Cloud-based Push-Styled Mobile Botnets: A Case Study of
Exploiting the Cloud to Device Messaging Service

Shuang Zhao

ABSTRACT

Given the popularity of smartphones and mobile devices,ilmob
botnets are becoming an emerging threat to users and netperk
erators. We proposergewform of cloud-based push-styled mobile
botnets that exploits today’s push notification servicea aseans

of command dissemination. To motivate its practicality,pmesent

a new command and control (C&C) channel using Google’s Cloud
to Device Messaging (C2DM) service, and develop2DM bot-
netspecifically for the Android platform. We present strategie
enhance itscalability to large botnet coverage and itssilience
against service disruption. We prototype a C2DM botnet, [zard
form evaluation to show that the C2DM botnetsigalthyin gen-
erating heartbeat and command traffesource-efficienin band-
width and power consumptions, andntrollablein quickly deliv-
ering a command to all bots. We also discuss how one may de-
ploy a C2DM botnet, and demonstrate its feasibility in lehing an
SMS-Spam-and-Click attack. Lastly, we discuss how to gaizer

the design to other platforms, such as iOS or Window-based sy
tems, and recommend possible defense methods. Given tlee wid
adoption of push notification services, we believe that type of
mobile botnets requires special attention from our comiguni

1. INTRODUCTION

With the advent of mobile Internet access, we have seenfsigni
icant technological advancement of smartphones and mdbie
vices. This provides a fertile ground for hackers to reatiatmets
in a mobile network. In recent years, we have seen many real-
life examples of mobile botnets. In 2009, a mobile botnet Sym
bOS.Yxes [1] was discovered in the Symbian platform, whisidu
the conventional HTTP-based C&C channel for communication
In December 2010, the first iPhone botnet lkee.B [2] was found
in the wild. It targeted jailbroken iPhones and pulled comdsa
from a HTTP server. In the same year, the first Android botnet
named GEINIMI [3] emerged. It also used a HTTP-based C&C
channel for command dissemination. In 2011, a Short Mesgagi
Service (SMS)-based mobile botnet named ZeusS [4] was faund i

LA botnetis a network of compromised computers calbedsthat
are remotely controlled by laotmaster

Permission to make digital or hard copies of all or part o tvwork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Patrick P.C. Lee John C.S. Lui

Xiaohong Guan Xiaobo Ma Jing Tao

the Blackberry, Symbian, and Windows Mobile platforms. ded

an SMS-based C&C channel to communicate with the botmaster.
In September 2011, an Android bot callédserverBotvas identi-

fied and it was the first Android bot that used public blogs a<’C&
servers [5]. In late January 2012, an Android botnet disgliss

the game application “Madden NFL 12" [6] and used the Interne
Relay Chat (IRC) as its C&C channel. All these incidents¢atk

that mobile botnets have become an emerging threat for asers
network operators.

From a botmaster’'s perspective, how to deploy a stealthy and
robust mobile botnet is an interesting issue; from an opesaper-
spective, understanding the deployment strategy of a ediuit-
net is critical for defending against malicious attacks onoa-
erational network. Our key observation is that many smartgh
platforms provide theush notification servigewhich comprises
a cloud of push-based messaging servers that are resmoifwibl
relaying messages from application servers to mobile egptins.
There are various deployments of this service in differéatfprms,
such as Google’s Cloud to Device Messaging (C2DM) service fo
Android [7], Apple’s Push Notification Service (APNS) [8]fi®S,
Microsoft's Push Notification Service (MPNS) for Windows Mo
bile [9], Blackberry’'s Push Service (BPS) [10], and Nokille-
tifications APl (NNA) for Symbian and Meego devices [11]. Ar-
chitectures of these push notification services have onenmm
feature: application servers first send a notification nsseith
an intended receiver (or the target mobile device) to onehef t
cloud-based messaging servers, which thesheshe message to
the target mobile device. The push notification service iektes
the needs of application servers to keep track of the statenud-
bile device (i.e., active or offline). Furthermore, mobilevites
do not need to periodically probe the application serversrfes-
sages, thereby reducing the workloads of the applicatiovese
While the push notification service simplifies the mobile lagap
tion development, it can also be exploited by attackers itding
a highly potentandstealthymobile botnet compared to traditional
HTTP, IRC, or SMS botnets.

The aim of this paper is to expose such kind of potential at-
tack scenario. As a proof of concept, we consider GoogleBN2
service for the Android platform, and realize a cloud-bagesh-
styled mobile botnet using the push natification service @&
channel. We named it &2DM botnet which involves no direct
communication between the botmaster and various bots)biatad
exploits Google’s C2DM service as a relay. The botmastedean
seminate probes and commands to the bots via the C2DM service
and the botnet traffic can be “hidden” within the C2DM traffic o
other legitimate mobile applications. This makes the C20ivhbt
stealthy. In summary, we make several contributions in vattig
the practicality of this new form of mobile botnets:

e Design and implementation of a cloud-based push-styled mo-
bile botnet. We build a C2DM bhotnet for the Android platform us-
ing Google’s C2DM push notification service as the C&C channe
We propose a multiple-username strategy to enhansealability
to a large botnet size, and propose how to make the bataiient
against service disruption due to account unregistration.

e Performance evaluation of the C2DM botnet.We extensively
evaluate the C2DM botnet design, and show itss(dalthiness
in generating heartbeat and command traffic by hiding its-exi
tence under other legitimate C2DM traffic, (i§source efficiency
in bandwidth and power consumptions compared to traditidt@
and HTTP bots, and (iigontrollability in disseminating commands
to all bots within a short period of time.

e Demonstration of C2DM bot propagation and attack. We

send no more than four SMS messages during the dissemination
Weidman [18] design a transparent C&C channel for a SMSe¢base
botnet, in which the bot can intercept and read commands ifiem
coming SMS messages before the messages are presentesio use
Mulliner and Seifert [19] combine the Kademlia P2P networthw

an SMS-HTTP hybrid approach as the C&C channel for a mo-
bile botnet, in which the communication is split into HTTPdan
SMS parts. During command dissemination, the botmaster put
the encrypted commands on some website, and notifies some ran
dom bots via SMS to download and decrypt the commands, and
then forward the commands to other bots. We want to emphasize
that one disadvantage of SMS-based botnets is in the castéut
when sending commands via SMS, especially if the botnet is of
large scale. Also, the use of SMS may eventually alert ussis a

show how hackers can infect and propagate a C2DM bot using le- mobile operators since sending/receiving SMS messagefaiay

gitimate mobile applications, and show how this botnet eamt¢h
an effective SMS-Spam-and-Click attack.
e Extension to other mobile platforms. We discuss how the C2DM

payment to mobile phone operators.
Several botnet detection methods used in traditional inigaiet-
works are also applicable to detect centralized IRC- and HTT

botnet can be extended to other platforms, such as iOS and Mi- based mobile botnets. Akiyama et al. [20] propose to detett b

crosoft Windows.
e Recommendation of potential defense strategiedVe suggest
detection and defense strategies against this underlgiegtt

nets based on different metrics of botnet behaviors. Chali §21]
propose to detect botnets by differentiating botnet retgufesm le-
gitimate DNS traffic. Gu et al. [22] detect similar C&C acties

The rest of the paper proceeds as follows. 82 reviews related of bots with centralized servers. They later propose a batae

work. 83 presents an overview for the C2DM service. 84 prssen
the design and implementation of a C2DM botnet along withtstr
gies that enhance its scalability and fault tolerance. &Seqnmts
evaluation results for the C2DM botnet. 86 discusses howtan a

tection framework known as BotMiner [23] to cluster similaot-
net traffic. Specifically for mobile botnets, Vural et al. [a4e
a forensics-based approach: they first model normal desvdf
mobile users, and use the model results to identify the abalor

tacker may propagate a C2DM bot and feasibly launch an attack activities of malware or botnets.

