Applications to Network Measurement
Outline

- Web measurement motivation
- Challenges of web measurement
- Web measurement tools
- Current web measurements
 - Web properties
 - Web traffic data gathering and analysis
 - Web performance
 - Web applications
Motivation

- Web is the single most popular Internet application. Measurement can be very useful.

<table>
<thead>
<tr>
<th>Class</th>
<th>Measured property</th>
<th>Why measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-level characterization</td>
<td>Fraction of traffic</td>
<td>Overall importance</td>
</tr>
<tr>
<td></td>
<td>Number of entities</td>
<td>Statistical, sampling</td>
</tr>
<tr>
<td>Location</td>
<td>Presence of Web entities</td>
<td>Performance/Customer location</td>
</tr>
<tr>
<td>Configuration</td>
<td>Software/hardware configuration</td>
<td>Performance/handling load</td>
</tr>
<tr>
<td>User workload models</td>
<td>Access pattern</td>
<td>Modeling Web phenomena</td>
</tr>
<tr>
<td>Traffic Properties</td>
<td>Caching, flash crowds</td>
<td>Performance</td>
</tr>
<tr>
<td>Application demands</td>
<td>Impact on network</td>
<td>Protocol improvement</td>
</tr>
<tr>
<td>Performance</td>
<td>Web components performance</td>
<td>Maintaining site popularity</td>
</tr>
</tbody>
</table>
Challenges to measurement

• **Hidden Data**
 • Much of the traffic is intra-net and inaccessible.
 • Access to remote server data, even old logs is often unavailable.
 • From the server end, information about the clients (e.g. connection bandwidth) is obscured.

• **Hidden layers**
 • Measuring the in flight packets is much harder than measuring the server response time, so the protocol and network layers are harder to measure.

• **Hidden entities**
 • The web involves proxies, HTTP and TCP redirectors
Tools: Sampling and DNS

- Sampling traffic (e.g. netflow) can help determine the fraction of HTTP traffic.
- Examine DNS records. Well known sites are more likely to be looked up often.
Tools: Server logs

- From a web server perspective, you can examine the server logs.
- However, there are some challenges here:
 - Web crawlers
 - Clients hidden behind proxies
Tools: Surveys

- Estimating the number of web servers can be done via surveys.
- Users can download a tool bar and rank sites.
Tools: Locating servers

• We might assume that the servers for a site would be in a fixed geographical location.

• However:
 • Servers can be mirrored in different locations
 • Several businesses can use the same server farm to increase utilization.
Tools: Web crawling
Tools: Web performance

• Approaches:
 • Measuring a particular web site’s latency and availability form a number of client perspectives.
 • Examining different latency components such as DNS, TCP or HTTP differences, and CDNs
 • Global measurements of the web to examine protocol compliance, ensure reduction of outages and look at the dark site of the web.

• A variety of companies offer such services:
 • Keynote, Akamai, etc.
Tools: Role of Network aware clustering

- We can cluster groups of IP addresses using BGP routing table snapshots and longest prefix matching.
- This clustering allows for better analysis of server logs.

Figure 3: The cumulative distribution of clients and requests in a client cluster for the Nagano server log (y axis is in log scale): (a) is the cumulative distribution of number of clients in client clusters; (b) is the cumulative distribution of number of requests issued from within client clusters.

Tools: Handling mobile clients

Figure 2. An Image-Filtering Customizer.

