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Notations

Probability

Var(X). Uf:(
Cov(X,Y)

a

N(p,o?)

Probability of an event

Random variables

PDF or distribution function of X

Joint PDF or distribution function of X and Y
Cumulative distribution of X, P[X < z
Expected value of X

Mean of X

Variance of X

Covariance of X and Y

An estimate or an estimator of a

The Normal (Gaussian) distribution, mean g and variance o

2




Random variable & CDF

 Definition: i1s the outcome of a random event
or experiment that yields a numeric values.

* For a given X, there 1s a fixed possibility that
the random variable will not exceed this value,
written as P[ X<=x].

 The probability 1s a function of x, known as Fy

(x). F<(.) 1s the cumulative distribution
function (CDF) of X.




PDF & PMF

e A continuous random variable has a

probability density function (PDF) which is:

px(x) = dFdf) -

 The possibility of a range (x,,X,] 18

Plx1 < X <x3] = F(x2) — F(x1) = /mz p(u) du.

1

 For a discrete random variable. We have a
discrete distribution function, aka. possibility
massive function.




Moment

The expected value of a continuous random
variable X 1s defined as

EX] = /OO up(u) du.

— 00

Note: the value could be infinite (undefined). The mean of X 1s
its expected value, denote as py

The nt" moment of X is:

E[X"] = u” p(u) du.




Variability of a random
variable

 Mainly use variance to measure:
Var(X) = B(X — )] = [ (u— o) plu) du

« The variance of X is also denote as: 02

e Variance 1s measured in units that are the
square of the units of X; to obtain a quantity in
the same units as X one takes the standard

deviation: .
OX = 4/ O'g(.




Joint probability

* The joint CDF of X and Y 1s:
Fxy(z,y) = P[X < z,Y <4y

e The covariance of X and Y 1s defined as:

& 0o foo
Cov(X,Y) = E[(X — px )(Y — py)] =/ / zypxy(z,y)de dy.

e Covariance 1s also denoted: ggf v

e Two random variable X and Y are independent

1 peyv(a,y) = px(@) py(y) Y,y




Conditional Probability

* For events A and B the conditional probability

defined as:

P[A| B] = PlA, B]

P[B]
* The conditional distribution of X given an

event denoted as:
p(x | event).

* It 1s the distribution of X given that we know
that the event has occurred.




Conditional Probability (cont.)

* The conditional distribution of a discrete
random variable X and Y
p(z|Y =y)
* Denote the distribution function of X given
that we happen to know Y has taken on
the value .

» Defined as: ;“f(x Y y) = px,y(%y)'
pY(’y)




Conditional Probability (cont.)

* The conditional expectation of X given an
event:

E|X |event| = / up(u | event) du.




Central Limit Theorem

Consider a set of independent random variable
X,,X,, ... Xy, €ach having an arbitrary

probability distribution such that each
distribution has mean w and variance o2

When N — o

X 4 N(u,o%/N).

With parameter u and variance 62/N




Commonly Encountered Distributions

* Some are specified in terms of PDF, others in terms of CDF. In

many cases only of these has a closed-form expression

ity

o N .. N
Distribution

Definition

Domain

Exponential

p(z) = Ae

x>0

Normal

p(z) =

_ 2
A e |4 ()]

— 0 <Tr <X

Gamma

p(x)

_ (z—y)* T exp[—(z—v)/B]

g T (a)

T >y

Extreme

F(x) = exp {— exp (—(“’C;ﬁa))]

Lognormal

p(z) =

1 1
cx — 5
T o2 pl: 2(

logx—pn

a

)]

Pareto

Weibull




Stochastic Processes

» Stochastic process: a sequence of random
variables, such a sequence 1s called a
stochastic process.

* In Internet measurement, we may encounter a
situation 1in which measurements are presented
in some order; typically such measurements
arrived.




Stochastic Processes

A stochastic process 1s a collection of random
variables indexed on a set; usually the index
denote time.

* Continuous-time stochastic process:
{Xy, t >0}
* Discrete-time stochastic process:

{Xn, n=1,2,..}.




Stochastic Processes

* Simplest case 1s all random variables are
independent.

 However, for sequential Internet measurement,
the current one may depend on previous ones.

