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ABSTRACT
We consider a market where final products or services are compo-

sitions of a number of basic services. Users are asked to evaluate

the quality of the composed product after purchase. The quality

of the basic service influences the performance of the composed

services but cannot be observed directly. The question we pose is

whether it is possible to use user evaluations on composed services

to assess the quality of basic services. We discuss how to combine

aggregation of evaluations across users and disaggregation of in-

formation on composed services to derive valuations for the single

components. As a solution we propose to use the (weighted) aver-

age as aggregation device in connection with the Shapley value as

disaggregation method, since this combination fulfills natural re-

quirements in our context. In addition, we address some occurring

computational issues: We give an approximate solution concept us-

ing only a limited number of evaluations which guarantees nearly

optimal results with reduced running time. Lastly, we show that a

slightly modified Shapley value and the weighted average are still

applicable if the evaluation profiles are incomplete.

CCS CONCEPTS
• Information systems → Social recommendation; • Theory
of computation → Solution concepts in game theory; • Ap-
plied computing→ Economics;
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1 INTRODUCTION
An emerging demand for all-in-one services requires providers to

compose their services out of a number of elementary services. For

instance, cloud service providers like Google, Amazon, or Microsoft

combine hardware resources with (several) software services and

sell it as a composed service. Similarly, restaurants sell a compo-

sition of service and product (food). However, for the customer

or user, it may be difficult to exactly identify the single parts in

her good. As a consequence, she may not be able to observe their

performances separately, when she experiences her good. For in-

stance a “slow” computation service could result either from an

inappropriate hardware or from inefficient algorithms.

Internet platforms offer a possibility to give evaluations for (com-

posed) services or products, so that later users can base their pur-

chase decision on it. But, as the components of a service cannot

be identified, the user can only evaluate the composed service as a

whole. However, not only from the provider’s perspective, it would

be worthwhile to know, how we can infer from evaluation data on

compositions on an evaluation of single services. The very fact that

elementary services can be composed and sold in many different

compositions allows us to assess how well a component service fits.

Such a disaggregation of evaluations, e.g., helps to sort out ineffi-

cient elementary services, so that they should not be considered in

the composition process.

As we work with evaluations on compositions from many users,

we bring together an aggregation operation, that aggregates eval-

uations across users, and a disaggregation process, that evaluates

each basic service on the basis of how the different compositions

are rated.

In the pursue of finding a plausible combination, we present

a set of desirable properties for the interplay of aggregation and

disaggregation. Two properties are central in the discussion. A

restricted influence requirement should forbid users to unilaterally

change a service’s overall evaluation to the best or worst possible

valuation. Consistency of our combined aggregation/disaggregation

process requires that the order should not matter, i.e., the evaluation

of an elementary service should not depend on whether we first

aggregate user evaluations of compositions and then disaggregate

or whether we first disaggregate each single user’s valuation to her

valuation of basic services and then aggregate these data.

https://doi.org/10.1145/3230654.3230659
https://doi.org/10.1145/3230654.3230659
https://doi.org/10.1145/3230654.3230659
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For the disaggregation process we make use of techniques from

cooperative game theory. A complete evaluation of composed ser-

vices can be represented by a real-valued non-linear set function,

which is termed cooperative game with transferable utility, TU

game in short, in the realms of game theory. In our analysis we

use the best-known solution concept for TU games, namely the

Shapley value [24]. It allows us to retrieve an (average) influence

of a component service on the evaluation of composed services.

Hence, it disaggregates evaluation information on compositions to

valuations of components.

1.1 Related Work
Aggregation functions are studied in both theoretical and empiri-

cal work. The most commonly used operators are the (weighted)

mean, the median and the mode. An overview of their theoretical

properties can be found in [14] and [6]. [11] compares the three

aggregators empirically according to three different criteria, namely

informativeness, robustness and strategyproofness. [12] extends

this comparison to accuracy. They find evidence that although the

mean is widely used it is not always the preferable aggregator

regarding these five criteria. In an experiment the aggregators’ in-

fluence on the users’ rating behavior is studied [13]. It is shown

that under certain circumstances the mean is preferable in terms

of rating behavior. Different aggregators than the mean, median

or mode are used by [8] who define an econometric framework

to aggregate consumer preferences from online product reviews.

