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ABSTRACT
In this paper, we analyse how a peer-to-peer sharing platform

should price its service (when imagined as an excludable public

good) to maximize profit, when each user’s participation adds value

to the platform service by creating a positive externality to other

participants. To characterize network externalities as a function

of the number of participants, we consider different bounded and

unbounded user utility models. The bounded utility model fits many

infrastructure sharing applications with bounded network value,

in which complete coverage has a finite user valuation (e.g., WiFi

or hotspot). The unbounded utility model fits the large scale data

sharing and explosion in social media, where it is expected that the

network value follows Metcalfe’s or Zipf’s law. For both models, we

analyze the optimal pricing schemes to select heterogeneous users

in the platform under complete and incomplete information of users’

service valuations. We propose the concept of price of information

(PoI) to characterize the profit loss due to lack of information, and

present provable PoI bounds for different utility models. We show

that the PoI = 2 for the bounded utility model, meaning that just

half of profit is lost, whereas the PoI ≥ 2 for the unbounded utility

model and increases as for a less concave utility function. We also

show that the complicated differentiated pricing scheme which is

optimal under incomplete user information, can be replaced by a

single uniform price scheme that is asymptotic optimal. Finally, we

extend our pricing schemes to a two-sided market by including a

new group of ‘pure’ service users contributing no externalities, and

show that the platform may charge zero price to the original group

of users in order to attract the pure user group.
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1 INTRODUCTION
Due to advances in wireless technology and more powerful mo-

bile devices (e.g., smartphones), it is common today that when users

join a peer-to-peer sharing platform they not only enjoy the pro-

vided service but also contribute to the service’s value. There are

roughly two types of peer-to-peer sharing platforms: infrastructure

and content sharing [12]. The former type of platforms allows users

to cooperate and contribute physical resources to create networking

or computing services. For example, FON is aWiFi sharing platform

whose user opens its home WiFi connection to the community and

can access the others’ WiFi access points [10]. The latter type of

platforms includes online social media (e.g., WeChat, WhatsApp),

where platform users create and share massive content with each

other and their number has reached 1.6 billion in 2014. The global

revenue of such peer-to-peer sharing platforms is fast growing and

is expected to increase to US$40 billions by 2022 [11]. How to price

their services for selected users under network externalities is a

key question for such profit-maximizing platforms.

Peer-to-peer sharing economy of such excludable public goods

has been widely studied in the recent literature. [1] and [5] study

how to address the incentive issues for efficient sharing in peer-to-

peer networks via mechanism design. [8] sudies effects of user di-

versity on incentives in peer-to-peer information sharing platforms.

Courcourbetis and Weber in [4] study pricing of an infrastructure-

sharing platform (e.g., peer-to-peer file sharing) and find the net-

work value (profit) in an asymptotic sense and find that network

value/profit is bounded when each user randomly caches and shares

a subset of distinct files. Metcalfe and Zipf’s laws study the net-

work value for the social media platforms, showing the service

value to an individual increases super-linearly with the total user

number and is thus unbounded [2]. In [10], [12] and [7], users’ dual

modes (i.e., contributors and consumers) are considered and opti-

mal pricing schemes for network externalities is designed under

complete information. Assuming full information of users’ private

utilities, [3] investigates the optimal pricing according to the net-

work structure, and proposes a simplified approximation using

uniform pricing, i.e. every users sees the same price. [6] further

considers that the network externalities can be positive or nega-

tive, affecting the final pricing design. Different from these works,

we consider the challenging scenario of incomplete information

for optimal pricing design of excludable public goods, and study

the feasibility to employ a simple pricing approach for profit max-

imization (without users’ reporting of private information as in

VCG auction). The newly proposed concept, price of information is

unique to characterize the profit loss due to lack of information.

Our main contributions and key novelty are summarised as

follows.

• We study the optimal pricing for a peer-to-peer sharing

platform under incomplete information, by considering both

https://doi.org/10.1145/3230654.3230660
https://doi.org/10.1145/3230654.3230660
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the infrastructure and content sharing applications (with

bounded and unbounded network externalities, see Section

2). The platform is profit-maximizing and designs pricing to

include target users to contribute to the excludable public

goods.

