starting random walks at 224 source
vertices simultaneously and it also allows each walk to move
up to 214 steps. Note that there is no limit on the total number
of walks as we can start many walks at each vertex.
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block array fixed-length 
walk buffer

…
block 0

block 1

walk pool 
in disk file

Pblock P

… source current step
0133963 1440
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Figure 9: Block-centric walk management

To reduce the memory overhead of managing all walk
states, we propose a block-centric scheme. For each graph
block, we use a walk pool to record the walks which are
currently in the block, referring to Figure 9. We implement
each walk pool as a fixed-length buffer, which stores at most
1024 walks by default, so as to avoid dynamic memory
allocation cost. When there are more than 1024 walks in a
block, we flush them to disk and store them as a file called
walk pool file. Note that we encode each walk with a 64-
bit long data type, so each walk pool only costs 8 KB. This
way, the memory cost for managing walk state is very low.
For example, for running one billion walks in YahooWeb,
GraphWalker costs only 800 KB if it uses 100 graph blocks.
However, DrunkardMob costs more than 4 GB as each walk
uses at least four bytes. Besides, these walks jump among the
11.2M dynamic arrays (refer to §2.2), and thus cause frequent
memory re-allocation and bring extra time cost.

When we load a graph block into memory, we also load its
walk pool file into memory and merge the walks with those
stored in the in-memory walk pool. Then we perform random
walks and update walks in current walk pool. During the
update process, when a walk pool is full, we flush all walks in
the walk pool to disk by appending them to the corresponding
walk pool file and clear the buffer. When finish computing
with the loaded graph block, we clear the current walk pool
and sum up the walks in both walk buffer and walk pool file
of each block so as to update the walk states.

With this lightweight walk management, we save a lot of
memory cost for storing walk states, thus it is able to support
massive concurrent walks. Besides, the fixed-length walk
buffering strategy turns many small I/Os for updating walk
states into several large I/Os, which largely reduces the I/O
cost for providing persistent storage of walk states.

4 Evaluation
GraphWalker aims for providing fast and scalable random
walks, so we take DrunkardMob [23], the state-of-the-art
single-machine random walk specific graph system, as a
baseline for performance comparison. Besides, there are
also a number of single-machine graph systems, which fur-
ther optimize the system performance from different as-
pects. For completeness, we also compare GraphWalker
with two state-of-the-art graph systems Graphene [29] and
GraFSoft [20]. To further validate its scalability, we compare
GraphWalker with the most recent distributed random walk
graph system, i.e., KnightKing [46].



4.1 Experiment Settings
Testbed. All experiments are performed on a Dell Power
Edge R730 machine with 64GB memory and 24 Intel(R)
Xeon(R) CPU E5-2650 v4 @ 2.20GHz processors. The entire
graph data are stored on a 3.2TB RAID-0 consisting of seven
500GB SamSung 860 SSDs if we do not state specifically. We
also study the performance of GraphWalker on HDDs. For
the distributed system KnightKing [46], it is run on an 8-node
cluster with 10Gbps Ethernet inter connection, each node is
equipped with two 8-core Intel Xeon E5-2620 v4 processors
with 20MB L3 cache and 64GB DRAM.
Dataset. Table 1 lists the statistics of the six graph datasets
we used. TT [4], FS [1], YW [5] and CW [3] are real-world
graphs. K30 and K31 are two synthetic graphs generated with
Graph500 kronecker [2]. These graphs are all widely used in
graph system evaluations. CSR Size indicates the minimum
storage cost by storing graphs in CSR format, and Text Size
is the size of the dataset stored in text format as an edge list.
We point out that Kron30, Kron31 and CW are large graphs
that can not be entirely put into the memory in our testbed,
and CW is the largest web corpus available in public.