They particularly take the heterogeneity of users’ opinions, e.g.

experts and non-professionals, into account when aggregating the

evaluations. Another aspect of aggregation tackles the question

how to get the true quality of a (composed) product [22].

In contrast to the widely studied aggregation process, the dis-

aggregation process lacks this variety of studies. Although the

problem of common evaluations for combined products or a simi-

lar problem with common evaluations of a group of firms selling

regional products is known [27], few studies discuss actually the

disaggregation of these evaluations. Nevertheless, there are few

studies considering the Shapley value to disaggregate users’ ratings

of component services directly [18]. To decrease computational

complexity a variant of the Shapley value might be used [19]. Ad-

ditionally, researchers investigate the learning of classes of games

using the PAC model, i.e. [4].

To solve the disaggregation part of our problem we use the

Shapley value, the best-known solution concept for TU games. This

concept is widely studied and characterized by some natural proper-

ties, namely symmetry, Pareto efficiency, additivity and the dummy

player axiom [24]. Alternative characterizations use a fairness [26]

or a transfer property [10] instead of additivity. [5] and [1] deal with

incomplete information in the context of the Shapley value. Similar

concepts have been used by Smets in the context of decision making

in the transferable belief model with pignistic transformations [25].

Sampling for the approximation of Shapley values was already

introduced by [21], but without any theoretical guarantees. This gap

was filled for different classes of games: [3] propose an analysis for

simple games in the context of power indices and [2] for matching

games. If we restrict the games by the value function instead of any

structural properties, [17] show the approximation guarantee for

supermodular games and [5] for submodular games with bounded

curvature. Additionally, [7] and [20] analyze the approximation in

a more general setting, but require a given variance or range of the

marginal values. Further approximation methods for the Shapley

value have been discussed in [9, 16, 23, 28]

1.2 Our Contribution
In this paper, we propose a model and a solution to handle the

aggregation of reputation values from different users and the dis-

aggregation of information on composed services. To the best of

our knowledge, this is the first work which handles both steps,

aggregation and disaggregation, together. Beside the characteriza-
tion of this evaluation problem through some natural axioms, we

show that a combination of the Shapley value as disaggregator

and the (weighted) average as aggregator satisfies our normative

requirements (Theorem 3.1). In contrast, using classical rules from

social choice (maximum, minimum, or median rule) violate them

(Propositions 2.5-2.8). Concerning computationally complexity, we

give an algorithm approximating the Shapley value in polynomial

time (Theorem 4.3). Finally, we address the problem of missing

valuations and apply the Data-Dependent Shapley Value [5], which,

together with the weighted average as aggregator, still yields a

solution that satisfies our requirements (Theorem 5.1). To this end,

our combination proves to be a reasonable and robust choice to

elicit evaluations of component services.

2 THE MODEL
There arem basic services which can be combined to 2

m−1 different

service compositions. Furthermore, n users can buy and evaluate

these service compositions. We assume that each user i evaluates
all compositions once

1
, assigning a real number from a predefined

scale [0,u] to each service composition S ⊆ {1, . . . ,m}, S , ∅. The
best evaluation isu, the worst is 0. The matrix E collects all available

evaluations, hence E ∈ M (n × 2
m − 1) and EiS is user i’s evalua-

tion for service composition S (i = 1, . . . ,n, S ⊆ {1, . . . ,m}, S , ∅).
A solution (in the wider sense) to the problem of evaluating basic

services assigns to each basic service a real number, which can be

collected in a real valued matrix e ∈ M (1 ×m). Note that we do
not require these values to lie in the interval [0,u].