87 shows how to generalize the C2DM botnet design to othér pla
forms. 88 discusses potential defense strategies, andngfudes.

2. RELATED WORK

There are a number of studies in the literature on mobiledistn

3. OVERVIEW OF C2DM

We now describe Google’s cloud-based push-styled meggagin
service, or theCloud to Device Messagin@C2DM) service (as il-
lustrated in Figure 1). It enables third-party developersand push

Traynor et al. [12] study how a mobile botnet launches a DDoS notifications to their mobile applications on Android dessc

attack against a cellular network core. They show that alssimad
mobile botnet is sufficient to cause nationwide outageytsat al.
[13] propose a mobile botnet using Bluetooth as a C&C channel
The commands are disseminated from one bot to another wfithin
radio range of bluetooth. Their experiments show that conttea
from the botmaster can reach about 2/3 of bots in 24 hoursigkia
et al. [14] discuss the single point of failure problem irditenal
centralized HTTP botnets. They propose a mobile botnet dame
URL Flux to make a traditional HTTP-based botnet more resili
against existing defense solutions. In URL Flux, the boteradis-
seminates commands by putting them on a social network teebsi

When a bot is about to pull a command, it generates hundreds of

usernames and combines them with the social network wébsite

domain name into hundreds of URLs. The bot then requests thes

URLSs one by one until it finds the valid one, and then retrighes
command.

————— » Pre-work

—> App Register

— Send Data

— -» C2DM Connection

> /‘N\\
oM S

(5b)yc2pm !
Connection Not |
2) \ Alive: Wait for |

C2DM

RPN
> st
:’ X \"\0 . .

= o o2 Registration \ \C2DM Connection
i o x[”\\(‘\ Usernam D \ toSend Data |
W (52)C2DM ‘, \
il g onnection Aliv Y |
App Server @ Send Data/ 9 ‘
G Y - _ _ _._ . _._
C2DM Username + y Persistent C2DM Connection

Registration ID Using Device’ s Logged in
Google Account

ot
Android App
in Device

Figure 1: C2DM architecture and its workflow.

Short Message Service (SMS) can also be used as a C&C medium

for mobile botnets. Zeng et al. [15] use SMS messages for @&C t
build mobile botnets. They leverage on the P2P topologitats
ture in the botnet to reduce the number of SMS messages lmihg s
and shorten the time delay for delivering SMS commands. @&éng
al. [16] propose an improved SMS-based mobile botnet. They d
vide bots into normal bots and regional bot servers to bulR2R
network in order to reduce the forward and search consumgtio
and enhance the robustness of the botnet. Hua et al. [1grdasi
SMS-based mobile botnet and evaluate its constructionrutitie
ferent topologies. Their simulations show that in a botmettain-
ing 20,000 bots, a command from the botmaster could be dgvert
disseminated to over 90% of all bots, and each bot only needs t

To bootstrap the C2DM service, the application developsrtba
first sign up for an account. This is done by providing the C2DM
server with the following: C2DM usernamepassworg and the
package namef the mobile application. Once the account is estab-
lished, the developer can embed the C2DM username in thdenobi
application, and distribute the application, say, via tfficial An-
droid Market or other third-party marketplaces.

We now elaborate the workflow of the C2DM service as depicted
in Figure 1. When the mobile application is first launched ma
bile device, it will perform the following steps.

e Step (1): The mobile application registers itself to one of the
C2DM servers using the C2DM username, which was provided by

the application developer, as well as ttevice 1D which uniquely
identifies the Android device that hosts the application.

e Step (2): The C2DM server provides a uniquegistration ID

to the mobile application. The registration ID is a bytersirthat
enables the C2DM server to identify the application runronga
specific Android device.

e Step (3): The mobile application sends this registration ID, to-
gether with its C2DM username, to the application serveiiciwvh
will then record this registration ID in its database.

4.1 Baseline C2DM Botnet Architecture

We first describe the baseline architecture of a C2DM boteet,
shown in Figure 2. Before building a C2DM botnet, the botraast
first bootstraps a C2DM service as for other normal C2DM appli
cations (see 83). Then the steps of how a new bot joins the C2DM
botnet and how the botmaster disseminates commands camée do
as follows (referring to Figure 2).

e Bot registration (Steps (1) to (3)): When a new bot joins a
C2DM bhotnet, it first registers itself to one of the Google G2D

* Step (4): When the application server needs to send data to a servers with the following information: (i) the package reaemd
mobile device, it sends the C2DM username and password to thethe C2DM username, both of which are embedded by the botmaste

C2DM server (Step (4a)), and gets an authorization tokehdf t
username and password are valid (Step (4b)). The authorizat
ken will be used to notify a set of mobile devices in the dasaba
The application server then sends a C2DM request, whiclaoumnt
the notification message, the registration ID of a mobileliapp
tion, and the authorization token to the C2DM server (Step)(4
Note that the message in Step (4c) is sent gerdevicebasis.
Thus, if there aré: devices that need the notification, then the ap-
plication server will send messages to the C2DM server.

e Step (5): Upon receiving the message, the C2DM server looks
for the specific Android device based on the registrationlihe
C2DM connection of that device is alive, then the C2DM server
will send the notification message to the mobile applicatiorthat
device (Step (5a)); if the mobile device is disconnectedntthe
C2DM server will store the notification message, and sende
sage to the application on the mobile device when the degee r
establishes its connection with the C2DM server (Step (5%re
that Step (5) implies that there iparsistent C2DM connectidre-
tween the C2DM server and the Android device that subsctibes
the C2DM service.

Google’s C2DM service provides a flexible solution for devel
opers to send lightweight messages to mobile applicatiotieut
requiring mobile devices to connect to their servers pécaily to
pull for messages. Google manages the storage and forgautlin
messages. Thus, it simplifies the mobile application desigal
reduces the network traffic and battery usage of mobile devic
C2DM maintains a persistent TCP connection for each molaite d
vice with a C2DM server, and the time interval for each heart-
beat message of this persistent connection is around 15430 m
utes depending on the device state (iCTIVIT, IDLE, SYNC,
NOSYNC). When a new C2DM message arrives, the mobile de-
vice will wake up the mobile application to receive the mgssa

The C2DM service is available for a device running on Android
2.2 or higher versions. The device must have the Market (now
Google changes its hame to Play Market) application irestadind
at least one logged-in Google account [7]. Market is one ef th
factory-installed applications in the Android platfornipag with
other popular mobile applications like Google Maps, Gmail, etc.
Users are required to log in with a Google account and enhble t
C2DM service when using these applications. There are adsym
other popular applications which rely on the C2DM serviaghs
as Instagram, Facebook for Android, and LINE. Thus, we expec
that the C2DM service is enabled in majority of Android dedc

4. DESIGN OF A C2DM BOTNET

This section presents the design and implementation of aMC2D
botnet. Our design is based on the official and open C2DM archi
tecture. To ease our presentation, we first discuss a baselthi-
tecture for a C2DM botnet. Then we present an enhanced ecehit
ture that has a stronger stealthiness property. Finallyaderess
the scalability and fault-tolerance issues.

in the distributed malware package, and (ii) the Googleant

ID of the mobile device. If the registration is successfhgrt the
C2DM server will return a unique registration 1D to the boti- F
nally, the bot sends the registration ID and the C2DM usem@am
the botmaster's C&C server, which will then record this sbgi-
tion ID in its database for future command dissemination.

e Command dissemination(Steps (a) to (c)): The botmaster dis-
seminates commands to all registered mobile bots via a C&@se
The C&C server first authenticates itself to the C2DM server b
using its Google’s account ID and password. After authatitio,
the C2DM server will return an authorization token to the C&C
server, which then constructs a C2DM requestefachmobile de-
vice (or bot). The request contains the command by the baémas
the registration ID of the bot, and the authorization tokérhe
C&C server then sends the request to the C2DM server. Based on
the registration ID, the C2DM server will push the messagth¢o
bot. Note that theC2DM service only allows one registration ID
in each C2DM request This implies that sending commands to
multiple bots requires the C&C server to send multiple ratgie
We will discuss how to scale up a botnet and control the messag
dissemination in 84.3, and how to control message delivegpi3.