• For both bounded and unbounded user utility models, we

analyze the optimal pricing schemes to select heterogeneous

users in the platform under complete and incomplete infor-

mation of users’ service valuations. We propose the concept

of price of information, which is defined as the ratio of profits

under complete and incomplete information, to characterize

the profit loss due to lack of information, and present prov-

able PoI bounds for different utility models. We prove that

the PoI = 2 for the bounded utility model, meaning that just

half of profit is lost. For a general unbounded utility model,

we prove the PoI is in the interval [2, 27/8], that is, PoI is at

least 2 and is greater for a less concave utility function.

• We simplify the complicated differentiated pricing scheme

under incomplete information, by replacing it by a single

uniform price. The uniform price mechanism does not need

users to report their private information of service valuations

and achieves asymptotical optimality as user number goes to

infinity for both bounded and unbounded user utility models.

• We extend our pricing schemes to a two-sided market by

including a new group of ‘pure’ service users contributing

no externalities. We show that the platform needs to decide

different pricing to different groups of users and may charge

zero price to the original group of users in order to attract the

pure user group. We prove that the uniform pricing scheme

is still asymptotically optimal as user number goes to infinity

and that PoI increases as the fraction of original group of

users decreases.

2 SYSTEM MODEL
We consider a peer-to-peer platform who wants to maximize its

profit. It faces a set of potential users N = {1, . . . ,n} who choose

to participate in the subscribing to the platform service or not.

Define binary variable πi = 1 or 0 , telling that user i will or

will not participate. The vector π = (π1, . . . ,πn ) summarizes all

users’ participation decisions. The total service value is denoted

by ϕ(π ), which is a function of π to tell the network externalities.

Consider that each user contributes equally to the service as a public

good, then ϕ(π ) can be rewritten as a function of the number of

platform users denoted bym =
∑n
i=1

π , that is, ϕ(π ) = ϕ(m). We

will introduce the detailed formulation of bounded and unbounded

ϕ(·) in Sections 2.1 and 2.2, respectively.

Users have heterogeneous service valuations towards the plat-

form service. Let θi be the user i’s service valuation and this is

his private information. Without loss of generality, we assume

θ1 > θ2 > · · · > θn and denote valuation vector θ = (θ1,θ2, . . . ,θn ).
The utility of a participant i is proportional to his valuation and the

total service value, that is, θiϕ(π ). The platform can charge differ-

ently for different users’ subscriptions. Let pi be the membership

fee charged to i . The payoff of user i is his utility of the total service
value minus the membership fee, that is,

ui = πi (θiϕ(π ) − pi ). (1)

The platform’s goal is to maximize its total profit and it may

not include all users. Let c be the platform cost (e.g., equipment fee

for installing an access point in WiFi sharing ) for adding a user

to access shared service with the exsiting others. The total profit,

denoted by Π, is a function of π and c as follows

Π =
∑
i ∈N

πi (pi − c). (2)

2.1 Bounded User Utility Model
In an infrastructure sharing platform, the service coverage or

value is bounded (e.g., by 100% citywide), nomatter howmany users

participate. Thus, user utility function is bounded in this model. For

modelling bounded ϕ(m), take WiFi sharing in a finite region of a

normalized unit square surface for example. n users are randomly

distributed in the square and each user can cover a circle of radius

r (0 < r << 1) or an area πr2
. The total coverage depends on the

total user numberm. For an arbitrary point in the square surface,

the probability that it is not covered by a single user is ρ = 1 − πr2

and the probability that it is not covered by them users is ρm . That

is,

ϕ(m) = 1 − ρm ,

which is bounded by 1 and is concavely increasing inm. We can

rewrite user i’s payoff (1) as follows,

ui = πi (θi (1 − ρ
∑
j∈N πj ) − pi ). (3)

In Section 3, we will focus on this bounded utility model and anal-

yse the optimal pricing schemes under complete and incomplete

information.

2.2 Unbounded User Utility Model
In an online social media, user utility increases super-linearly

with the number of users, following Metcalfe’s or Zipf’s laws. Met-

calfe’s law suggests that a user will get equal benefits from the other

m − 1 participants. The user’s utility is proportional tom and when

m is sufficiently large, ϕ(m) ≈m [2]. Zipf’s law suggests that a user

will benefit from the others differently, in inverse proportion to the

frequency with which he interacts with(i.e., frequency 1/i with the

i-th closest user amongm users). Then ϕ(m) =
∑m−1

i=1
(1/m) ≈ logm

[2]. As a result, user i’s payoff (1) becomes,

ui =


πi (θi log(

∑
j
πj ) − pi ) , if Zipf’s law; (4)

πi (θi (
∑
j
πj ) − pi ) , if Metcalfe’s law. (5)

Due to page limit, we skip most proofs in the 6-page version.