To find an appropriate single evaluation for each basic service,

we need two different operators. A disaggregator is a mapping

D (q )
:M (q × 2

m − 1) →M (q ×m) that takes each of q (possibly

different) evaluations of compositions and computes the corre-

sponding q evaluations of them basic services. An aggregator is a

mapping A(p )
:M (n × p) →M (1 × p) that maps the evaluations

of n users (either over p = 2
m − 1 service compositions or over

p = m basic services) to an aggregated evaluation. In the subse-

quent discussion, we use different specifications of D (q )
and A(p )

.

In what follows, we assume that aggregation and disaggregation

is anonymous in the sense that for an aggregator A (an instance

of A(p )
) and evaluation matrix E the aggregated value in the i-th

coordinate (A(E))i only depends on the i-th column of E and is

calculated using the same function for each of the p coordinate.

Similarly, a disaggregator D (an instance of D (q )
) is assumed to

1
This is quite a strong assumption. However, a user in our model can also represent a

group of similar/identical users who evaluate all compositions together.
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M(n × 2m − 1) M(n ×m)
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M(1 × 2m − 1) M(1 ×m)
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1

Figure 1: Scheme of the evaluation problem

apply the same function for each of the q users that only depends

on the corresponding row in the underlying evaluation matrix.

Two routes can be taken to transform an evaluation matrix E to

a final evaluation of basic services (cf. Figure 1). On the one hand,

it is possible to start with the aggregation of evaluations for each

composed service. Applying the aggregator A1 (a specification of

A(2m−1)
) on the input matrix results in the intermediate matrix

A1 (E) ∈ M (1 × 2
m − 1). A disaggregator D2 (a specific D (1)

) then

yields the final evaluation D2 (A1 (E)) ∈ M (1×m) of basic services.
On the other hand, one could also reverse the order of aggrega-

tion and disaggregation. Now, we first disaggregate each user’s eval-

uation to an evaluation over basic services. Then, these evaluations

are aggregated across users. Formally, we first applyD1 (someD (n)
)

to an evaluation matrix E resulting in D1 (E) ∈ M (n ×m) before

aggregatorA2 (someA(m)
) yields the final evaluationsA2 (D1 (E)) ∈

M (1 ×m). Both routes yield overall evaluations for the single ser-

vices, which should not be restricted to the same range as the initial

evaluations. We define RD2,A1

and RD2,A1
so that the range of

(D2 (A1 (·)))j is [RD2,A1

, RD2,A1
]. Analogously, RA2,D1

and RA2,D1

are defined such that the range of (A2 (D1 (·)))j is [RA2,D1

, RA2,D1
]

(j = 1, . . . ,m)).
2

2.1 Axioms
A solution to the problem of assigning valuations for basic services

is a collection of aggregators A1,A2 and disaggregators D1,D2.

In other words, a solution includes both types of operations, ag-

gregation of values for compositions (A1) and basic services (A2)

and disaggregation of valuations from single users (D1) and from

aggregated valuations (D2).

We next formulate normative requirements (axioms) that a solu-

tion, i.e., the combination of aggregators and disaggregators, should

satisfy. The first key axiom is immediate and requires that the solu-

tion is independent of the order of aggregation and disaggregation.

Axiom 2.1 (CONSISTENCY). A solution to the evaluation problem

is consistent, if it does not depend on the order of aggregation and

disaggregation, i.e., A2 (D1 (E)) = D2 (A1 (E)) for each evaluation

matrix E.

Apart from technical considerations (e.g., dynamic updates, etc.),

without this requirement the ordering becomes a strategic question.

The platform calculating single evaluations could influence the out-

come by choosing the order of the aggregation and disaggregation

in its favor.

2
Note that with a continuous aggregator A and disaggregator D , the composed func-

tions (A(D ( ·)))j and (D (A( ·)))j are continuous and therefore the image of the com-

pact set of evaluation matrices with entries in [0, u] must be compact.

The next two axioms capture extreme cases with one user or one

service only, which makes either aggregation or disaggregation su-

perfluous. Given a single user, n = 1, there is no difference between

her evaluations and the aggregated ones. Hence, disaggregation

should not give different results.

Axiom 2.2 (SINGLE USER). A solution to the evaluation problem

fulfills the single user axiom if in case n = 1 the disaggregation

functions are equal, D1=̂D2, D in short, in order to yield the same

result.

