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Abstract

This paper studies the problem of solving the system of non-
linear equations. We propose the Gram-reduced Levenberg–
Marquardt method, which reuses the Gram matrix. Our
method has a global convergence guarantee without relying on
any step of line-search or solving sub-problems. We show that
our method takes a smaller computational complexity than
existing Levenberg–Marquardt methods to find the stationary
point of the square norm of the equations. We also show that
the proposed method enjoys a local superlinear convergence
rate under the non-degenerate assumption. Experiments are
conducted on real-world applications in scientific computing
and machine learning, which validate the efficiency of our
method.

1 Introduction
We consider solving the system of nonlinear equations

F(x) = 0, (1)

where x ∈ Rd and F(x) ≜ [F1(x), . . . , Fd(x)]
⊤ : Rd → Rd

with differentiable Fi(x) : Rd → R for all i ∈ [d]. This
problem can also be reformulated by the nonlinear least-
square problem:

min
x∈Rd

ϕ(x) ≜
1

2
∥F(x)∥2. (2)

Solving nonlinear equations is one of the most fundamen-
tal problems in scientific computing (Nesterov 2007; Yuan
2011). It has wide applications in machine learning (Défossez
and Bach 2015; Botev, Ritter, and Barber 2017; Bai, Kolter,
and Koltun 2019; Liu, Zhu, and Belkin 2022), control sys-
tem (Berthier, Carpentier, and Bach 2021), data assimila-
tion (Trémolet 2007), and game theory (Frehse and Bensous-
san 1984; Nourian and Caines 2013).

First-order methods are popular to solve nonlinear equa-
tions. Specifically, one can perform the gradient descent on
problem (2), that is

xt+1 = xt − η∇ϕ(xt) = xt − ηJ(xt)
⊤F(xt), (3)
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where η > 0 is the step-size, ∇ϕ(xt) = J(xt)
⊤F(xt)

and J(·) ≜ [∇F1(·), . . . ,∇Fd(·)]⊤ ∈ Rd×d is the Jacobian
of F(·). The iteration scheme (3) takes O(d2) flops in general.
Taking the Lipschitz continuity on ∇ϕ(·), it requires O(ϵ−2)
iterations to find an ϵ-stationary point of ϕ(·), then the over-
all computation cost is O(d2ϵ−2). Gauss–Newton methods
(Ben-Israel 1966; Nocedal and Wright 1999) consider the
estimation ∇2ϕ(·) ≈ J(·)⊤J(·) and establish the iteration

xt+1 = xt −
(
J(xt)

⊤J(xt)
)†
J(xt)

⊤F(xt)

with local superlinear convergence, while such needs the
flops of O(d3) to compute the matrix (pseudo) inverse. Re-
cently, Liu and Luo (2022) introduced Broyden family up-
dates (Rodomanov and Nesterov 2021; Lin, Ye, and Zhang
2022) to estimate J(·)⊤J(·), which leads to Quasi-Newton
methods with local superlinear convergence and reduces the
computation cost in per iteration to O(d2) flops. However,
both Gauss–Newton method and its quasi-Newton variants
lack global convergence guarantees.

In this paper, we are interested in Levenberg–Marquardt
(LM) methods (Levenberg 1944; Marquardt 1963), which
iterates according to

xt+1 = xt −
(
J(xt)

⊤J(xt) + λtI
)−1

J(xt)
⊤F(xt), (4)

where λt > 0 is the regularization parameter. This method
globalizes the Gauss–Newton iteration and also maintains
local superlinear convergence by properly choosing the regu-
larization term λt (Yamashita and Fukushima 2001; Fan and
Yuan 2005). However, the iteration scheme (4) takes O(d3)
flops since it contains matrix inversion such as the Gauss–
Newton update. Moreover, the upper bound of the iteration
numbers for the existing global convergent LM methods is
not better than O(ϵ−2) (Ueda and Yamashita 2010; Zhao and
Fan 2016; Huang and Fan 2018; Bergou, Diouane, and Kun-
gurtsev 2020; Tran-Dinh, Pham, and Nguyen 2020), which
makes the total computation cost O(d3ϵ−2). In addition,
these methods require the line search step or solving the
trust region subproblem (Yuan 1994) to achieve a descent di-
rection, which makes their implementation complicated. Re-
cently, Mishchenko (2023) proposed an adaptive LM method
without any line-search step nor sub-problem solver, which
determine the regularization term by

