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ABSTRACT
This paper studies incentive mechanisms for crowd-powered
systems, including applications such as collection of personal
data for big-data analytics and crowdsourcing. In big-data
analytics using personal data, an individual may control the
quality of reported data via a privacy-preserving mechanism
that randomizes the answer. In crowdsourcing, the qual-
ity of the reported answer depends on the amount of effort
spent by a worker or a team. In these applications, incen-
tive mechanisms are critical for eliciting data/answers with
target quality. This paper focuses the following two funda-
mental questions: what is the minimum payment required to
incentivize an individual to submit a data/answer with qual-
ity level ε? and what incentive mechanisms can achieve the
minimum payment?

Let εi denote the quality of the data/answer reported by
individual i. In this paper, we first derive a lower bound on
the minimum amount of payment required for guaranteeing
quality level εi. Inspired by the lower bound, we propose
an incentive mechanism, named Winners-Take-All (WIN-
TALL). WINTALL first decides a winning answer based on
the reported data, cost functions of individuals, and some
prior distribution; and then pays to individuals whose re-
ported data match the winning answer. Under some as-
sumptions, we show that the expected payment of WIN-
TALL matches the lower bound. In the application of pri-
vate discrete distribution estimation, we show that WIN-
TALL simply rewards individuals whose reported answers
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match the most popular answer from the reported ones (the
prior distribution is not needed in this case).

1. INTRODUCTION
A number of recent technology revolutions such as big-

data analytics and crowdsourcing are powered by the crowds.
The access to massive personal data and individual talent
via online platforms enables new scientific discoveries, new
personalized applications/services and new mechanisms of
problem solving. The successes of these crowd-powered sys-
tems require the participation of, or access to, a massive
population. In many systems, this massive participation is
a result of a highly popular application or service, such as
Gmail, iPhone or Amazon, which attracts millions of active
users. In other systems such as Amazon Mechanical Turk,
the massive participation is achieved using monetary incen-
tives.

This paper focuses on the design of incentive mechanisms
for crowd-powered systems which attract the crowd with
monetary incentives instead of services. We consider a crowd-
powered system where the platform elicits “answers” from a
crowd. Depending on the applications, the answer may be
a piece of personal information or a solution to a crowd-
sourcing task. The design of incentive mechanisms for these
crowd-powered systems is interesting because it differs from
other systems in the following aspects.

• The quality of the answer is “controlled” by an individual,
and often “unverifiable” by the platform. For example,
when collecting personal data, to protect individuals’ pri-
vacy, the reported data may be randomized versions of
the original data. In such a case, the platform does not
have the access to the true data so will not be able to ver-
ify the truthfulness of the answers. Furthermore, when
the randomization mechanism is controlled by individu-
als, the amount of randomization added to the data is
also unverifiable to the platform. Therefore, the conven-
tional wisdom of “pay according to the quality” is difficult



to implement.

• Many incentive mechanisms aim at“truthfulness” to make
sure an individual has no incentive to alter her/his answer
and reports the true data. This however is not neces-
sary and sometimes should be avoided in crowd-powered
systems. For example, platforms that collect personal
information, such as Apple, increasingly emphasize pri-
vacy protection of their customers and prefer privacy-
preserving data instead of raw personal information. Both
Google and Apple have pioneered in using differential pri-
vacy in data collection [1, 5].

In light of the challenges above, this paper studies the de-
sign of incentive mechanisms aiming at obtaining answers
with target quality with minimum payment, for which we
need to understand who should be paid and how much should
be paid? Both questions are highly nontrivial because the
limited capability a platform has to assess the quality of
reported answers. A flat-rate-payment mechanism, which
gives a predetermined payment to each reported answer, is
not cost-efficient. This is because in theory, rational in-
dividuals, who are interested in maximizing their payoffs
(payoff=payment - cost) would spend zero effort and sub-
mit completely random answers under a flat-rate-payment
mechanism.

This paper considers a model where a platform is inter-
ested in getting answers from N individuals for some ques-
tion. Each individual has a private answer to the question,
denoted by Si. The distribution of Si is parameterized by Θ.
An individual reports Xi, where the conditional distribution
of Xi given Si is controlled by user i via εi. In the applica-
tion of personal data collection, Si is the private information
and Xi is the reported data with privacy level εi. In the ap-
plication of crowdsourcing, Si is the best answer individual
i can provide when the individual spends unlimited effort
to solve the task; and Xi is an answer reported when εi
amount of effort is used. Given this model, we first derive a
lower bound on the minimum payment required given a tar-
get quality level, and then propose an incentive mechanism
that matches the lower bound under some assumptions. The
main results are summarized below.