Given only one single service,m = 1, the disaggregation step is

vacuous.

Axiom 2.3 (SINGLE SERVICE). A solution of the evaluation prob-

lem fulfills the single service axiom if in casem = 1 the aggregation

functions are equal, A1=̂A2, shortly A, in order to yield the same

aggregation result.

Recall that our anonymity requirement from above together with

the two previous axioms ensures that aggregation and disaggrega-

tion does not vary over coordinates.

We conclude our requirements section with one last aspect. A

user might want to manipulate the final evaluation of a basic ser-

vice with the help of her individual evaluation. Common aims of a

manipulation are that a single service receives an extremely low

or extremely high final evaluation. Therefore, the aggregation and

disaggregation process should rule out these possibilities of manip-

ulation. If a basic service is not already evaluated extremely high

or extremely low, a newly evaluating user should not be able to

choose her evaluations in such a way that the overall valuation of

this basic service becomes extremely high or extremely low.

Axiom 2.4 (RESTRICTED INFLUENCE). Given evaluations E, a
range [0, u] and a service j with overall evaluations

(D2 (A1 (E)))j , RD2,A1
, (D2 (A1 (E)))j , RD2,A1

, (A2 (D1 (E)))j ,

RA2,D1
and (A2 (D1 (E)))j , RA2,D1

, a solution fulfills the restricted

influence axiom, if there exists nov ∈ R2
m−1

and Ê =

(
E
v

)
such that

(D2 (A1 (Ê)))j = RD2,A1
, (D2 (A1 (Ê)))j = RD2,A1

, (A2 (D1 (Ê)))j =

RA2,D1
and (A2 (D1 (Ê)))j = RA2,D1

.

2.2 (Dis-)Aggregations with Positional
Operators

From a sequence of numbers, positional operators select the number

that appears at a prespecified position after ordering the numbers.

The most popular examples are the median, maximum and mini-

mum operator, which are frequently used in social choice problems

as an aggregation device. We investigate how far they are suitable

for our goals.

First, we discuss aggregation and disaggregation with the me-

dian. The median is defined as the value dividing the evaluations

in the lower and the higher half. It is often used to aggregate val-

ues because it is a robust statistical measure as it is not affected

by outliers. But is it also a suitable disaggregation tool? It seems

convincing that the valuation of a basic service j is described by

the “middle value” between the evaluations of all composed ser-

vices that include j. Taking the median as a tool to aggregate and
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disaggregate evaluations we can directly see, that the single user

and the single service axioms are fulfilled as we use the same type

of function for all operations. Unfortunately, we can easily see that

using the median as an aggregation and disaggregation function

will not always yield a consistent solution. If the number of evalu-

ations is odd, the median is simply the value in the middle when

the evaluations are arranged from the lowest to the highest value.

If the number of evaluations is even, the median is defined by the

mean of the two middle values.

Proposition 2.5. The solution that uses the median as aggregator
and as disaggregator is not consistent.

Next, we aggregate and disaggregate using the minimum or max-

imum operator. When choosing the minimum to disaggregate, the

evaluation of a basic service j is equal to the evaluation of the worst

composed service including j. When choosing the minimum to

aggregate, the aggregate evaluation of a basic or composed service

is the worst evaluation across users. Analogously, we can define

(dis-)aggregation with the maximum operator. However, combining

maximum and the minimum contradicts the axioms.

Proposition 2.6. The solution that uses the minimum to aggre-
gate and the maximum to disaggregate (the minimum to disaggregate
and the maximum to aggregate), i.e., A = min{·} and D = max{·},
(D = min{·} and A = max{·}), is not consistent.

Let us now consider the cases where A = D = min{·} and A =
D = max{·}. Economically, the solutions can be interpreted as a

lower and upper bound for the evaluations.

Proposition 2.7. Using the minimum (maximum) to aggregate
and to disaggregate, A = D = min{·} (A = D = max{·}) yields a
consistent solution.

Although we can achieve consistency using the minimum or

maximum, the solutions are manipulable.

