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Abstract

We investigate the non-stationary stochas-
tic linear bandit problem where the reward
distribution evolves each round. Existing
algorithms characterize the non-stationarity
by the total variation budget BK , which is
the summation of the change of the consec-
utive feature vectors of the linear bandits
over K rounds. However, such a quantity
only measures the non-stationarity with re-
spect to the expectation of the reward dis-
tribution, which makes existing algorithms
sub-optimal under the general non-stationary
distribution setting. In this work, we propose
algorithms that utilize the variance of the
reward distribution as well as the BK , and
show that they can achieve tighter regret up-
per bounds. Specifically, we introduce two
novel algorithms: Restarted WeightedOFUL+

and Restarted SAVE+. These algorithms ad-
dress cases where the variance information of
the rewards is known and unknown, respec-
tively. Notably, when the total variance VK

is much smaller than K, our algorithms out-
perform previous state-of-the-art results on
non-stationary stochastic linear bandits under
different settings. Experimental evaluations
further validate the superior performance of
our proposed algorithms over existing works.

1 Introduction

In this work, we study non-stationary stochastic ban-
dits, which is a generalization of the classical stationary
stochastic bandits, where the reward distribution is
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non-stationary. The intuition about the non-stationary
setting comes from real-world applications such as dy-
namic pricing and ads allocation, where the environ-
ment changes rapidly and deviates significantly from
stationarity Auer et al. (2002); Cheung et al. (2018).
Most of the existing works in stochastic bandits con-
sider a stationary setting where the goal of the agent is
to minimize the static regret, i.e., the summation of sub-
optimality gaps between the agent’s selected arm and
the fixed, time-independent best arm that maximizes
the expectation of the reward distribution. In contrast,
for the non-stationary setting, the emphasis shifts to
minimizing the dynamic regret, which represents the
gap between the cumulative reward of selecting the
time-dependent optimal arm at each time and that of
the learner. As we can always treat a stationary bandit
instance as a special case of the non-stationary bandit
instance, designing algorithms that work well under the
non-stationary setting is significantly more challenging.

There have been a series of works aiming to minimize
the dynamic regret for non-stationary stochastic ban-
dits, such as Multi-Armed Bandits (MAB) (Auer et al.,
2002; Garivier and Moulines, 2011; Besbes et al., 2014b;
Wei et al., 2016), linear bandits (Cheung et al., 2018,
2019; Zhao et al., 2020b; Wei and Luo, 2021; Wang
et al., 2023), general function approximation (Faury
et al., 2021; Russac et al., 2020, 2021), and the even
more challenging reinforcement learning (RL) setting
(Mao et al., 2021; Touati and Vincent, 2020; Gajane
et al., 2018; Cheung et al., 2020; Wei and Luo, 2021).
In this work, we mainly consider the linear bandit set-
ting, where each arm is a contextual vector, and the
expected reward of each arm is assumed to be the linear
product of the arm with an unknown feature vector.
Most existing dynamic regret results for non-stationary
linear bandits depend on both the non-stationarity
measurement and the number of interaction rounds.
Specifically, assume K is the total number of rounds,
and for each k ∈ [K], x is one of the arms, θk and θk+1
are the feature vectors at k and k +1 rounds, satisfying
∥x∥2 ≤ 1. Then, the non-stationarity measurement is
often defined as the summation of the changes in the
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mean of the reward distribution, which is

BK :=
K∑

k=1
max
x∈Rd

|⟨x,θk − θk+1⟩| =
K∑

k=1
∥θk − θk+1∥2 .

(1)

Existing works for non-stationary linear bandits (Rus-
sac et al., 2019; Kim and Tewari, 2020a; Zhao et al.,
2020a; Touati and Vincent, 2020; Cheung et al., 2018;
Zhao et al., 2020b) achieved a regret upper bound of
Õ(d7/8B

1
4
KK

3
4 ), where d is the problem dimension. A

recent work by Wei and Luo (2021) proposed a black-
box reduction method that can achieve a regret upper
bound of Õ(dB

1
3
KK

2
3 ) in the setting with a fixed arm set

across all rounds. Such regret bounds clearly demon-
strate that regret grows as long as the non-stationarity
grows, which is aligned with intuition.

Although existing works clearly demonstrate the rela-
tionship between the BK and the regret, we claim that
it is not sufficient for us to fully characterize the non-
stationary level of the reward distributions. Consider
applications such as hyperparameter tuning in physi-
cal systems, the noise distribution may highly depend
on the evaluation point since the measurement noise
often largely varies with the chosen parameter settings
Kirschner and Krause (2018). For linear bandits, such
examples suggest that the non-stationarity not only
consists of the change of the mean of the distribution,
but also the variance of the distribution. However, none
of the previous works on non-stationary linear bandits
considered how to leverage the variance information
to improve regret bounds in the above heteroscedastic
noise setting. Therefore, an open question arises:

Can we design even better algorithms for
non-stationary linear bandits by considering its

variance information?

In this paper, we answer this question affirmatively.
We assume that at the k-th round, the reward distri-
bution of an arm x satisfies rk ∼ ⟨θk, x⟩ + ϵk, where
ϵk is a zero-mean noise variable with variance σ2

k. Our
contributions are:

• We establish the first variance-dependent regret
lower bound for non-stationary linear bandits.
This result captures the interplay between non-
stationarity and variance, which is not addressed in
existing literature for non-stationary linear bandits.

• For the case where the reward variance σ2
k at round k

can be observed and the total variation budget BK is
known, we propose the Restarted-WeightedOFUL+

algorithm, which uses variance-based weighted linear
regression to deal with heteroscedastic noises (Zhou

et al., 2021; Zhou and Gu, 2022) and a restarted
scheme to forget some historical data to hedge
against the non-stationarity. We prove that the
regret upper bound of Restarted-WeightedOFUL+

is Õ(d7/8(BKVK)1/4
√

K + d5/6B
1/3
K K2/3). No-

tably, our regret surpasses the best result for non-
stationary linear bandits Õ(dB

1/3
K K2/3) (Wei and

Luo, 2021) when the total variance VK = Õ(1) is
small, which indicates that additional variance in-
formation benefits non-stationary linear bandit al-
gorithms.

• For the case where the reward variance σ2
k is un-

known but the total variance VK and variation bud-
get BK are known, we propose the Restarted-SAVE+

algorithm. It maintains a multi-layer weighted
linear regression structure with carefully-designed
weight within each layer to handle the unknown
variances (Zhao et al., 2023). We prove that
Restarted-SAVE+ can achieve a regret upper bound
of Õ(d 4

5 V
2
5

K B
1
5
KK

2
5 + d

2
3 B

1
3
KK

2
3 ). Specifically, when

VK = Õ(1), our regret is also better than the exist-
ing best result Õ(dB

1/3
K K2/3) (Wei and Luo, 2021),

which again verifies the effect of the variance infor-
mation.

• Lastly, we propose Restarted-SAVE+-BOB for the
case where both the reward variance σ2

k and BK are
unknown. Restarted-SAVE+-BOB equips a bandit-
over-bandit (BOB) framework to handle the un-
known BK (Cheung et al., 2019), and also main-
tains a multi-layer structure as Restarted-SAVE+.
We show that Restarted-SAVE+-BOB achieves a re-
gret upper bound of Õ(d 4

5 V
2
5

K B
1
5
KK

2
5 + d

2
3 B

1
3
KK

2
3 +

d
1
5 K

7
10 ), and it behaves the same as Restarted-

SAVE+ when VK = Õ(1) and BK = Ω(d−14K1/10).

• We also conduct experimental evaluations to validate
the outperformance of our proposed algorithms over
existing works.

Notation We use lower case letters to denote scalars,
and use lower and upper case bold face letters to denote
vectors and matrices respectively. We denote by [n]
the set {1, . . . , n}. For a vector x ∈ Rd and a positive
semi-definite matrix Σ ∈ Rd×d, we denote by ∥x∥2 the
vector’s Euclidean norm and define ∥x∥Σ =

√
x⊤Σx.

For two positive sequences {an} and {bn} with n =
1, 2, . . . , we write an = O(bn) if there exists an absolute
constant C > 0 such that an ≤ Cbn holds for all
n ≥ 1 and write an = Ω(bn) if there exists an absolute
constant C > 0 such that an ≥ Cbn holds for all n ≥ 1.
We use Õ(·) to further hide the polylogarithmic factors.
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Variance VaryingModel Algorithm Regret -Dependent Arm Set Require BK

SW-UCB
(Cheung et al., 2018) Õ

(
d

7
8 B

1
4
KK

3
4
) No Yes YesLinear Bandit

BOB
(Cheung et al., 2018) Õ

(
d

7
8 B

1
4
KK

3
4

)
No Yes No

RestartUCB
(Zhao et al., 2020b) Õ

(
d

7
8 B

1
4
KK

3
4

)
No Yes Yes

RestartUCB-BOB
(Zhao et al., 2020b) Õ

(
d

7
8 B

1
4
KK

3
4

)
No Yes No

LB-WeightUCB
(Wang et al., 2023) Õ

(
d

3
4 B

1
4
KK

3
4

)
No Yes Yes

MASTER + OFUL
(Wei and Luo, 2021) Õ

(
dB

1
3
KK

2
3

)
No No No

Restarted-WeightedOFUL+ Õ
(

d
7
8 (BKVK) 1

4 K
1
2

(Ours) +d
5
6 B

1
3
KK

2
3

) Yes Yes Yes

Restarted SAVE+ Õ
(

d
4
5 V

2
5

K B
1
5
KK

2
5

(Ours) +d
2
3 B

1
3
KK

2
3

) Yes Yes Yes

Restarted SAVE+-BOB Õ
(

d
4
5 V

2
5

K B
1
5
KK

2
5

(Ours) +d
2
3 B

1
3
KK

2
3 + d

1
5 K

7
10

) Yes Yes No

Lower Bound Ω̃
(

d2/3B
1/3
K V

1/3
K K1/3

(Ours) ∧VK +
√

BKK
) Yes Yes -

MAB Rerun-UCB-V Õ
(
|A|

2
3 B

1
3
KV

1
3

K K
1
3

(Wei et al., 2016) + |A|
1
2 B

1
2
KK

1
2

) Yes No Yes

Lower Bound
(Wei et al., 2016) Ω̃

(
B

1
3
KV

1
3

K K
1
3 + B

1
2
KK

1
2

)
Yes No -

Table 1: Comparison of non-stationary bandits in terms of regret guarantee. K is the total rounds, d is the
problem dimension for linear bandits, BK is the total variation budget defined in Section 3 (for the MAB setting,
BK =

∑K
k=1 ∥µk −µk+1∥∞, where µk is the mean of the reward distribution at round k), VK is the total variance

defined in Section 3, |A| is the number of arms for MAB.

2 Related Work

2.1 Non-stationary (Linear) Bandits

There have been a series of works about non-stationary
bandits Auer et al. (2002); Garivier and Moulines
(2011); Besbes et al. (2014b); Wei et al. (2016); Che-
ung et al. (2019); Russac et al. (2019); Auer et al.
(2019); Chen et al. (2019); Russac et al. (2020); Zhao
et al. (2020b); Kim and Tewari (2020b); Wei and Luo
(2021); Russac et al. (2021); Chen et al. (2021); Deng
et al. (2022); Suk and Kpotufe (2022); Liu et al. (2023);
Abbasi-Yadkori et al. (2023); Clerici et al. (2023).

In non-stationary linear bandits, the unknown fea-
ture vector θk can be dynamically and adversarially
adjusted, with the total change upper bounded by

the total variation budget BK over K rounds, i.e.,∑K−1
k=1 ∥θk+1 − θk∥2 ≤ BK . To tackle this problem,

some works proposed forgetting strategies such as slid-
ing window, restart, and weighted regression (Cheung
et al., 2019; Russac et al., 2019; Zhao et al., 2020b).
Kim and Tewari (2020b) also introduced the random-
ized exploration with weighting strategy. The regret
upper bounds in these works are all of Õ(B

1
4
KK

3
4 ).