The full version including all the proofs can be found in our online

technical report in [9].

3 OPTIMAL PRICING FOR BOUNDED
UTILITY MODEL

In this section, we will analyse the platform’s pricing strategy

for bounded user utility ϕ(m) = 1 − ρm .

3.1 Pricing under Complete Information
Under complete information about all users’ valuations θi ’s, the

platform’s optimization problem is to choose prices pi ’s and control
admission πi ’s to maximize its profit. The payoff of a participant in

(3) cannot be negative, otherwise he will choose not to participate.

Formally, the problem is

max

{(πi , pi ), i ∈N }

∑
i ∈N

πi (pi − c)

s. t. πi

(
θi (1 − ρ

∑
j πj ) − pi

)
≥ 0, for all i ∈ N . (6)
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At optimality, the constraints in problem (6) are tight. For any user

with πi = 1 or 0, it is optimal to leave a zero payoff to him by setting

the price to be

p∗i (π ) = θi (1 − ρ
∑
j πj ).

This result helps simplify problem (6) to

max

{πi , i ∈N }

∑
i ∈N

πi

(
θi (1 − ρ

∑
j πj ) − c

)
. (7)

To help solve this problem, we start with a lemma about the plat-

form’s preference among users.

Lemma 1. At the optimality of problem (7), for any two users
i, j ∈ N with θi > θ j , if user j is included in the platform (i.e., πj = 1),
then user i should also be included (πi = 1).

It follows from Lemma 1 that the platform will selectm users

with the largest service valuations and problem (7) reduces to

max

m∈N

(
(1 − ρm )

m∑
i=1

θi −mc

)
. (8)

This problem’s objective function is not a monotonic function

ofm and it is not possible to derive closed-form solution ofm. Yet

we can use the efficient one-dimensional search method to find the

optimalm numerically.

3.2 Pricings under Incomplete Information
Under incomplete information, the platform does not know θi ’s

exactly but their distributions. We assume θi ’s are independent

and identically distributed on [0, 1] with cumulative distribution

function F . The cost is comparable and we have c ∈ (0, 1). We will

derive a optimal (differentiated) pricing scheme and then propose a

uniform pricing scheme as approximation. We will compare these

two different pricing schemes asymptotically.

3.2.1 Optimal/Differentiated Pricing Scheme. Under incomplete

information, the platform will require each user i to declare his θi .
Given the θi ’s (may or may not be truthful) declared by the users,

the platform should choose pi ’s and πi ’s as functions of the θi ’s
distribution to maximize its profit, i.e.,

max

πi (·), pi (·)
Eθ

( n∑
i=1

πi (θ )(pi (θ ) − c)

)
(9)

subject to

Eθ−i

(
πi (θi ,θ−i )

(
θi (1 − ρ

∑
j πj (θi ,θ−i )) − pi (θi ,θ−i )

))
≥ 0, (10)

Eθ−i

(
πi (θi ,θ−i )

(
θi (1 − ρ

∑
j πj (θi ,θ−i )) − pi (θi ,θ−i )

))
≥ Eθ−i

(
πi (θ

′
i ,θ−i )

(
θi (1 − ρ

∑
j πj (θi ,θ−i )) − pi (θ

′
i ,θ−i )

))
, (11)

for all i and θ ′i ,

where θ−i = (θ1, · · · ,θi−1,θi+1, · · · ,θn ) is a vector consists of all
the users’ valuations except θi . Constraint (10) is to ensure indi-

vidual rationality or participation, i.e., user i’s expected payoff

conditional on θ−i is nonnegative, and constraint (11) is to ensure

incentive compatibility, i.e., user i must declare his valuation truth-

fully.

Let us define three functions:

д(θi ) = θi −
1 − F (θi )

f (θi )
, (12)

Vi (θi ) =

∫
πi (θi ,θ−i )(1 − ρ

∑
j πj (θi ,θ−i ))dFn−1(θ−i ), (13)

Pi (θi ) =

∫
πi (θi ,θ−i )pi (θi ,θ−i )dF

n−1(θ−i ). (14)

Note that θiVi (θi ) and Pi (θi ) are the expected utility and expected

payment of user i given his valuation reportθi , respectively. Assume

that д is a nondecreasing function as in the literature of mechanism

design. Intuitively, д(θi ) is less than θi to give users incentives to

truthfully report their θi ’s in the incomplete information scenario.