λt ∝
√
∥J(xt)⊤F(xt)∥ . (5)
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This method can find an ϵ-stationary within at most Õ(ϵ−2.5)
iterations under the cubic growth condition, which is worse
than line-search or trust-region based LM methods. Further-
more, its overall computation cost O(d3ϵ−2.5) is worse than
the classical LM methods, and the existence of its local su-
perlinear convergence is unknown. Building upon this, there
arises the natural question that:

Can we design a computation efficient and globally con-
vergent LM method with local superlinear convergence?

We give an affirmative answer to the above question
by proposing the Gram-Reduced Levenberg–Marquardt
(GRLM) method. Instead of existing LM methods that com-
pute the Gram matrix J(xt)

⊤J(xt) at every iteration, our
method only updates J(·)⊤J(·) at the snapshot point and
reuses it in the next m iterations. The update of our method
can be formulated by

xt+1=xt−
(
J
(
xπ(t)

)⊤J(xπ(t)

)
+λtI

)−1

J(xt)
⊤F(xt), (6)

where π(t) ≜ m⌊t/m⌋ and λt is chosen according to equa-
tion (5). Note that the scheme (6) only needs to compute the
matrix J(xπ(t))

⊤J(xπ(t)) in the case of t ≡ 0 (mod m),
which significantly reduces the time required to compute the
Gram matrix and leads to a better algorithmic complexity.
For global behavior, our method takes the overall computa-
tional cost of O(d3ϵ−1 + d2ϵ−2) to find an ϵ-stationary point
under the cubic-growth condition, which improves the results
of O(d3ϵ−2) of existing LM methods. For local behavior,
our method has the superlinear rate when the solution has
a non-degenerate Jacobian, which goes beyond the theory
of Mishchenko (2023). We summarize the main theoretical
results of GRLM and related work in Table 1.

Paper Organization The remainder of the paper is orga-
nized as follows. In Sections 2 and 3, we introduce the pre-
liminaries and related work, respectively. In Section 4, we
provide details of the algorithms and convergence analysis of
GRLM. In Section 5, we validate our methods by numerical
experiments. We conclude our work and discuss the future
directions in Section 6. 1

2 Preliminaries
We use the notation ∥ · ∥ to present the Euclidean norm of
a vector and the spectral norm of a matrix, respectively. We
use the notation I to present the identity matrix. We denote
σmin(·) as the smallest singular value of a matrix. For the
ease of presentation, we denote the Gram matrix of F(·) by

G(x) ≜ J(x)⊤J(x) ⪰ 0, (7)

where J(x) ∈ Rd×d is the Jacobian of F : Rd → Rd at
point x ∈ Rd. We also define the approximate stationary
point of the function ϕ(·) = 1

2∥F(·)∥
2 as follows.

Definition 1. We say x ∈ Rd is an ϵ-stationary point of ϕ(·)
if it satisfies ∥J(x)⊤F(x)∥ ≤ ϵ.

We make the following standard assumptions on the Jaco-
bian of F(·).

1The proof of this paper can be found in https://arxiv.org/pdf/
2412.08561.

Assumption 2. We assume the Jacobian of F(·) is bounded
and Lipschitz continuous, that is, we have ∥J(x)∥ ≤ L1 and

∥J(x)− J(y)∥ ≤ L2∥x− y∥ (8)

hold for all x,y ∈ Rd and some constants L1, L2 ≥ 0.
Proposition 3. If the Jacobian J(·) satisfies Assumption 2,
then it holds that

∥F(x)− F(y)∥ ≤ L1∥x− y∥ and

∥F(x)− F(y)− J(y)(x− y)∥ ≤ L2

2
∥x− y∥2

(9)

for all x,y ∈ Rd.
The following proposition means that Assumption 2 leads

to the Lipschitz continuity of G(·).
Proposition 4. If the function F(·) satisfies Assumption 2,
we have

∥G(x)∥≤L2
1 and ∥G(y)−G(x)∥≤2L1L2∥x−y∥ (10)

for all x,y ∈ Rd.