A recent work by Wei and Luo (2021) proposed the
MASTER-OFUL algorithm based on a black-box ap-
proach, which can achieve a regret bound of Õ(B

1
3
KK

2
3 )

in the case where the arm set is fixed over K rounds.
To the best of our knowledge, none of the existing
works consider how to utilize the variance information
to improve the regret bound in the case with time-
dependent variances. The only exception of utilizing
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the variance information in the non-stationary ban-
dit setting is Wei et al. (2016), which proposed the
Rerun-UCB-V algorithm for the non-stationary MAB
setting with a regret dependent on the action set size
|A|. To compare with, the regret upper bounds of our
algorithms are independent of the action set size, thus
our algorithms are more efficient for the case where the
number of actions is large.

2.2 Linear Bandits with Heteroscedastic
Noises

Some recent works study the heteroscedastic linear ban-
dit problem, where the noise distribution is assumed
to vary over time. Kirschner and Krause (2018) first
proposed the linear bandit model with heteroscedas-
tic noise. In this model, the noise at round k ∈ [K]
is assumed to be σk-sub-Gaussian. Some follow-up
works relaxed the σk-sub-Gaussian assumption by as-
suming the noise at the k-th round to be of variance σ2

k

(Zhou et al., 2021; Zhang et al., 2021; Kim et al., 2022;
Zhou and Gu, 2022; Dai et al., 2022; Zhao et al., 2023).
Specifically, Zhou et al. (2021) and Zhou and Gu (2022)
considered the case where σk is observed by the learner
after the k-th round. Zhang et al. (2021) and Kim et al.
(2022) proposed statistically efficient but computation-
ally inefficient algorithms for the unknown-variance
case. A recent work by Zhao et al. (2023) proposed an
algorithm that achieves both statistical and computa-
tional efficiency in the unknown-variance setting. Dai
et al. (2022) also considered a specific heteroscedastic
linear bandit problem where the linear model is sparse.

3 Problem Setting

We consider a heteroscedastic variant of the classic non-
stationary linear contextual bandit problem. Let K be
the total number of rounds. At each round k ∈ [K],
the learner interacts with the environment as follows:
(1) the environment generates an arbitrary arm set
Dk ⊆ Rd where each element represents a feasible
arm for the learner to choose, and also generates an
unknown feature vector θk; (2) the leaner observes Dk

and selects ak ∈ Dk; (3) the environment generates the
stochastic noise ϵk and reveals the stochastic reward
rk = ⟨θk, ak⟩ + ϵk to the leaner. We assume that for
all k ≥ 1 and all a ∈ Dk, ⟨a,θk⟩ ∈ [−1, 1], ∥θk∥2 ≤ B,
∥a∥2 ≤ A.

Following Zhou et al. (2021); Zhao et al. (2023), we
assume the following condition on the random noise ϵk

at each round k:

P (|ϵk| ≤ R) = 1, E[ϵk|a1:k, ϵ1:k−1] = 0,

E[ϵ2
k|a1:k, ϵ1:k−1] ≤ σ2

k. (2)

Following Cheung et al. (2018, 2019); Russac et al.
(2019); Zhao et al. (2020b), we assume the sum-
mation of ℓ2 differences of consecutive θk’s is up-
per bounded by the total variation budget BK , i.e.,∑K−1

k=1 ∥θk+1 − θk∥2 ≤ BK , where the θk’s can be
adversarially chosen by an oblivious adversary. We
also assume that the total variance is upper bounded
by VK , which is

∑K
k=1 σ2

k ≤ VK . The goal of the
agent is to minimize the dynamic regret defined as fol-
lows: Regret(K) =

∑
k∈[K]

(
⟨a∗

k,θk⟩−⟨ak,θk⟩
)
, where

a∗
k = argmaxa∈Dk

⟨a,θk⟩ is the optimal arm at round
k with the highest expected reward.

4 Lower Bound

In this section, we establish a novel variance-dependent
regret lower bound for non-stationary linear bandits,
which reveals new insights into the problem structure.
Theorem 4.1. Given K > 0. For any bandit algorithm
there exists θ1, . . . ,θK satisfying the problem setting
denoted in Section 3, such that

Regret(K)

≥ Ω(min{d2/3B
1/3
K V

1/3
K K1/3, VK}+

√
BKK).

Proof. See Appendix C.

Remark 4.2. Note that Cheung et al. (2019) proposed
a lower bound of Ω(d2/3B

1/3
K K2/3) for general non-

stationary linear bandits. However, their result applies
only to cases without the variance restriction VK , mak-
ing it inapplicable to our setting.

Theorem 4.1 represents the first variance-dependent re-
gret lower bound specifically tailored for non-stationary
linear bandits. The bound highlights the inherent com-
plexity of balancing variance and non-stationarity, of-
fering a foundation for future work aimed at designing
algorithms with matching upper bounds. Notably, our
result improves the existing variance-dependent lower
bound Ω(B1/3

K V
1/3

K K1/3 +B
1/2
K K1/2) (Wei et al., 2016)

by a factor of d2/3 for the linear bandits setting.

5 Non-stationary Linear Contextual
Bandit with Known Variance

In this section, we introduce our Algorithm 1 under the
setting where the variance σ2

k at k-th iteration is known
to the agent in prior. We start from WeightedOFUL+

(Zhou and Gu, 2022), an weighted ridge regression-
based algorithm for heteroscedastic linear bandits un-
der the stationary reward assumption. For our non-
stationary linear bandit setting where θk is changing
over the round k, WeightedOFUL+ aims to build an
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Algorithm 1 Restarted-WeightedOFUL+

Require: Regularization parameter λ > 0; B, an up-
per bound on the ℓ2-norm of θk for all k ∈ [K]; con-
fidence radius β̂k, variance parameters α, γ; restart
window size w.

1: Σ̂1 ← λI, b̂1 ← 0, θ̂1 ← 0, β̂1 =
√

λB
2: for k = 1, . . . , K do
3: if k%w == 0 then
4: Σ̂k ← λI, b̂k ← 0, θ̂k ← 0, β̂k =

√
λB

5: end if
6: Observe Dk and choose ak ←

argmaxa∈Dk
⟨a,θk⟩+ β̂k∥ak∥Σ̂−1

k

7: Observe (rk, σk), set σ̄k as

σ̄k ← max{σk, α, γ∥ak∥1/2
Σ̂−1

k

} (3)

8: Σ̂k+1 ← Σ̂k + aka⊤
k /σ̄2

k, b̂k+1 ← b̂k + rkak/σ̄2
k,

θ̂k+1 ← Σ̂−1
k+1b̂k+1

9: end for

θ̂k which estimates the feature vector θk by using the
solution to the following regression problem:

θ̂k ← arg min
θ

k−1∑
t=1

σ̄−2
t (⟨θ, at⟩ − rt)2 + λ∥θ∥2

2, (4)

where the weight is defined as in (3). After obtaining
θ̂k, WeightedOFUL+ chooses arm ak by maximizing
the upper confidence bound (UCB) of ⟨a, θ̂⟩, with an
exploration bonus β̂k∥ak∥Σ̂−1

k
, where Σ̂k is the covari-

ance matrix over ak. The weight σ̄2
k is introduced to

balance the different past examples based on their re-
ward variance σ2

k, and such a strategy has been proved
as a state-of-the-art algorithm for the stationary het-
eroscedastic linear bandits (Zhou and Gu, 2022). How-
ever, the non-stationary nature of our setting prevents
us from directly using θ̂k defined in (4) as an estimate
to θ. Therefore, inspired by the restarting strategy
which has been adopted by previous algorithms for
non-stationary linear bandits (Zhao et al., 2020b), we
propose Restarted-WeightedOFUL+, which periodi-
cally restarts itself and runs WeightedOFUL+ as its
submodule. The restart window size is set as w, which
is used to balance the nonstationarity and the total
regret and will be fine-tuned in the next steps. Com-
bined with the restart window size w, we set {β̂k}k≥1
to

β̂k = 12

√
d log(1 + (k%w)A2

α2dλ
) log(32(log(γ2

α
+ 1)(k%w)2

δ
)

+ 30 log(32(log(γ2

α
) + 1) (k%w)2

δ
) R

γ2 +
√

λB. (5)

We now propose the theoretical guarantee for Algo-
rithm 1. The following key lemma shows how nonsta-
tionarity affects our estimation of the reward of each
arm.

Lemma 5.1. Let 0 < δ < 1. Then with probability at
least 1− δ, for any action a ∈ Rd, we have

|a⊤(θ̂k − θk)| ≤ A2

α

√
dw

λ

k−1∑
t=w·⌊k/w⌋+1

∥θt − θt+1∥2︸ ︷︷ ︸
Drifting term

+ β̂k∥a∥Σ̂−1
k︸ ︷︷ ︸

Stochastic term

.

Proof. See Appendix D for the full proof.

Here we provide a proof sketch of Lemma 5.1 to show
the technical challenge we need to overcome. Without
loss of generality, we prove the lemma for k ∈ [1, w].
We have

|a⊤(θ̂k − θk)| ≤

∣∣∣∣∣a⊤Σ̂−1
k

k−1∑
t=1

ata⊤
t

σ̄2
t

(θt − θk)

∣∣∣∣∣
+ ∥a∥

Σ̂−1
k

∥
k−1∑
t=1

atϵt

σ̄2
t

∥
Σ̂−1

k
+

√
λB∥a∥

Σ̂−1
k

,

(6)

For the first term, it gets involved by the nonstation-
arity of θk. By rearranging the summation orders and
several calculation steps, we have∣∣∣∣∣a⊤Σ̂−1

k

k∑
t=1

ata⊤
t

σ̄2
t

(θt − θk)

∣∣∣∣∣ ≤
k−1∑
t=1

|a⊤Σ̂−1
k

at

σ̄t
| · ∥at

σ̄t
∥2

· ∥
k−1∑
s=t

(θs − θs+1)∥2 ≤ A2

α

√
dw

λ

k−1∑
s=1

||θs − θs+1||2 ,

We would like to highlight the subtleties in both our
algorithm design and analysis to get the desired im-
provement. First, from here, we can see the necessity
of introducing α in the design of σ̄k in Eq.(3), which
makes it possible to upper bound σ̄−1

k and get a tunable
α in the drifting term, which can subsequently be used
to optimize the regret bound. Second, we show that it
is essential to split the term σ̄−2

t as how we did. Only
by doing that can we bound the

∑s
t=1

at

σ̄t

⊤Σ̂−1
k

at

σ̄t
term

by d with the elliptical potential lemma. Otherwise,
we can get a 1/α2 term rather than the A/α term,
which will hurt the final regret bound. For the second
term in Eq.(6), a vanilla way to control it is adopt-
ing a self-normalized concentration inequality from
(Abbasi-Yadkori et al., 2011). However, it can not uti-
lize variance information, but just the magnitude of
the noise, which fails to get a tight bound with the
variance information. Inspired by Zhou and Gu (2022);
Zhou et al. (2021); Zhao et al. (2023), we adapt a
variance-adaptive concentration inequality in Theorem
H.1 to get a tighter bound. Similar arguments also
hold for the proof of Theorem 6.1 for the unknown vari-
ance case. We refer to Appendix D for the full proof.
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Lemma 5.1 suggests that under the non-stationary set-
ting, the difference between the true expected reward
and our estimated reward will be upper bounded by
two separate terms. The first drifting term charcterizes
the error caused by the non-stationary environment,
and the second stochastic term charcterizes the error
caused by the estimation of the stochastic environment.
Note that similar bound has also been discovered in
Touati and Vincent (2020). We want to emphasize that
our bound differs from existing ones in 1) an additional
variance parameter α in the drifting term, and 2) a
weighted convariance matrix Σ̂ rather than a vanilla
convariance matrix.