1.1 Main Results

• We formulate the design of minimum payment incentive
mechanisms as an optimization problem in Section 2 as-
suming a cost-aware platform who is interested in mini-
mizing total payment when eliciting answers with required
quality, and strategic individuals who are interested in
maximizing their payoffs. In Section 3, we derive a lower
bound on the minimum payment. The lower bound is de-
rived by introducing a genie-aided mechanism, where a
genie knows Θ, and pays an individual based on only her
reported answer and Θ. So under the genie-aided mech-
anism, the minimum payment problem for the crowd be-
comes a minimum payment problem for an individual.
We further show that any incentive mechanism that does
not have access to Θ can be mimicked by the genie-aided
mechanism with the same expected payment. Therefore,
the minimum payment under the genie-aided mechanism
is a lower bound on the original problem.

• Inspired by the lower bound, we propose WINTALL, a
winners-take-all incentive mechanism in Section 3. WIN-

TALL first estimates θ from the reported answers, denoted
by θ̃, from which WINTALL decides the winning answer
for each individual. Under some assumptions, we prove
that the expected payment under WINTALL matches the
lower bound given θ̃ = θ, i.e. the payment is close to
the lower bound if the platform can accurately estimate θ
from the reported answers with a high probability.

To implement WINTALL, the platform needs to know the
conditional distribution of Xi given Si and the distribu-
tion of Si given θ̃, which could be difficult to obtain in
practice. However, it turns out that both are not nec-
essarily needed in some applications. In an example of
discrete distribution estimation, we show that under the
k-ary randomized response mechanism [6], the winning
answer simply is the most popular answer among the re-
ported answers, and the amount of payment is

∂g(ε)

∂ε

(M + ε)ε

M
∑N
i=1 1xi=m

∗

N
− 1

, (1)

where M is the size of the alphabet (sample space), m∗ is
the winning answer, ε is the target quality level, and g(ε)
is the cost of reporting an answer with privacy level ε.

1.2 Related work
Incentive mechanisms for crowd-powered systems have gained

a lot of interest in recent years. A popular approach used in
crowdsourcing is the peer prediction mechanisms [4,9–13,17,
18, 22], under which each individual is paired with another
randomly selected individual and is paid based on how well
her reported data predicts the data from her paired individ-
ual. [18] proposed an output agreement mechanism where
a positive payment is made if two answers agree. [10] intro-
duced the“Bayesian Truth Serum”(BTS) mechanism, which
requires a data subject to provide her own answers as well
as her belief of others’ answers. A high score is given to an
answer when the actual frequency is larger than the predic-
tion. The mechanism has been further extended in various
different settings [11–13,22]. [4,17] introduced strong truth-
fulness mechanisms for binary and non-binary signals in the
presence of multiple questions. [14–16] developed incentive
mechanisms for improving quality of labelling in crowdsourc-
ing. The mechanisms incentivize workers to self-correct their
answers in a second stage after comparing their answers with
a reference answer from other workers. The goal of these
mechanisms is to obtain “truthful” answers, while under our
model, the platform is interested in eliciting answers with
target quality instead of truthful answers.

[7] studies the problem of maximizing accuracy of crowd-
souced data given a fixed budget, under which crowdsouc-
ing tasks are assigned adaptively based on the answers col-
lected. The paper introduced an adaptive mechanism com-
bined with inference scheme. [21] introduced a Bayesian in-
ference model for crowdsourcing which integrates data col-
lection and learning. The focus of [7, 21] is on task assign-
ment instead of incentive mechanisms. [8] developed a learn-
ing algorithm to identify low- and high-quality labelers and
further used this information to improve the labelling qual-
ity in crowdsourcing. In [3], the authors considered a model
under which the data collector can buy data with different
variance levels with different prices. The focus is on incen-
tivizing data providers to report their true cost functions,
and it assumes the variance levels tagged are the true vari-
ance levels of the data, which is fundamental different from



our model where the variance level is unverifiable to the data
collector.