Dataset |V | |E| CSR Size Text Size
Twitter (TT) 61.6M 1.5B 6.2GB 26.2GB

Friendster (FS) 68.3M 2.6B 10.7GB 47.3GB
YahooWeb (YW) 1.4B 6.6B 37.6GB 108.5GB

Kron30 (K30) 1B 32B 136GB 638GB
Kron31 (K31) 2B 64B 272GB 1.4TB

CrawlWeb (CW) 3.5B 128B 540GB 2.6TB

Table 1: Statistics of Datasets

Graph algorithms. Besides directly evaluating the perfor-
mance of running random walks, we also consider the fol-
lowing four common random walk based algorithms.

• Random Walk Domination (RWD) [27]. We start one
walk of length six from each vertex in the graph to find
a vertex set which has the maximum influence diffusion.

• Graphlet Concentration (Graphlet) [34, 35]. We use a
special graphlet, triangle, as a study case. We randomly
start 100 thousand random walks of length four to esti-
mate the ratio of triangles in the graph.

• Personalized PageRank (PPR) [12]. We simulate 2000
random walks of length 10 starting at each query source
vertex to approximate the PPR, which was shown to be
sufficient to ensure the accuracy.

• SimRank (SR) [19]. We start 2000 random walks of
length 11 respectively from the query pair vertices to
compute the expected meeting time,

Remark. The first two are graph computation algorithms
which utilize the entire graph, while the other two are graph
query algorithms which need only a portion of the graph.
We point out that all of them are classical and representative
graph algorithms. We run each experiment ten times and

compute the average completion time. Before each execution,
we also clear the page cache to avoid its impact.

4.2 Comparison with RW-Specific Systems
We validate the efficiency of GraphWalker by comparing it
with DrunkardMob, the state-of-the-art single-machine sys-
tem that is specially optimized for random walk. Both
GraphWalker and DrunkardMob are implemented based on
GraphChi. Note that random walk based algorithms usually
require to start certain number of random walks with certain
walk length, so we evaluate the performance by considering
different random walk configurations, so as to study the
performance of the entire design space and demonstrate the
scalability of GraphWalker in supporting large amount of
random walks with very long walk length. We also show the
performance of the four random walk based algorithms. Fi-
nally, we justify the improvement achieved by GraphWalker
by using micro-benchmark results.

4.2.1 Performance Study in Entire Design Space

We first show the results by fixing the walk length to ten,
but varying the number of walks from 103 to 1010, as de-
picted in Figure 10. In each figure, the x-axis indicates the
number of walks configured in each experiment, and the y-
axis shows the time needed to finish running all these walks.
First, we can see that GraphWalker is consistently faster
than DrunkardMob under all settings for different numbers
of walks and different graph datasets. In particular, in the
case of running 106 walks on YahooWeb, DrunkardMob
costs near 20 minutes, while GraphWalker takes only 17.8
seconds. That is, GraphWalker achieves 70⇥ speedup. In
general, GraphWalker achieves 16⇥ to 70⇥ speedup under
all settings. In addition, for the case when the number of
walks is not too large, then I/O cost is a dominate factor, so
the total time of running different number of walks is almost
a constant. However, as the number of walks continues to
increase, computation cost becomes larger, so the total time
cost also increases linearly when we run more random walks.

One attractive feature of GraphWalker we like to highlight
is its scalability. We point out that even for running tens of
billions of random walks on large graphs, GraphWalker can
still finish within a reasonable time. However, DrunkardMob
even fails to run 1010 walks on large graphs, due to the out-of-
memory error, so we do not show the results of DrunkardMob
in the setting of more than 1010 walks. More importantly,
when the graph becomes really large, DrunkardMob may fail
to run. For example, for Kron31 and CrawlWeb, Drunkard-
Mob also encounters the out-of-memory error. Thus, we do
not show the results on them for the interest of space. The
main reasons are as follows: (1) DrunkardMob keeps all walk
states in memory, so it’s hard to support massive walks. (2)
DrunkardMob employs a dynamic array index for every 128
vertices, so it incurs a large memory overhead when the graph
becomes really large, and its also hard to write the walks to
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Figure 10: Performance of random walks with different number of walks by fixing walk length as 10.
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Figure 11: Performance of random walks with different walk lengths by fixing the number of walks as 105.