----- ¥ Bot Registration
(b —> Command Dissemination
C2DM Username & Password,

Registration ID,
Command

*,

C&C Server

.) I RS
C2bM Uscrnamcs éRegislration
(@) ~, Package Name : ! D
Command 3 .
C2DM Username;., Py

Registration ID

L

Botmaster

()

Command

g

Bot

Figure 2: Baseline architecture of a C2DM botnet.

4.2 Enhanced C2DM Botnet Architecture

In the baseline architecture, each bot needs to directlgl &sn
registration ID to the C&C server. This increases the pdsyib
of being detected and reveal the identity of the C&C servay. T
improve the stealthiness, the enhanced architecturerglias the
direct communication between a bot and its botmaster.

Before building a C2DM botnet, the botmaster needs to sign
up two C2DM accounts: (iC2DM username_M, which is used
by the botmaster's C&C server to send messages to its bals, an
(ii) C2DM username_B, which is used by the bots to send mes-
sages to the C&C server. The botmaster needs to registétitse
C2DM server usingc2DM username_B to obtain a registration

ID, which will later be used by the bots to send C2DM messages
to the C&C server. We assume tt@2DM username_M, C2DM
username_B, and the botmaster’s registration IDs are all embed-
ded in the malware package.

(b)

Command

m
M 2DM Username_M

(a)
C2DM Username_M & Password,
Registration ID of Bot,

Command
—_tommancd

Botmaster Registration ID of Bot Bot

C2DM Username_B & Password,
Registration ID of Botmaster,
Message(C2DM Username_M

and Registration ID of Bot)

----- » Bot Registration
—> Command Dissemination

Figure 3: Enhanced architecture of a C2DM botnet.

Figure 3 depicts the enhanced architecture. The steps oégot
istration and command dissemination are revised as follows
e Bot registration (Steps (1) to (4)). When a new bot joins a
C2DM botnet, it registers itself to one of the C2DM servers us
ing its package name arf@PDM username_M. If the registration
is successful, then the C2DM server will return a uniquesteg
tion ID to the bot. Then the bot uses the accoun€abDM user-
name_B and the botmaster’s registration ID (both of which are
embedded in the malware package) to send its own registriRio
andC2DM username_M to the botmaster, which records the in-
formation for later command dissemination.
e Command dissemination(Steps (a) to (b)). To disseminate com-
mands to all registered mobile bots, the C&C server contstrac
C2DM request foreachbot. Unlike the baseline architecture, this
request now contains the acco®®2DM username_M, the reg-
istration ID of the bot, and the command. The C&C server sends
the request to the C2DM server, which will then be pushed o th
corresponding bot based on the registration ID.
Remark on stealthiness and reliability. One major advantage
of the enhanced architecture is that during the bot regjistrae-
riod, the bot sends its registration ID and C2DM usernaméago t
C&C server via the C2DM server. Thus, it is stealthier thaa th
baseline architecture. However, one shortcoming of theuecdd
architecture is that it relies on the botmaster’s regigtratD for
communication, and Google may revoke any registration HD ith
maliciously used. Although our experience is that Googldmsa
explicitly un-registers registration IDs, there is no qardee that a
registration ID will remain valid permanently. If the retyegion ID
is revoked, then the bots cannot send messages to the betmast
We will discuss how to overcome this issue in §4.4.

4.3 Scaling up the C2DM Botnet

count per day should suffice to disseminate commands toall th
bots, and it takes only a short duration to disseminate camst

the whole botnet under our QPS requirement. We will discss t
controllability and estimate the time needed to dissemimaim-
mands to most of the bots in 85.3. However, using one C2DM
account to maintain a botnet becomes problematic if (i) thiedt

is of large size, or (ii) the botnet needs to send more than0R0O
push messages per day.

To build a large-scale C2DM botnet, we propose to msktiple
C2DM username® decompose a large botnet into several smaller
subnets. Each of these subnets uses a unique C2DM username
to communicate with its own bots. We elaborate how to incor-
porate multiple C2DM usernames into a C2DM botnet, using the
enhanced architecture as an example, as shown in Figurerd, He
a bot joins the botnet using tavo-phaseC2DM registration pro-
cess. The bot first registers to a C2DM server using an inisat-
name, and then sends its own registration 1D to the botmakter
the C2DM service (Step (1)). The botmaster, upon receivireg t
C2DM message, chooses one of the pre-defined C2DM usernames
and sends it to the bot via C2DM (Steps (2) to (4)). Then the bot
re-registers to a C2DM server with the new C2DM username and
sends the new registration ID to the botmaster via C2DM (St&p
to (6)). The botmaster will then use the new registrationdBénd

commands to the bot.
CTED

username_1

4D

username_2

\

username_n

(6) Registration ID with
New Username of New Bot

Botmaster

(1) Register C2DM with Y

initial username, and send ,"(4) New
registration ID to Botmaster. ,’ Username

of New Bot A

username, and send new

New Bot . N
registration ID to the Botmaster

Figure 4: Registration in a large-scale enhanced C2DM botrte

4.4 Handling Account Un-registration

Each botnet must deal with the single-point-of-failurelpeon.
We now discuss how a C2DM botnet can self-configure in case a
core component fails. In a C2DM botnet, we argue that the C&C
server, though important, is not the core factor to consitier to
two reasons. First, bots communicate with the C&C servey onl
once during their registration. Once a botnet is built, lwaitsnot
directly communicate with the C&C server, so it is quite Rtea
Second, one may use well-known social networking websitek s

As mentioned in 84.1, each C2DM request can only be sent to as Twitter, Facebook to set up a C&C server to enhance thithstea

a single device. Also, some quota limits may be posed on tiee ra

of push messages that can be delivered. For example, Ggogle’

iness [14, 25].
Onthe other hand, we need to ensure the robustness of the C2DM

C2DM service limits each account to send no more than 200,000 service in a C2DM botnet. If the C2DM service is unavailabien
push messages per day [7]. Furthermore, when signing up for athe communication between the botmaster and bots will befEut

new C2DM service, one needs to specify the estimated pealegue
per second (QPS), which is a short-term push rate permitieaf
application. In C2DM, there are four choices for QPS: “0 -'®,

- 107, “11-100" and “> 100”". To ensure that the C2DM botnet is
stealthy, we assume that the QPS of a C2DM botnet is less @tan 1
to avoid drawing Google’s attention.