Tools: Handling mobile clients

Tools: Handling mobile clients

- Mobile web use (e.g. PDA’s and cell phones) continues to grow.
- Similar methods:
 - Server logs of mobile content providers
 - Lab experiments (e.g. emulate mobile devices, induce packet loss)
 - Wide-area experiments
State of the Art

- Four main parts of Web Measurement:
 - High level characterization (properties)
 - Traffic gathering and analysis
 - Performance issues (CDNs, client connectivity, compliance)
 - Applications (searching, flash crowds, blogs)
Web properties: high level

- The number of Web sites numbers in the tens of millions. Popular search engines index billions of web pages, and exclude private Intranets.
- There has been a shift from Web, to P2P and now to games in the traffic patterns of the Internet.
- Monthly surveys by sites like Netcraft have shown around a million new sites a month.
- Estimates in the fall of 2004 showed 60 million web sites, the vast majority have little or no traffic compared to the top few hundred.
Web Properties: High level

Total Sites Across All Domains August 1995 - April 2006

Netcraft survey. (news.netcraft.com)
Web Properties: High Level

Market Share for Top Servers Across All Domains August 1995 - April 2006

Top Developers

<table>
<thead>
<tr>
<th>Developer</th>
<th>March 2006</th>
<th>March Percent</th>
<th>April 2006</th>
<th>April Percent</th>
<th>Percent Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apache</td>
<td>53287298</td>
<td>68.70</td>
<td>50588433</td>
<td>62.72</td>
<td>-5.98</td>
</tr>
<tr>
<td>Microsoft</td>
<td>15912427</td>
<td>20.51</td>
<td>20343656</td>
<td>25.22</td>
<td>4.71</td>
</tr>
<tr>
<td>Sun</td>
<td>1881587</td>
<td>2.43</td>
<td>1907503</td>
<td>2.36</td>
<td>-0.07</td>
</tr>
<tr>
<td>Zeus</td>
<td>574607</td>
<td>0.74</td>
<td>563381</td>
<td>0.70</td>
<td>-0.04</td>
</tr>
</tbody>
</table>

Netcraft survey. (news.netcraft.com)
Web properties: Location

- Steadily number of users are in Asian countries such as China and India.
- The fraction of web content from the US and Europe is falling.
Web properties: Configuration

- Popular sites use a variety of techniques to improve server performance:
 - Distribute servers geographically (e.g. 3 world cup servers in the U.S., 1 in France)
 - Use a reverse proxy to cache common requests.

Figure 10-10: Cisco DistributedDirector

http://www.alliancedatacom.com/manufacturers/cisco-systems/content_delivery/distributed_director.asp
Web properties: User workload Models

- We measure user workload by looking at:
 - the duration of HTTP connections
 - request and response sizes,
 - unique number of IP addresses contacting a given Web site
 - number of distinct sites accessed by a client population, number
 - frequency of accesses of individual resources at a given Web site
 - distribution of request methods and response codes
Web properties: Traffic perspective

- Redirector devices at the edge of an ISP network can serve web pages from a cache.
- These traditional caches are still sold.
- Reduction in cache hit rates have prompted companies (e.g. NetScaler, Redline) to integrate caching with other services.
Web Traffic: Software Aid

- In order to study the web traffic, a large number of geographically separate measurements need to be repeatedly done.
- httpperf:
 - Sends HTTP requests and processes responses
 - Simulates workload
 - Gathers statistics
Web Traffic: Software Aid (2)

- **wget**
 - Fetches a large number of pages located at a root node.
 - Can fetch all the pages up to a certain “level” according to links

- **Mercator (a personalized crawler)**
 - Uses a seed page and then does breadth-first search on the links to find pages.
Web Traffic: Software Aid (3)

- Detailed study in 2000 of 33 million requests from over 50,000 wireless and PDA users.
 - Top 1% of notifications responsible for 60% of content.
 - Notification messages had Zipf-like distribution
 - For popularity: 0.5% of URLs were accessed 90% of the time.

- In another study:
 - Threefold increase in average daily traffic per wireless card between Fall 2003 and Winter 2004
Web Traffic: Wireless Users

Number of active cards per week at a Dartmouth.