disk for too many open files needed. However, because of the
block-centric walk indexing design and keeping walk states
on disk, GraphWalker is capable to support huge graphs,
e.g., Kron31 and CrawlWeb, even for running tens of billions
of random walks, e.g., GraphWalker finishes running 1010

walks on CrawlWeb within around one hour.
We also evaluate the performance by varying the walk

length. Here we fix the number of walks as 105 and vary
the length of each walk from 22 to 210. The results are
shown in Figure 11. First, we can see that GraphWalker
is always much faster than DrunkardMob, and it achieves
even more than three orders of magnitude in the best case.
In particular, when the graph is not extremely large, e.g., for
Twitter, Friendster, and YahooWeb, the time cost of Drunk-
ardMob continues to increase when running longer walks,
while that of GraphWalker is almost a constant, this is
because GraphWalker can cache almost the whole graph
in memory for medium-sized graphs, due to the lightweight
block storage and optimized block catching strategy, and thus
incurs very low I/O cost. For very large graphs which can
not be fully put in memory, e.g., Kron30, the time cost of
both DrunkardMob and GraphWalker increases as walks get
longer, as GraphWalker needs to swap in and kick out blocks
between memory and disk in this case. However, we point out
that GraphWalker is much faster, e.g., it achieves 7⇥ to 10⇥
speedup even for Kron30. This experiment also demonstrates
the scalability of GraphWalker in supporting long random
walks which have thousands of steps.

4.2.2 Performance of Random Walk based Algorithms

We now evaluate the performance of the four common
random walk based algorithms described in §4.1. From
Figure 12, we can see that GraphWalker achieves 9⇥ to

48⇥ speedup upon DrunkardMob. In particular, in some
special cases, e.g., running PPR and SR on YahooWeb,
GraphWalker even achieves more than three orders of
magnitude speedup, this is because YahooWeb has a very
good locality at the query vertices, so GraphWalker only
needs to load several corresponding subgraphs to run random
walks. However, DrunkardMob needs to iteratively scan the
entire graph and updates walks in a synchronized manner, so
it has a very low I/O utilization and takes long time.

We like to point out that DrunkardMob again fails to handle
the two largest graphs. due to the same reason explained in
§4.2.1, so we skip the results in these cases. Note that this ex-
periment also demonstrates the scalability of GraphWalker
in supporting massive walks and huge graphs.

4.2.3 Micro-benchmarks

Recall that the inefficiency of existing systems in running
random walks mainly come from the iteration-based I/O
model, and thus they suffer from low I/O utilization and low
walk updating rate (refer to §2). To better understand why
GraphWalker could significantly improve the overall perfor-
mance as presented in the last subsection, we further consider
these two micro-benchmarks to show how the state-aware
I/O model in GraphWalker address the limitations. We also
show the time cost breakdown to see how GraphWalker
improves the performance of each part along the random walk
process. We only show the results of running RWD algorithm
on YahooWeb, and results are similar for other settings.
I/O utilization. I/O utilization is defined as the edge usage
amount for updating walks divided by the total number of
edges loaded by one I/O. Note that an edge may be reused by
different walks, so we sum up the total times of being used for
all edges. Thus, the I/O utilization defined here may exceed
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Figure 12: Performance of random walk based algorithms.