One way this may happen is that the C2DM service used by the bot
is bannedand un-registerecby Google. When a bot registers to a
C2DM server, it is required to provide both its package nane a
C2DM username. In our experiments, we find that when we sign up
for a C2DM service, the package name need not be unique. én oth
words, one can sign up for the C2DM service using the same pack

For a small-scale C2DM botnet, 200,000 push messages per acage hame as other existing applications. This implies thetgle

is not likely to ban specific package names from the C2DM ser- will connect to a C2DM server with a persistent TCP connectio

vice, as it may unexpectedly ban other legitimate serviGesthe

and sends periodic heartbeat messages to a C2DM serverdo che

other hand, the C2DM username may be banned from any C2DM for any new push message. We compare the C2DM heartbeat traf-

service, and this can shut down the communication of theeenti
C2DM botnet.

To overcome service disruption due to the un-registratiche
C2DM username, one can again leverage the multiple-usernam
strategy proposed in 84.3. The main idea of such a strategy is
set up several backup C&C servers, and if a bot has not reteive
any messages from the botmaster for a pre-defined duratign (e
one week), then it will communicate with one of the backup C&C
servers and query whether it needs to change its C2DM usetnam
If it gets a new username, it will use the new username to tegis
to the C2DM service again and sends the new registration ID to
the C&C server in order to re-join the botnet. We point out tha
the backup C&C server also possesses the stealthinesstyrope
cause bots seldom communicate with it.

5. EVALUATION

In the previous section, we showed that the C2DM botnet com-
munication protocol possesses the stealthiness prop#rgye is
no direct communication between the botmaster (or C&C server)
and bots. In fact, all communication and command dissemoimat
are carried out via the C2DM service. In this section, we take
closer examination on the stealthiness property by measg\(&)
the heartbeat overhead of maintaining a C2DM persistermemn
tion; (b) the capability of hiding command disseminationoag le-
gitimate C2DM traffic, and (c) resource (i.e., bandwidth podier)
consumption on mobile devices. We also explorecitratrollability
of a C2DM botnet: if a C&C server wants to disseminate a com-
mand, then what is theinimum timeneeded for the botmaster to
claim, with a high probability, that all bots receive the qoand?

5.1 Stealthiness in Control/Data Plane

We first examine the stealthiness of a C2DM botnet in terms of
network traffic. System operators can perform online/cdflivet-
work traffic analysis to detect a botnet [22, 23], and exantiree
following suspicious behaviors(i) connecting to some unautho-
rized servers (i.e., C&C servers) using domain names, URLS
addresses, and (ii) communicating with one or more servéts w
certain periodic patterns or with an abnormally high fretpye For
example, a traditional HTTP bot will connect to a C&C servéthw
an unauthorized domain name or IP address, and periodizailly
commands from the C&C server. These periodic connections ca

fic of two Android phones, one being installed with a C2DM bot

and another being a clean Android phone. Both Android phones
are installed with a number of legitimate applications tleafuire

the C2DM service. Figure 5 shows the traffic patterns of heart
beat messages under different settings, where the x-akis time
(with unit in minutes) and the y-axis is the traffic volume tfwinit

in bytes). Figures 5(a) and 5(c) show the heartbeat traftieipes

for a phone with a C2DM bot, while Figures 5(b) and 5(d) show
the heartbeat traffic patterns for clean a mobile phone, thite or
five legitimate C2DM applications, respectively. We obsetivat
the traffic patterns of these settings almost identicalsince all le-
gitimate mobile applications which use the C2DM servicesliae
same persistent TCP connection per device. This allows aMC2D
bot to hide itself under legitimate C2DM heartbeat traffianc®

a C2DM bot relies on the existing C2DM service of the mobile
phone, if the C2DM service is not enabled, then the bot will be
dormant and will not generate any C2DM heartbeat traffic.

N I

100

N I

100

50 50
time(minute) time(minute)
(a) Device with C2DM Bot, Gmail
and Google Maps

L1

50
time(minute)
(C) Device with C2DM Bot, Gmail(d) Clean device with Gmail, Google
Google Maps, Facebook, LINE and Maps, Facebook, LINE and Instagram
Instagram

(b) Clean device with Gmail, Google
Maps

500

traffic(byte)

[0)
0

|

time(minute)

Figure 5: C2DM traffic: (a) and (c) are traffic for a C2DM bot;
(b) and (d) are traffic for clean devices, with 3 or 5 apps.

Stealthiness of command disseminationiVe examine the stealth-
iness of a C2DM botnet in the data plane. Note that many Addroi
phones typically come with a number prfe-installedapplications
such as Gmail, Google Maps, Google Play, or sguopular ap-
plications like Facebook, LINE, Whatsapp, etc. All thesplma-
tions use C2DM services. Upon installation, the C2DM botvksio

expose the presence of a bot. An advanced HTTP bot may usewhich of these legitimate C2DM applications are installedtie

URL flux [14], which uses authorized domain names such ad-‘twi
ter.com” to pull commands, but frequent connections cao hés
classified as abnormal behavior.

We expect that a C2DM botnet has high stealthiness with the fo
lowing intuition. In the baseline architecture (see §4alhot con-
nects to a C&C server onlgnce i.e., when sending its registration
ID. Then during the keep-alive period, the bot will never coumi-
cate with the C&C server. In the enhanced architecture (46,8
a bot connects to a C&C server only when the registration Whis
registered (see 8§4.4). Thus, the probability for a C2DM ébto
expose a bot or the C&C server is kept at minimum. In the follow
ing, we examine the stealthiness of a C2DM botnet by meagurin
the network traffic in botltontrol and data planeswWe implement
a C2DM bot in the Android emulator [26], while the measuremen
results are also applicable for real Android phone devices.
Stealthiness of heartbeat traffic. We first look into the control
plane, and focus on the periodic heartbeat messages. Nuté th
an Android phone enables any legitimate C2DM service, then i

mobile phone, and this provides valuable information toasce
its stealthiness. For example, in [27], authors indicateititerar-
rival time of Gmail messages is about 0.53 hours. Thus, ifta bo
master disseminates commands with an average interatirval
longer than those of the legitimate C2DM applications, thesa
easy to hide the existence of a C2DM bot.

We perform experiments by installing a C2DM bot into an An-
droid phone that is pre-installed with Gmail and Google Mafs
then measure the data traffic generated by the bot and thielatg
applications Gmail and Google Maps as follows. During theeex
iment, the C&C server sends commands to the bot. In the same
measurement period, the phone also receives several eotifil n
cations from Gmail and check-in notifications from Googlepga
Figure 6 shows the data traffic generated by the bot and tlite leg
mate applications in one particular measurement. We obghat
the C2DM botnet traffic only occupies less than 20% of thealVer
data traffic. The size of each C2DM botnet traffic burst is aksy
small, in the range of 200-400 bytes. This shows the stemigsi

property of a C2DM botnet in the data plane. 1000 bytes even when there is no command. This size is much
larger than those of C2DM and IRC bots because the HTTP bot has

2000 P =yE— to re-establish a TCP connection each time and transmiggsoi
g 1800F | —— C2DM Bot Trafi complete the TCP 3-way handshake. HTTP packets are alser larg

<€ 1000 than TCP packets in general due to the additional applicdéger

€ w0 payload. In addition, the time interval of the pull-commazah-

. A A A M nections affects the average delay of command disseminétiar

0 10 20 3 40 50 60 70 example, if the time interval for pulling commands is seXtanin-

time(minute)

utes, then the average time delay for each bot to receive ao@w
mand will be X/2 minutes. In our experiment, we set the bot to
periodically retrieve commands from the C&C server usinglRT
requests to imitate the pull-command behaviors of a HTTP bot

Figure 6: C2DM traffic generated by a C2DM bot and legiti-
mate applications.