Web Performance: Intro

- User-perceived latency is a key factor because it affects the popularity of a site.
- In one study that passively gathered HTTP data for one day found that beyond a certain delay, user cancellations of the page increased sharply.
Web Performance: CDN’s

- Content distribution networks (CDNs) combine the workload of several sites into a single provider.
- The CDNs can be mirrored to be located near clients. DNS can be used to redirect clients to mirror sites.
- CDNs were initially thought to provide a large reduction in latency, but this has not always been borne out by experiments.
How CDN Works
Web Performance: CDNs

TABLE IX

PARALLEL-1.0 PERFORMANCE (SEC.) FOR SERVER AT NEW AND FIXED IP ADDRESSES (JAN. 2001)

<table>
<thead>
<tr>
<th>CDN (DNS TTL in sec.)</th>
<th>New Download Time</th>
<th>New Completion Time</th>
<th>Fixed IP Download Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Med.</td>
<td>90%</td>
</tr>
<tr>
<td>Adero (10)</td>
<td>1.15</td>
<td>1.02</td>
<td>1.73</td>
</tr>
<tr>
<td>Akamai (20)</td>
<td>1.06</td>
<td>0.34</td>
<td>3.01</td>
</tr>
<tr>
<td>Clearway (N/A)</td>
<td>1.19</td>
<td>0.84</td>
<td>2.94</td>
</tr>
<tr>
<td>Digisle (20)</td>
<td>1.19</td>
<td>0.47</td>
<td>1.83</td>
</tr>
<tr>
<td>Fasttide (230)</td>
<td>1.58</td>
<td>0.96</td>
<td>3.37</td>
</tr>
<tr>
<td>Speedera (120)</td>
<td>0.57</td>
<td>0.20</td>
<td>1.18</td>
</tr>
</tbody>
</table>

Figure 1: Embedded image request sequence

Table 5: Percentage of client-LDNS associations sharing the same cluster classified according to the types of domains visited by the clients

<table>
<thead>
<tr>
<th>Metrics</th>
<th>Client IPs</th>
<th>HTTP requests</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>educational</td>
<td>commercial</td>
</tr>
<tr>
<td>AS cluster</td>
<td>70%</td>
<td>63%</td>
</tr>
<tr>
<td>Network cluster</td>
<td>28%</td>
<td>16%</td>
</tr>
</tbody>
</table>
Web performance: Client connectivity

- It is not practical to dynamically query a client’s connectivity type, however such data can be stored on a server.

- We can measure the inter-arrival time of requests. Clients with higher bandwidth connections are more likely to request pages sooner.

- If we assume that client connectivity will be stationary (as one experiment showed), then we can adapt the server response based on the client connectivity.
Web performance: Client connectivity

Server Action conclusions:

- Compression - consistently good results for poorer but not well-connected clients.
- Reducing the quality of objects only yielded benefits for a modem client.
- Bundling was effective when there was good connectivity or poor connectivity with large latency.
- Persistent connections with serialized requests did not show significant improvement.
- Pipelining was only significant for client with high throughput or RTT.

Figure 1: System Architecture

Web performance: protocol compliance

- A 16-month study used the httpperf tool to test for HTTP protocol compliance.
- The popular Apache server was most compliant, then Microsoft’s IIS.
Web Applications:
Peer-to-Peer Networks
P2P: Overview

Network built and sustained by resources of each participant
Peers act as both client and server
Centralized/decentralized models
Issues: volatility, scalability, legality
P2P : Motivation

P2P networks generate more traffic than any other internet application
2/3 of all bandwidth on some backbones
P2P: Motivation

Wide variety of protocols and client implementations; heterogeneous nodes

Encrypted protocols, hidden layers

Difficult to characterize; node, path instability

Indexing, searching

Legal ambiguity, international law
P2P: Network Properties

- Proportion of total internet traffic; growth patterns
- Protocol split; content trends
- Location of entities; grouping/performance
- Access methods; search efficiency
- Response latency; performance
- Freeriding/leeching; network health
- Node availability; performance
P2P : Network Properties

CacheLogic P2P file format analysis (2005)
Streamsight used for Layer-7 Deep Packet Inspection
P2P: Protocols

Napster
Pseudo-P2P, centralized index
Tailored for MP3 data
Brought P2P into mainstream, set legal precedence
P2P: Protocols