3 Related Work
The idea of reusing second-order information dates back to
the 1960s, where Shamanskii (1967) presented a variant of
the Newton method that constructs a new Jacobian every
m iterations and analyzed its local behavior. Later, such an
idea has been generalized to different types of Newton meth-
ods (Fan 2013; Wang, Chen, and Du 2006; Lampariello and
Sciandrone 2001; Adler, Hu, and Lin 2020) and to train-
ing the large language models (Liu et al. 2023c; Elbakary
et al. 2024). Particularly, Fan (2013) proposed Shamanskii
Levenberg–Marquardt method in the form of

xt+1

= xt−
(
J(xπ(t))

⊤J(xπ(t))+µt∥F(xπ(t))∥αI
)−1

J(xπ(t))
⊤F(xt),

where µt > 0 and α ∈ [1, 2], with a fast local superlinear
rate. However, these methods do not have global theoretical
advantage compared to the traditional methods.

Recently, Doikov, Chayti, and Jaggi (2023) proposed the
regularized Newton method with lazy Hessians for general
minimization problem minx∈Rd ϕ(x), which iterates with

xt+1=xt−
(
∇2ϕ(xπ(t))+

√
c∥∇ϕ(xt)∥ I

)−1∇ϕ(xt) (11)

for some c > 0. However, this method is not suitable to
solve our system of nonlinear equations (or its nonlinear
least-square formulation) in the following aspects:

• The update (11) requires accessing the second-order in-
formation of the objective. In the view of nonlinear least-
square formulation (2), we have

∇2ϕ(xπ(t))

= J(xπ(t))
⊤J(xπ(t)) +

d∑
i=1

Fi(xπ(t))∇2Fi(xπ(t)).

Compared with the cost of LM methods mainly depends
on J(·), accessing the Hessians ∇2Fi(·), . . . ,∇2Fd(·) in
above equation may be much more expensive.
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Method Globally
Computation Cost

Local
superlinear

Line-search
Free References

Gradient Descent O(d2ϵ−2) % ! Nesterov (2018)

Levernberg–Marquardt (v1) O(d3ϵ−2 log(ϵ−1)) ! % Bergou, Diouane, and Kungurtsev (2020)

Levernberg–Marquardt (v2) O(d3ϵ−2.5 log(ϵ−1))† %‡ ! Mishchenko (2023)

GRLM (ours) O(d2ϵ−2 + d3ϵ−1) ! ! Algorithm 1
† This results can be improved to O(d3ϵ−2.5) by using our analysis framework. We present a discussion in Remark 10.
‡ Our analysis can also provide the local superlinear convergence rate for Levernberg–Marquardt (v2), which is not proved in Mishchenko (2023). We present the result in Remark 16.

Table 1: We summarize the globally convergent algorithms for solving the nonlinear equations by their total computation
cost for finding the ϵ-stationary point of ϕ(·) (Globally Computation Cost), if they enjoy local superlinear rates (Local
Superlinear), and if they are line-search free (Line-search Free).

Algorithm 1: Gram-Reduced Levenberg–Marquardt (GRLM)

1: Input: x0, c, T , and m

2: for t = 0, 1, . . . T − 1

3: π(t) = m⌊t/m⌋, zt = xπ(t)

4: λt =
√
c∥J(xt)⊤F(xt)∥

5: xt+1 = xt −
(
G(zt) + λtI

)−1
J(xt)

⊤F(xt)

6: end for

• The convergence guarantees of (11) require the convexity
of ϕ(·) and the Lipschitz continuity of ∇2ϕ(·), while the
function ϕ(·) = 1

2 ∥F(·)∥2 in our problem (2) is non-
convex in general and the popular setting of nonlinear
equations (Assumption 2) cannot guarantee the Lipschitz
continuity on ∇ϕ(·) nor ∇2ϕ(·).

• It is also notable that Doikov, Chayti, and Jaggi (2023)
also studied the cubic regularized Newton methods (Nes-
terov 2006) with lazy Hessians for the general non-convex
case, however, the algorithm also requires accessing the
Hessian ∇2ϕ(·) and its analysis is based on the Lipschitz
continuity of Hessian. Thus, their theory is not applicable
to solving the system of nonlinear equations.