5.2 Efficiency in Resource Consumption 2000 —HTTP Traffic
One major difference between a conventional PC-based thotne £ 1500 IRC Traffic
and a mobile botnet is that the latter needs to consider resou < 1000 —C2DM Traffic

consumption, especially for bandwidth and power, becausst m E
mobile phones have limited network and battery capacitiés g 500 A /\ /\ A\ /\ /\ /{\ /\
mobile bot significantly consumes bandwidth or battery veses, 0 L L L :

. - 0 20 40 60
then it may draw unnecessary attention of users and revept#s- time(minute)

ence of a bot. We now evaluate and compare the bandwidth and

power consumptions of a C2DM botnet with other mobile batnet Figure 7: Heartbeat bandwidth consumption for C2DM, IRC
that use traditional IRC and HTTP as C&C channels. and HTTP bots. ’

5'2'].' Bandwidth Consumption . Figure 7 shows the result with the pull-command intervaltset
We install a C2DM bot, an IRC bot and three HTTP bots (With 1 minutes. We summarize the results here. The average tetfi
time intervals for pulling commands from the C&C server asG, of the C2DM heartbeat connections is 900 bytes/hour, whitee
and 30 minutes) into five different Android phone emulatofée of the IRC and HTTP heartbeat connections are 5,760 bytes/ho
then measure the traffic consumption of each Android phone fo (i.e., 6.4 times) and 7,200 bytes/hour (i.e., 8 times), aetpely.

one hour. To do a fair comparison, we compare the overhead in Thig shows that a C2DM bot generates significantly less beatt
the control plane (in other words, we assume these bots have t | ;¢ and hence bandwidth resources

same bandwidth consumption in disseminating commands)s,Th
the traffic consumption of each bot depends on two factojshéa 5.2.2 Power Consumption
time interval of heartbeat connections, and (b) the volufnthe
traffic of each heartbeat connection. Figure 7 depicts thetbeat
traffic of these three types of bots.

e C2DM bot: The time interval of the heartbeat connections of the
C2DM service is in the range of 15 to 30 minutes depending on
the .state of the mqblle phone. In our experiment, the twngnnt 3G, during the heartbeat period of each type of bots.

val is around 28 minutes. The traffic of each heartbeat mesisag WiFi power consumption. To measure the WiFi power consump-
between 250 and 300 bytes. Note that if the phone has are other, :

" o . - tion, we install each bot in an Android phone emulator rugron
legitimate applications which also use the C2DM servicentthe S . . -
. o . . a PC, which is connected to a C&C server over a university WiFi
bot will use the existing heartbeat connection and will renerate

. network. We install Wireshark on the same PC, and capture all
any extra heartbeat traffic.

e IRC bot: The IRC bot uses thping-pong mechanisro keep pac!<ets of the emulator in order to calculatg Fhe trans.mllsjmne..
. i ;) Figure 8 shows the power states of WiFi transmissions in an
alive, such that it sends a ping request to the C&C server aits w . - :
. Android HTC phone. The WiFi power consumption depends on
for the response from the C&C server. This can be treatedeas th) :
. S . the number of packets sent/received per second, while ttieepa
heartbeat connection [28]. The time interval of the pingigpoon-

versations can be customized and is usually between 30 &hd 60 size has limited influence [31]. When a phone connects to d WiF

seconds as set in most of today’s IRC server software. Nate th network an.d stays 'd.le’ 't. IS in the .IOW pO\‘I‘VGF statg. When it
- : L sends/receives data, it switches to either the “ltransanithtrans-
the ping-pong interval cannot be too large, or it will impdssavy

Lo . . mit” state, according to the transmission speed of the garkden
burden on the IRC server to maintain many persistent corumect e - L oo - i
. . - it finishes sending/receiving data, it will switch back te threvi-
for a long time. In our experiment, the IRC bot is implemented

based on PircBot [29], and the C&C server is built using themnsp ous state. In our experiment, the maximum packet speeds of _al
. . types of bots are below 15 packets per second, so the only in-
source IRC server software named beware-ircd [30] withudefa . . u)
. - ; ; . volved power states during our experiments are “ltransraitt]
settings, where the ping-pong interval is 90 seconds anttaffe W .
. o low” power states, as shown in Figure 8.
generated by each ping-pong conversation is around 208.byte

e HTTP bot: Unlike C2DM and IRC bots, a HTTP bot does not tra\ﬁ]vfnfii‘ﬁ‘é'r?tiﬁ t:fepﬁg"(ﬁro‘;zgi‘ﬁ]r%%tt'%gg ngr‘:'Es)u‘;‘tjigrr‘]g(ggiig
use any persistent TCP connection to keep alive with the C&C 4

server, so it cannot receive commands instantly and hasrte co ing that the total time span of transmitting packetsone hour is

nect to the C&C server from time to time to pull for commands. 2\ne do not consider the power consumption of the “low” power
We regard this periodic pull-command connection as itstheat state since every phone which connects to the Internet withi W
connection. The traffic of each pull-command connectiorbua will stay in the "low” power state while idle.

We now evaluate and compare the power consumptions of C2DM,
IRC, and HTTP bots. Our evaluation is built on [31], which pro
pose power estimation models for different components erbh
sis of an Android HTC Dream phones. Here, we focus on the power
consumption in theommunicatiocomponent, including WiFi and

Traffic less than that the power consumption in the IDLE state is zero, the lates-

Send/Receive data 8 packets/s No data

@;@H 7 «— mm;@ _rnission time in CELL_F_AC_ZH iéZ_}, the idle time in CELL_FACH
- od t’ Traffic more -)-, — is T;, the data transmission time in CELL_DCH13, the idle
1000mW omw S omw 1000mW Emepg]wcérE;LEEEF_ggﬁ ’ig;:: power in CELL_FACH isP, and
Figure 8: Wi-Fi power states of Android HTC Dream [31]. W =Py (Ty +Tpi) + Py - (Ta+ Tas)- (4)
As in the WiFi analysis, we let(in seconds) be the packet trans-
T; and the power of the “Itransmit” state 13: mission time in each heartbeat connection, angh seconds) be
the interval of keep-alive connections. For C2DM and IRGsbot
W=~F-T. (1)

their heartbeat traffic volumes are generally small (se2.8h.so
Suppose that it takes timg(in seconds) for a bot to transmit all ~ they remain in the CELL_FACH state (i.e., low power) durihg t

packets in each heartbeat connection. Let the heartbeavahbe heartbeat connections. Thus, the 3G power consumptio2idM
A (in seconds). We have: and IRC bots are:
T, =t-3600- A") W = P;-(t+6)-3600- A" (5)
Thus, we get: On the other hand, for the HTTP bot, its heartbeat traffic mau
W =P -t-3600- AL 3 is larger (see 85.2.1), and it will stay in the CELL_FACH stéite.,
' ® high power). Thus, the 3G power consumption of the HTTP hot is
Table 1 shows the WiFi power consumption for heartbeat trans . .
mission of each bot in one hour, such that the inputs are based W =P;-6-3600- A" + Py~ (t+4)-3600-A"". (6)

our measurements (some results are obtained in §5.2.1¢. tNat

) . . Table 2 shows the 3G power consumption for heartbeat tramsmi
for the HTTP bot, its packet transmission timfor each heartbeat P P

L) sion in one hour for each type of bots. Note that the packastra
connection is longer than those of C2DM and IRC bots, as iisiee mission timet for the HTTP bot is about 1 second in 3G, which is

to set up a TCP connection with 3-way handshake. From Table 1, lar CONIE o -

b ger than 0.3 seconds in WiFi, since the TCP round-tripyléed
we observe that under the WiFi power model, the C2DM bot con- more significant in 3G than in WiFi. Similar to WiFi, the C2DM
sumes théeastamount of power resources compared to HTTP and

IRC bots. bot consumes thieastamount of 3G power among all types of bot.