* One useful measure of dependence 1s the auto-
covariance, which 1s a second-order property:

ox,; x; = Cov(X;, X;) = E[(X; — px,)(Xj — px;)]




Stochastic Processes

* First order to n-order distribution can characterize the
stochastic process.

— First order: px,(*), Px, (), -
— Second order:

le?XQ(.)j leJ'XS(.):' "t pXQ,Xg(')j pXQ.}X_ﬁl(')j v
e Stationary
— Strict stationary

o

PXn, Xnt1,XntnN-1 () = PX, ik Xt bkt 1o Xt k+N—1 ()
For all n.k and N




Stochastic Processes

« Stationary
— Wide-sense Stationary (weak stationary)

« [fjust its mean and autocovariance are invariant with
time.

A

E X, = E[Xi
CO\-"(XH? Xn,—l—k) COV(Xl, Xk—l—l)




Stochastic Processes

* Measures of dependence of stationary process
— Autocorrelation: normalized autocovarience

r(k) =~(k)/7(0) = (k) /o%.
— Entropy rate

 Define entropy:
= ) p(z) log 1/p(x)

rCH
 Joint entropy:

H(X1,X9) = y\ T p(x1,x2) log 1/p(xy1, z2).
r1EH xo6EH




Stochastic Processes

* Measures of dependence of stationary process

— Entropy rate
* The entropy per symbol in a sequence of n symbols

o 1
Hy(H) = — H(X1, Xa, .., Xn).

e The entropy rate

H(H)= lim H,(H).

n—00




Special Issues in the Internet

* Relevant Stochastic Processes
— Arrivals: events occurring at specific points of
time
— Arrival process: a stochastic process 1n which

successive random variables correspond to time
instants of arrivals:

{A,,n=0,1,...}

* Property: non-decreasing & not stationary

— Interarrival process (may or may not stationary)

{I,,n =1,2,...} where I,, = A, — A1)




Special Issues in the Internet

e Relevant Stochastic Processes

— Timeseries of counts

* Fixed-size time intervals and counts how many arrivals
occur 1n each time interval. For a fixed time interval T,
the yields¢c,, n = 0,1,...1 Where:

Cp=#{A,,|nT < A,, < (n+1)T}

T called timescale

» Can use an approximation to the arrival process by
making additional assumption (such as assuming
Poisson)

* A more compact description of data




Short tails and Long tails

“In the case of network measurement large
values can dominate system performance,
SO a precise understanding of the
probability of large values is often a prime
concern”

As a result we care about the upper tails of a
distribution

Consider the shape of
1 — F(x) = P[X > z] for large =




Short tails and Long tails

* Declines exponentially 1f exists >0, such that:
1 — F(z) ~e
— AKA. Short-tailed or light-tailed
— Decline as fast as exponential or faster.

« Subexponential distribution
(1 — F(z))eM — oo asz — oo forall A > 0

— Along tail

— The practical result 1s that the samples from such
distributions show extremely large observations with non-
negligible frequency




Short tails and Long tails

« Heavy-tailed distribution:
— a special case of the subexponential distributions

— Asymptotically approach a hyperbolic (power-law)
shape

— Formally:
l—-—F(z)~z % 0O0<a<?2
— Such a distribution will have a PDF also follow a
power law:




Short tails and Long tails

» A comparison of a short-tailed and a long-
tailed distribution

-l

|
0.5
logl0(x)

(a) (b)
Figure 3.1 Comparison of Short- and Long-tailed Distributions: (a) Linear Scale (b)
Log-log Scale. Dotted line: Heavy-tailed Pareto distribution; Solid line: light-tailed Expo-
nential distribution.







Terms of measured data

Terms used in describing data
— For example: “mean of a dataset”

— An objectively measurable quantity which is the average of a set
of known values

Terms used in describing probability models
— For example: “mean of a random variable”
— A property of an abstract mathematical construct

To emphasize the distinction, we add the adjective
“empirical” to describe data

— Empirical mean vs. mean

Classification of measured data
— Numerical: i.e. numbers
— Categorical: i.e. symbols, names, tokens, elc.




Central tendency

Definition
— Given a dataset {x,, i=1,...N}, it tells where on the
number line the values tend to be located.

Empirical mean (average)

Mode
— most common value

Median

— value which divides the sorted dataset into two
equal parts




Dispersion

 Measured methods
— Empirical variance: squared units

s : E(xl.—)?)