4 The Gram-Reduced LM Method
We propose the Gram-Reduced Levenberg–Marquardt
(GRLM) method in Algorithm 1. Our GRLM method takes
the Gram matrix G(zt) = J(zt)

⊤J(zt) as the approxima-
tion to ∇2ϕ(zt), which avoids the exact ∇2ϕ(·) in regular-
ized Newton with Lazy Hessians (Doikov, Chayti, and Jaggi
2023). Furthermore, setting zt in GRLM does not require
accessing J(·)⊤J(·) in all iterations, making the algorithm
more efficient than existing LM methods.

We then consider the convergence of our GRLM method.
For the ease of presentation, we denote

λt ≜
√
c∥J(xt)⊤F(xt)∥ and rt ≜ ∥xt+1 − xt∥.

where the constant c > 0 follows the input of Algorithm 1.
In contrast to the analysis of Mishchenko (2023) which

only lower bounds rt by λt+1, the following lemma provides
both the lower bound and the upper bound of rt by λt.

Lemma 5. Under Assumption 2, Algorithm 1 holds that

λ2
t

c(L2
1 + λt)

≤ rt ≤
λt

c
. (12)

Compared to the ordinary LM method, our GRLM
use G(zt) instead of G(xt) at each iteration, which leads
to some additional error terms. In the following lemma, we
show that such terms can be bounded by the distance between
the current iteration point to the snapshot point due to the
Lipschitz continuity of G(·) we have proved in Proposition 4.

Lemma 6. Under Assumption 2, Algorithm 1 holds that∥∥G(xt)(xt+1 − xt) + J(xt)
⊤F(xt)

∥∥
≤ λtrt + 2L1L2rt∥zt − xt∥,

and〈
J(xt)

⊤F(xt) +G(xt)(xt+1 − xt),xt+1 − xt

〉
≤ −λtr

2
t + 2L1L2r

2
t ∥xt − zt∥.

(13)

4.1 Global Convergence Analysis
We establish the global convergence for Algorithm 1 in this
subsection. We adopt the following cubic-growth assumption
which has been well studied by Mishchenko (2023).

Assumption 7. We assume the function F : Rd → Rd

satisfies that

∥F(y)∥2≤∥F(x) + J(x)(y − x)∥2+M∥y − x∥3 (14)

for all x,y ∈ Rd, where M > 0 is some constant.

The following lemma shows that, by properly setting the
regularization parameter c > 0, we can guarantee the descent
property of ∥F(xt)∥ at the snapshot point xt ∈ Rd such
that t ≡ 0 (mod m).

Lemma 8. Under Assumption 2 and 7, if we run Algorithm 1
with c ≜ max{4L1L2m,M}, then it holds that

∥F(x(k+1)m)∥2 ≤ ∥F(xkm)∥2 ≤ · · · ∥F(x0)∥2

18774



and

∥F(xkm)∥2 − ∥F(x(k+1)m)∥2 ≥
(k+1)m−1∑

t=km

r2tλt

6
,

for all k = 0, 1, · · · .
Now, we present the global convergence results of our

GRLM (Algorithm 1).
Theorem 9. Following the settings of Lemma 8, Algorithm 1
takes at most

T = O(c2 + c−0.5ϵ−2.5)

iterations to find an ϵ-stationary point of ϕ(·), i.e., we have

min
t=0,··· ,T−1

∥J(xt)
⊤F(xt)∥ ≤ ϵ.

Remark 10. Taking m = 1 such that c = max{4L1L2,M},
Algorithm 1 reduces to the ordinary Levernberg–Mardquardt
method proposed by Mishchenko (2023). Compared with the
iteration complexity of O(ϵ−2.5 log(1/ϵ)) established in the
previous work, Theorem 1 provides an improved iteration
complexity of O(ϵ−2.5), which removes the logarithmic fac-
tor. We achieve this by lower bounding rt by λt rather than
λt+1 in the existing work and using a novel proof framework
that divides the iterations according to the value of λt.

Recall that Algorithm 1 needs to compute a new G(zt)
in every m iterations. W.L.O.G, we let m ≥ M

4L1L2
such

that c = 4L1L2m and use K to denote the numbers of the
snapshot points, then Theorem 9 means

K =

⌈
T

m

⌉
= O(m+m−1.5ϵ−2.5).