Gnutella (Bearshare, Limewire)
- De-centralized algorithm
- Distributed searching; peers forward queries
- UDP queries, TCP transfers

Issues: Scalability, indexing
Kademlia (Overnet, eDonkey)

- De-centralized algorithm
- Distributed Hash Table for node communication
- Uses XOR of node keys as distance metric
- Improves search performance, reduces broadcast traffic
P2P: Protocols

Fasttrack (Kazaa)
- Uses supernodes to improve scalability, establish hierarchy
- Uptime, bandwidth
- Closed-source

Uses HTTP to carry out download
- Encrypted protocol; queuing, QoS
P2P: Protocols

Bittorrent
 Simultaneous upload/download
 Decentralized network, external traffic coordination; trackers
 DHT
 Web-based indexes, search

Eliminates choke points
Encourages altruism at protocol level
P2P : Protocols

Bittorrent - file propagation
P2P : Protocol Trends

P2P: Protocol Trends

Worldwide market share of major P2P technologies (2005)
P2P : Challenges

Lack of peer availability
Unknown path, URL
Measuring latency
Encrypted/hidden protocol
ISP/middleware blocks
P2P : Challenges

Hidden Layers
Query diameter
Query translation/parsing; response could be subset of query
Node selection
P2P : Measurement Tools

Characterization - Active

P2P crawlers

Map network topology
Identify vulnerable nodes
Joins network, establish connections with nodes, record all available network properties (routing, query forwarding, node info)
P2P : Visualizing Gnutella
P2P : Visualizing Gnutella

Minitasking - Visual Gnutella client

Legend:
- Bubble size ~ = Node library size (# of MB)
- Transparency ~ = Node distance (# of hops)

Displays query movement/propagation
P2P : Measurement Tools

Passive measurement

Router-level information; examine netflow records
Locate “heavy-hitters”; Find distribution of cumulative requests and responses for each IP

Graph-based examination; each node has a degree (# of neighbor nodes) and a weight (volume of data exchange between nodes)
P2P : Architecture Examination

Difficulty: Heterogeneous nodes, scalability
Node hierarchy
 nodes with the highest uptime and bandwidth
 becoming ‘supernodes’
 cache valuable routing information
Capacity awareness
 Maintain state information; routing
 cache, edge latency, etc…
Towards a more robust search algorithm…
P2P : Network-specific tools

Decoy prevention
checksum clearinghouse

Freeriding/leeching
protocol-level solutions to P2P fairness
High-level characterization

Experiment #1: Napster, Gnutella, Spring 2001
Java-based crawlers, 4-8 day data collection window
Distribution of bottleneck bandwidths, degree of cooperation, freeriding phenomenon

Findings:
- Extremely heterogeneous; degree of sharing
- Top 7% of nodes offer more files than remaining 93% combined
High-level characterization

Experiment #1: Napster, Gnutella, Spring 2001

Napster measurements:
- Latency and Lifetime; send TCP SYN packets to nodes (RST = inactive)
- Bandwidth approximation; measure peer’s bottleneck bandwidth

Findings:
- 30% of Napster clients advertise false bandwidth
Alternative Architectures

Experiment #2: Gnutella, Summer 2001
Used modified client to join network in multiple locations
Logged all routing messages

Proposed a network-aware cluster of clients that are topologically closer
Clusters select delegates, act as directory server
Found nearly half of queries across clusters are repeated and are candidates for caching
Simulation showed much higher fraction of successful queries in a cluster-based structure
Number of queries grow linearly, unlike Gnutella’s flooding
Experiment #3: ISP/Router data
Used netflow records, 3 weeks
Filtered for specific ports
Found that signaling traffic is negligible next to data flow; 1% of IP addresses contributed 25% of signaling traffic.
P2P : Peer Selection

Challenge: Quickly locate better connected peers

Lightweight, active probes;
 ping (RTT)
 nettimer (bottleneck bandwidth)
 Trace + live measurement
P2P : Other uses