[TypeofBot [t(insec)] A(insec)| W (inmJ)]
C2DM 0.1 1680 214.3 |

Type of Bot [t(insec)| A(insec)| W (inmJ) |

e o e A
HTTP Gmin) | 0.3 300 3600.0 . ' - SLLLERs
HTTP (10min)| 0.3 600 1800.0 |!|_|TTTTFE> ((150nrqul?r3) i 600 315;6.0
HTTP (30mi 03 1800 600.0 :

(30min) HTTP (30omin) |1 1800 | 10512.0

Table 1: WiFi power consumption of each bot in one hour. Table 2: 3G power consumption of each bot in one hour.
3G power consumption.To measure the 3G power consumption,
we install each bot on a real Android phone that is conneaied t ot
C&C server over an operational 3G data network. We use tcpdum 5.3 Contm”ab”lty]))
to capture all data packets within the Android phone. We now explore the following question: if the botmaster vsant

Figure 9 shows the power states of 3G transmissions of an An- 0 send a command @' mobile bots, what is the minimum time
droid HTC phone. The 3G power consumption depends on the traf 7~ needed such that with a high probabilityall these/V bots have
fic volume. When the state is IDLE, the phone cannot sendirece ~ "eceived the command? We say that a botnet has gouitollabil-
any data through 3G, and it consumes almost no power. In the ity if 7 is small for givenN andp. Enabling good controllability
CELL_FACH state, it can send/receive a few hundred bytestzfd IS important for a botnet, for instance, when the botmaseettsito
per second, and waits for 6 seconds before switching badketo t l2unch a synchronized jamming or DDoS attack. Here, we seek t
IDLE state. If the traffic rate is much larger than the traresiain show that a C2DM botnet can have good controllability.
speed of the CELL_FACH state, then the power state will ethier Let T} be the random variable of the time duration that a bot-
CELL_DCH state, and the phone will wait for 4 seconds before Master needs to send a notification to #i€ bot via the C2DM
switching back to the CELL_FACH state. The CELL_DCH has a Service.T} can be expressed as:
higher transmission speed and higher power consumptiontkiea T, = (k—1)6+ 7, k=1,...,N, @)
CELL_DCH state.

wherej is the time between two consecutive C2DM requests gen-

Send/Receive data DL Queuc>119 bytes or erated by the botmaster, afid is the random variable of the time
S S UL Queue>151 bytes S . . R
QDLE —> (CELL_FACH —»@h@ duration of s}endmg arequest from the botmaster via the C28BiM
e 1dle for 6 - Idte for 4s e vice to thek"" bot. In our measurement, we et 1/50 seconds,
A0TmwW 370mwW implying that the botmaster generates 50 requests to théVa2i>-
vice per second. Note that this is significantly below our QRS
Figure 9: 3G power states of an Android HTC Dream [31]. requirement to avoid alerting the C2DM service (see 84.3).

Note that7y is related to the network conditions, phone status,
We calculate the 3G power consumption during heartbeastran C2DM server load, etc. We perform two experiments to measure
mission in one hour of each bot based on Equation (4), asgumin the probability distribution off; in both WiFi and 3G networks,

using the similar setups in 85.2.1. Figure 10(a) shows tha-me

6.1 Deployment

surement results for the WiFi experiment. We find that in 60% |nfection. We first explain how we infect a target Android applica-
of time, a command is delivered within 2 seconds; and in 95% of tjon with a C2DM bot. Note that the infection approach we diesc

time, a command is delivered within 2 minutes. Figure 10(oyss
the measurement results for the 3G experiment. In 53% of, ame
command is delivered within 5 seconds; in 99% of time, it can b
delivered in 2 minutes.

s 1 s 1
S S
2038 2038 /!
© 0.6f < 0.6],
504 804
302 302
o 0 o 0‘
0 30 60 90 120150180 0 30 60 90 120
time delay (second) time delay (second)
(a) ¢ in WiFi (b) tin 3G

Figure 10: Probability distribution function of time delay 7 for
bots to receive a C2DM message: (a) WiFi (b) 3G.

Let 7' be the random variable fall bots to receive the same
command from the botmaster. We can expfEsss:

TY=(N=1)§ &)
e AT} = (N=1)d 4+ max {7}

T= ®
To ease our analysis, we approximaieas an independent and
identically distributed exponential random variable witirameter
1, which denotes the average command arrival rate to a bof. ket
be the probability density function afiax;c1,.. n1{7x}. Using
order statistics [32], we have:

fre(t) =N (1- e ©)

To find T such that with a high probability all N bots have
received the command, we can numerically evaluate thevoitp
expression to obtaifty:

e*‘“)N*1 M fort > 0.

Tq
Jr (t) =D
t=0
Finally, 7" = (N —1)¢ + Tq. To illustrate, we consider a C2DM
botnet withV = 10000 bots,§ = 1/50 seconds]/u is 21.7 sec-
onds for WiFi, and 18.9 seconds for 3G (the latter two are dase
on our measurements in Figures 10(a) and 10(b), respggtiviel-
ble 3 shows different values @ under different probability re-
quirementsp. In summary, it takes less than 8 minutes to reach all
bots in a large-scale C2DM botnet. This shows the good clbertro
bility of a C2DM botnet.

(10

[p [T°WiF) [T° (36) |
0.80 | 432.4 sec| 402.4 sec
0.90 | 448.7 sec| 416.6 sec|
0.95(464.3 sec| 430.2 sec

Table 3: Controllability: value of T under different probabil-
ity guarantees.

6. BOTNET DEPLOYMENT AND ATTACK

In this section, we present the details of deploying a C2DM bo
net from an attacker’s perspective. As a proof of conceptalse
implement a small-scale C2DM botnet. We demonstrate hoanit ¢
be injected into legitimate mobile applications and usethtmch
a real-life spamming attack.

here is also applicable for adding any types of maliciouscod

A typical Android application is composed of multiple okjec
files and packaged into a single file with .apk extension. Edch
ject file contains executable bytecode designed for themangn-
vironment called the Dalvik Virtual Machine. To inject mabtus
code into a target Android application, one cannot diregfligrate
on the application’s source code that is generally unaviilaln-
stead, one cadisassemblehe bytecode of the target application
into assembly-like code callefimalicode, using the official An-
droid Apktool software [33].

After disassembling an Android application, one can aceess
manifest file called AndroidManifest.xml, which descriltles meta-
data of an Android application, including the name, perioiss
activities, and services. It also specifies thain activity which
is the first activity that will start when the application &ihched,
with a tag called “android.intent.action.MAIN”. An atta@kcan
modify the tag to change the main activity of the target aggion
to start the malicious activity (i.e., the C2DM bot progranihe
malicious activity should run in the background so that tifedted
application appears to behave normally. In addition, thacker
needs to modify AndroidManifest.xml to add extra permissitor
the malicious activity. For the C2DM bot, we add the admissio
“com.google.android.c2dm.permission.RECEIVE".