We let д(θ(i)) be the ith greatest among д(θ1), . . . ,д(θn ), then we

have д(θ(1)) ≥ · · · ≥ д(θ(n)). The following lemma helps simplify

the constraints in problem (9).

Proposition 2 (Necessary and sufficient for incentive

compatibility). Vi (θi ) is non-decreasing in θi , and the differentiated
pricing Pi (θi ) is given by,

Pi (θi ) = θiVi (θi ) −

∫ θi

0

Vi (η)dη. (15)

As a result, the platform’s maximal profit, denoted by ΠD , in (9) can
be written as∫

max

m∈N

(
(1 − ρm )

m∑
i=1

д(θ(i)) −mc

)
dFn (θ ). (16)

The proof is given in [9]. Proposition 2 indicates that at the

optimum, the platform will includem users whose д(θi )’s are the
greatest.

3.2.2 Uniform Pricing Scheme As Approximation. Although the

differentiated pricing mechanism in (15) is optimal, it is complicated

to compute and implement in practice. While it guarantees that

truthful reporting is the best response for users , it is difficult for a

user to check (11) for any θ ′i and θ−i . Next, we propose a uniform
pricing scheme which does not even require users to declare their

θ ’s.
In this simple scheme, the platform announces a single price P to

users without any admission control. As users are i.i.d. distributed,

there is a common valuation threshold
¯θ for subscription decision-

making and
¯θ depends on P . User i will decide subscription by

comparing his θi to ¯θ and participates if θi ≥ ¯θ . Approximately

m = n(1 − F ( ¯θ )) users will finally subscribe and contribute to the

network externalities.. User i’s payoff in (3) becomes

ui = θi
(
1 − ρn(1−F (

¯θ ))) − P ≥ 0, for all θi ≥ ¯θ .

This should be zero for an indifferent user with θi = ¯θ . Thus,

P = ¯θ
(
1 − ρn(1−F (

¯θ ))), (17)

which is a function of
¯θ , or we can equivalently express

¯θ as a

function of P . The platform’s optimization problem is

max

¯θ
n(1 − F ( ¯θ )) ¯θ

(
1 − ρn(1−F (

¯θ ))) − n(1 − F ( ¯θ ))c . (18)

Since each θi follows the uniform distribution on [0, 1], problem
(18) becomes

max

¯θ
n(1 − ¯θ ) ¯θ

(
1 − ρn(1−

¯θ )) − n(1 − ¯θ )c (19)
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The uniform pricing problem (though non-convex) can be solved

efficiently via an one-dimensional search. We next present the ana-

lytical results as n → ∞ and characterize the network value/profit.

Theorem 3. Given users’ bounded utility model in (3), as n → ∞,
the optimal uniform price under incomplete information is P∗ → 1+c

2
,

the optimal user threshold is ¯θ∗ → 1+c
2

and the maximal profit is
ΠU ∼ ( 1−c

2
)2n. As n → ∞, the maximum profit achieved by the

differentiated pricing scheme in (15) is ΠD ∼ ( 1−c
2
)2n. Thus, uniform

pricing is asymptotically optimal, i.e., lim

n→∞

ΠU
ΠD
= 1.

The proof is given in [9]. Theorem 3 shows that uniform pricing

scheme’s profit grows at the same rate with n as the differentiated

pricing scheme.

3.2.3 Price of Information. Now we are ready to compare the

expected maximal profits under complete and incomplete infor-

mation. We define price of information (PoI) as the ratio of the

expected maximal profit under complete and incomplete informa-

tion as n → ∞, i.e.,

PoI = lim

n→∞

Eθ (Π)

ΠU
. (20)

PoI is of course similar in concept to the well-known idea of Price

of Anarchy. However, the second refers to the social welfare that is

lost when users act self-interestedly vis-a-vis for the community.

Note that price discounts are given as incentives under incomplete

information, and the profit is greater under complete information.

Thus, PoI ≥ 1. One can also replace ΠU by ΠD in (20) without

changing the PoI value, according to the uniform pricing’s asymp-

totic optimality in Theorem 3.

Proposition 4. Given users’ bounded utility model in (3), the
price of information is PoI = 2.