[2] investigated a similar problem under a model, where
the reported data is the true answer plus an additive noise
with mean zero and variance as a function of effort level ε.
This paper does not assume an additive noise model. In
fact, noises introduced by many popular privacy protection
mechanisms based on differential privacy are not additive.
Another closely related line of work is [19,20], which studies
the market value of private data by casting the problem
as eliciting private data from privacy-sensitive individuals.
Both papers consider binary data, which is a special case of
the model studied in this paper.

2. MODEL
Let i be the index of individuals and Si ∈ S be the pri-

vate data of individual i, where S is a finite set. We assume
Si ∈ S to be a random variable whose distribution PSi(s; Θ)
is parameterized by Θ, where Θ can be a random variable,
a random vector or even a random matrix. We further as-
sume that given Θ = θ, {Si} are independent. We note that
if {Si} is an infinite sequence of exchangeable random vari-
ables, then there exists a latent random variable Θ such that
{Si} are independent conditioned on Θ = θ according to de
Finetti’s theorem. When individuals are chosen uniformly
at random from a large population like in most online or of-
fline surveys, {Si} are exchangeable random variables, and
satisfy the assumption of this paper.

Let Xi ∈ X denote the data that individual i reports
to the platform, where X is a finite set and may be dif-
ferent from S. Furthermore, denote by σi(ε) : S → X a
data-reporting mechanism that generates reported data Xi
according to the private data with quality level ε.

For applications which collect personal data, ε can be
viewed as the privacy budget (a.k.a privacy loss). For ex-
ample, Google RAPPOR and Apple iPhone have imple-
mented privacy-preserving mechanisms based on differential
privacy [1, 5] where ε is the privacy budget defined in dif-
ferential privacy. In crowdsourcing case, the quality of an
answer is determined by a worker’s effort, so the quality level
ε can be viewed as the amount of time (or effort) used by
the worker.

We assume that the quality level ε uniquely determines
the distribution

PXi|Si (x|s; ε) . (2)

We assume εi is controlled by individual i and PXi|Si (x|s; ε)
is differentiable with respect to ε. Note that this assumption
means an individual controls PXi|Si via the effort level in-
stead of controlling it directly. For personal data collection,
this assumption means the privacy preserving mechanism
is fixed but an individual can select the privacy level. In
crowdsourcing, it means a worker controls the quality of an
answer via the amount of the effort used to finish the task.
We further assume that individual i chooses the effort level
before seeing her private data Si.

We remark that it would be more general if the model al-
lows individual i to directly chooseXi based on Si, instead of
controlling the answer via εi. However, we believe our model
is more suitable for applications such as Google RAPPOR
or Apple iPhone, where we can easily envision that Google
or Apple in the future may let users determine the level of
privacy-loss they prefer, but it is difficult to image that an

individual would customize every single bit of her personal
data reported to Google or Apple.

2.1 Cost-Aware Platform
We assume the platform is cost-aware and is interested

in collecting data with target quality level ε with minimum
payment. The platform therefore uses incentive mechanism
R (also called a payment mechanism) such that Ri(X) is the
payment to individual i when the reported data is X which
is a vector such that the ith entry is the reported data of
individual i, i.e. Xi. The goal of the platform is to minimize

the total payment
∑
iRi(X) under the constraint εi ≥ ε

(t)
i ,

where ε
(t)
i is the target quality level chosen by the platform

and εi is the actual quality level of the data from individual
i. In other words, the platform aims at solving the following
problem:

minR E
[∑

iRi(X)
]

(3)

subject to: ε ≥ ε(t) (4)

Ri(X) ≥ 0, ∀X, ∀i, (5)

where ε is a vector such that the ith entry is εi. We impose
constraint Ri(X) ≥ 0 for all X and all i so that negative
payment (i.e. penalty) is not allowed, which is common in
practice.

2.2 Strategic Individuals
We assume individuals are rational and strategic. Each

individual is associated with a cost function gi(ε) which is
the cost incurred to individual i when the quality level is ε.
For collecting personal data, ε is the cost of privacy loss; and
in crowdsourcing, the cost could be the monetary loss from
other sources when worker i works on finishing the task. We
assume gi(·) is an increasing function.