P2P-based Web search engine
Flash crowd; streaming video, combine with multicast tree
P2P support for networked games
P2P : State of the Art

eDonkey
Tfcpdump-based study, August 2003
3.5 million TCP connections, 2.5 million hosts (12 days)
300 GB transfer, averaged 2.5 MB download stream, 17 Kb for signalling traffic

Bittorrent
Tracker log study, several months, 2003
180,000 clients, 2 GB Linux distro
Flash crowd simulation, 5 days

Longer client duration; 6 hours on average
Nodes prioritize least-replicated chunks
Average download rate: 500 kb/s
Web Applications
Searching

- Many popular search engines, key details on crawlers not widely published
- Research crawlers only gather fraction of Web
• 1999 Web study
 - Examined 200 million pages/1.5 billion links
 - Found that not all pages could be reached starting anywhere
 - Central core of web
 • Two parts either pointing to it or pointed to by it
 • Last part of web completely disconnected from core
- in/out degree distribution found to follow power law
- Web pages with large in-degree
 • Considered more important
 • Higher rank for search engines
- 90% web pages found reachable from each other
- Probability of reaching a random page from another is 25%
- Removal of hub will not always remove connectedness
- Method of crawling can distort results
 - Dynamic pages not included in study
 - Avoidance of loops requires parametric constraint on depth of crawl in site
- False links used to distort rank
- Crawler can be gamed
Frequency of page changes

- 1999 study showed wide-variance among content types
 - Images change infrequently
 - Periodicity in text changes
 - 15% changed between each access
 - Later studies showed frequency of changes increased access rates

- Crawlers used information to decide frequency of revisiting pages
Mercator 2002 Study

• 150 Million pages over 10 weeks crawled repeatedly
 - Half the pages successfully fetched in all crawls
 - Only .1% of documents saved
 - “Shingling” used to eliminate identical pages
 • Works for English language, no evidence for Asian languages
- Over half of pages from .com domain
- .edu pages half the size of avg. page
- .edu pages remain accessible longer
- 1/3 pages changed during crawls
- Longer documents changed more often than shorter ones
Impact of search engines

- Popular web pages get more popular through search engines
 - Rank increases higher
- Less popular pages drop further in ranking
- New high quality content has difficulty becoming visible
Dead links

- Study showed over 50% of pages dead links in some cases
- Crawlers must avoid dead links to complete crawls faster
Flash crowds vs. Attacks

- The avg # of requests per client remain the same
 - Proxies or spiders can high significantly higher rates
- Number of BGP clusters in flash event did not increase
 - Most clients belong to previous clusters

- Attacks (Code-Red worm)
 - Increase in requests per client
 - Client clusters varied from previous clusters
 - Only 0.5% to 15% clusters seen before
Blogs

- “Weblogs”
- Personal journal kept online
- Rapid growth in popularity
- Popular blogs provide warning for flash crowds
 - Links on sites such as slashdot.org indicate rising popularity

- Blogs typically have large in-degree

- Blogs must be updated frequently to maintain popularity
Characterization of Blogistan

- Early studies showed 1-4 million blogs
 - Found by crawling collection of 'seed' pages
 - New URLs found to have fewer references than older URLs
 - 12,000 unique IP addresses found
 - ~80% of blogs run on Apache
 - Avg. number of bytes added in changes low
• Rate of change for blogs different from traditional web pages

• Nature and count of links different

• Strong interaction found between blogs
 - Topic will cause rise in inter-references
 - Community built around topic, dies with the topic
Internet Measurement of Applications: Games
Why?