The proof is given in [9]. We note that PoI does not depend on

parameter ρ. Recall that ρ tells the service coverage contributed by

an individual user. As n goes to infinity, the total bounded coverage

is fixed to 100% , and hence ρ has no impact on PoI .

4 OPTIMAL PRICING FOR UNBOUNDED
UTILITY MODEL

In this section, we will analyse the platform’s pricing strategy

for unbounded user utility ϕ(m) = logm .

4.1 Pricing under Complete Information
Assume user’s utility is given by (4), which follows from Zipf’s

law. Similar to Section 3.1, it is optimal to leave a zero payoff to

user i by setting the price to be

p∗i (π ) = θi log(
∑
i
πi ).

The platform’s optimization problem is

max

{πi , i ∈N }

∑
i ∈N

πi

(
θi log(

∑
j ∈N

πj ) − c

)
. (21)

Lemma 1 still holds here, the problem reduces to

max

m∈N

(
logm

m∑
i=1

θi −mc

)
. (22)

Thus, similarly, the platform will selectm users with the largest

service valuations and we can use one-dimensional search to find

the optimalm.

4.2 Pricings under Incomplete Information
Inherit the same logic from Section 3.2, We will derive a optimal

(differentiated) pricing scheme and then propose a uniform pricing

scheme as approximation. We will compare these two different

pricing schemes asymptotically.

4.2.1 Optimal/Differentiated Pricing Scheme. The platform’s op-

timization problem in differentiated pricing scheme is the same

as (9)-(11) except service value (1 − ρ
∑
j πj (θi ,θ−i )) is replaced by

log(
∑n
j=1

πj (θi ,θ−i )).We can similarly defineд(θi ),Vi (θi ), and P(θi )

as in (12), (13), and (14). Then Proposition 2 still holds here, and

similar to (16), the platform’s maximal profit can be written as∫
max

m∈N

(
logm

m∑
i=1

д(θ(i)) −mc

)
dFn (θ ). (23)

This indicates that at the optimum, the platform will includem
users whose д(θi )’s are the greatest.

4.2.2 Uniform Pricing Scheme as Approximation. Now we anal-

yse the uniform pricing mechanism. Similar to Section 3.2.2, the

payoff should be zero for an indifferent user with θi = ¯θ . Thus,
similar to (17), we have

P = ¯θ log

(
n(1 − F ( ¯θ )

)
,

and the platform’s optimization problem is

max

¯θ
¯θ (1 − ¯θ )n log(n(1 − ¯θ )) − n(1 − ¯θ )c . (24)

The uniform pricing problem (though non-convex) can be solved

efficiently via an one-dimensional search. We next present the ana-

lytical results as n → ∞ and characterize the network value/profit.

Theorem 5. Given users’ unbounded utility model in (4), as n →

∞, the optimal uniform price under incomplete information is P∗ →
1

2
log

n
2
, the optimal user threshold is ¯θ∗ → 1

2
and the maximal profit

is ΠU ∼ n
4

log(n
2
). As n → ∞, the maximum profit achieved by the

differentiated pricing scheme is ΠD ∼ n
4

log(n
2
). Therefore, uniform

pricing is asymptotically optimal, i.e., lim

n→∞

ΠU
ΠD
= 1.

The proof is given in [9]. Note that the cost c does not play a

role in the optimal price or maximal profit. This is because when

utility is unbounded, as n → ∞, the user’s perceived network value

grows super-linearly with the number of participants, while the

cost only grows linearly and is negligible.

We next also consider Metcalfe’s law rather than Zipf’s law and

ϕ(m) = m as a less concave function than loд(m) . Then user i’s
payoff is now given by (5) and we can prove similar results as

Theorem 5 below. The proof is given in [9].

Corollary 6. Given users’ unbounded utility model in (5), as
n → ∞, the optimal uniform price under incomplete information is
P∗ → (2/9)n, the optimal user threshold ¯θ∗ = 1/3, and the maximal
profit is ΠU ∼ (4/27)n2. As n → ∞, the maximum profit achieved
by the differentiated pricing scheme is ΠD ∼ (4/27)n2. Therefore,
uniform pricing is asymptotically optimal, i.e., lim

n→∞

ΠU
ΠD
= 1.