100% when one edge is used by multiple walks. We point
out that DrunkardMob partitions the YahooWeb graph into
25 shards, and the walk length is six, so the total number of
I/Os required by DrunkardMob is 150. We can see that the
I/O utilization is only around 20% as shown in Figure 13(a).
In contrast, GraphWalker needs only 46 I/Os to complete all
walks, so the number of I/Os is significantly reduced. The
I/O utilization of GraphWalker is also much higher than that
of DrunkardMob. Specifically, the utilization of the first few
I/Os reaches up to 80%-160%, this is because the subgraphs
loaded by the first few I/Os have the most walks, and many of
them may use more than one edge to update. Even for most
I/Os, the I/O utilization of GraphWalker is between 40% to
80%, which is 2⇥ to 4⇥ compared to that of DrunkardMob.
Walk updating rate. Now we study the walk updating rate,
shown in Figure 13(b). Recall that DrunkardMob updates
50 million steps per I/O on average and costs 150 I/Os to
finish the computation. While GraphWalker significantly
improves the walk updating rate, it only needs 46 I/Os to
complete all walks and updates 185 million steps per I/O on
average, which is 3.7⇥ higher than that of DrunkardMob. The
main reason is that DrunkardMob adopts the iteration-based
I/O model, it walks only one step for each walk when loading
one block. In contrast, GraphWalker develops an asyn-
chronous walk updating method to fully utilize the loaded
graph data in memory (see §3.3), so each walk may move
multiple steps over the subgraph loaded by each I/O. As a
result, GraphWalker saves a lot of I/Os and completes all
random walks more quickly than DrunkardMob.
Time cost breakdown. To better understand the effect of the
design optimizations in GraphWalker, we also show the time
cost breakdown in Table 2. Note that in the whole execution
procedure, there are three key operations: (1) graph loading,
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Figure 13: I/O utilization and walk updating rate (Drunkard-
Mob needs 150 I/Os and GraphWalker only needs 46 I/Os)

which loads graph blocks into memory with disk I/Os, (2)
walk updating, which updates the walk states maintained in
memory, and (3) walk persisting, which includes to read walk
states from disk into memory and write back updated states
to disk for persistency. Besides, the three operations are pro-
ceeded in an interleaved way, so we aggregate the total time
of executing each operation. From the results, we can see that
GraphWalker outperforms DrunkardMob in all aspects. The
improvement is achieved by the integration of multiple design
optimizations, which all contribute to the high efficiency of
GraphWalker, e.g., the improvement of graph loading per-
formance mainly comes from the state-aware scheme with
the lightweight data organization and block caching policy,
and it also benefits from the asynchronous updating strategy.

4.3 Comparison with State-of-the-art Systems
Single-machine graph systems. There are a number of
optimizations being proposed in recent single-machine graph
systems, e.g., fine-grained block partition, asynchronous I/O
to support pipeline between I/O and computation, huge page
support to reduce TLB miss, etc. These optimizations are not
specific for random walks, so many of them are also orthog-
onal to the optimizations in GraphWalker. Thus, to further
demonstrate the efficiency of GraphWalker, we also com-
pare it with two state-of-the-art open-source single-machine
systems, Graphene [29] and GraFBoost [20]. For fair com-
parison, we only focus on the pure software implementation
of GraFBoost called GraFSoft. Note that GraphWalker is
implemented based on the baseline system GraphChi, so it
does not include the above mentioned design optimizations.

In this experiment, we focus on the case of running random
walks starting from a single source due to page limit. We fix
the walk length as ten and vary the number of walks. Note
that Graphene is a semi-external system which stores graph
data on disk while keeps all walk states in memory, so it is
unable to handle the case of massive walks, e.g., greater than
109 walks, or large graphs, e.g., larger than Friendster, due to
its high memory cost. In the interest of space, we only show

Time cost (s) DrunkardMob GraphWalker Speedup
Graph Loading 1005 47 21⇥
Walk Updating 3029 214 14⇥
Walk Persisting 1056 16 66⇥
Total Runtime 5110 278 18⇥

Table 2: Time cost breakdown
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Figure 14: Comparison with Graphene and GraFSoft

the results for Friendster, the largest graph that Graphene can
process, as well as the largest graph CrawlWeb. We observe
similar results for other graphs.