We assume individual i has the following information:

• cost function gi(·),

• a (possibly biased) belief of parameter Θ, denoted by Θ̃i

and with distribution fΘ̃i
(θ),

• the payment mechanism based on reported data R(X),
which is announced by the platform,

• distribution PSi(s; θ) for any given θ,

• distribution PSj (s; θ) for any given θ for all j 6= i, and

• quality-level used by other individuals ε−i.

Let Ri(Xi,X−i) denote the payment received by individ-
ual i given reported data X, which is simply a different nota-
tion for Ri(X). The payment individual i expects to receive

with quality level ε, based on her belief Θ̃i, is

hi(ε) = EΘ̃i,ε,ε−i
[Ri(Xi,X−i)] .

We assume individuals are strategic and are interested in
maximizing the expected payoff, i.e. finding a quality level
ε∗i such that

ε∗i ∈ arg max
ε

(hi(ε)− gi(ε)) . (6)

Individuals are also rational so that they will not participate
if

max
ε

(hi(ε)− gi(ε)) < 0.

Remarks on the assumptions:



• We assume each individual has personalized Θ̃i to model
her bias (or lack of information). An individual is strategic
but may not have the perfect unbiased information about
Θ.

• The assumption that individual i has the information about
other individuals ε−i and PSj (s; θ) is mainly for the anal-
ysis purpose so that the expected payment to individual
i, i.e.

Eθ̃i,ε,ε−i [Ri(Xi,X−i)]

is well defined. As we will see in the analysis, under
the proposed payment mechanism and some minor as-
sumptions, individual i does not need these two pieces
of information for calculating ε∗i . In other words, under
the proposed incentive mechanism, individual i makes the
same decision with or without knowing ε−i and PSj (s; θ).
Therefore, our main results hold even individuals do not
have other individuals’ information. We will see that for
some application, the proposed incentive mechanism can
be remarkably simple and practical with minimal infor-
mation needed by both the platform and individuals. The
arguably most critical assumption is that the cost function
gi(ε) is known to the platform. Learning and estimating
the costs functions are beyond the scope of this paper.

2.3 Minimum Payment Incentive Mechanism
Summarizing the discussions in the previous two subsec-

tions, the design of a minimum cost incentive mechanism is
to solve the following problem:

min
R

E

[∑
i

Ri(X)

]
(7)

subject to: Ri(X) ≥ 0, ∀X, ∀i (8)

arg max
ε

(hi(ε)− gi(ε)) ≥ ε(t)i ∀Θ̃i, ∀i. (9)

We next comment on constraint (9), which is called Bias-
Free condition in this paper.

• Bias-Free: We require condition (9) holds for all Θ̃i be-

cause the bias Θ̃i in general is unknown (or just partial
known) to the platform. This condition guarantees that

individual i chooses quality level at least ε
(t)
i regardless of

her bias, which we feel is important in practice where indi-
viduals often have only limited and heterogeneous knowl-
edge about the underlying parameter Θ.

3. A WINNERS-TAKE-ALL INCENTIVE MECH-
ANISM

Before we present WINTALL, we first derive a lower bound
on the payment to individual i with quality level ε. We define

PXi(x; (θ, ε)) =
∑
s∈S

PSi(s; θ)PXi|Si(x|s; ε),

which is the probability that individual i reports x when the
underlying parameter is θ and the quality level of individual
i is ε.

Theorem 1. Given any nonnegative and bias-free pay-
ment mechanism R, if ε is the quality-level of individual i
at a Nash equilibrium under payment mechanism R, then

the expected payment to individual i when Θ = θ is lower
bounded by

V li (ε, θ) =
∂gi(ε)

∂ε
Ai(ε, θ), (10)

where

Ai(ε, θ) = min
x∈X

{
PXi(x; (θ, ε))
∂PXi (x;(θ,ε))

∂ε

:
∂PXi(x; (θ, ε))

∂ε
> 0

}
.

(11)
�

The proof of this theorem can be found in our technical
report.