4.2.3 Price of Information. We can still define price of informa-

tion by (20). We more generally consider users’ payoff function (not

limited to (4) and (5)) as follows,

ui = θiv(m) − pi , (25)

wherev(m) is an unbounded, increasing and concave function with

v(0) = 0. Then we have the following proposition.
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Proposition 7. Given users’ general unbounded utility model in
(25), the price of information is PoI ∈ [2, 27/8]. More specifically, if
users’ utility model follows Zipf’s law in (4), PoI = 2. If users’ utility
model follows Metcalfe’s law in (5), PoI = 27/8.

The proof is given in [9]. As the utility function becomes more

concave (from m in Metcalfe’s law to loд(m) in Zipf’s law), the

profit loss due to lack of information decreases since the network

externality decreases and there is less consumer surplus to be trans-

formed to platform’s profit. This holds true for a general cumulative

distribution function F .

5 PRICING EXTENSION TO A TWO-SIDED
MARKET

In this section, we include another group/type of users to the

platform, who are simply consumers and do not contribute to the

network externalities . Denote the set of original users (both con-

tributors and consumers) as N1 = {1, 2, · · · ,n1}, and the new user

set by N2 = {n1+1, · · · ,n1+n2}. Within each set, we reorder users

according to their service valuations such that θ1 > · · · > θn1
and

θn1+1 > · · · > θn1 + n2. Note that to which set a user belongs is

public information as it is easy to verify whether a user can con-

tribute or not. However, within each set, users’ service valuations

are still private information. As the two user sets’ subscriptions

affect each other, we wonder how the platform should jointly decide

pricing schemes to the two sets of users. We also wonder if we can

still approximate the two user groups’ differentiated pricing via

two uniform prices to achieve asymptotic optimality. The pricing

schemes considered in Sections 3 and 4 can be similarly applied to

the two sets of users. However, the asymptotical analysis becomes

challenging as dimension increases.

Without much loss of generality, we apply Metcalfe’s law here,

where ϕ(m) =m andm only counts the original users in N1 who

can contribute.

5.1 Pricing under Complete Information
Similar to Section 3.1, it is optimal to leave a zero payoff to user

i of any user set by setting the price to be

p∗i (π ) = θi
∑
j ∈N1

πj .

The platform’s optimization problem is

max

{πi , i ∈N }

∑
i ∈N

πi

(
θi

∑
j ∈N1

πj − c

)
Similar to Lemma 1, at the optimality of problem (26), for any two

users i, j ∈ N1 or i, j ∈ N2 with θi > θ j , if user j is included (i.e.,

πj = 1), then user i should also be included (πi = 1). It follows that

the platform will selectm1 users with the largest service valuations

in N1 andm2 users with the largest service valuations in N2 and

problem (26) reduces to

max

m1,m2

m1

( m1∑
i=1

θi +

n1+m2∑
i=n1+1

θi

)
− (m1 +m2)c, (26)

which is an extension of (22) for a single user set. We have the

following theorem regarding the optimal solution to (26).

Proposition 8. Let m̄2 be the largest user numberm2 such that
n1θn1+m2

≥ c . Then if( n1∑
i=1

θi +

n1+m̄2∑
i=n1+1

θi

)
−
n1 + m̄2

n1

c > 0,

then the optimal solution to (26) ism∗
1
= n1 andm∗

2
= m̄2. Otherwise,

the optimal solution to (26) ism∗
1
= 0 andm∗

2
= 0.

The proof is given in [9]. It is optimal to either include all the

potential contributors in the platform for the maximum network

externality or include no users due to high cost. Note that if no

user of the first set is selected, the network value is zero and the

platform cannot attract any pure user from the other set.

5.2 Pricing under Incomplete information
5.2.1 Differentiated Pricing Scheme. Under incomplete informa-

tion, the platform will require each user i of each type to declare

his θi and then choose pi ’s and πi ’s to maximize its profit. We can

similarly decide the differentiated pricing in (15) as Proposition 2

still applies, and the platform’s optimization problem can be written

as

Π =

∫
max

m1,m2

m1

( m1∑
i=1

д(θ(i)) +

n1+m2∑
i=n1+1

д(θ(i))

)
− (m1 +m2)c dFn (θ ).

5.2.2 Uniform Pricing Scheme as Approximation. Unlike the sin-
gle user type case, in the two-sided market, the platform sets dif-

ferent uniform prices for different user types. The price for type-1

users (dual-role) is P1 and and the price for type-2 user (pure con-

sumers) is P2. There is a unique threshold for each type of users:
¯θ1

for type-1 and
¯θ2 for type 2 . Assume θi is uniformly distributed in

[0, 1]. Similar to (17), for a type-1 user i ∈ N1 with θi = ¯θ1, we have

¯θ1(1 − ¯θ1)n1 = P1.

and for a type 2 user user i ∈ N2 with θi = ¯θ2, we have

¯θ2(1 − ¯θ1)n1 = P2.