N i1
— Standard deviation: the square root of variance
— Coefficient of variation: g/ x




More detailed descriptions

 Quantiles

— The pt" quantile is the value below which the
fraction p of the values lies.

— Median is the 0.5-quantile
* Percentile

— The 90t percentile is the value that is larger
than 90% of the data




Histogram

Defined in terms of bins
which are a particular of the
observed values 0006

Counts how many values 20005 |
fall in each bin

A natural empirical analog
of a random variable’s
robability density function 0.0002 |

p
#PDF_) or distribution 00001 | hﬂﬁm
unction D

Practlcal problem 0 2000 42000 000 ECIIEI':' 10000

— How to determine the bin Vakue
boundaries

0.0004 +

4 00003




Entropy

 Definition
Let P be a probability mass function on the symbol set

A, the entropy of P is H(P) = _E P(x)log P(x)

xeA4

« Entropy measures the unevenness of a
distribution

* The maximum entropy is log|A|, when all
symbols are equally likely, p(x) = 1/4] for every
XA




Empirical cumulative distribution
function (CDF)

CDF involves no binning or
averaging of data values

CDF potentially provides
more information about the
dataset than does the
histogram.

For each unique value in the Z
data set, the fraction of data
items that are smaller than
that Value (quantlle)' JI:IIIIII: -HZICIIII EII;I:I:I SCIIIZICI 10000

CDF involves no binning or Value
averaging of data values

CCDF: complementary
cumulative distribution
function




Categorical data description

* Probabillity distribution

— Measure the empirical probability of each
symbol in the dataset

— Use histogram in decreasing order
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Describing memory and
stability

« Timeseries data

— Question: Do successive measurements tend to have any relation to
each other?

« Memory

— When the value of a measurement tends to give some information
about the likely values of future measurements

— Empirical autocorrelation fulnction (ACF)
Nk (‘xi - )_C)(xmk - X)

. _ i=1
I"(k) _ N -k S2

« Stability
— If its empirical statistics do not seem to be changing over time.
— Subjective

— Objective measures
 Break the dataset into windows




Special issues

« High variability (Numeric data distribution)

— Traditional statistical methods focuses on low or moderate
variability of the data, e.g. Normal distribution

— Internet data shows high variability

It consists of many small values mixed with a small number of large
value

A significant fraction of the data may fall many standard deviations
from the mean

Empirical distribution is highly skewed, and empirical mean and
variance are strongly affected by the rare, large observations

It may be modeled with a subexponential or heavy tailed distribution

Mean and variance are not good metrics for high variability data,
while quantiles and the empirical distribution are better, e.g.
empirical CCDF on log-log axes for long-tailed distribution



Special issues

« Zipf's law (a categorical distribution )

— A model for the shape of a categorical distribution
when data values are ordered by decreasing
empirical probability, e.g. URLs of Web pages

R=cn® (B=lorp <1

— Categorical data distributions
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Graphs and
Topology




Background of Graph

« Agraph is a pair G=(V,E)
— Undirected graph and directed graph
— Weighted graph and unweighted




Subgraph
 Subgraph G’ =(V’,E’) of G=(V,E)

- VicVv
— (v1,v9) € B/ 1Tandonly if
(’01,,‘02) c kb U1,V2 € %4

* Clique
— Complete subgraph




Subgraph
o SUbgraph g) =(V’,E’) of g:(V,E)
- VicVv
— (v1,v9) € B/ 1Tandonly if
('0131)2) c b V1, V2 € V"
» Clique
— Complete subgraph

a




Subgraph
 Subgraph G’ =(V’,E’) of G=(V,E)

- VicVv
— (v1,v9) € B/ 1Tandonly if
(’01,,‘02) c kb U1,V2 € %4

* Clique
— Complete subgraph




Connected Graph

Path

— Asequence of vertices v,, v,,...,v, that there is an

edge from each vertex to the next vertex in the
sequence

— If the graph is directed, then each edge must in the
direction from the current vertex to the next vertex in
sequence

Connected vertices

— Two vertices v; and v, are connected if there is a path
that starts W|th v, and ends with v,.

Connected graph:

— Undirected graph with a path between each pair of
vertices

Strong connected graph

— Directed graph with a path
between each pair of vertices




Characterizing Graph Structure (1)

« Degree
— The degree of a vertex is the number of

edges incident to it
* Indegree and outdegree of directed graph

« Shortest path

— The shortest path length between two
vertices i and j is the number of edges
comprising the shortest path (or a shortest
path) between i and j.