For reusing the Gram matrix G(zt) and reducing the com-
putation cost, we can implement Algorithm 1 by performing
singular value decomposition on the Jacobian at the snapshot
point, which generally takes O(d3) flops and results

J(zt) = U(zt)Σ(zt)V(zt)
⊤,

where U(zt),V(zt) ∈ Rd×d are orthogonal and Σ(zt) is
diagonal. Based on the SVD of J(zt), we can update xt

according to

xt+1 = xt − (G(zt) + λtI)
−1

J(xt)
⊤F(xt)

= xt −V(zt)
(
(Σ(zt))

2 + λtI
)−1

V(zt)
⊤J(xt)

⊤F(xt),

which can be done in O(d2) flops.
Thus, the total computation cost of Algorithm 1 is

#flops = O(d3K + d2T )

=O(d3m+d3m−1.5ϵ−2.5+d2m2+d2m−0.5ϵ−2.5).
(15)

Now we desire to select an appropriate m to minimize the
overall flops. We let m = O(dαϵ−β) for some α, β ≥ 0 and
plug it into equation (15), then the total computation cost is

#flops

= O
(
d3+αϵ−β + d3−1.5αϵ−2.5+1.5β

+ d2+2αϵ−2β + d2−0.5αϵ−2.5+0.5β
)

≥ O
(
d3−0.25αϵ−1.25+0.25β + d2+1.25αϵ−1.25−0.75β

)
,

where the inequality is due to the AM–GM and the equality
holds when α = 0 and β = 1. Therefore, we should take
m = Θ(ϵ−1), which leads to #flops = O(d3ϵ−1 + d2ϵ−2).
We formally present the above result in the following corol-
lary.

Corollary 11. Following the setting of Lemma 8, running
Algorithm 1 with m = Θ(ϵ−1) can find an ϵ-stationary point
of ϕ(·) within O(d3ϵ−1 + d2ϵ−2) flops.

As comparison, the globally convergent LM method pro-
posed by Mishchenko (2023) requires O(d3ϵ−2.5 log(1/ϵ))
flops to find an ϵ-stationary point of ϕ(·), which is more
expensive than our complexity of O(d3ϵ−1 + d2ϵ−2). Our
result is also sharper than the complexity of O(d3ϵ−2) for
other LM methods (Ueda and Yamashita 2010; Zhao and Fan
2016; Huang and Fan 2018; Bergou, Diouane, and Kungurt-
sev 2020; Tran-Dinh, Pham, and Nguyen 2020).

4.2 Local Convergence Analysis
We establish the local superlinear rates for Algorithm 1 in this
subsection, with the following assumption for our problem.

Assumption 12. We assume that there exists a solution x∗

for problem (1) which has non-degenerate Jacobian, i.e., we
have

F(x∗) = 0 and σmin(J(x
∗)) = µ (16)

for some µ > 0.

The following proposition says that Assumption 12 guar-
antees that the points in the local neighbor of solution x∗

have nondegenerate J(·) and G(·).
Proposition 13 ((Liu et al. 2023a, Proposition 2.3)). Under
Assumption 2 and 12, for all x ∈ Rd satisfying ∥x− x∗∥ ≤
µ2/(6L1L2), we have σmin(J(x)) ≥ µ√

2
and G(x) ⪰ µ2

2 I.

We first provide the recursion for the distances between
the points in the local region to the solution.

Lemma 14. Under Assumptions 2 and 12, we assume that
some points xt and zt generated by Algorithm 1 are suffi-
ciently close to the solution x∗ such that

xt, zt ∈ S

≜
{
x :x ∈Rd, ∥x−x∗∥≤ min

{ µ2

18L1L2
,

µ4

64L2
1c

}}
,

(17)

then it holds that

∥xt+1 − x∗∥ ≤α1∥xt − x∗∥2 + α2∥xt − x∗∥1.5

+ 2α1∥zt − x∗∥∥xt − x∗∥,
(18)

where α1 ≜ L1L2/µ
2 and α2 ≜ 2L1c

0.5/µ2. In addition,
we have xt+1 ∈ S .