Proposition 2.8. The solution using the minimum (maximum)
to aggregate and to disaggregate, A = D = min{·} (A = D = max{·})
violates the restricted influence axiom.

The maximum and minimum solutions can easily be manipu-

lated: Each costumer who evaluates the (composed) services can

determine the (dis-)aggregated evaluation of a single service j by
simply assigning the best or worst possible evaluation to one of the

composed services T with j ∈ T .

3 DISAGGREGATIONWITH THE SHAPLEY
VALUE AND AGGREGATIONWITH THE
WEIGHTED AVERAGE

Although minimum and maximum operators are easy to compute,

they are proven to generate inappropriate solutions that do not

meet all our axioms. Instead, we suggest to follow a different ap-

proach to aggregate and disaggregate. For aggregation we use the

(weighted) average. As argued above, the weighted average is, be-

sides the median, the most examined aggregation concept. Online

reputation systems as on Amazon or eBay provide customers with

an average of evaluations as an aggregate signal. For disaggrega-

tion we use a well-known TU game solution concept, the Shapley

value. This concept is heavily used in game-theoretic models as it

is characterized by intuitive properties, namely symmetry, Pareto

efficiency, additivity and the dummy player axiom [24]. Applied in

our scenario, the Shapley value for basic service j gives the average
marginal contribution of j over any possible composition and is

formally defined as follows:

Φj (Ê,i )=
∑

S⊆{1, . . .,m}\{j }

(m−|S |−1)!· |S |!
m!

(
ÊiS∪{j }−ÊiS

)
(1)

The Shapley value as a disaggregating function when evaluations

Ê are given is defined as follows.

D (q ) (Ê ) =
*....
,

Φ(Ê, 1)
.
.
.

Φ(Ê, q )

+////
-

(2)

with Φ(Ê, i ) = (Φ1 (Ê, i ), . . . ,Φm (Ê, i )) where Φj (Ê, i ) is user i’s
Shapley value for the basic service j with (or the aggregated Shapley
value if 1 = i = q).

As aggregator, we define the weighted average with user specific

weights βi ,
∑n
i=1

βi = 1 over evaluations Ē:

A(p ) (Ē ) with (A(p ) (Ē ))T =
n∑
i=1

βi ĒiT ∀T ⊆ {1, . . . .m }. (3)

Using the weighted mean to aggregate and the Shapley value to

disaggregate obviously fulfills the single service and single axioms.

Theorem 3.1. The solution that uses the Shapley value as disaggre-
gator and the weighted average as aggregator as defined in Equation
1 to 3 is consistent and fulfills the restricted influence axiom.

Proof. To see consistency, we use the linearity of the Shapley

value (in entries of E) and calculate

(D (A(E )))j

=
∑

S⊆{1, . . .,m}\{j }

(m−|S |−1)!· |S |!
m!

(
[A(E )]S−[A(E )]S\{j }

)
=

∑
S⊆{1, . . .,m}\{j }

(m−|S |−1)!· |S |!
m!

*
,

n∑
i=1

βiEiS∪{j }−
n∑
i=1

βiEiS +
-

=

n∑
i=1

βi
∑

S⊆{1, . . .,m}\{j }

(m−|S |−1)!· |S |!
m!

(
EiS∪{j }−EiS

)
=

n∑
i=1

βi [D (E )]i j=(A(D (E )))j

It is easy to see that this solution also fulfills the restricted in-

fluence axiom. If the users’ evaluations lie within the range [0, u],

taking the mean does not change this range. By using the Shapley

value the range changes to [−u, u]. Given evaluations E such that

after the first disaggregation step the evaluation of a basic service j
is (D (E))i j , u and (D (E))i j , −u for all users i . A new user n + 1

gives evaluations v which results in (D (v ))j . The new evaluation

matrix is given by Ê =

(
E
v

)
. By aggregating all (D (E))i j and (D (v ))j

to (A(D (Ê)))j with the weighted average, the aggregated value can

never be equal to u or −u, (A(D (Ê)))j , u and (A(D (Ê)))j , −u.
As using the weighted mean and the Shapley value is consistent,