Next we present our main theorem.
Theorem 5.2. Let 0 < δ < 1. By treating A, λ, B, R
as constants and setting γ2 = R/

√
d, with probability

at least 1− δ, the regret of Restarted-WeightedOFUL+

is bounded by

Regret(K) = Õ(BKw3/2d1/2α−1 + dKα/
√

w

+ d
√

KVK/w + dK/w). (7)

Proof. See Appendix E.

Remark 5.3. For the stationary linear bandit case where
BK = 0, we can set the restart window size w = K and
the variance parameter α = 1/

√
K, then we obtain an

Õ(d
√

VK + d) regret for Algorithm 1, which is identical
to the one in Zhou and Gu (2022).

Next, we aim to select parameters α and w in order to
optimize (7).
Corollary 5.4. Assume that BK , VK ∈ [Ω(1), O(K)].
Then by selecting

w = d1/4
√

VK/BK , dV 6
K ≥ K4B2

K ,

w = d1/6(K/BK)1/3 otherwise.

and α = d−1/4B
1/2
K wK−1/2, the regret is in the order

Regret(K) = Õ(d7/8(BKVK)1/4
√

K + d5/6B
1/3
K K2/3).

(8)

Remark 5.5. We compare the regret of Algo.1 in Corol-
lary 5.4 with previous results in the special cases below.

• In the worst case where VK = O(K), our result
becomes Õ(d7/8B

1/4
K K3/4), matching the state-of-

the-art results for restarting and sliding window
strategies Cheung et al. (2018); Zhao et al. (2020b).

• In the case where the total variance is small, i.e.,
VK = Õ(1), assuming that K4 > d, our result be-
comes Õ(d5/6B

1/3
K K2/3), better than all the pre-

vious results Cheung et al. (2018); Zhao et al.
(2020b); Wang et al. (2023); Wei and Luo (2021).

Remark 5.6. Wei et al. (2016) has studied non-
stationary MAB with dynamic variance. With the
knowledge of VK and BK , Wei et al. (2016) pro-
posed a restart-based Rerun-UCB-V algorithm with
a Õ(|A|

2
3 B

1
3
KV

1
3

K K
1
3 + |A|

1
2 B

1
2
KK

1
2 ) regret, where

A is the action set. Reduced to the MAB
setting, our Restarted-WeightedOFUL+ achieves
an Õ(|A|7/8(BKVK)1/4

√
K + |A|5/6B

1/3
K K2/3) regret,

which is worse than Wei et al. (2016). We claim that
this is due to the generality of the linear bandits, which
brings us a looser bound to the drifting term in Lemma
5.1. When restricting to the MAB setting, our drift-
ing term enjoys a tighter bound, which could further
tighten our final regret. To develop an algorithm achiev-
ing the same regret as Wei et al. (2016) is beyond the
scope of this work.
Remark 5.7. Wei et al. (2016) has established a lower
bound Ω̃(B

1
3
KV

1
3

K K
1
3 + B

1
2
KK

1
2 ) for MAB with total

variance VK and total variation budget BK . There still
exist gaps between our regret and their lower bound
regarding the dependence of K, VK , BK , and we leave
to fix the gaps as future work.

6 Non-stationary Linear Contextual
Bandit with Unknown Variance and
Total Variation Budget

By Theorem 5.2, we know that Algorithm 1 is able
to utilize the total variance VK and obtain a better
regret result compared with existing algorithms which
do not utilize VK . However, the success of Algorithm 1
depends on the knowledge of the per-round variance
σk, and it also depends on a good selection of restart
window size w, whose optimal selection depends on
both VK and BK . In this section, we aim to relax these
two requirements with still better regret results.

6.1 Unknown Per-round Variance, Known VK

and BK

We first aim to relax the requirement that each σ2
k is

known to the agent at the beginning of k-th round. We
follow the SAVE algorithm (Zhao et al., 2023) which
introduces a multi-layer structure (Chu et al., 2011; He
et al., 2021) to deal with unknown σ2

k. In detail, SAVE
maintains multiple estimates to the current feature
vector θk, which we denote them as θ̂k,1, ..., θ̂k,L in line
2. Each θ̂k,ℓ is calculated based on a subset Ψ̂k,ℓ ⊆
[k − 1] of samples {(at, rt)}. The rule that whether
to add the current k to some Ψ̂k,ℓ is based on the
uncertainty of ak with the sample set {(at, rt)}t∈Ψ̂k,ℓ

.
As long as ak is too uncertain w.r.t. some level ℓk (line
2), we add k to Ψ̂k,ℓ and update the estimate θ̂k,ℓk

accordingly (line 2). Each θ̂k,ℓk
is calculated as the
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Algorithm 2 Restarted SAVE+

Require: α > 0; the upper bound on the ℓ2-norm of a in Dk(k ≥ 1), i.e., A; the upper bound on the ℓ2-norm of
θk (k ≥ 1), i.e., B; restart window size w.

1: Initialize L← ⌈log2(1/α)⌉.
2: Initialize the estimators for all layers: Σ̂1,ℓ ← 2−2ℓ · I, b̂1,ℓ ← 0, θ̂1,ℓ ← 0, β̂1,ℓ ← 2−ℓ+1, Ψ̂1,ℓ ← ∅ for all

ℓ ∈ [L].
3: for k = 1, . . . , K do
4: if k%w == 0 then
5: Set Σ̂k,ℓ ← 2−2ℓ · I, b̂k,ℓ ← 0, θ̂k,ℓ ← 0, β̂1,ℓ ← 2−ℓ+1, Ψ̂k,ℓ ← ∅ for all ℓ ∈ [L].
6: end if
7: Observe Dk, choose ak ← argmaxa∈Dk

minℓ∈[L]⟨a, θ̂k,ℓ⟩+ β̂k,ℓ∥a∥Σ̂−1
k,ℓ

and observe rk.
8: Set ℓk ← L + 1
9: Let Lk ← {ℓ ∈ [L] : ∥ak∥Σ̂−1

k,ℓ
≥ 2−ℓ}, set ℓk ← min(Lk) if Lk ̸= ∅

10: Ψ̂k,ℓk
← Ψ̂k,ℓk

∪ {k}
11: if Lk ̸= ∅ then
12: Set wk ← 2−ℓk

∥ak∥
Σ̂

−1
k,ℓk

and update

Σ̂k+1,ℓk
← Σ̂k,ℓk

+ w2
kaka⊤

k , b̂k+1,ℓ ← b̂k,ℓk
+ w2

k · rkak, θ̂k+1,ℓk
← Σ̂−1

k+1,ℓk
b̂k+1,ℓk

.

13: Compute the adaptive confidence radius β̂k+1,lfor the next round according to (9).
14: end if
15: For ℓ ̸= ℓk let Σ̂k+1,ℓ ← Σ̂k,ℓ, b̂k+1,ℓ ← b̂k,ℓ, θ̂k+1,ℓ ← θ̂k,ℓ, β̂k+1,ℓ ← β̂k,ℓ.
16: end for

solution of a weighted regression problem, where the
weight wk is selected as the inverse of the uncertainty
of the arm ak w.r.t. the samples in the ℓ-th layer.
Maintaining L different θ̂k,ℓ, ℓ ∈ [L], Algorithm 2 then
calculates L number of UCB for each arm a w.r.t. L
different θ̂k,ℓ, and selects the arm which maximizes the
minimization of L UCBs (line 2). It has been shown in
Zhao et al. (2023) that such a multilayer structure is
able to utilize the VK information without knowing the
per-round variance σ2

k. Similar to Algorithm 1, in order
to deal with the nonstationarity issue, we introduce a
restarting scheme that Algorithm 2 restarts itself by a
restart window size w (line 2).
Next we show the theoretical guarantee of Algorithm
2. We call the restart time rounds grids and denote
them by g1, g2, . . . g⌈ K

w ⌉−1, where gi%w = 0 for all
i ∈ [⌈K

w ⌉ − 1]. Let ik be the grid index of time round
k, i.e., gik

≤ k < gik+1. We denote Ψ̂k,ℓ := {t : t ∈
[gik

, k − 1], ℓt = ℓ}. We define the confidence radius
β̂k,ℓ at round k and layer ℓ as

β̂k,ℓ := 16 · 2−ℓ

√(
8V̂ark,ℓ + 6R2 log(4(w + 1)2L

δ
) + 2−2ℓ+4

)
×

√
log(4w2L

δ
) + 6 · 2−ℓR log(4w2L

δ
) + 2−ℓB, (9)

where we set V̂ark,ℓ as
∑

i∈Ψ̂k,ℓ
w2

i

(
ri − ⟨θ̂k,ℓ, ai⟩

)2, if

2ℓ ≥ 64
√

log
(

4(w+1)2L
δ

)
, or R2

∣∣∣Ψ̂k,ℓ

∣∣∣ for the remain-
ing cases.

Note that our selection of the confidence radius β̂k,ℓ

only depends on V̂ark,ℓ, which serves as an estimate
of the total variance of samples at ℓ-th layer without
knowing σ2

k.

We build the theoretical guarantee of Algorithm 2 as
follows.
Theorem 6.1. Let 0 < δ < 1. Define {βk,ℓ}k≥1,ℓ∈[L]
as in (9), regarding A, R as constants, we have

Regret(K) = Õ(
√

dw1.5BK/α + α2(K +
√

wKVK)
+ d

√
KVK/w + dK/w).

Proof. See Appendix F for the full proof.

Remark 6.2. Like Remark 5.3, we consider the case
where BK = 0. We set w = K and α2 = 1/K

√
VK ,

then we obtain a regret Õ(d
√

VK + d), which matches
the regret of the SAVE algorithm in Zhao et al. (2023).

Corollary 6.3. Assume that BK , VK ∈ [Ω(1), O(K)],
then by selecting

w = d1/3(K/BK)1/3, K2 ≥ V 3
Kd/BK ,

w = d2/5(KVK)1/5/B
2/5
K otherwise.
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Figure 1: The regret of Restarted-WeightedOFUL+, Restarted SAVE+, SW-UCB and Modified EXP3.S under
different total rounds.

and α = d1/6√wB
1/3
K /(K1/3 + (VKKw)1/6), we have

Regret(K) = Õ(d4/5V
2/5

K B
1/5
K K2/5 + d2/3B

1/3
K K2/3).

Remark 6.4. We discuss the regret of Algo.2 in Corol-
lary 6.3 in the following special cases. In the case where
the total variance is small, i.e., VK = Õ(1), assuming
that K2 > d, our result becomes Õ(d2/3B

1/3
K K2/3), bet-

ter than all the previous results Cheung et al. (2018);
Zhao et al. (2020b); Wang et al. (2023); Wei and Luo
(2021). In the worst case where VK = O(K), our result
becomes Õ(d4/5B

1/5
K K4/5).

Unknown Per-round Variance, Unknown VK and
BK In Corollary 6.3, we need to know the total vari-
ance VK and total variation budget BK to select the
optimal w and α. To deal with the more general case
where VK and BK are unknown, we can employ the
Bandits-over-Bandits (BOB) mechanism (Cheung et al.
(2019); Wang et al. (2023); Zhao et al. (2020b)). We
name the Restarted SAVE+ algorithm with BOB mech-
anism as “Restarted SAVE+-BOB”. Due to the space
limit, we put the algorithm design, descriptions, and
theoretical analysis of Restarted SAVE+-BOB (Algo.3)
in Appendix A.

7 Experiments

To validate the effectiveness of our methods, we conduct
a series of experiments on the synthetic data.

Problem Setting and Baselines Following the ex-
perimental set up in Cheung et al. (2019), we con-
sider the 2-armed bandits setting, where the action set
Dk = {(1, 0), (0, 1)}, and

θk =
(

0.5 + 3
10 sin(5BKπk/K)

0.5 + 3
10 sin(π + 5BKπk/K)

)
.