Now, we show the explicit local superlinear convergence
rate of GRLM.
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Theorem 15. Under Assumptions 2 and 12, we run Algo-
rithm 1 with x0 such that

∥x0 − x∗∥ ≤ 1

32(α1 + α2
2)
, (19)

where α1 and α2 follow the definitions in Lemma 14. Then it
holds that

∥xt − x∗∥ ≤ 1

2(α1 + α2
2)

(
1

2

)2(1+(1+m/2)π(t))(1+(t%m)/2)

,

where t%m = t− π(t).
Remark 16. When m = 1, Theorem 15 provides the super-
linear rate of ∥xt − x∗∥ ≤ 1

2(α1+α2
2)

·
(
1
2

)4(1+t/2)
, for the

LM method in Mishchenko (2023, Algorithm 2.2).
The local convergence behavior has been widely stud-

ied for LM methods, while most of the work focuses
on selecting the regularization parameter in the order of
λt ∝ ∥F(xt)∥α (Yamashita and Fukushima 2001; Fan
and Yuan 2005; Bergou, Diouane, and Kungurtsev 2020).
This paper first investigates local convergence using λt ∝√

∥J(xt)⊤F(xt)∥.
The local superlinear rate in Theorem 15 is comparable to

the rate achieved by regularized Newton with lazy Hessians
(Doikov, Chayti, and Jaggi 2023). Compared with Doikov,
Chayti, and Jaggi (2023) where the objective is supposed
to be strongly convex, we only assume the Jacobian at the
solution is nondegenerate, which allows the objective ϕ(·) =
∥F(·)∥2 to be non-convex. Furthermore, we characterize the
superlinear convergence of GRLM by the measure of distance
to the solution, while the analysis of Doikov, Chayti, and
Jaggi (2023) considers the gradient norm of the objective.

The GRLM method (Algorithm 1) takes an average compu-
tation cost of O(d2) per iteration when we choose m = Ω(d),
which matches the cost of per iteration in quasi-Newton meth-
ods or incremental Newton methods to solve the nonlinear
equations (Lin, Ye, and Zhang 2021; Ye, Lin, and Zhang
2021; Liu and Luo 2022; Liu et al. 2023a; Zhou et al. 2024).
However, these quasi-Newton methods lack global conver-
gence guarantees.

5 Experiment
In this section, we conduct experiments on scientific com-
puting and machine learning applications of Chandrasekhar
H-equation and non-convex regularized logistic regression to
verify our theory.

We choose the gradient descent method (GD) and the
Levernberg–Marquardt method with gradient regulariza-
tion (Mishchenko 2023) (LM) as baselines. We do not com-
pare our methods with quasi-Newton type methods (Ye, Lin,
and Zhang 2021; Lin, Ye, and Zhang 2021; Liu et al. 2023a)
nor Jacobian-free Newton–Krylov methods (Knoll and Keyes
2004; Ashrafizadeh, Devaud, and Aydemir 2015), since they
do not have global convergence guarantees.

For all experiments, we tuned the step size η for GD from
{0.1, 0.2, · · · , 1}. We tune the regularized parameter c in
LM and GRLM from {1, 10, 100, 1000}. Our experiments
are conducted on a PC with Apple M1 and all algorithms are
implemented in Python 3.8.12.

0 7000 14000

10 11

10 7

10 3

101
GD
LM
GRLM

0.0 0.3 0.6

10 11

10 7

10 3

101
GD
LM
GRLM

(a) N = 100 (#JV) (d) N = 100 (time)

0 8000 16000

10 11
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10 3
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LM
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10 11
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101
GD
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GRLM

(b) N = 200 (#JV) (e) N = 200 (time)
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10 3

101
GD
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GRLM

0 2 4

10 11

10 7

10 3

101
GD
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GRLM

(c) N = 300 (#JV) (f) N = 300 (time)

Figure 1: We demonstrate Jacobian-vector products comput-
ing times (#JV) and CPU time (second) vs. ∥J(x)⊤F(x)∥2
for H-equation with different equation numbers N .

5.1 Chandrasekhar H-equation
Chandrasekhar H-equation plays an important role in scien-
tific computing (Chandrasekhar 1960; Leggett 1976; Kelley
1982) and has been well studied in the previous literature (Kel-
ley 1995; Lin, Ye, and Zhang 2021; Ye, Lin, and Zhang 2021;
Liu et al. 2023a). It is defined by

Fi(x) ≜ xi −
(
1− c

2N

N∑
j=1

µixj

µi + µj

)−1

,

where F(x) = [F1(x), · · · , FN (x)]⊤ ∈ RN and x =
[x1, · · · , xN ]⊤ ∈ RN .