— Diameter of a connected graph

« Characteristic path length

— Average length of all the
shortest paths between
any pair of vertices

a




Characterizing Graph Structure (2)

* Clustering

— The tendency for neighbors of a node to
themselves be neighbors

— Clustering efficient

* Betweenness
— The centrality of a vertex

— Give the set of shortest paths between all
Bairs of vertices in a graph, the
etweenness b; of a vertex i is the total
number of those paths that pass through
that vertex.

a




Associated Matrices

« Incidence matrix of G=(V,E)
— nxn matrix with (n=|V|)

* Routing matrix
— All-pairs paths
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Commonly Encountered Graph Models (1)

* Erdos-Rényi random graph
— Gy,

* N vertices, (N2-N)/2 possible edges

« Each edge is present with probability of p
independently

« Expected number of edges:

(N? = N)p
s = S

» Expected vertex degree (Poisson
distribution)




Commonly Encountered Graph Models (1)

* Erdos-Rényi random graph




Commonly Encountered Graph
Models (2)

* Generalized random graph
— Given fixed degree sequence {d, i=1,...,N}

— Each degree d.is assigned to one of the N
vertices

— Edge are constructed randomly to satisfy
the degree of each vertex

— Self-loop and duplicate links may occur




Commonly Encountered Graph
Models (3)

* Preferential attachment model

— |ldeas:

« Growing network model

* The addition of edges to the graph is influenced

by the degree distribution at the time the edge is
added

— Implementation

« The graph starts with a small set of m, connected
vertices

» For each added edge, the choice of which vertex
to connect is made randomly with probability
proportional to d,

« E.g. power law distribution of the degree

pp(d) ~d?




Commonly Encountered Graph
Models (3)




Regular Graph vs Random Graph

* Regular graph
— Long characteristic path length
— High degree of clustering

« Random Graph
— Short paths
— Low degree of clustering
« Small world graph
— Short characteristic path length
— High degree of clustering

’ \
+ A
’




Regular Graph vs Random Graph

* Regular graph
— Long characteristic path length
— High degree of clustering

« Random Graph

— Short paths
— Low degree of clustering

« Small world graph
— Short characteristic path length
— High degree of clustering

Small-wordd

Increasing randomness



AS-level Topology
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AS-level Topology

Data
power-law, exponent -1.22

loglO(AS degree)




AS-level Topology

* High variability in degree distribution
— Some ASes are very highly connected

 Different ASes have dramatically different roles in
the network

* Node degree seems to be highly correlated with
AS size

— Generative models of AS graph

* “Rich get richer” model

* Newly added nodes connect to existing nodes in
a way that tends to simultaneously minimize the
physical length of the new connection, as well as
the average number of hops to other nodes

* New ASes appear at an exponentially increasing
rate, and each AS grows exponentially as well




AS Graph Is Small World

* AS graph taken in Jan 2002
containing 12,709 ASes and
27,384 edges
— Average path length is 3.6
— Clustering coefficient is 0.46 (0.0014

in random graph)

— It appears that individual clusters can
contain ASes with similar geographic
location or business interests




AS Relationships

* Four relationships
— Customer-provider
— Peering
« Exchange only non-transit traffic

— Mutual transit

* typically between two administrative
domains such as small ISPs who are
located close to each other

— Mutual backup
 Hierarchical structure?




Router-level Topology
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Router-level Topology

« High variability in degree distribution
— Impossible to obtain a complete Internet topology
— Most nodes have degree less than 5 but some can
have degrees greater than 100
« High degree nodes tend to appear close to the network
edge
» Network cores are more likely to be meshes
— Sampling bias (Mercator and Rocketful)
» Proactive measurement (Passive measurement for AS
graph)
* Nodes and links closest to the sources are explored
much more thoroughly

* Atrtificially increase the proportion of low-degree nodes
in the sampled graph

« Path properties
— Average length around 16, rare paths longer than 30
hops
— Path inflation




Generative Router-level Topology

« Based on network robustness & technology
constrains




Dynamic Aspects of Topology

* Growing Internet
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Dynamic Aspects of Topology