It is easy to see that the total variation budget can be
bounded as BK . At each round k, the ϵk satisfies the
following distribution:

ϵk ∼ Bernoulli(0.5/k)− 0.5/k.

We can verify that under such a distribution for ϵk,
the variance of the reward distribution at k-th round is
(1− 0.5/k) · 0.5/k, and the total variance VK ∼ log K.

We compare the proposed Restarted-WeightedOFUL+

and Restarted SAVE+ with SW-UCB Cheung et al.
(2019) and Modified EXP3.S Besbes et al. (2014a). We
leave the detailed setup for the baselines in Appendix
B.

Result We plot the results in Figure.1, where all
the empirical results are averaged over ten indepen-
dent trials and the error bar is the standard error
divided by

√
10. The results are consistent with

our theoretical findings. It is evident that our algo-
rithms significantly outperform both SW-UCB and
Modified EXP3.S. Among our proposed algorithms,
Restarted-WeightedOFUL+ achieves the best perfor-
mance. This can be attributed to the fact that it knows
the variance and can make more informed decisions.
Although Restarted SAVE+ performed slightly worse
than Restarted-WeightedOFUL+, it still outperforms
the baseline algorithms, particularly when BK = K1/3.
These results highlight the superiority of our methods.

8 Conclusion and Future Work

We study non-stationary stochastic linear bandits in
this work. We establish the first variance-dependent
regret lower bound for non-stationary linear bandits,
which captures the interplay between variance, non-
stationarity, and dimensionality in the linear bandit
setting, offering new insights into the complexity of
this problem. We propose Restarted-WeightedOFUL+

and Restarted SAVE+, two algorithms that utilize the
dynamic variance information of the dynamic reward
distribution. We show that both of our algorithms are
able to achieve better dynamic regret compared with
best existing results (Wei and Luo, 2021) under several
parameter regimes, e.g., when the total variance VK

is small. Experiment results backup our theoretical
claim. It is worth noting there still exist gaps between
our current obtained regret and the lower bound, and
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to fix such a gap leaves as our future work.
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approvals if applicable. Not Applicable

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. Not Applicable



Zhiyong Wang 1, Jize Xie 2, Yi Chen 2, John C.S. Lui 1, Dongruo Zhou 3

A Restarted SAVE+-BOB

In this section, we provide the details of our proposed Restarted SAVE+-BOB algorithm. The Restarted SAVE+-
BOB algorithm is summarized in Algo.3. We divide the K rounds into ⌈K

H ⌉ blocks, with each block having H
rounds (except the last one may have less than H). Within each block i, we use a fixed (αi, wi) pair to run the
Restarted SAVE+ algorithm. To adaptively learn the optimal (α, w) pair without the knowledge of VK and BK ,
we employ an adversarial bandit algorithm (Exp3 in Auer et al. (2002)) as the meta-learner to select αi, wi over
time for i ∈ ⌈K

H ⌉ blocks. Specifically, in each block, the meta learner selects a (α, w) pair from the candidate pool
to feed to Restarted SAVE+, and the cumulative reward received by Restarted SAVE+ within the block is fed to
the meta-learner as the reward feedback to select a better pair for the next block.

We set H to be ⌈d 2
5 K

2
5 ⌉, and set the candidate pool of (α, w) pairs for the Exp3 algorithm as:

P = {(w, α) : w ∈ W, α ∈ J } , (10)

where

W = {wi = d
1
3 2i−1|i ∈ ⌈13 log2 K⌉+ 1} ∪ {wi = d

2
5 2i−1|i ∈ ⌈25 log2 K⌉+ 1} , (11)

and

J = {αi = d
1
3 2−i+1|i ∈ ⌈13 log2 K⌉+ 1} ∪ {αi = d

11
30 2−i+1|i ∈ ⌈11

30 log2 K⌉+ 1} . (12)

The algorithm also labels all the |P| =
(
⌈ 1

3 log2 K⌉+⌈ 2
5 log2 K⌉+2

)
·
(
⌈ 1

3 log2 K⌉+⌈ 11
30 log2 K⌉+2

)
candidate pairs

of parameters in P,i.e., P = {(wi, αi)}|P|
i=1. The algorithm initializes {sj,1}|P|

j=1 to be sj,1 = 1, ∀j = 0, 1, . . . , |P|,
which means that at the beginning, the algorithm selects a pair from P uniformly at random. At the beginning of
each block i ∈ [⌈K/H⌉], the meta-learner (Exp3) calculates the distribution (pj,i)|P|

j=1 over the candidate set P by

pj,i = (1− γ) sj,i∑|P|
u=1 su,i

+ γ

|P|+ 1 , ∀j = 1, . . . , |P| , (13)

where γ is defined as

γ = min
{

1,

√
(|P|+ 1) ln(|P|+ 1)

(e− 1)⌈K/H⌉

}
. (14)

Then, the meta-learner draws a ji from the distribution (pj,i)|P|
j=1, and sets the pair of parameters in block i

to be (wji
, αji

), and runs the base algorithm Algo.2 from scratch in this block with (wji
, αji

), then feeds the
cumulative reward in the block

∑min{i·H,K}
k=(i−1)H+1 rk to the meta-learner. The meta-learner rescales

∑min{i·H,K}
k=(i−1)H+1 rk to∑min{i·H,K}

k=(i−1)H+1
rk

H+R

√
H
2 log

(
K( K

H +1)
)

+ 2
3 ·R log

(
K( K

H +1)
) to make it in the range [0, 1] with high probability (supported by Lemma

H.7). The meta-learner updates the parameter sji,i+1 to be

sji,i+1 = sji,i · exp

 γ

(|P|+ 1)pji,i

1
2 +

∑min{i·H,K}
k=(i−1)H+1 rk

H + R
√

H
2 log

(
K( K

H + 1)
)

+ 2
3 ·R log

(
K( K

H + 1)
)

 , (15)

and keep others unchanged, i.e., su,i+1 = su,i, ∀u ̸= ji. After that, the algorithm will go to the next block, and
repeat the same process in block i + 1.

We have the following theorem to bound the regret of Restarted SAVE+-BOB.
Theorem A.1. By using the BOB framework with Exp3 as the meta-algorithm and Restarted SAVE+ as the
base algorithm, with the candidate pool P for Exp3 specified as in Eq.(10), Eq.(11), Eq.(12), and H = ⌈d 2

5 K
2
5 ⌉,

then the regret of Restarted SAVE+-BOB (Algo.3) satisfies

Regret(K) = Õ(d4/5V
2/5

K B
1/5
K K2/5 + d2/3B

1/3
K K2/3 + d2/5K7/10). (16)
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Algorithm 3 Restarted SAVE+-BOB
Require: total time rounds K; problem dimension d; noise upper bound R; α > 0; the upper bound on the

ℓ2-norm of a in Dk(k ≥ 1), i.e., A; the upper bound on the ℓ2-norm of θk (k ≥ 1), i.e., B.
1: Initialize H = ⌈d 2

5 K
2
5 ⌉; P as defined in Eq.(10), and index the |P| =

(
⌈ 1

3 log2 K⌉ + ⌈ 2
5 log2 K⌉ + 2

)
·(

⌈ 1
3 log2 K⌉+ ⌈ 11

30 log2 K⌉+ 2
)

items in P , i.e., P = {(wi, αi)}|P|
i=1; γ = min

{
1,

√
(|P|+1) ln(|P|+1)

(e−1)⌈K/H⌉

}
; {sj,1}|P|

j=1

is set to sj,1 = 1, ∀j = 0, 1, . . . , |P|.
2: for i = 1, 2, . . . , ⌈K/H⌉ do
3: Calculate the distribution (pj,i)|P|

j=1 by pj,i = (1− γ) sj,i∑|P|
u=1

su,i

+ γ
|P|+1 , ∀j = 1, . . . , |P|.

4: Set ji ← j with probability pj,i, and (wi, αi)← (wii , αji).
5: Run Algo.2 from scratch in block i (i.e., in rounds k = (i−1)H +1, . . . , min{i ·H, K}) with (w, α) = (wi, αi).

6: Update sji,i+1 = sji,i · exp

 γ
(|P|+1)pji,i

 1
2 +

∑min{i·H,K}
k=(i−1)H+1

rk

H+R

√
H
2 log

(
K( K

H +1)
)

+ 2
3 ·R log

(
K( K

H +1)
)

, and keep all the

others unchanged, i.e., su,i+1 = su,i, ∀u ̸= ji.
7: end for

Proof. See Appendix G for the full proof.

Remark A.2. We discuss the regret of Algo.3 in Corollary 6.3 in the following special cases. In the case where
the total variance is small, i.e., VK = Õ(1), assuming K2 > d, our result becomes Õ(d2/3B

1/3
K K2/3 + d1/5K7/10),

when d14B10
K > K, it becomes Õ(d2/3B

1/3
K K2/3), better than all the previous results Cheung et al. (2018); Zhao

et al. (2020b); Wang et al. (2023); Wei and Luo (2021). In the worst case where VK = O(K), our result becomes
Õ(d4/5B

1/5
K K4/5).

B Additional Experiment Setup

For Restarted-WeightedOFUL+, we set λ = 1, β̂k = 10, w = 1000, and we grid search the variance parameters
α and γ, both among values [1, 1.5, 2, 2.5, 3]. Finally we set α = 1, and γ = 2. For Restarted SAVE+ we set
w = 1000, β̂k,ℓ = 2−ℓ+1, and grid search L from 1 to 10 with stepsize of 1 and finally choose L = 6. For SW-UCB,
we set λ = 1, w = 1000, βk = 10. The Modified EXP3.S requires two parameters ᾱ and γ̄, and we set γ̄ = 0.01
and ᾱ = 1

K .

To test the algorithms’ performance under different total time horizons, we let K vary from 3× 104 to 2.4× 105,
with a stepsize of 3× 104, and plot the cumulative regret Regret(K) for these different total time step K. We set
BK = 1, 10, 20, and K1/3 to observe their performance in different levels of BK .

C Proof of Theorem 4.1

We prove the lower bound in Theorem 4.1 here. We need the following lemma from Zhou et al. (2021).
Lemma C.1 (Modification from Lemma 25, Zhou et al. 2021). Fix a positive real 0 < δ ≤ 1/3, and positive
integers T, d and assume that T ≥ d2/(2δ). Let ∆ =

√
dδ/T/(4

√
2) and consider the linear bandit problems Lµ

parameterized with a parameter vector µ ∈ {−∆, ∆}d and action set A = {−1/
√

d, 1/
√

d}d so that the reward
distribution for taking action a ∈ A is a Bernoulli distribution B(δ + ⟨µ∗, a⟩). Then for any bandit algorithm B
such that

Eµ∼Unif{−∆,∆}d [Regret(T,Lµ)] ≥ d
√

Tδ

8
√

2
. (17)

Here Regret(T,Lµ) represents the regret under algorithm B on the instance Lµ.

Next we prove Theorem 4.1.