- One of the fastest growing areas of the Internet
- Initially games with low real-time requirements (card games, etc)
- More recently non-sequential gaming has become popular
Properties

- Wide-variety of networked games
 - First Person Shooters (FPS)
 - Most popular type of online gaming
 - High real time requirements
 - Real Time Strategy (RTS)
 - Massive Multiplayer Online Role Playing Games (MMORPGs)
Motivation

• On-line games are big business
 - 60% of all Americans play video games (IDSA report, 2003)
 - MMO games
 • 4,000,000 World of Warcraft subscribers paying monthly fees
 - FPS games
 • 100,000 Counter-strike players at any given time
 - RTS games
 • >8 million Warcraft game copies sold
 • 200,000 Warcraft 3 games played online / day

• Hosting games very costly (30% of revenue)
Properties (cont.)

- Variety of platforms
 - PC
 - Playstation
 - Xbox
 - Nintendo
Growth in MMORPG subscriptions

Total MMOG Active Subscriptions (Excluding Lineage, Lineage II, and Ragnarok Online)

R² = 0.9885
Measurement properties

<table>
<thead>
<tr>
<th>Measurement Property</th>
<th>Why Measured</th>
<th>Where Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraction of Internet Traffic</td>
<td>Growth Patterns, popularity</td>
<td>Across Internet</td>
</tr>
<tr>
<td>Game genre</td>
<td>Difference in architecture</td>
<td>Across Internet</td>
</tr>
<tr>
<td>Scalability</td>
<td>Provisioning, performance</td>
<td>Varies with game genre</td>
</tr>
<tr>
<td>Real-time requirements</td>
<td>Game viability/latency limitations</td>
<td>Game server</td>
</tr>
<tr>
<td>Manner of access</td>
<td>Mobility constraints</td>
<td>Client and server locations</td>
</tr>
<tr>
<td>Session duration</td>
<td>State maintenance</td>
<td>Server</td>
</tr>
</tbody>
</table>

Table 7.6
Server responsibilities

- Authentication
- Updating positions
- Maintaining scores/information about players and teams
- Managing forming of teams
Architecture

- Three types
 - Centralized
 - Decentralized
 - Hybrid of the above two
Centralized architecture

- All interaction requests sent through a central server
- All clients not required to know movements of all other clients at any given instant
- Server decides what each client needs to know
• Server requirements:
 • High processing capability
 • High reliability
 • Low latency/packet loss between clients and server
• Used to prevent cheating amongst clients
• Most commonly used architecture today
Decentralized architecture

- Clients interact with each other directly

- Proposed decentralized architectures:
 - MiMaze
 - Mercury
 - P2P-Support
 - Zoned Federations
• Partial decentralization
 • partitioning players and associated responsibility into regions

• Complete decentralization
 • Any peer in P2P network can carry out authentication requirements to eliminate cheating
Hybrid architecture

- One example: Mirrored server
 - Each game has several distributed servers
 - Clients only communicate with one of these
Scalability

- Number of users that can simultaneously participate in a networked game

- Typical numbers
 - <10 for RTS
 - 10-30 FPS
 - Thousands in MMOGs

- Increased users cause increased delays
Real-time requirements

- Often the limiting factor in viability of a game
- Varying requirements for latency and packet loss
- Even within a single networked game, different objects may require different real-time standards
 - e.g., high accuracy sniper rifle vs. machine gun
Wired/Mobile environment

- Physical location of client can be used
 - Require accurate client location abilities
 - Active Bat, Cricket (indoor location systems)
 - *Human Pacman*
- Most games require wired environment for lower latency/packet loss
Single session vs. Multi-session

- **Single session**
 - User connects, plays, then exits game
 - more common among older games

- **Multi-session gaming**
 - User logs in, plays, stalls session until next game
 - Increases necessity for network performance in certain cases
 - Character value can drop with network performance (for example, Diablo II 'hardcore' mode)
Challenges

- High interactivity, low-tolerance compared to Web/DNS
- Harder to simulate user traffic via programs
Hidden data

- Skill levels of users
 - impacts importance of latency/packet loss/etc.
 - No uniform way to measure impact of network problems

- Information about game server rarely public, difficult to reverse engineer

- Downloading of new content can effect performance
Games typically involve authentication, setting up parameters, playing, and quitting