The results are shown in Figure 14, and we can have
several conclusions. First, GraphWalker consistently out-
performs Graphene even though Graphene is a semi-external
system which does not require I/Os to write back walk states,
and it achieves up to 19⇥ speedup. More importantly,
GraphWalker is also scalable to run huge amount of walks,
as well as process extremely large graphs, while Graphene
fails to run in these cases due to its high memory cost caused
by the semi-external design. Second, compared with GraF-
Soft, when the number of walks is small, the improvement
of GraphWalker is limited, because each block can only
have a few walks given the small total number and the state-
aware I/O model can not bring too much benefit. However,
the improvement of GraphWalker increases as the number
of random walks gets larger.For example, when running one
billion random walks on CrawlWeb, GraphWalker spends
only 21.8 minutes while GraFSoft can not even complete
the task within 24 hours. That is, GraphWalker achieves at
least 40⇥ speedup. More importantly, as we increase the
number of walks, the increase of time for GraphWalker is
sub-linear and much slower than that of GraFSoft, this further
demonstrates the scalability of GraphWalker in supporting
huge amount of random walks.
Distributed random walk system. To further demonstrate
the scalability of GraphWalker, and its resource-friendly
feature, we also compare it with a distributed graph system,
KnightKing [46], which is the most recent distributed graph
system optimized for random walks. In the interest of space,
we focus on a random walk based algorithm which is also
used in KnightKing, i.e., PPR. Specifically, it starts one walk
at each vertex, and each walk terminates with probability t
in each step. We set t = 0.15, which is a very common
setting in various applications [12, 25]. Note that smaller t
means larger average number of walk steps and requires more
computations, so KnightKing uses a small t to demonstrate
its computing efficiency. As KnightKing uses a cluster of
eight machines for evaluation in its paper, to enable cross-
validation, we also use eight machines at most, and focus on
the largest two graphs that can be handled by KnightKing
with eight machines, i.e., Twitter and Friendster. We also
convert the two graphs to be undirected as in KnightKing.

Figure 15 shows the results, and the number after each
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Figure 15: Comparison with KnightKing
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Figure 16: Performance on HDDs

system name denotes the number of machines being used.
We can see that for KnightKing, as the cluster size increases,
the computing time, i.e., the time for updating walks, gets
reduced greatly, but it still costs a lot of time for processing
I/Os, i.e., loading graph blocks. This is because KnightKing
mainly focuses on optimizing the computing efficiency, but
not disk I/Os. Note that the results of the computing time in
this experiment are consistent with those in the KnightKing
paper. In contrast, GraphWalker mainly targets for the I/O
efficiency problem, and also adapts the walk updating process
accordingly based on its I/O model, so it can realize very
fast random walks over disk-resident graphs. Here the walk
updating time also incudes the time for walk index persis-
tency. We also see that GraphWalker achieves comparable
performance even compared with KnightKing running on
eight machines. Even more, for the largest graph CrawlWeb,
KnightKing may need a larger cluster to run according to
the estimation of its used resources when processing other
smaller graphs. Thus, we can conclude that GraphWalker is
also a more resource-friendly alternative.

4.4 Impact of System Configurations
Performance on HDDs. We also study the impact of storage
devices by running experiments on hard disk drives (HDDs).
Figure 16 shows the time cost of running the four algorithms
we considered in this paper, and we only show the results
for Friendster and YahooWeb here. Since HDDs have much
lower random I/O performance than SSDs, the time cost of
both DrunkardMob and GraphWalker is increased. When
comparing GraphWalker with DrunkardMob, we observe
similar results as in the case of SSDs studied before. Pre-
cisely, GraphWalker achieves 3⇥ to 135⇥ speedup under
different settings.
Impact of block size. In GraphWalker, block size has
an impact on both I/O utilization and walk updating rate.



Specifically, smaller block size improves the I/O utilization,
while larger blocks can make walks move more steps for each
single I/O and thus improves the walk updating rate. To study
the impact of block size, we keep only one block in memory
and run the PPR algorithm on CrawlWeb as a study case.
Here, we consider two PPR algorithms which start random
walks from 1000 and 100000 sources, respectively. Note
that the two cases are representative to denote two typical
scenarios of accessing only a part of the graph or accessing
most of the entire graph.