Proof of Theorem 4.1. Let T < K be some constant to be defined. Let δ be a constant satisfying 2δ ≤ d2/T .
We create w = K/T number of linear bandit instances with the linear parameter µ1, . . . ,µw, where µi ∼
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{−∆, ∆}d, ∆ =
√

dδ/T/4
√

2. Our nonstationary instance Lµ1,...,µw consists of Lµ1 , . . . ,Lµw , where at the step
i · T + 1, . . . , i · T + T , Lµ1,...,µw follows Lµi . Then by the independence of µi, we have

Eµ1,...,µw∼Unif{−∆,∆}dRegret(T,Lµ1,...,µw
) =

w∑
i=1

Eµi∼Unif{−∆,∆}d [Regret(T,Lµi
)] ≥ d

√
Tδ

8
√

2
· K

T
. (18)

Next we calculate the total variation and total variance for instance Lµ1,...,µw . For each step, the reward
distribution is a Bernoulli distribution B(δ + ⟨µi, a⟩), whose variance is

(δ + ⟨µi, a⟩)(1− δ − ⟨µi, a⟩) ≤ (δ + ⟨µi, a⟩) ≤ 2δ, (19)

where we use the fact
√

d∆ ≤ δ. Therefore, the total variance over K steps is bounded by

V ≤ 2Kδ. (20)

Next, for the total variation, we have for any k, k + 1 belong to the same µi, the variation of µ is 0. Note that for
any two different µi,µj , their difference is at most ∥µi − µj∥ ≤ 2

√
d ·∆2, then the total variation is bounded by

B ≤ K

T
· 2∆
√

d =
√

dδ/T/(4
√

2)K

T
· 2
√

d = dK
√

δ

2
√

2T 3
. (21)

Then we select δ and T as

δ = VK

2K
, T = max{

(
KVKd2

16B2
K

)1/3
, d2K/VK}, satisfying 2Kδ ≤ VK ,

dK
√

δ

2
√

2T 3
≤ BK , T ≥ d2

2δ
. (22)

We have the lower bound as

Eµ1,...,µw∼Unif{−∆,∆}dRegret(T,Lµ1,...,µw
) ≥ Ω(d2/3B

1/3
K V

1/3
K K1/3 ∧ VK). (23)

Therefore, there must exists µ∗
1, . . . ,µ∗

w, satisfying

Regret(T,Lµ∗
1 ,...,µ∗

w
) ≥ Ω(d2/3B

1/3
K V

1/3
K K1/3 ∧ VK). (24)

Finally, combining (24) with the lower bound result in Wei et al. (2016) concludes our proof.

D Proof of Lemma 5.1

For simplicity, we denote

β̂ := 12
√

d log(1 + wA2

α2dλ
) log(32(log(γ2

α
+ 1)w2

δ
) + 30 log(32(log(γ2

α
) + 1)w2

δ
) R

γ2 +
√

λB. (25)

It is obvious that β̂ ≥ β̂k for all k ∈ [K]. We call the restart time rounds grids and denote them by g1, g2, . . . g⌈ K
w ⌉−1,

where gi%w = 0 for all i ∈ [⌈K
w ⌉ − 1]. Let ik be the grid index of time round k, i.e., gik

≤ k < gik+1.

For ease of exposition and without loss of generality, we prove the lemma for k ∈ [1, w]. We calculate the
estimation difference |a⊤(θ̂k − θk)| for any a ∈ Rd, ∥a∥2 ≤ A, k ∈ [1, w]. By definition:

θ̂k = Σ̂−1
k bk = Σ̂−1

k (
k−1∑
t=1

rtat

σ̄2
t

) = Σ̂−1
k (

k−1∑
t=1

ata⊤
t θt

σ̄2
t

+
k−1∑
t=1

atϵt

σ̄2
t

) , (26)

where Σ̂k = λI +
∑k−1

t=gik

ata⊤
t

σ̄2
t

.

Then we have

θ̂k − θk = Σ̂−1
k (

k−1∑
t=1

ata⊤
t

σ̄2
t

(θt − θk) +
k−1∑
t=1

atϵt

σ̄2
t

)− λΣ̂−1
k θk . (27)
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Therefore

|a⊤(θ̂k − θk)| ≤
∣∣∣∣∣a⊤Σ̂−1

k

k−1∑
t=1

ata⊤
t

σ̄2
t

(θt − θk)
∣∣∣∣∣ + ∥a∥Σ̂−1

k
∥

k−1∑
t=1

atϵt

σ̄2
t

∥Σ̂−1
k

+ λ∥a∥Σ̂−1
k
∥Σ̂− 1

2
k θk∥2 , (28)

where we use the Cauchy-Schwarz inequality.

For the first term, we have that for any k ∈ [1, w]∣∣∣∣∣a⊤Σ̂−1
k

k∑
t=1

ata⊤
t

σ̄2
t

(θt − θk)
∣∣∣∣∣ ≤

k−1∑
t=1
|a⊤Σ̂−1

k

at

σ̄t
| · |at

σ̄t

⊤
(
k−1∑
s=t

(θs − θs+1))| (triangle inequality)

≤
k−1∑
t=1
|a⊤Σ̂−1

k

at

σ̄t
| · ∥at

σ̄t
∥2 · ∥

k−1∑
s=t

(θs − θs+1)∥2 (Cauchy-Schwarz)

≤ A

α

k−1∑
t=1
|a⊤Σ̂−1

k

at

σ̄t
| · ∥

k−1∑
s=t

(θs − θs+1)∥2 (∥at∥ ≤ A, σ̄t ≥ α)

≤ A

α

k−1∑
s=1

s∑
t=1
|a⊤Σ̂−1

k

at

σ̄t
| · ∥θs − θs+1∥2 (

∑k−1
t=1

∑k−1
s=t =

∑k−1
s=1

∑s
t=1)

≤ A

α

k−1∑
s=1

√√√√[ s∑
t=1

a⊤Σ̂−1
k a

]
·
[ s∑

t=1

at

σ̄t

⊤
Σ̂−1

k

at

σ̄t

]
· ||θs − θs+1||2 (Cauchy-Schwarz)

≤ A

α

k−1∑
s=1

√√√√[ s∑
t=1

a⊤Σ̂−1
k a

]
· d · ||θs − θs+1||2 ((⋆))

≤ A∥a∥2

α

√
d

k−1∑
s=1

√∑k−1
t=1 1
λ

· ||θs − θs+1||2 (λmax(Σ̂−1
k ) ≤ 1

λ )

≤ A2

α

√
dw

λ

k−1∑
s=1
||θs − θs+1||2 , (29)

where the inequality (⋆) follows from the fact that
∑s

t=1
at

σ̄t

⊤Σ̂−1
k

at

σ̄t
≤ d that can be proved as follows. We

have
∑k−1

t=1
at

σ̄t

⊤Σ̂−1
k

at

σ̄t
=

∑k−1
t=1 tr

(
at

σ̄t

⊤Σ̂−1
k

at

σ̄t

)
= tr

(
Σ̂−1

k

∑k−1
t=1

at

σ̄t

at

σ̄t

⊤
)

. Given the eigenvalue decomposition∑k−1
t=1

at

σ̄t

at

σ̄t

⊤ = diag(λ1, . . . , λd)⊤, we have Σ̂k = diag(λ1 + λ, . . . , λd + λ)⊤, and tr
(
Σ̂−1

k

∑k−1
t=1

at

σ̄t

at

σ̄t

⊤
)

=∑d
i=1

λj

λj+λ ≤ d.

For the second term, by the assumption on ϵk, we know that

|ϵk/σ̄k| ≤ R/α,

|ϵk/σ̄k| ·min{1, ∥ak/σ̄k∥Σ̂−1
k
} ≤ R∥ak∥Σ̂−1

k
/σ̄2

k ≤ R/γ2,

E[ϵk|a1:k, ϵ1:k−1] = 0, E[(ϵk/σ̄k)2|a1:k, ϵ1:k−1] ≤ 1, ∥ak/σ̄k∥2 ≤ A/α,

Therefore, setting Gk = σ(a1:k, ϵ1:k−1), and using that σk is Gk-measurable, applying Theorem H.1 to (xk, ηk) =
(ak/σ̄k, ϵk/σ̄k) with ϵ = R/γ2 , we get that with probability at least 1− δ, for all k ∈ [1, w],

∥
k−1∑
t=1

atϵt

σ̄2
t

∥Σ̂−1
k
≤ 12

√
d log(1 + (k%w)A2

α2dλ
) log(32(log(γ2

α
+ 1)(k%w)2

δ
) + 30 log(32(log(γ2

α
) + 1)(k%w)2

δ
) R

γ2 .

(30)
For the last term

λ∥a∥Σ̂−1
k
∥Σ̂− 1

2
k θk∥2 ≤ λ∥a∥Σ̂−1

k
∥Σ̂− 1

2
k ∥2∥θk∥2 ≤ λ∥a∥Σ̂−1

k

1√
λmin(Σ̂k)

∥θk∥2 ≤
√

λB∥a∥Σ̂−1
k

, (31)
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where we use the fact that λmin(Σ̂k) ≥ λ.

Therefore, with probabilty at least 1− δ, we have

|a⊤(θ̂k − θk)|

≤ A2

α

√
dw

λ

k−1∑
t=1
∥θt − θt+1∥2

+ ∥a∥Σ̂−1
k

(
12

√
d log(1 + (k%w)A2

α2dλ
) log(32(log(γ2

α
+ 1)(k%w)2

δ
) + 30 log(32(log(γ2

α
) + 1)(k%w)2

δ
) R

γ2 +
√

λB

)
= A2

α

√
dw

λ

k−1∑
t=1
∥θt − θt+1∥2 + β̂k∥a∥Σ̂−1

k
, (32)

where β̂k is defined in Eq.(5).

E Proof for Theorem 5.2

For simplicity of analysis, we only analyze the regret over the first grid, i.e., we try to analyze Regret(K̃) for
K̃ ∈ [1, w]. Denote E1 as the event when Lemma 5.1 holds. Therefore, under event E1, for any K̃ ∈ [1, w], the
regret can be bounded by

Regret(K̃) =
K̃∑

k=1

[
⟨a∗

k − ak,θk⟩
]

=
K̃∑

k=1

[
⟨a∗

k,θk − θ̂k⟩+ (⟨a∗
k, θ̂k⟩+ β̂k∥a∗

k∥Σ̂−1
k

)− (⟨ak, θ̂k⟩+ β̂k∥ak∥Σ̂−1
k

)

+ ⟨ak, θ̂k − θk⟩+ β̂k∥ak∥Σ̂−1
k
− β̂k∥a∗

k∥Σ̂−1
k

]
≤ 2A2

α

√
dw

λ

K̃∑
k=1

k−1∑
t=1
∥θt − θt+1∥2 + 2

K̃∑
k=1

min
{

1, β̂k∥ak∥Σ̂−1
k

}
, (33)

where in the last inequality we use the definition of event E1, the arm selection rule in Line 7 of Algo.1, and
0 ≤ ⟨a∗

k,θ∗⟩ − ⟨ak,θ∗⟩ ≤ 2.

Then we will bound the two terms in Eq.(33).

For the first term, we have

2A2

α

√
dw

λ

K̃∑
k=1

k−1∑
t=1
∥θt − θt+1∥2

= 2A2

α

√
dw

λ

K̃−1∑
t=1

K̃∑
k=t

∥θt − θt+1∥2

≤ 2A2

α

√
dw

λ
w

K̃−1∑
t=1
∥θt − θt+1∥2 . (34)

To bound the second term in Eq.(33), we decompose the set [K̃] into a union of two disjoint subsets [K] = I1 ∪I2.

I1 =
{

k ∈ [K̃] : ∥ak

σ̄k
∥Σ̂−1

k
≥ 1

}
, I2 =

{
k ∈ [K̃] : ∥ak

σ̄k
∥Σ̂−1

k
< 1

}
. (35)
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Then the following upper bound of |I1| holds:

|I1| =
∑
k∈I1

min
{

1, ∥ak

σ̄k
∥2
Σ̂−1

k

}

≤
K̃∑

k=1
min

{
1, ∥ak

σ̄k
∥2
Σ̂−1

k

}
≤ 2dι, (36)

where ι = log(1 + wA2

dλα2 ), the first equality holds since ∥xk

σ̄k
∥Σ̂−1

k
≥ 1 for k ∈ I1, the last inequality holds due to

Lemma H.2 together with the fact ∥ak

σ̄k
∥2 ≤ A

α since σ̄k ≥ α and ∥ak∥2 ≤ A.