we conclude that (D (A(Ê)))j , u and (D (A(Ê)))j , −u as well,

showing that the restricted influence axiom is satisfied. �
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Finally, we note that the range of the Shapley values of a basic

service is [−u,u]. To see this, assume that the users’ evaluations

have already been aggregated. The highest marginal contribution

of a basic service j is u, which is received when j is added to a com-

position that is evaluated with 0. Therefore the Shapley value for j
is only equal to u, when all compositions including j are evaluated
with u and all compositions without j are valued 0. Similarly, basic

service j receives a Shapley value of −u, when it is the other way

round (compositions valued 0, when j is included and u, when j is
not included. The change of scale from [0,u] to [−u,u] necessitates

a different interpretation of overall evaluations. We comment on

this in the last section.

4 APPROXIMATION THROUGH SAMPLING
The exact computation of the Shapley value is computationally hard

in general since the number of coalitions exponentially grows with

the number of basic services. Therefore, computing the solution

of our evaluation problem could take take too long for practical

scenarios. Nevertheless, by using sampling methods [3, 20, 21]

we can achieve at least a reasonable approximation for our rep-

utation values with high probability. Indeed, we can construct a

fully polynomial-time randomized approximation scheme (FPRAS)

for our evaluation problem. The only assumption needed for this

approach are bounds on the possible marginal contribution of a

service to a composition. As explained in the previous section, for

the setting of reputation values, these bounds are naturally given

by [−u, u]

Algorithm 4.1 (Sampling Algorithm). Given an arbitrary µ > 0

and δ > 0: Generate
2 ln(8)u2

µ2
random permutations of the services

i.i.d. and for each permutation compute the marginal contribution

MCr =
(
ÊiS∪{j } − ÊiS

)
for service j. Let MC be the average mar-

ginal contribution of service j over these k permutations. Repeat

the process l = ln(1/δ ) times and return the median of all MC as

Φ̃j (Ê, i ).

The following Lemma 4.2 states the approximation guarantee

for Algorithm 4.1.

Lemma 4.2. Given any constants µ > 0 and δ > 0, Algorithm 4.1
computes a µ-approximation of Φj (Ê, i ) for any service j in polyno-
mial time with probability at least 1−δ , i. e. Pr [|Φ̃j (Ê, i )−Φj (Ê, i ) | ≤
µ] ≥ 1 − δ .

Let Φ̃(Ê, i ) = (Φ̃1 (Ê, i ), . . . , Φ̃m (Ê, i )) and

D̃ (q ) (Ê ) =
*....
,

Φ̃(Ê, 1)
.
.
.

Φ̃(Ê, q )

+////
-

. (4)

Theorem 4.3. Given any constant µ > 0, A(D̃ (E)) and D̃ (A(E))
can be computed in polynomial time and |A(D̃ (E)) − e | ≤ µ and
|D̃ (A(E)) − e | ≤ µ with high probability.

Proof. Let δ = (nc+1 ·mc+1)−1
for any constant c . First aggregat-

ing and then disaggregating only needsm applications of our sam-

pling algorithm as last step (one for each service). With Lemma 4.2

we have for each service j that Pr
[
|Φ̃j (Ê, 1)− Φj (Ê, 1) | ≥ µ

]
≤

(
nc+1 ·mc+1

)−1

. Using the union bound since all approximations

are independent results in Pr [∃j ∈ {1, . . . ,m} : |Φ̃j (Ê, 1) − Φj (Ê, 1) |

≥ µ] ≤ m
(
nc+1 ·mc+1

)−1

=
(
nc+1 ·mc

)−1

.

For the other direction, we have to look at the two steps in more

detail: In the disaggregation phase, we compute n ·m independent

approximations of the Shapley value. Again with Lemma 4.2 we can

show that: Pr
[
∃1 ≤ i ≤ n : ∃1 ≤ j ≤ m : |Φ̃j (Ê, i ) − Φj (Ê, i ) | ≥ µ

]

≤ n ·m · n−c ·m−c = n−c ·m−c . Taking the average over all player

i does neither affect the failure probability nor the range of values

and the theorem is shown. �

If the range of the marginal contributions is not known, i.e., if

we apply our framework for other settings than reputation, we

can use a similar analysis. Sampling methods which require the

variance of the distribution of marginal contributions [20] or even

structural properties like supermodularity [17] or submodularity

with bounded curvature [5] can be analyzed similarly resulting in

another number of required samples.