Figure 17 shows the results. We find that it necessitates an
appropriate block size setting to achieve the best performance
due to the above analyzed tradeoff. The insight is that small
blocks may be beneficial to lightweight tasks which require
only a small number of random walks, as the I/O utilization
can get improved under this setting. In contrast, large blocks
may be beneficial to heavyweight tasks which require a large
number of random walks, as large block setting increases
the walk updating rate. Based on this observation, we also
propose a method to set the block size, which is determined
according to the number of walks (see §3.2).
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Figure 17: Impact of block size

5 Related Work
A number of graph systems have been proposed in recent
years, and some of them develop distributed systems based
on a cluster of machines so as to handle very large graphs
which can not reside on a single machine [8, 9, 13, 14, 21,
30, 32, 40, 48]. However, distributed graph systems usually
require efficient graph partition and low-cost communication
between machines. Besides, research efforts are also made to
leverage large memory in analyzing large graphs [16, 33, 39]
or utilizing GPUs to accelerate the computation [22, 28, 45].

Graph processing on single machine for disk-resident
graphs also receives a lot of attentions. GraphChi [24]
is the pioneering work, and X-Stream [37] further
develops a different computation model based on edge
streams. GridGraph [49] optimizes I/Os by selectively
loading needed graph blocks to bypass useless graph data.
DynamicShards [43] and Graphene [29] also aim to reduce
the loading of useless edges by dynamically adjusting the
graph partition layout. CLIP [6] and Lumos [42] improve
the utilization of the loaded graph blocks so as to reduce
the number of I/Os. There are also a body of works to
leverage high-performance emerging devices to improve

performances [10, 11, 20, 31]. The above systems are not
designed specially for random walks, so most of them still
follow the iteration-based model. Different from them,
GraphWalker targets for supporting massive concurrent
random walks in a fast and scalable way, and its key idea
is to utilize the states of walks to optimize the process of
graph loading and computing so as to improve the I/O and
computing efficiency.

In terms of random walk, besides developing new algo-
rithms, such as random walk with restart [41], FolkRank
[17] and TrustWalker [18], etc., there are also some works
focusing on system design. To support massive random walks
on large graphs, DrunkardMob [23] proposes an encoded
representation and a lightweight efficient index so as to be
able to run billions of random walks on a single machine.
As it follows the iteration-based model, it still suffers from
the I/O deficiency problem. Different from DrunkardMob,
GraphWalker focuses on optimizing the I/O management,
and it develops a new state-aware model with asynchronous
walk updating to improve I/O performance. In addition,
GraphWalker also allows walk states to be stored on disk,
instead of putting only in memory as in DrunkardMob, so it
is more scalable to run more walks on larger graphs.

Besides single-machine random walk systems, there is also
a distributed system KnightKing [46], which is recently pro-
posed and also optimized for random walks. It provides a
unified framework to support various random walks and fo-
cuses on optimizing the walking process without addressing
disk I/Os. Different from KnightKing, GraphWalker mainly
targets for addressing the I/O problem, and it is also more
resource friendly as it can process massive random walks on
large graphs on just a single machine.

6 Conclusion
In this paper, we proposed GraphWalker which is an I/O-
efficient system for supporting fast and scalable random
walks over large graphs on a single machine. GraphWalker
carefully manages graph data and walk indexes, and op-
timizes I/O efficiency by using state-aware graph loading
and asynchronous walk updating. Experiment results on our
prototype show that GraphWalker outperforms state-of-the-
art single-machine systems, and it also achieves comparable
performance with distributed graph system running on a clus-
ter machine. In the future work, we will consider to extend
the state-aware design idea in GraphWalker to distributed
clusters so as to process massive analytic tasks in parallel.
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