Then, we have

K̃∑
k=1

min
{

1, β̂k∥ak∥Σ̂−1
k

}
=

∑
k∈I1

min
{

1, σ̄kβ̂k∥
ak

σ̄k
∥Σ̂−1

k

}
+

∑
k∈I2

min
{

1, σ̄kβ̂k∥
ak

σ̄k
∥Σ̂−1

k

}
≤

[ ∑
k∈I1

1
]

+
∑
k∈I2

σ̄kβ̂k∥
ak

σ̄k
∥Σ̂−1

k

≤ 2dι + β̂
∑
k∈I2

σ̄k∥
ak

σ̄k
∥Σ̂−1

k
, (37)

where the first inequality holds since min{1, x} ≤ 1 and also min{1, x} ≤ x, the second inequality holds by
Eq.(36), and the fact the β̂ ≥ β̂k for all k ∈ [K] (β̂ is defined in Eq.(25)). Next we further bound the second
summation term in (37). We decompose I2 = J1 ∪ J2, where

J1 =
{

k ∈ I2 : σ̄k = σk ∪ σ̄k = α

}
, J2 =

{
k ∈ I2 : σ̄k = γ

√
∥ak∥Σ̂−1

k

}
.

Then
∑

k∈I2
σ̄k∥ak

σ̄k
∥Σ̂−1

k
=

∑
k∈J1

σ̄k∥ak

σ̄k
∥Σ̂−1

k
+

∑
k∈J2

σ̄k∥ak

σ̄k
∥Σ̂−1

k
. First, for k ∈ J1, we have

∑
k∈J1

σ̄k∥
ak

σ̄k
∥Σ̂−1

k
≤

∑
k∈J1

(σk + α) min
{

1, ∥ak

σ̄k
∥Σ̂−1

k

}

≤

√√√√ K̃∑
k=1

(σk + α)2

√√√√ K̃∑
k=1

min
{

1, ∥ak

σ̄k
∥Σ̂−1

k

}2

≤

√√√√2
K̃∑

k=1
(σ2

k + α2)

√√√√ K̃∑
k=1

min
{

1, ∥ak

σ̄k
∥2
Σ̂−1

k

}

≤ 2

√√√√ K̃∑
k=1

σ2
k + K̃α2

√
dι , (38)

where the first inequality holds since σ̄k ≤ σk + α for k ∈ J1 and ∥ak

σ̄k
∥Σ̂−1

k
≤ 1 since k ∈ J1 ⊆ I2, the second

inequality holds by Cauchy-Schwarz inequality, the third inequality holds due to (a + b)2 ≤ 2(a2 + b2), and the
last inequality holds due to Lemma H.2.
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Finally we bound the summation for k ∈ J2. When k ∈ J2, we have σ̄k = γ2∥ak

σ̄k
∥Σ̂−1

k
. Therefore we have∑

k∈J2

σ̄k∥
ak

σ̄k
∥Σ̂−1

k
=

∑
k∈J2

γ2∥ak

σ̄k
∥2
Σ̂−1

k

≤
K̃∑

k=1
γ2 min

{
1, ∥ak

σ̄k
∥2
Σ̂−1

k

}
≤ 2γ2dι , (39)

where in the first inequality we use the fact that ∥ak

σ̄k
∥Σ̂−1

k
≤ 1 since k ∈ J2 ⊆ I2, and in the last inequality we

use Lemma H.2.

Therefore, with Eq.(33), Eq.(34), Eq.(37), Eq.(38), Eq.(39), we can get the regret upper bound for K̃ ∈ [1, w]

Regret(K̃) ≤ 2A2w
3
2

α

√
d

λ

K̃−1∑
k=1
∥θk − θk+1∥2 + 4β̂

√
dι

√ ∑
k∈[K̃]

σ2
k + wα2 + 4dιγ2β̂ + 4dι . (40)

Therefore, by the same deduction, we can get that

Regret([gi, gi+1]) ≤ 2A2w
3
2

α

√
d

λ

gi+1−1∑
k=gi

∥θk − θk+1∥2 + 4β̂
√

dι

√√√√gi+1∑
k=gi

σ2
k + wα2 + 4dιγ2β̂ + 4dι , (41)

where we use Regret([gi, gi+1]) to denote the regret accumulated in the time period [gi, gi+1].

Finally, without loss of generality, we assume K%w = 0. Then we have

Regret(K̃) =
K
w −1∑
i=0

Regret([gi, gi+1])

≤ 2A2w
3
2

α

√
d

λ

K
w −1∑
i=0

gi+1−1∑
k=gi

∥θk − θk+1∥2 + 4β̂
√

dι

K
w −1∑
i=0

√√√√gi+1∑
k=gi

σ2
k + wα2 + 4dιγ2β̂K

w
+ 4dKι

w

≤ 2A2w
3
2

α

√
d

λ

K−1∑
k=1
∥θk − θk+1∥2 + 4β̂

√
dι

√√√√√K

w

K
w −1∑
i=0

(
gi+1∑
k=gi

σ2
k + wα2) + 4dιγ2β̂K

w
+ 4dKι

w

≤ 2A2w
3
2 BK

α

√
d

λ
+ 4β̂

√
Kdι

w

√√√√ K∑
k=1

σ2
k + Kα2 + 4dιγ2β̂K

w
+ 4dKι

w
,

where in the second inequality we use Cauchy-Schwarz inequality, and the last inequality holds due to∑
k∈[K−1] ∥θk − θk+1∥2 ≤ BK .

F Proof for Theorem 6.1

Recall that we call the restart time rounds grids and denote them by g1, g2, . . . g⌈ K
w ⌉−1, where gi%w = 0 for

all i ∈ [⌈K
w ⌉ − 1]. Let ik be the grid index of time round k, i.e., gik

≤ k < gik+1. We denote Ψ̂k,ℓ := {t : t ∈
[gik

, k − 1], ℓt = ℓ}.

For simplicity of analysis, we first try to bound the regret over the first grid, i.e., we try to analyze Regret(K̃)
for K̃ ∈ [1, w]. Note that in this case, for any k ∈ [K̃] with K̃ ∈ [1, w], we have gik

= 1, so Ψ̂k,ℓ := {t : t ∈
[1, k − 1], ℓt = ℓ}.

First, we calculate the estimation difference |a⊤(θ̂k,ℓ − θk)| for any a ∈ Rd, ∥a∥2 ≤ A. Recall that by definition,
Σ̂k,ℓ = 2−2ℓI +

∑
t∈Ψ̂k,ℓ

w2
t ata⊤

t , b̂k,ℓ =
∑

t∈Ψ̂k,ℓ
w2

t rtat, and

θ̂k,ℓ = Σ̂−1
k,ℓb̂k,ℓ = Σ̂−1

k,ℓ(
∑

t∈Ψ̂k,ℓ

w2
t rtat) = Σ̂−1

k,ℓ(
∑

t∈Ψ̂k,ℓ

w2
t ata⊤

t θt +
∑

t∈Ψ̂k,ℓ

w2
t atϵt) .
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Then we have

θ̂k,ℓ − θk = Σ̂−1
k,ℓ(

∑
t∈Ψ̂k,ℓ

w2
t ata⊤

t (θt − θk) +
∑

t∈Ψ̂k,ℓ

w2
t atϵt)− 2−2ℓΣ̂−1

k,ℓθk . (42)

Therefore, we can get

|a⊤(θ̂k,ℓ − θk)| ≤

∣∣∣∣∣∣a⊤Σ̂−1
k,ℓ

∑
t∈Ψ̂k,ℓ

w2
t ata⊤

t (θt − θk)

∣∣∣∣∣∣ + ∥a∥Σ̂−1
k,ℓ
∥

∑
t∈Ψ̂k,ℓ

w2
t atϵt∥Σ̂−1

k,ℓ
+ 2−2ℓ∥a∥Σ̂−1

k,ℓ
∥Σ̂− 1

2
k,ℓ θk∥2 , (43)

where we use the Cauchy-Schwarz inequality.

For the first term, we have that for any k ∈ [1, w]∣∣∣∣∣∣a⊤Σ̂−1
k,ℓ

∑
t∈Ψ̂k,ℓ

w2
t ata⊤

t (θt − θk)

∣∣∣∣∣∣ ≤
∑

t∈Ψ̂k,ℓ

|a⊤Σ−1
k,ℓwtat| · |wta⊤

t (
k−1∑
s=t

(θs − θs+1))| (triangle inequality)

≤
∑

t∈Ψ̂k,ℓ

|a⊤Σ−1
k,ℓwtat| · ∥wtat∥2 · ∥

k−1∑
s=t

(θs − θs+1)∥2 (Cauchy-Schwarz)

≤ A
∑

t∈Ψ̂k,ℓ

|a⊤Σ̂−1
k,ℓwtat| · ∥

k−1∑
s=t

(θs − θs+1)∥2 (∥at∥ ≤ A, wt = 2−ℓt

∥at∥
Σ̂−1

t,ℓt

≤ 1)

≤ A

k−1∑
s=1

∑
t∈Ψ̂k,ℓ

|a⊤Σ̂−1
k,ℓwtat| · ∥θs − θs+1∥2

≤ A

k−1∑
s=1

√√√√[ ∑
t∈Ψ̂k,ℓ

a⊤Σ̂−1
k,ℓa

]
·
[ ∑

t∈Ψ̂k,ℓ

wtat
⊤Σ̂−1

k,ℓwtat

]
· ||θs − θs+1||2

(Cauchy-Schwarz)

≤ A

k−1∑
s=1

√√√√[ ∑
t∈Ψ̂k,ℓ

a⊤Σ̂−1
k,ℓa

]
· d · ||θs − θs+1||2 ((⋆))

≤ A∥a∥2
√

d

k−1∑
s=1

√
22ℓ

∑
t∈Ψ̂k,ℓ

1 · ||θs − θs+1||2 (λmax(Σ̂−1
k,ℓ) ≤ 1

2−2ℓ = 22ℓ)

≤ A22ℓ
√

dw

k−1∑
s=1
||θs − θs+1||2 , (44)

where the inequality (⋆) follows from the fact that
∑

t∈Ψ̂k,ℓ
wtat

⊤Σ̂−1
k,ℓwtat ≤ d that can be proved as follows.

We have
∑

t∈Ψ̂k,ℓ
wtat

⊤Σ̂−1
k,ℓwtat =

∑
t∈Ψ̂k,ℓ

tr
(

wtat
⊤Σ̂−1

k,ℓwtat

)
= tr

(
Σ̂−1

k,ℓ

∑
t∈Ψ̂k,ℓ

w2
t atat

⊤
)

. Given the eigen-
value decomposition

∑
t∈Ψ̂k,ℓ

w2
t atat

⊤ = diag(λ1, . . . , λd)⊤, we have Σ̂k,ℓ = diag(λ1 + λ, . . . , λd + λ)⊤, and

tr
(
Σ̂−1

k,ℓ

∑
t∈Ψ̂k,ℓ

w2
t atat

⊤
)

=
∑d

i=1
λj

λj+λ ≤ d.

For the second term in Eq.(43), we can apply Theorem H.3 for the layer ℓ. In detail, for any k ∈ [K], for each
t ∈ Ψ̂k,ℓ, we have

∥wtat∥Σ̂−1
t,ℓ

= 2−ℓ, E[w2
t ϵ2

t |Ft] ≤ w2
tE[ϵ2

t |Ft] ≤ w2
t σ2

t , |wtϵt| ≤ |ϵt| ≤ R,

where the last inequality holds due to the fact that wt = 2−ℓt

∥at∥
Σ̂

−1
t,ℓt

≤ 1. According to Theorem H.3, and taking a
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union bound, we can deduce that with probability at least 1− δ, for all ℓ ∈ [L], for all round k ∈ ΨK+1,ℓ,

∥
∑

t∈Ψ̂k,ℓ

w2
t atϵt∥Σ̂−1

k,ℓ
≤ 16 · 2−ℓ

√√√√ ∑
t∈Ψ̂k,ℓ

w2
t σ2

t log(4w2L

δ
) + 6 · 2−ℓR log(4w2L

δ
) . (45)

For simplicity, we denote Econf as the event such that Eq.(45) holds.