Propagation. One way to propagate the infected target applica-
tion is to upload it to the official Android Market, but the adted
application may be blocked due to the checking procedureatAn
tacker can upload the infected application to some thimtlypaar-
kets such as HIAPK and AppChina. In China and some Middle East
countries, the Android Market may have low download bandwid
or may be blocked [34], so users may have to rely on thirdypart
markets to download applications. This makes the propagati

an infected application feasible.

Implementation. We implement a proof-of-concept C2DM bot
prototype and inject it into a popular application calleat&zook
for Android, which uses many permissions including the C2DM
access, full Internet access, read contact data, and GRSteBh
ture enables us to inject the C2DM bot into the applicatiothwi
out requiring extra permissions. First, we note that theni&sion
“com.google.android.c2dm.permission.RECEIVE” for th2Dd/
service is not as sensitive as other permissions, such aéngen
SMS and receiving SMS, in drawing attention of users. Dutirgy
installation, this permission is represented as “recedta ttom In-
ternet” (see Figure 11(a)), which is hidden in a collapssid Uisers
may not notice this permission is included. Figure 11(bnshthat
once the application is launched, the C2DM bot service walits

in background and it can receive commands from the botmeister
the C2DM service.

6.2 Attack Demonstration

We conduct a trial study on deploying a C2DM botnet in reality
and launching a spamming attack known as #MS-spam-and-
click attack. Our goal is to demonstrate the threat of a mobiledtotn
in practice, using our C2DM botnet as a motivating example.

Specifically, we recruited 10 volunteers and installed C2mii6
into their Android phones. Thus, we construct a real-lif@al-
scale C2DM botnet with 10 bots. These bots will generate as SM
message containing a URL that refers to a website under otrato
for data collection. We then experiment three differentrferof
attacks:

e Random spamming: Each of the 10 bots sends 10 SMS mes-

f Facebook

wi W 9:04

facebook

Do you want to install this
application?

+ System tools

[

Hide

® Network communication

L= |

Recelve command: hello, bot!

SIBIL U 0L

2

Cancel N

(a) Installation (b) Startup

Figure 11: Injecting a C2DM bot into the Facebook applica-
tion.

sages to 10 different registered phone numbers selectaddam.

We are interested in finding how many people will click our URL
link. Note that this attack is similar to the conventionaaspning
attack. In our experiment, none of the 100 people clickedialr
which means that the conventional spamming attack may Rot re
ceive a high number of clicks.

e Contacts spamming: Each of the 10 bots now sends an SMS
message to 10 known people who are in the phone’s contact list
The result is that 23 out of 100 people clicked our URL, and thi
shows that exploiting friendship in an attack can enhaneelick
success rate.

e Man-in-the-middle spamming: Each of the 10 bots monitors
the SMS conversation of the compromised mobile phone, aad th
bot sends an SMS message to the contacted person on therather e
We instruct each bot to send a maximum of 10 SMS messages. Ou
experiments show that 45% of contacted persons clicked Rie U
This shows that the man-in-the-middle spamming can alse bav
high success rate.

7. EXTENSION TO OTHER PLATFORMS

We mention in §1 that many platforms other than Android pro-
vide push notification services and can be exploited as V8.
now elaborate how to extend a C2DM botnet to other platforms.

The push natification services of other platforms are simia
C2DM in the architectural design, as shown in Figure 12. When
an application launches in a mobile device, it needs to tegte
the push service to get a unique ID (it may have different ame
in different platforms, e.g.device tokenn iOS andpush URIin
Windows), and then sends it to the application server. When t
application server wants to send a push notification to aticpp
tion, it sends the ID together with the payload to a push serve
which then forwards the payload to the application.

—> App Register
—> Send Notification

Push

Q7 ° Server
5 >
¢ q‘)’ﬁ\a
>
A\
Register

3) 1D

2)
D

®)

App Server Payload

App in Device

Figure 12: Architecture of push notification service.

r

Table 4 compares different push notification services,uithcl
ing Google’'s C2DM, Apple’s Push Notification Service (APNS)
Microsoft's Push Notification Service (MPNS), Blackbesyush
Service (BPS), and Nokia's Notification APl (NNA). The maxi-
mum payload size of APNS is 256 bytes, which is the smallest
among all, but it still suffices for a typical botnet commanic
terms of request quota, for APNS and NNA, they do not set any
limit on the number of push notifications that the applicaserver
can send per day. For MPNS, the quota is unlimited for an adthe
ticated web service, and 500 per day per device for unattaeed
ones. To authenticate a web service, a developer needs lp app
for a certificate from a certificate authority and upload iv¥in-
dows Phone Marketplace. For BPS, it has two versions: Hasent
and Plus. Their difference is that the Plus version supmi@ts-
ery status report. The quotas of the Essential and Plusownsrsi
are unlimited and 100,000 for free per day. Thus, comparéldeto
C2DM platform, botnets on other platforms in general havitebe
scalability due to less strict quota limits.

[Service | Max. Payload | Quota (per Day) |
C2DM 1KB 200,000
APNS 256 Bytes Unlimited
MPNS | 3KB (+ 1KB Header)| Unlimited (authenticated)

500 (unauthenticated)

BPS 8 KB Unlimited (Essential version
100,000 free (Plus version)
NNA 1.5KB Unlimited

Table 4: Comparison of push notification services.

Similar to C2DM, each push request of other push notification
services can be sent to one device only (see §4.1). Thuspthe ¢
trollability of a botnet in other platforms is also determéhby the
QPS limitation, as discussed in 85.3.

In summary, we believe that it is feasible to extend the C2DM
botnet design to other push notification platforms. Furtiee, the
botnets on such platforms share the same properties as gl C2
botnet, such as stealthiness, resource efficiency, ancodlability.

8. RECOMMENDATIONS ON DEFENSE

In this section, we discuss possible defense strategiéssaga
C2DM botnet, or more generally, push-styled mobile botmiets
ployable in today’s push notification platforms. While wevbyet
identified this kind of botnets in the wild, our work suggestat
their eventual existence is anticipated.

We point out that most existing botnet detection methods can
not effectively detect push-styled mobile botnets. Sinuth fpush-
styled bots and legitimate applications connect to offipiagh no-
tification servers to receive messages, it is non-trivinbftomaly-
based detection methods (e.g., BotSniffer [22]) and mitiaged
detection methods (e.g., BotMiner [23]) to separate batradtic
from other legitimate application traffic. In the followinge sug-
gest possible defense strategies against push-styledenbaibnets.

Based on our C2DM botnet design, a bot will send its unique
ID to the botmaster directly, or via push notification sesyetur-
ing its registration. Thus, we may deploy a sandbox system in
mobile device to monitor the network behavior of an appiarat
The sandbox system can check whether an application setals da
to suspicious addresses or sends suspicious requestshtmqtits
fication servers. Since many legitimate applications atsailata
to legitimate addresses or push notification servers, thisnde
mechanism requires further traffic analysis to confirm thisterce
of a push-styled bot.

Our experience is that not every mobile device platform bt s
authority management over push natifications. Users magainn
essarily enable certain applications to support push oatifin ser-
vices. Specifically, in Android, the permission of recegyi@2DM
messages “com.google.android.c2dm.permission.RECHB(/iOt
anative permissioywhich starts with “android.permission.”. Thus,
it has not been considered as sensitive as other native gsomsé
which may incur monetary costs to users or require access/aie
information, such as “android.permission.SEND_SMS” aad-*“
droid.permission.RECEIVE_SMS". We suggest that the pgrmi

sion of receiving C2DM messages should also be treated as onel14]

of the sensitive permissions. If an application requirés prer-
mission, then it should be examined to ensure that the psionis
is actually required for its functions. In addition, the rfast
file AndroidManifest.xml of the application should be chedko

see whether there is more than one C2DM receiver. In this case [16]

the application may have been injected with some unautiriz

C2DM receivers. Furthermore, one can consider fuzzy hgshin

technique[35] to detect repackaged applications in threl4barty
markets to combat botnet propagation.