The platform’s optimization problem can be written as

max

¯θ1, ¯θ2∈[0,1]
n1(1 − ¯θ1)( ¯θ1(1 − ¯θ1)n1)n2 − c)

+ n2(1 − ¯θ2)( ¯θ2(1 − ¯θ1)n1 − c).

Assume n1/n2 = k where k is a positive constant, when n1 and

n2 or simply n go to infinity, we can compute the two optimal

uniform prices under incomplete information, i.e., P∗
1
and P∗

2
and

we can still prove that uniform pricing is asymptotically optimal,

i.e., limn→∞ ΠU /ΠD = 1. The results and proofs are given in [9].

We note that when n1/n2 is small (less than 1/4), the platform

platform’s profit comes mostly from the type-2 pure users and

desires the maximum network externalities contributed by the

type-1 users. Thus, it charges zero price to motivate all type-1 users

to contribute to the network externalities. As n1/n2 increases, the

fraction of potential contributors increases, the platformwith larger

network externalities can charge more from the pure users of type-

2, while keeping more contributors of type-1 at a lower price. Thus,

P∗
1
decreases and P∗

2
increases with n1/n2.

5.2.3 Price of Information. Similar to Section 3.2.3, we can de-

fine price of information by (20) and calculate it straightforwardly.

The PoI results and proofs are given in [9]. We note that as n1/n2

increases, the fraction of potential contributors increases, the plat-

form under incomplete information still needs to provide price

discounts as incentives. As a result, the PoI or profit loss due to lack

of information increases.
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Figure 1: Average profit ratio between uniform and differen-
tiated pricing and price of information for bounded utility
model.

6 SIMULATION RESULTS
We plot ratios of average profits under different pricing schemes

in Figure 1. for bounded utility model and Figure 2. for unbounded

utility model, by averaging 1 million sample data with different θ
realizations.

Figure 1. shows that the average profit ratio between the uniform

and differentiated pricing schemes increases with user number. This

is consistent with Theorem 3, which shows uniform pricing scheme

is asymptotically optimal as n goes to infinity. The convergence

rate at which ΠU /ΠD approaches 1 decreases with ρ. As service
coverage contributed by an individual user increases (ρ decreases),

total service converges to 100% faster and hence uniform pricing

scheme approaches optimality faster. Figure 1. also shows PoI as

an decreasing function of n, approaches to 2 as in Proposition 4.

PoI decreases with n since the information of users’ valuation dis-

tribution helps pricing design of the platform more as n increases.

The convergence rate at which PoI approaches 2 increases as ρ
decreases is also due to the fact that total service converges to 100%

faster as ρ decreases.

Figure 2. shows that the average profit ratio between the uni-

form and differentiated pricing mechanisms increases with user

number. This is consistent with Theorem 5 and Corollary 6, which

show uniform pricing scheme is asymptotically optimal as n goes to

infinity. Logarithm utility model converges faster than linear utility

model. This is because network externalities grow faster in linear

utility model than logarithm utility model and hence uniform pric-

ing cause greater profit loss in linear utility model than logarithm

utility model. Figure 2. also shows PoI as an decreasing function of

n approaches to 2 for logarithm utility model and 27/8 (=3.375) for

linear utility model. This is consistent with Proposition 7.

7 CONCLUSION
This paper studies how a peer-to-peer sharing platform should

price its service to maximize its profit. We consider both bounded

and unbounded user utility models. For both bounded and un-

bounded user utilitymodels, we analyze the optimal pricing schemes

to select heterogeneous users in the platform under complete and

incomplete information of users’ service valuations. The profit loss

due to lack of information becomes greater as the utility function

becomes less concave. We show that the complicated differentiated
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Figure 2: Average profit ratio between uniform and differen-
tiated pricing and price of information for unbounded util-
ity model.

pricing scheme under incomplete information can be replaced by a

single uniform price with asymptotic optimality. We also extend

our pricing schemes to a two-sided market. Platform may charge

zero price to the original group of users in order to attract the pure

user group. Uniform pricing scheme is still asymptotically optimal

as user number goes to infinity and price of information increases

as the fraction of original users decreases.
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