5 INCOMPLETE EVALUATION PROFILES
A natural question which arises in our work is the handling of in-

complete information. Until now we assumed complete evaluations.

But in reality, often each participating user only rates a subset of

all possible service compositions. To tackle this problem we follow

the line of research recently started by [5] and apply the so called

Data Dependent Shapley Value.
Here we assume a distribution D which captures the frequency

of the different compositions. The well-know Shapley axioms can

be extended with regard to this distribution D and the value itself

can be defined as

ΦDj (Ê, i ) =
∑
S :j ∈S

Pr [S ∼ D] ·
EiS
|S |
. (5)

Let ΦD (Ê, i ) = (ΦD
1
(Ê, i ), . . . ,ΦDm (Ê, i )) and

DD (q ) (Ê ) =
*....
,

ΦD (Ê, 1)
.
.
.

ΦD (Ê, q )

+////
-

. (6)

Theorem 5.1. Given evaluations E whose frequency follows distri-
bution D, using the Data-Dependent Shapley Value to disaggregate
and the weighted average to aggregate as defined in Equation 6 and 3,
yields a consistent solution that fulfills the restricted influence axiom.

The proof follows similar arguments as in the proof of Theo-

rem 3.1. Since the distribution of the evaluations is known in this

extension, the sampling algorithm from the previous section can

be extended. The samples are now drawn from the underlying dis-

tribution D and again with help of the Hoeffding’s inequality [15]

the number of samples can be estimated.

Corollary 5.2. Given evaluations E whose frequency follows
distribution D and any constant µ > 0, A(DD (E)) and DD (A(E)))
can be computed in polynomial time and |A(DD (E)) − e | ≤ µ and
|DD (A(E)) − e | ≤ µ with high probability.
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6 CONCLUSION
We addressed the problem of eliciting information on the quality of

components of a composed service (or product). As input we use

evaluations of many users on compositions. Therefore, the problem

is to find the right combination of aggregating over users and

disaggregating evaluations for bundles of services. A reasonable

(in the sense of the stated axioms) way to go is to combine the

Shapley value from cooperative game theory as disaggregator with

the weighed average as aggregator. Moreover, it is efficient and

robust as the final valuations can be approximated in polynomial

time, even if the evaluation matrix is incomplete.

One should not fail to note that the final valuations for basic

services have to be interpreted in a specific way. While initial user

evaluations range in [0,u], final values are from the interval [−u,u].

Interpreting evaluations as a proxy for quality, a positive Shap-

ley value of service j suggests that it improves the quality of a

composition, while a negative one is rather deteriorating quality.

In particular, two services that may be used as substitutes can be

ranked in terms of quality enhancement by their Shapley values.

The actual value in the overall solution has to be considered in

relation to the values for other services. For instance, if all user

evaluations for all compositions are u, then the final solution at-

tributes u/m to each component service. If valuations for some

service and compositions that include it fall, then the final values

for all other services increase. Consequently, the interpretation of

final values necessarily has to include the whole picture.

We close by mentioning that our method can be applied in other

scenarios as well. For instance, instead of using services and service

compositions, we can think of workers and teams in a company.

Our approach can then be used to measure the effectivity of a

worker within a team on the basis of performance values for the

different possible team compositions. The design of bonus systems,

or employment policies are possible fields of application. Another

direction to use our framework is the understanding of learning

algorithms. Imagine a complex learning environment, in which we

compose the learning tools out of basic components like pre- and

postprocessors, different learning algorithms, computing environ-

ments and also training data. Here, we can often measure only the

performance of the whole tool, but we need to make statements

about the contribution of the different involved components to

improve the learning tools.
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