We compare GRLM (m = 50) with baselines. We test
the cases N = 100, N = 200, and N = 300. In all cases,
we set c = 1 − 10−10. We randomize an x0 as the initial
points for all the methods. The results of the total number of
the Jacobian-vector products (#JV) computed in the algo-
rithms against ∥J(xt)

⊤F(xt)∥ and the running time against
∥J(xt)

⊤F(xt)∥ is presented in Figure 1.2 We observe that
the proposed Gram-reduced Levernberg–Mardquardt method
(GRLM) outperforms the baselines in all cases. We also pro-
vide experiments to study the impact of choosing different m
in GRLM (Algorithm 1). We choose m = {1, 50, 100, 500}
for all cases and present the results in Figure 2.

2The number of the Jacobian-vector products for computing a
full Jacobian is d.
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Figure 2: We demonstrate the iteration numbers (iteration)
and CPU time (second) vs. ∥J(x)⊤F(x)∥2 for H-equation
with different equation numbers N .

We find that a smaller m leads to a faster iteration in (a),
(b), and (c) of Figure 2, which matches our theoretical results
obtained in Theorem 9. However, there exists a trade-off
between the iteration complexity and the computation cost
per iteration.

5.2 Non-Convex Regularized Logistic Regression
We further validate the GRLM methods on the non-convex
regularized logistic regression model (Antoniadis, Gijbels,
and Nikolova 2011):

min
x∈Rd

f(x) ≜
1

n

n∑
i=1

ln(1 + exp(−bia
⊤
i x))+λ

d∑
p=1

x2
(p)

1 + x2
(p)

,

where x(p) is the p-th coordinate of x ∈ Rd, λ > 0 is the
regularized parameter, ai ∈ Rd and bi ∈ {−1,+1} are
the feature and the corresponding label of the i-th sample.
This model corresponds to solving the following nonlinear
equations F(x) ≜ ∇f(x).

We compare GRLM (m = 100) with baselines in three
real-world datasets: “a1a” (n = 1, 605, d = 123), “w1a”
(n = 2, 477, d = 300), and “splice” (n = 1, 000, d =
60). All of these data sets can be downloaded from the
LIBSVM repository (Chang and Lin 2011). We present
the results of the number of Jacobian-vector products
(#JV) against ∥J(xt)

⊤F(xt)∥ and the running time against

0 4000 8000

10 6

10 4

10 2 GD
LM
GRLM

0 3 6
10 6

10 4

10 2 GD
LM
GRLM

(a) “a1a” (#JV) (d) “a1a” (time)

0 15000 30000

10 5

10 3

10 1

GD
LM
GRLM

0 15 30

10 5

10 3

10 1

GD
LM
GRLM

(b) “w1a” (#JV) (e) “w1a” (time)

0 500 1000

10 14

10 8

10 2
GD
LM
GRLM

0.0 0.4 0.8

10 14

10 8

10 2
GD
LM
GRLM
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Figure 3: We demonstrate Jacobian-vector products comput-
ing times (#JV) and CPU time (second) vs. ∥J(x)⊤F(x)∥2
for non-convex logistic regression on datasets “a1a”, “w1a”,
and “splice”.

∥J(xt)
⊤F(xt)∥ in Figure 3. GRLM outperforms the base-

lines for all datasets in terms of both the total number of
Jacobian vector products and the CPU time.

6 Conclusion and Future Work

In this paper, we have proposed Gram-Reduced Levenberg–
Marquardt Method (GRLM) to solve nonlinear equations.
GRLM improves the behavior of existing LM methods by
reducing the computation times of Gram matrices. It is glob-
ally convergent with a simple iteration scheme and a low
computational cost. Furthermore, it exhibits local superlinear
convergence, which cannot be achieved by any of the first-
order methods. To the best of our knowledge, this is the first
method for solving nonlinear equations that can achieve the
best of both worlds.

For future work, it is interesting to design sketched,
stochastic, and distributed variants of GRLM (Yuan 2009;
Yuan, Lazaric, and Gower 2022; Chayti, Doikov, and Jaggi
2023; Liu et al. 2023b). It is also possible to incorpo-
rate the idea of super universal Newton methods (Doikov,
Mishchenko, and Nesterov 2024) to make GRLM parameter-
free.
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