Given the lower bound, the question now is whether the
lower bound can be achieved? To answer this question, we
note that by defining

x∗i,θ,εi ∈ arg min
x∈X

{
PXi(x; (θ, εi))
∂PXi (x;(θ,εi))

∂ε

:
∂PXi(x; (θ, εi))

∂ε
> 0

}
,

(12)
the lower bound given Θ = θ is

∂gi(εi)

∂ε

1
∂PXi (x

∗
i,θ,εi

;(θ,εi))

∂ε

PXi(x
∗
i,θ,εi ; (θ, εi)), (13)

which suggests that the lower bound can be achieved by
paying individual i only when she reports x∗i,θ,εi with a pay-

ment of ∂gi(εi)
∂ε

1
∂PXi (x

∗
i,θ,εi

;(θ,εi))

∂ε

. Therefore, we propose the

following incentive mechanism.
A Winners-Take-All Incentive Mechanism (WINTALL)

(1) The platform announces target quality level ε(t).

(2) Each individual reports her data (which can also be an
decision of not participating).

(3) For non-participating individual, the payment is zero.

(4) Given the collected data X, the platform estimates θ,

denoted by θ̃.

(5) For each participating individual i, the platform pays

according to the reported Xi, the estimation θ̃, and

the target quality level ε
(t)
i . Specifically, if the reported

data is x∗
i,θ̃,ε

(t)
i

, individual i receives a payment of

W
i,ε

(t)
i ,θ̃

=
∂gi(ε

(t)
i )

∂ε

1

∂PXi (x
∗
i,θ̃,ε

(t)
i

;(θ̃,ε
(t)
i ))

∂ε

,

where

x∗
i,θ̃,ε

(t)
i

∈

arg min
x∈X

PXi(x; (θ̃, ε
(t)
i ))

∂PXi (x;(θ̃,ε
(t)
i ))

∂ε

:
∂PXi(x; (θ̃, ε

(t)
i ))

∂ε
> 0


otherwise, no payment is made to individual i. �

Now to understand whether the proposed incentive mech-
anism actually achieves the lower bound, we first prove the
following theorem, which shows that ε(t) is a bias-free Nash
equilibrium under WINTALL. Note that under WINTALL,



given the estimation θ̃, the payment to individual i is in-
dependent of other individuals’ reports. Furthermore indi-
vidual i needs to decide on the quality level εi before they
receive their private data. Therefore, we assume that indi-
vidual i is confident about her belief and uses its belief Θ̃i

when choosing the quality level εi.

Theorem 2. If for any i,

W
i,ε

(t)
i ,θ

PXi
(
x∗
i,ε

(t)
i ,θ

; (θ, ε)
)
− gi(ε)

is strictly concave in ε for given ε(t) and any θ, then the
target quality level ε(t) is a bias-free Nash equilibrium un-

der WINTALL. With quality level ε
(t)
i , the expected payment

individual i receives is

W
i,ε

(t)
i ,θ̃

PXi
(
x∗
i,θ̃,ε

(t)
i

; (θ̃, ε
(t)
i )
)
, (14)

which equals to V li

(
ε
(t)
i , θ

)
when θ̃ = θ (i.e. the platform

can accurately estimate Θ from the collected data). �

The proof of this theorem can be found in our technical
report.
“Winners-Take-All”: Suppose {Si} are identically dis-

tributed and the target quality level is the same for all indi-
viduals. In this case, x∗

i,θ̃,ε
(t)
i

is independent of i and can be

written as x∗
θ̃,ε
. Therefore, only individuals who report x∗

θ̃,ε

will be paid. In other words, under WINTALL, after col-
lecting all data, the platform determines a “winning” report
x∗
θ̃,ε

and all payments go to the “winners”.

Remark: The theorem above shows that the expected
payment under WINTALL matches the lower bound when
the underlying parameter θ can be estimated accurately. In
practice, we expect that the platform can estimate θ accu-
rately after it collects data from many individuals. So we
can expect WINTALL achieves the minimum (or near min-
imum) payment in large-scale crowd-powered systems.

4. APPLICATIONS
An important application of the proposed model and in-

centive mechanism is private discrete distribution estima-
tion, widely used in usage statistics breakdowns and count-
based machine learning models. Let θ denote anM -dimensional
probability distribution and define Si to be a random vari-
able such that Pr(Si = m) = θm. Here Si can represent
whether user i has visited website m, or her opinion about
a certain subject. The platform collects data from N in-
dividuals randomly selected from the crowd to estimate θ.
As we mentioned earlier, when the individuals are selected
uniformly at random, {Si} are exchangeable. A pictorial
illustration is shown in Figure 1.