For the third term in Eq.(43), we have

2−2ℓ∥a∥Σ̂−1
k,ℓ
∥Σ̂− 1

2
k,ℓ θk∥2 ≤ 2−2ℓ∥a∥Σ̂−1

k,ℓ
∥Σ̂− 1

2
k ∥2∥θk∥2 ≤ 2−2ℓ∥a∥Σ̂−1

k,ℓ

1√
λmin(Σ̂k,ℓ)

∥θk∥2 ≤ 2−ℓB∥a∥Σ̂−1
k

, (46)

where we use the fact that λmin(Σ̂k,ℓ) ≥ 2−2ℓ.

For simplicity, we denote ℓ∗ = ⌈ 1
2 log2 log

(
4(w + 1)2L/δ

)
⌉ + 8. Then, under Econf , by the definition of β̂k,ℓ in

Eq.(9), Lemma H.4 and Lemma H.5, with probability at least 1− δ, we have for all ℓ∗ + 1 ≤ ℓ ≤ L,

β̂k,ℓ ≥ 16 · 2−ℓ

√√√√ ∑
t∈Ψ̂k,ℓ

w2
t σ2

t log(4w2L

δ
) + 6 · 2−ℓR log(4w2L

δ
) + 2−ℓB. (47)

Therefore, with Eq.(43), Eq.(44), Eq.(45), Eq.(46), Eq.(47), with probability at least 1− 3δ, for all ℓ∗ + 1 ≤ ℓ ≤ L
we have

|a⊤(θ̂k,ℓ − θk)| ≤ A22ℓ
√

dw

k−1∑
s=1
||θs − θs+1||2 + β̂k,ℓ∥a∥Σ̂−1

k,ℓ
. (48)

Then for all k ∈ [K] such that ℓ∗ + 1 ≤ ℓk ≤ L, with probability at least 1− 3δ we have

⟨a∗
k,θk⟩ ≤ min

ℓ∈[L]
⟨a∗

k, θ̂k,ℓ⟩+ A22ℓ
√

dw

k−1∑
s=1
||θs − θs+1||2 + β̂k,ℓ∥a∗

k∥Σ̂−1
k,ℓ

≤ A22L
√

dw

k−1∑
s=1
||θs − θs+1||2 + min

ℓ∈[L]
⟨a∗

k, θ̂k,ℓ⟩+ β̂k,ℓ∥a∗
k∥Σ̂−1

k,ℓ

≤ A22L
√

dw

k−1∑
s=1
||θs − θs+1||2 + min

ℓ∈[L]
⟨ak, θ̂k,ℓ⟩+ β̂k,ℓ∥ak∥Σ̂−1

k,ℓ

≤ A22L
√

dw

k−1∑
s=1
||θs − θs+1||2 + ⟨ak, θ̂k,ℓk−1⟩+ β̂k,ℓk−1∥ak∥Σ̂−1

k,ℓk−1
, (49)

where the first inequality holds because of Eq.(48), the third inequality holds because of the arm selection rule in
Line 8 of Algo.2.

We decompose the regret for K̃ ∈ [1, w] as follows

Regret(K̃) =
∑

k∈[K̃]

(⟨a∗
k,θk⟩ − ⟨ak,θk⟩)

=
∑

ℓ∈[ℓ∗]

∑
k∈Ψ̂K̃+1,ℓ

(⟨a∗
k,θk⟩ − ⟨ak,θk⟩) +

∑
ℓ∈[L]\[ℓ∗]

∑
k∈Ψ̂K̃+1,ℓ

(⟨a∗
k,θk⟩ − ⟨ak,θk⟩)

+
∑

k∈Ψ̂K̃+1,L+1

(⟨a∗
k,θk⟩ − ⟨ak,θk⟩) . (50)

We will bound the three terms separately. For the first term, we have for layer ℓ ∈ [ℓ∗] and round k ∈ Ψ̂K̃+1,ℓ, we
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have ∑
k∈Ψ̂K̃+1,ℓ

(
⟨a∗

k,θ∗⟩ − ⟨ak,θ∗⟩
)
≤ 2 |ΨK+1,ℓ|

= 22ℓ+1
∑

k∈Ψ̂K̃+1,ℓ

∥wkak∥2
Σ̂−1

k,ℓ

≤ 2 · 1282 log(4(w + 1)2L

δ
)

∑
k∈Ψ̂K̃+1,ℓ

∥wkak∥2
Σ̂−1

k,ℓ

≤ 2 · 1282 log(4(w + 1)2L

δ
) · 2d log(1 + 22ℓwA2

d
)

= Õ(d) , (51)

where the first inequality holds because the reward is in [−1, 1], the equation follows from the fact that ∥wkak∥Σ̂−1
k,ℓ

=
2−ℓ holds for all k ∈ ΨK+1,ℓ, the second inequality holds due to the fact that 2ℓ∗ ≤ 128

√
log(4(w + 1)2L/δ), and

the last inequality holds due to Lemma H.2.

Therefore ∑
ℓ∈[ℓ∗]

∑
k∈Ψ̂K̃+1,ℓ

(⟨a∗
k,θk⟩ − ⟨ak,θk⟩) = Õ(d) . (52)

For the second part in Eq.(50), we have∑
ℓ∈[L]\[ℓ∗]

∑
k∈Ψ̂K̃+1,ℓ

(⟨a∗
k,θk⟩ − ⟨ak,θk⟩)

≤
∑

ℓ∈[L]\[ℓ∗]

∑
k∈Ψ̂K̃+1,ℓ

(
⟨ak, θ̂k,ℓ−1⟩+ β̂k,ℓ−1∥ak∥Σ̂−1

k,ℓ−1

+ A22L
√

dw
∑

k∈Ψ̂K̃+1,ℓ

||θs − θs+1||2 − ⟨ak,θk⟩
)

≤ 2
∑

ℓ∈[L]\[ℓ∗]

∑
k∈Ψ̂K̃+1,ℓ

β̂k,ℓ−1∥ak∥Σ̂−1
k,ℓ−1

+ A2
√

dw
∑

ℓ∈[L]\[ℓ∗]

∑
k∈Ψ̂K̃+1,ℓ

2L
k−1∑
s=1
||θs − θs+1||2 , (53)

where the inequality holds due to Eq.(49), the second inequality holds due to Eq.(48). We then try to bound the
two terms.

For the first term in Eq.(53), we have∑
ℓ∈[L]\[ℓ∗]

∑
k∈Ψ̂K̃+1,ℓ

β̂k,ℓ−1∥ak∥Σ̂−1
k,ℓ−1

≤
∑

ℓ∈[L]\[ℓ∗]

∑
k∈Ψ̂K̃+1,ℓ

β̂k,ℓ−1 · 2−ℓ

≤
∑

ℓ∈[L]\[ℓ∗]

β̂K̃,ℓ−1 · 2−ℓ
∣∣∣Ψ̂K̃+1,ℓ

∣∣∣
=

∑
ℓ∈[L]\[ℓ∗]

β̂K̃,ℓ−1 · 2ℓ
∑

k∈Ψ̂K̃+1,ℓ

∥wkak∥2
Σ−1

k,ℓ

≤
∑

ℓ∈[L]\[ℓ∗]

β̂K̃,ℓ−1 · 2ℓ · 2d log(1 + 22ℓK̃A2

d
)

= Õ(d · 2ℓ · β̂K̃,ℓ−1)

= Õ

(
d
(√√√√ K̃∑

k=1
σ2

k + R + 1
))

, (54)
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where the first inequality holds because by the algorithm design, we have for all k ∈ Ψ̂K̃+1,ℓ: ∥ak∥Σ̂−1
k,ℓ−1

≤ 2−ℓ;
the second inequality holds because for all k ∈ Ψ̂K̃+1,ℓ, β̂k,ℓ−1 ≤ β̂K̃,ℓ−1; the first equality holds because for all
k ∈ Ψ̂K̃+1,ℓ, ∥wkak∥2

Σ−1
k,ℓ

= 2−2ℓ; the third inequality holds by Lemma H.2; the last two equalities hold because by

Lemma H.4 and Lemma H.5, we have β̂K̃,ℓ−1 = Õ

(
2−ℓ(

√∑K̃
k=1 σ2

k + R + 1)
)

.

For the second term in Eq.(53), we have

A2
√

dw
∑

ℓ∈[L]\[ℓ∗]

∑
k∈Ψ̂K̃+1,ℓ

2L
k−1∑
s=1
||θs − θs+1||2 ≤ A22L

√
dw

∑
k∈[K̃−1]

k−1∑
s=1
||θs − θs+1||2

≤ A2
√

dw
3
2

α

K̃−1∑
k=1
||θk − θk+1||2 (55)

Therefore, with this, Eq.(53), and Eq.(54), we have

∑
ℓ∈[L]\[ℓ∗]

∑
k∈Ψ̂K̃+1,ℓ

(⟨a∗
k,θk⟩ − ⟨ak,θk⟩) ≤

A2
√

dw
3
2

α

K̃−1∑
k=1
||θk − θk+1||2 + Õ

(
d
(√√√√ K̃∑

k=1
σ2

k + R + 1
))

. (56)

Finally, for the last term in Eq.(50), we have

∑
k∈Ψ̂K̃+1,L+1

(⟨a∗
k,θk⟩ − ⟨ak,θk⟩) ≤

∑
k∈Ψ̂K̃+1,L+1

(
⟨ak, θ̂k,L⟩+ β̂k,L∥ak∥Σ̂−1

k,L
+ A22L

√
dw

k−1∑
s=1
||θs − θs+1||2 − ⟨ak,θk⟩

)

≤
∑

k∈Ψ̂K̃+1,L+1

(
2β̂k,L∥ak∥Σ̂−1

k,L
+ A22L+1

√
dw

k−1∑
s=1
||θs − θs+1||2

)

≤
∑

k∈Ψ̂K̃+1,L+1

(
2−L+1β̂k,L + A22L+1

√
dw

k−1∑
s=1
||θs − θs+1||2

)

≤ 2A2
√

dw
3
2

α

K̃−1∑
k=1
||θk − θk+1||2 +

∑
k∈Ψ̂K̃+1,L+1

2−L+1β̂K̃,L

≤ 2A2
√

dw
3
2

α

K̃−1∑
k=1
||θk − θk+1||2 + w · 2α · β̂K̃,L

= 2A2
√

dw
3
2

α

K̃−1∑
k=1
||θk − θk+1||2 + Õ

(
wα2 ·

(√√√√ K̃∑
k=1

σ2
k + R + 1

))
, (57)

where the first inequality holds due to Eq.(49), the second inequality holds due to Eq.(48), the third inequality
holds because by the algorithm design, we have for all k ∈ Ψ̂K̃+1,L+1: ∥ak∥Σ̂−1

k,L
≤ 2−L, the fourth inequality

holds due to the same reasons as before, and the fact that β̂K̃,L ≥ β̂k,L for all k ∈ β̂K̃,L; the last inequality holds

due to β̂K̃,ℓ−1 = Õ

(
α(

√∑K̃
k=1 σ2

k + R + 1)
)

.