9. CONCLUSION

Push notification services have provided great conveniande
flexibility for applications to receive light messages frapplica-
tion servers. In this paper, we propose the design of a néwetle
based push-styled mobile botnet, which exploits the pusHino
cation service for lightweight command dissemination. \Aleet
Google’s C2DM service for the Android platform as a motingti
example to construct this type of mobile botnets. We dematest
how a C2DM botnet can feasibly utilize Google’s C2DM service

as a C&C channel, and justify how its design can be made dealab

and resilient against service disruption. Through in-depalua-
tion, we show that the C2DM botnet is stealthy, resourceiefit,
and controllable. We prototype the C2DM botnet and dematestr
how it can be deployed in reality. Finally, we provide recoemda-
tions on potential defense strategies against such pykEdsho-
bile botnets in general.

10. REFERENCES

[1] A. Apvrille. Symbian worm yxes: Towards mobile botnets?19th
Annual EICAR Conference, Franc2010.

[2] P.Porras, H. Saidi, and V. Yegneswaran. An analysis®fitbe. b
iphone botnetSecurity and Privacy in Mobile Information and
Communication Systemsages 141-152, 2010.

[3] Lookout Inc. Security alert: Geinimi, sophisticatedanandroid
trojan found in wild, 2010ht t p: / / bl og. nyl ookout . com
bl og/ 2010/ 12/ 29/ gei ni m _troj an.

[4] Trend Micro Inc. Zeus targets mobile users.
http://bl og.trendm cro. conl zeus-t ar get s-
nobi | e- user s, 2011.

[5] X.Jiang. Security Alert: AnserverBot, New SophistedtAndroid
Bot Found in Alternative Android Marketst t p:

/1 ww. csc. ncsu. edu/ facul ty/jiang/ AnserverBot/,
Sep 2011.

[6] Kaspersky Inc. Irc bot for androidt t p: / / ww. securel i st.
com en/ bl og/ 208193332/ | RC_bot _f or _Andr oi d,2012.

[7] Google Inc. Android Cloud to Device Messaging Framework
http://code. googl e. conf andr oi d/ c2dm

[8] Apple Inc. Local and Push Notification Programming Guide
http://devel oper. appl e.com library/ mac/
docunent at i on/ Net wor ki ngl nt er net / Concept ual /
Renot eNot i fi cati onsPG Renot eNoti fi cati onsPG
pdf, 2011.

[9] Microsoft Inc. Push Notifications Overview for Windowsiénhe.
http://nmsdn. nm crosoft. conl en-
us/library/ff402558(v=vs. 92). aspx.

[10] Reserach In Motion Inc. Blackberry push service.

http://http://us. bl ackberry. com devel opers/

pl at f or ml pushapi . j sp.

Nokia Inc. Notifications apiht t ps: // proj ect s. devel oper.

noki a. com notificationsapi/w ki .

P. Traynor, M. Lin, M. Ongtang, V. Rao, T. Jaeger, P. Moi24 and

T. La Porta. On Cellular Botnets: Measuring the Impact ofitalis

Devices on a Cellular Network Core. Rroc. of ACM CCS20009.

K. Singh, S. Sangal, N. Jain, P. Traynor, and W. Lee. Eatithg

Bluetooth as a Medium for Botnet Command and ControPioc. of

DIMVA, 2010.

C. Xiang, F. Binxing, Y. Lihua, L. Xiaoyi, and Z. Tiannin Andbot:

Towards Advanced Mobile Botnets. Rroc. of USENIX LEET

pages 11-11. USENIX Association, 2011.

K.G. Zeng, Y.and Shin and X. Hu. Design of SMS

Commanded-and-Controlled and P2P-structured Mobile &otn

Proc. of ACM WiSec2012.

G. Geng, G. Xu, M. Zhang, Y. Yang, and G. Yang. An improgeas

based heterogeneous mobile botnet moddhformation and

Automation (ICIA), 2011 IEEE International Conference pages

198-202. IEEE, 2011.

[17] J. Hua and K. Sakurai. A SMS-based Mobile Botnet UsirgpHIing

Algorithm. In Proc. of IFIP WISTR2011.

G. Weidman. Transparent Botnet Command and Control for

Smartphones over SMS. Bhmoocon2011.

C. Mulliner and J.P. Seifert. Rise of the iBots: Owningelco

Network. InProc. of IEEE MALWAREpages 19-20, 2010.

M. Akiyama, T. Kawamoto, M. Shimamura, T. Yokoyama,

Y. Kadobayashi, and S. Yamaguchi. A Proposal of Metrics foinBt

Detection Based on its Cooperative BehaviorPhoc. of SAINT

Workshopspages 82-82. leee, 2007.

H. Choi, H. Lee, H. Lee, and H. Kim. Botnet Detection by

Monitoring Group Activities in DNS Traffic. IfProc. of IEEE CIT

2007.

G. Gu, J. Zhang, and W. Lee. BotSniffer: Detecting Botiemmand

and Control Channels in Network Traffic. Rroc. of NDSS2008.

[23] G. Gu, R. Perdisci, J. Zhang, and W. Lee. BotMiner: Guisg
Analysis of Network Traffic for Protocol-and Structure-gmeéndent
Botnet Detection. IfProc. of USENIX Securif2008.

[24] 1. Vural and H. Venter. Mobile Botnet Detection UsingtWerk
Forensics. IrFuture Internet Symposiurg010.

[25] E. Kartaltepe, J. Morales, S. Xu, and R. Sandhu. Social
Network-Based Botnet Command-and-Control: Emerging dtsre
and Countermeasures. Rroc. of ACNS$2010.

[26] Android Developersht t p: / / devel oper. andr oi d. com

[27] Tim Hopper. My email analytics.

http://ww. stiglerdiet.conl 2012/ 04/ 05/ ny-

enmi | - anal ytics/.

J. Oikarinen and D. Reed. Internet relay chat protoR&IC 1459

1993.

P. Mutton. Pirchot 1.2. 5 java irc api: Have fun with jadava

Developer’s Journal8(12):26-32, 2003.

Beware ircdhttp://ircd. bircd. org.

L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R.P. Dick, Z.M. Mand

L. Yang. Accurate Online Power Estimation and Automatict@&st

Behavior Based Power Model Generation for SmartphoneBrdn.

of ACM CODES+ISS$ages 105-114. ACM, 2010.

Herbert A. David Order Statistics, 2nd EdViley-Interscience, 1981.

Apktool.

http://code. googl e. com p/ andr oi d- apkt ool /.

S. Ye. Android Market is Currently Blocked in China. ldeare your

Alternatives, Sep 2011.

http://techrice.com 2011/ 10/ 09/ andr oi d- mar ket -

is-currently-bl ocked-in-china- here-are-your-

al ternatives/.

W. Zhou, Y. Zhou, X. Jiang, and P. Ning. Droidmoss: Détex

repackaged smartphone applications in third-party addroi

marketplaces. IACM Conference on Data and Application Security

and Privacy 2012.

[11]

[12]

[13]

[15]

(18]
[19]

[20]

[21]

[22]

(28]
[29]

[30]
(31]

(32]
(33]

[34]

[35]