* Difficult to measure the number of
routers

— DNS is decentralized

— Router-level graph changes rapidly
 Difficult measurement on

endsystems

— Intermittent connection
— Network Address Translation (NAT)
— No single centralized host registry




Registered Hosts in DNS

During the 1990s Internet growing exponentially
Slowed down somewhat today
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Registered Hosts in DNS

* During the 1990s Internet growing exponentially
« Slowed down somewhat today
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Stability of Internet
« BGP instability

— Equipment failure, reconfiguration or
misconfiguration, policy change
— Long sequences of BGP updates

» Repeated announcements and withdrawals of
routers

* Loop or increased delay and loss rates

— Although most BGP routes are highly
available, route stability in the interdoman
system has declined over time

— Instable BGP route affects a small fraction
of Internet traffic

— Unavailable duration can be highly variable




Stability of Internet

* Router level instability

— Some routes do exhibit significant
fluctuation
» The trend may be increasing slightly
» Consistent with the behavior AS-level paths

« High variability of route stability

— Majority of routes going days or weeks without
change

« High variability of route unavailable duration

— Causes of instability of the router graph

* Failure of links

— Majority of link failures are concentrated on a small
subset of the links

— Marjority of link failures are short-lived (<10min)
* Router failure




Geographic Location

Interfaces -> IP addresses
Population from CIESIN

Online users from the repository of survey
statistics by Nua, Inc

Population | Interfaces | People Per Online | Online per
(Millions) Interface | (Millions) | Interface
Africa 837 8,379 100,011 4.15 495
South America 341 10,131 33.752 219 2.161
Mexico 154 4,361 35,534 3.42 784
W. Europe 366 95,993 3,817 143 1,489
Japan 136 37,649 3,031 47.1 1,250
Australia 18 18,277 975 10.1 552
USA 282,048 1,061 166 588
World 5,65: 563,521 10,032 513 910

Table 5.1 Variation in People/Interface Density Across Regions [LBCMO03].




Measurement

and Modeling




Measurement and modeling

e Model

— Simplified version of something else

— Classification

« A system model: simplified descriptions of
computer systems

« Data models: simplified descriptions of
measurements

« Data models
— Descriptive data models
— Constructive data models




Descriptive data model

Compact summary of a set of measurements

— E.g. summarize the variation of traffic on a particular
network as “a sinusoid with period 24 hours”

An underlying idealized representation

Contains parameters whose values are based
on the measured data

Drawback

— Can not use all available information

— Hard to answer “why is the data like this?” and “what
will happen if the system changes?”




Constructive data model

Succinct description of a process that gives rise to an
output of interest

— E.g. model network traffic as “the superposition of a set of flows
arriving independently, each consisting of a random number of
packets”

The main purpose is to concisely characterize a dataset,
instead of representing or simulating the real system

Drawback

— Model is hard to generalize --- such models may have many
parameters

— The nature of the output is not obvious without simulation or
analysis

— It is impossible to match the data in every aspect




Data model

« “All models are wrong, but some models are useful”
— Model is approximate
— Model omits details of the data by their very nature
— Modeling introduces the tension between the simplicity and utility
of a model
» Under which model is the observed data more likely?

— Models involves a random process or component

* Three key steps in building a data model:

— Model selection

» Parsimonious: prefer models with fewer parameters over those with
a larger number of parameters

— Parameters estimation
— Validating the model




Why build models

* Provides a compact summary of a set of
measurements

» Exposes properties of measurements that
are important for particular engineering
problems, when parameters are
iInterpretable

* Be a starting point to generate random but
“realistic” data as input in simulation




Probability models

* Why use random models in the Internet?

— Fundamentally, the processes involved are random

* The value is an immense number of particular system
properties that are far too tedious to specify

 Random models and real systems are very
different things

— It is important to distinguish between the properties of
a probabilistic model and the properties of real data.




Probability models

Model Prc::perties

Autocorrelation
Stationarity
Long Tail

E[(Xi — px )(Xj —px;)| #£0, 14 (Sec.3.2.1)
E[Ji“] ----- EXq] v’n, efc. (Sec.3.2.1)

F(z)eM = coasz — oo forall A > 0

Data Properties

System Memory

Stability
High Variability

Tendency for nearby observations to be sumilar

Tendency for empirical statistic to not vary with fume
Highly skewed hustogram which may be well modeled by
a long tailed distribution