Plugging Eq.(56), Eq.(57), and Eq.(52) into Eq.(50), we can get that for K̃ ∈ [1, w]

Regret(K̃) = Õ

(
A2
√

dw
3
2

α

K̃−1∑
k=1
||θk − θk+1||2 +

(
wα2 + d

)
·
(√√√√ K̃∑

k=1
σ2

k + R + 1
))

. (58)
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By the same deduction we can get

Regret([gi, gi+1]) = Õ

(
A2
√

dw
3
2

α

gi+1∑
k=gi

||θk − θk+1||2 +
(
wα2 + d

)
·
(√√√√gi+1∑

k=gi

σ2
k + R + 1

))
. (59)

Finally, without loss of generality, we assume K%w = 0. Then we have

Regret(K) =
K
w −1∑
i=0

Regret([gi, gi+1])

= Õ

(
A2
√

dw
3
2

α

K
w −1∑
i=0

gi+1∑
k=gi

||θk − θk+1||2 +
(
wα2 + d

)
·

K
w −1∑
i=0

(√√√√gi+1∑
k=gi

σ2
k + R + 1

))

≤ Õ

(
A2
√

dw
3
2

α

K−1∑
k=1
||θk − θk+1||2 +

(
wα2 + d

)
·
(√√√√√K

w

K
w −1∑
i=0

gi+1∑
k=gi

σ2
k + KR

w
+ K

w

))

≤ Õ

(
A2
√

dw
3
2 BK

α
+

(
wα2 + d

)
·

√√√√K

w

K∑
k=1

σ2
k +

(
1 + R

)
·
(
Kα2 + Kd

w

))
,

where the first inequality holds due to the Cauchy-Schwarz inequality, the last inequality holds because
∑K−1

k=1 ||θk−
θk+1||2 ≤ BK .

G Proof of Theorem A.1

With the candidate pool set P designed as in Eq.(10), Eq.(11), Eq.(12), and H = ⌈d 2
5 K

2
5 ⌉, we have |P| = O(log K),

and for any w ∈ W, w ≤ H.

We denote the optimal (w, α) with the knowledge of VK and BK in Corollary 6.3 as (w∗, α∗). We denote the best
approximation of (w∗, α∗) in the candidate set P as (w+, α+). Then we can decompose the regret as follows

Regret(K) =
K∑

k=1
⟨a∗

t ,θk⟩ − ⟨at,θk⟩ =
K∑

k=1
⟨a∗

t ,θk⟩ −
⌈ K

H ⌉∑
i=1

iH∑
k=(i−1)H+1

⟨at(w+, α+),θk⟩︸ ︷︷ ︸
(1)

+
⌈ K

H ⌉∑
i=1

iH∑
k=(i−1)H+1

⟨at(w+, α+),θk⟩ − ⟨at(wi, αi),θk⟩︸ ︷︷ ︸
(2)

. (60)

The first term (1) is the dynamic regret of Restarted SAVE+ with the best parameters in the candidate pool P.
The second term (2) is the regret overhead of meta-algorithm due to adaptive exploration of unknown optimal
parameters.

By the design of the candidate pool set P in Eq.(10), Eq.(11), Eq.(12), we have that there exists a pair
(w+, α+) ∈ P such that w+ < w∗ < 2w+, and α+ < α∗ < 2α+. Therefore, employing the regret bound in
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Theorem 6.1, we can get

(1) ≤
⌈ K

H ⌉∑
i=1

Õ(
√

dw+1.5Bi/α+ + α+2(H +
√

w+HVi) + d
√

HVi/w+ + dH/w+)

≤ Õ(
√

dw+1.5BK/α+ + α+2(K +

√√√√
w+H

K

H

⌈ K
H ⌉∑

i=1
Vi) + d

√√√√
H

K

H

⌈ K
H ⌉∑

i=1
Vi/w+ + dK/w+)

= Õ(
√

dw+1.5BK/α+ + α+2(K +
√

w+KVK) + d
√

KVK/w+ + dK/w+)
= Õ(

√
dw∗1.5BK/α∗ + α∗2(K +

√
w∗KVK) + d

√
KVK/w∗ + dK/w∗)

= Õ(d4/5V
2/5

K B
1/5
K K2/5 + d2/3B

1/3
K K2/3) , (61)

where we denote Bi as the total variation budget in block i, Vi is the total variance in block i, the second
inequality is by Cauchy–Schwarz inequality, the first equality holds due to

∑⌈ K
H ⌉

i=1 Bi = BK ,
∑⌈ K

H ⌉
i=1 Vi = VK , the

second equality holds due to w+ < w∗ < 2w+ and α+ < α∗ < 2α+, the last equality holds by Corollary 6.3.

We then try to bound the second term (2). We denote by E the event such that Lemma H.7 holds, and denote by
Ri :=

∑iH
k=(i−1)H+1⟨at(w+, α+),θk⟩ − ⟨at(wi, αi),θk⟩ the instantaneous regret of the meta learner in the block i.

Then we have

(2) = E
[ ⌈ K

H ⌉∑
i=1

Ri

]

= E
[ ⌈ K

H ⌉∑
i=1

Ri|E
]
P (E) + E

[ ⌈ K
H ⌉∑

i=1
Ri|E

]
P (E)

≤ Õ

(
Lmax

√
K

H
|P|

)
· (1− 2

K
) + Õ(K) · 2

K

= Õ(
√

H |P|K)
= Õ(d 1

5 K
7

10 ) , (62)

where Lmax := maxi∈[⌈ K
H ⌉] Li, the first inequality holds due to the standard regret upper bound result for Exp3

Auer et al. (2002), the third equality holds due to Lemma H.7, the last equality holds since H = ⌈d 2
5 K

2
5 ⌉, and

|P| = O(log K).

Finally, combining the above results for term (1) and term (2), we have

Regret(K) = Õ(d4/5V
2/5

K B
1/5
K K2/5 + d2/3B

1/3
K K2/3 + d

1
5 K

7
10 ). (63)

H Technical Lemmas

Theorem H.1 (Theorem 4.3, Zhou and Gu (2022)). Let {Gk}∞
k=1 be a filtration, and {xk, ηk}k≥1 be a stochastic

process such that xk ∈ Rd is Gk-measurable and ηk ∈ R is Gk+1-measurable. Let L, σ, λ, ϵ > 0, µ∗ ∈ Rd. For
k ≥ 1, let yk = ⟨µ∗, xk⟩+ ηk and suppose that ηk, xk also satisfy

E[ηk|Gk] = 0, E[η2
k|Gk] ≤ σ2, |ηk| ≤ R, ∥xk∥2 ≤ L. (64)

For k ≥ 1, let Zk = λI +
∑k

i=1 xix⊤
i , bk =

∑k
i=1 yixi, µk = Z−1

k bk, and

βk = 12
√

σ2d log(1 + kL2/(dλ)) log(32(log(R/ϵ) + 1)k2/δ)
+ 24 log(32(log(R/ϵ) + 1)k2/δ) max

1≤i≤k
{|ηi|min{1, ∥xi∥Z−1

i−1
}}+ 6 log(32(log(R/ϵ) + 1)k2/δ)ϵ.

Then, for any 0 < δ < 1, we have with probability at least 1− δ that,

∀k ≥ 1,
∥∥∑k

i=1xiηi

∥∥
Z−1

k

≤ βk, ∥µk − µ∗∥Zk
≤ βk +

√
λ∥µ∗∥2.
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Lemma H.2 (Lemma 11, Abbasi-Yadkori et al. (2011)). For any λ > 0 and sequence {xk}K
k=1 ⊂ Rd for k ∈ [K],

define Zk = λI +
∑k−1

i=1 xix⊤
i . Then, provided that ∥xk∥2 ≤ L holds for all k ∈ [K], we have

K∑
k=1

min
{

1, ∥xk∥2
Z−1

k

}
≤ 2d log

(
1 + KL2/(dλ)

)
.

Theorem H.3 (Theorem 2.1, Zhao et al. (2023)). Let {Gk}∞
k=1 be a filtration, and {xk, ηk}k≥1 be a stochastic

process such that xk ∈ Rd is Gk-measurable and ηk ∈ R is Gk+1-measurable. Let L, σ, λ, ϵ > 0, µ∗ ∈ Rd. For
k ≥ 1, let yk = ⟨µ∗, xk⟩+ ηk, where ηk, xk satisfy

E[ηk|Gk] = 0, |ηk| ≤ R,

k∑
i=1

E[η2
i |Gi] ≤ vk, for ∀ k ≥ 1

For k ≥ 1, let Zk = λI +
∑k

i=1 xix⊤
i , bk =

∑k
i=1 yixi, µk = Z−1

k bk, and

βk = 16ρ
√

vk log(4w2/δ) + 6ρR log(4w2/δ),

where ρ ≥ supk≥1 ∥xk∥Z−1
k−1

. Then, for any 0 < δ < 1, we have with probability at least 1− δ that,

∀k ≥ 1,
∥∥∑k

i=1xiηi

∥∥
Z−1

k

≤ βk, ∥µk − µ∗∥Zk
≤ βk +

√
λ∥µ∗∥2.

Lemma H.4 (Adopted from Lemma B.4, Zhao et al. (2023)). Let weight wi be defined in Algorithm 2. With
probability at least 1− 2δ, for all k ≥ 1, ℓ ∈ [L], the following two inequalities hold simultaneously:∑

i∈Ψ̂k+1,ℓ

w2
i σ2

i ≤ 2
∑

i∈Ψ̂k+1,ℓ

w2
i ϵ2

i + 14
3 R2 log(4w2L/δ),

∑
i∈Ψ̂k+1,ℓ

w2
i ϵ2

i ≤
3
2

∑
i∈Ψ̂k+1,ℓ

w2
i σ2

i + 7
3R2 log(4w2L/δ).

For simplicity, we denote EV as the event such that the two inequalities in Lemma H.4 holds.
Lemma H.5 (Adopted from Lemma B.5, Zhao et al. (2023)). Suppose that ∥θ∗∥2 ≤ B. Let weight wi be defined
in Algorithm 2. On the event Econf and EV (defined in Eq.(45), Lemma H.4), for all k ≥ 1, ℓ ∈ [L] such that
2ℓ ≥ 64

√
log (4(w + 1)2L/δ), we have the following inequalities:∑

i∈Ψk+1,ℓ

w2
i σ2

i ≤ 8
∑

i∈Ψk+1,ℓ

w2
i

(
ri − ⟨θ̂k+1,ℓ, ai⟩

)2
+ 6R2 log(4(w + 1)2L/δ) + 2−2ℓ+2B2,

∑
i∈Ψk+1,ℓ

w2
i

(
ri − ⟨θ̂k+1,ℓ, ai⟩

)2
≤ 3

2
∑

i∈Ψk+1,ℓ

w2
i σ2

i + 7
3R2 log(4w2L/δ) + 2−2ℓB2.

Lemma H.6 (Freedman (1975)). Let M, v > 0 be fixed constants. Let {xi}n
i=1 be a stochastic process, {Gi}i be a

filtration so that for all i ∈ [n], xi is Gi-measurable, while almost surely

E [xi|Gi−1] = 0, |xi| ≤M,

n∑
i=1

E[x2
i |Gi−1] ≤ v.

Then for any δ > 0, with probability at least 1− δ, we have
n∑

i=1
xi ≤

√
2v log(1/δ) + 2/3 ·M log(1/δ).

Lemma H.7. Let N = ⌈K
H ⌉. Denote by Li the absolute value of cumulative rewards for episode i, i.e.,

Li =
∑iH

k=(i−1)H+1 rk, then

P

[
∀i ∈ [N ], Li ≤ H + R

√
H

2 log
(
K(K

H
+ 1)

)
+ 2

3 ·R log
(
K(K

H
+ 1)

)]
≥ 1− 1

K
. (65)
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Proof. By Lemma H.6, we have that with probability at least 1− 1/K

i·H∑
k=(i−1)·H+1

ϵi ≤

√√√√2
i·H∑

k=(i−1)·H+1

σ2
k log(NK) + 2/3 ·R log(NK)

≤
√

2H
R2

4 log(NK) + 2/3 ·R log(NK)

≤ R

√
H

2 log
(
K · (K

H
+ 1)

)
+ 2

3 ·R log
(
K · (K

H
+ 1)

)
, (66)

where we use union bound, and in the second inequality we use the fact that since |ϵk| ≤ R, we have σ2
k ≤ R2

4 .
Finally, together with the assumption that rk ≤ 1 for all k ∈ [K], we complete the proof.
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