We assume individuals use the following privacy-preserving
mechanism

PX|S(k|m; ε) =

{ ε+1
ε+M

, k = m
1

ε+M
, k 6= m

.

This is the k-ary randomized response mechanism proposed
in [6] for discrete distribution estimation which guarantees
differential privacy budget

ε(d) = log(ε+ 1)

and is proved to be optimal in the low-privacy regime [6] .

private data

reported data

Figure 1: Illustration of Discrete Distribution Esti-
mation

Given the k-ary randomized response mechanism, we have

PX(m; (ε; θ)) =

M∑
k=1

PX|S(m|k; (ε, θ))PS(k; (ε, θ))

= θm
ε+ 1

ε+M
+ (1− θm)

1

ε+M

=
θmε+ 1

ε+M
,

and

∂

∂ε
PX(m; (ε; θ)) = − θmε+ 1

(ε+M)2
+

θm
ε+M

=
θmM − 1

(ε+M)2
.

Therefore, we have

PX(m; (ε; θ))
∂
∂ε
PX(m; (ε; θ))

=
εθm + 1

ε+M

(ε+M)2

Mθm − 1

= (ε+M)
ε

M

(
1 +

1
ε

+ 1
M

θm − 1
M

)
,

which is a decreasing function of θm. From that, we conclude
that

m∗ = arg min
m

PX(m; (ε; θ))
∂
∂ε
PX(m; (ε; θ))

= arg max
m

θm.

Note that unless θm = 1
M

for all m, i.e. uniform distribu-

tion, we have θm∗ > 1
M
, which implies that

∂

∂ε
PX(m∗; (ε; θ)) =

θm∗M − 1

(ε+M)2
> 0,

and PX(m∗; (ε; θ)) is strictly concave in ε because ∂
∂ε
PX(m∗; (ε; θ))

is a decreasing function in ε. We also note that for any ε > 0,

m∗ = arg max
m

θm = arg max
m

PX(m; (θ, ε)).

In other words, the most popular answers in the private data
and in the reported data are the same.

WINTALL with target quality level ε in this case is as
follows.
WINTALL for Private Discrete Distribution Esti-
mation

• After collecting data fromN individuals, denoted by {xi}i=1,··· ,N ,
the platform identifies the most popular answer m∗ :

m∗ ∈ arg max
m

∑N
i=1 1xi=m

N
.



Ties are broken uniformly at random.

• The platform pays each user who reports m∗ an amount
of

∂g(ε)

∂ε

(M + ε)ε

M
∑N
i=1 1xi=m

∗

N
− 1

. (15)

�

Remark: We note that the most popular answer in the
private data is consistent with that in the reported data,
which creates the incentive for an individual to report an
answer close to her private data because the individual ex-
pects her private answer to be the dominating one. Note
that in this example, the only prior information the plat-

form needs is ∂g(ε)
∂ε

.

5. CONCLUSIONS
This paper studied incentive mechanisms for crowd-powered

systems. We first derived a lower bound on the minimum
payment required for guaranteeing quality level, and then
proposed WINTALL — a novel incentive mechanism. The
expected payment of WINTALL matches the lower bound
when the underlying parameter θ can be estimated by the
platform accurately. We present its application to private
discrete distribution estimation, where WINTALL rewards
individuals whose reported answers match the most popular
one.

Acknowledgement
This work was supported in part by the NSF under Grants
ECCS-1547294, CNS-1739344, IIS-1552654, and IIS-1813464.

6. REFERENCES
[1] https://images.apple.com/privacy/docs/Differential

Privacy Overview.pdf.

[2] Cai, Y., Daskalakis, C., and Papadimitriou, C.
Optimum statistical estimation with strategic data
sources. In Proc. Conf. Learning Theory (COLT)
(2015), pp. 280–296.

[3] Cummings, R., Ligett, K., Roth, A., Wu, Z. S.,
and Ziani, J. Accuracy for sale: Aggregating data
with a variance constraint. In Proc. Conf. Innovations
in Theoretical Computer Science (2015), pp. 317–324.

[4] Dasgupta, A., and Ghosh, A. Crowdsourced
judgement elicitation with endogenous proficiency. In
Proc. Int. Conf. World Wide Web (WWW) (2013),
pp. 319–330.
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