- One or more steps may be avoided through suspension of state at the end of a session

- Authentication generally done via TCP handshake

- Game actions usually sent over UDP or TCP

- Game updates sent over TCP

- Less complex than short session applications (e.g., Web)
• Quality of game effected by
 • Network
 • Client
 • Server
 • input/output devices
 - Delays cause different users to react differently
 - Delays on server end factored into measuring delays from player's view
• Team games add more complexity to measurements
• Time of game effects impact of adverse network conditions
• Location of player changes effect of network problems
Measurement tools

- Ping used to measure latency, latency radius (number of active players within latency threshold)

- Geographic mapping tools used to locate game servers

- RTT measured at time of special events such as a player dying
• Measured passively at server
 • Average bandwidth
 • packet interarrival time
 • packet count and size
 • number of attempted/successful connections
 • unique clients

• Non-traditional measurement tools tailored to individual games
 – Servers chosen based on network latency, number of players
 – GameSpy tool used to report number of players associated with game server
State of the Art

- Architecture
- Traffic characterization
- Synthesizing game traffic
- Mobile environment
MiMaze

- Decentralized server research
 - IP Multicast used for player moves
 - Latency limited to 100ms
 - Cheating prevented popularity of architecture
Improvements for decentralization

- Proxies to offset work on part of central server

- Peer-to-Peer systems
 - Centralized arbiter only required during state inconsistencies
 - Account information stored centrally
 - Scales to number of players
 - Players in a region affects performance
 - Multicast used for position updates

- Distributed Hash Tables used to remove application layer multicast
Characterization

- Quake World and Unreal Tournament
 - Both use UDP and listen on ports 27500 and 7777
 - Data gathered passively using DAG cards (packet capturing hardware)
 - Client packets found more numerous but smaller than server packets in Quake
- **CounterStrike**

 - Half a billion packets captured in 1 week from ~6000 players

 - Showed that updates must be predictable to compensate lag

 - Client/server packets maintained properties from Quake study

 - Regular traffic bursts found

 - Active clients sent relatively uniform load
• Player behaviour studied across a few thousand Half-Life and Quake servers

 - Time-of-day effects game traffic
 - Players joined games with higher numbers of players
 - Duration of player's session independent of number of players, relatively constant
• GameSpy used to study Counter-Strike

 • Contrary to most applications session times followed a Weibull distribution

 • Most players played for short durations

 • Study showed difficulty of generalizing network games
PDF of mshmro player session times

Weibull $\beta=0.5, \eta=20, \gamma=0$
Quake 3 study

- Used server in California and London
 - Intentionally masked London server as California location
 - Found players chose servers closer to them geographically
 - Bottleneck last mile between user and ISP
Unreal Tournament 2003 study

- Emulating packet loss and latency according to live server data
- Found no significant difference in ability to move due to packet loss (prediction compensation)
- Even 100ms latency caused drop in perceived performance
Synthesizing game traffic

- Each game must be examined and synthesized separately
- Representative set of players must be found and data captured over a period of time
 - Skill of players will effect data
- Typical information gathered
 - number of packets
 - packet length
 - interarrival time
 - server response time
Mobile environments

- Few measurements so far
- Study on GAV game ported to PDA found that wireless environment could not support real time requirements of GAV
Traffic Characterization

- Fraction of Internet, individual popularity of games
- Sample traffic flowing to and from port numbers common to games
• Individual game characterization
 • Size, inter-arrival time of packets
 • Behavioural differences between clients and server
 • Large amount of games take place over proprietary networks – surveys used in these cases.
One possible solution: allow game server to handle authentication/initiation while wireless terminals associated handle low-latency requirement operations
• Algorithms used by server to deal with traffic difficult to reverse engineer

• Arrival rate of broadcast packets depends on server/user-generated traffic

• Fortunately, usually no intermediaries between client and server
Negative network effects

- Latency
 - Delay in accessing game server
 - Load on game server
 - Load on network