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Abstract

Firewall policy management is challenging and
error-prone. While ample research has led to tools for
policy specification, correctness analysis, and optimiza-
tion, few researchers have paid attention to firewall
policy deployment: the process where a management
tool edits a firewall’s configuration to make it run the
policies specified in the tool. In this paper, we pro-
vide the first formal definition and theoretical analysis
of safety in firewall policy deployment. We show that
naive deployment approaches can easily create a tem-
porary security hole by permitting illegal traffic, or in-
terrupt service by rejecting legal traffic during the de-
ployment. We define safe and most-efficient deploy-
ments, and introduce the shuffling theorem as a formal
basis for constructing deployment algorithms and prov-
ing their safety. We present efficient algorithms for
constructing most-efficient deployments in popular pol-
icy editing languages. We show that in certain widely-
installed policy editing languages, a safe deployment is
not always possible. We also show how to leverage
existing diff algorithms to guarantee a safe, most-
efficient, and monotonic deployment in other editing
languages.

1 Introduction

The entangled cyberspace of the Internet and in-
tranets has never been a safe place, but it would have
been much worse without firewalls. A firewall, also
called a border protection device, sits on the border of
networks, controls traffic between different trust zones,
and serves as the first line of defense against unautho-
rized or malicious accesses.

The process of configuring firewall policies is diffi-
cult and error prone. Studies have shown that it is
likely that the majority of real world firewall policies

have configuration errors [36]. The size and complex-
ity of network topologies are still increasing, and so
are the size and complexity of firewall policies. Policies
containing 10K rules are not uncommon in commer-
cially deployed firewalls, and we have seen a firewall
configured with 50K rules. Manually configuring such
policies has clearly become mission impossible even for
guru network administrators.

To address the policy specification problem, policy
provisioning and management have received a great
deal of attention [16, 26, 21], as have conflict detec-
tion [13, 20, 15, 14, 38] and optimization [31, 22, 11].
In parallel with this academic research, firewall man-
agement tools such as Cisco Security Manager [4], Ju-
niper Networks’ Netscreen-Security Manager [8], and
Check Point SmartCenter [1] have gained popularity
with network administrators. Management tools pro-
vide intuitive graphical user interfaces (GUIs) to ease
policy specification, and give convenient utilities for er-
ror detection and rule optimization. When a network
administrator is satisfied with the policy configured
through the GUI, he instructs the management tool
to deploy it. The management tool then translates the
needed policy changes into a format recognized by the
firewall, typically in the form of lines of commands in
text, and sends them to the firewall so that the new
policy becomes the running policy.

A management tool aims to achieve four goals when
deploying firewall policies: correctness, confidentiality,
safety, and speed.

Correctness: A deployment is correct if the firewall
device’s running policy is replaced by the target
policy configured through the GUI. Correctness is
the most important goal. Some management tools
take additional steps to verify the correctness of a
completed deployment, e.g., by comparing check-
sums of the running policy and the target policy.

Confidentiality: Very often a management tool is a



standalone application that uses certain transport
protocols to communicate with the firewall de-
vice on a different network, including exchanging
credentials for authentication and sending policy
changes. Given the critical role that firewalls play,
the communication between a management tool
and its managed firewalls needs to be confidential:
successful eavesdropping on any sensitive informa-
tion in a deployment session gives an attacker the
potential to seriously compromise the network’s
security. Deployment confidentiality can be read-
ily addressed by existing cryptographic communi-
cation protocols such as SSH [37] and SSL [19].

Safety: A deployment is safe if it does not cause the
firewall to drop legal traffic or permit illegal traffic
during deployment. Though common sense tells
administrators to focus on the correctness of fire-
wall policies, an unsophisticated deployment ap-
proach can easily cause traffic interruption or a
temporary security hole during deployment of even
the most perfect policy. We give examples of un-
safe deployments in section 3.

Speed: Slow deployments are unpleasant for users and
can also raise security issues: very often a firewall
policy change needs to be deployed immediately to
close a hole for illegal access or to open access for
highly urgent traffic. If a time-critical deployment
is unnecessarily slow, it partly defeats the purpose
of the deployment and jeopardizes the network’s
security.

In this paper, we make several contributions to the cor-
rectness, safety, and efficiency of firewall policy deploy-
ments. To the best of our knowledge, we provide the
first formal definition and theoretical analysis of safety
in policy deployment. In particular, the shuffling theo-
rem we propose can be used as a basis for constructing
deployment algorithms and proving their safety (sec-
tion 4). We categorize firewall policy editing languages
into type I and type II (section 3), give linear algo-
rithms to calculate most-efficient type I deployments
and prove that not all policies have a safe type I deploy-
ment (section 5). We show that the most-efficient type
II deployment problem can be solved using existing al-
gorithms, provide an efficient algorithm to sanitize any
type II deployment, and argue that every policy has a
type II deployment that is both safe and most-efficient
(section 6). We present performance results from our
sanitization algorithm implementation (section 7), dis-
cuss our approaches and give recommendations for fire-
wall design (section 8), comment on related work (sec-
tion 9), and finally give conclusions(section 10).

2 Firewall Background

Network administrators typically view the network
as being divided into zones, with the hosts in the same
zone being trusted to similar degrees. Common zones
include the Internet, the demilitarized zone (DMZ),
and the intranet, with increasing levels of trust. A typ-
ical firewall policy permits traffic going from hosts with
higher trust levels to hosts of lower trust levels (e.g.,
from an intranet host to an Internet host), and denies
traffic going in the other direction. Yet this is not al-
ways the case. Common public services such as web
sites are typically put on the DMZ and made available
to hosts from the Internet. Real world firewall policies
are always ad hoc. For example, it is very typical for
a firewall policy to deny a certain service to a list of
specific hosts which are considered malicious.

A firewall controls traffic by examining the con-
tents of network packets, which is why a firewall is
also called a packet filtering device. Five packet fields
are most commonly used for traffic filtering: protocol
type, source IP address, source port, destination IP
address, and destination port. We encode these as a
5-tuple: 〈prot, src ip, src port, dst ip, dst port〉.1 In
every packet, each of the five fields assumes a specific
value, such as 〈TCP, 192.168.5.7, 1352, 10.1.1.1, 23〉.
We call a 5-tuple with every field assigned a specific,
indivisible value a flow. Multiple packets can have the
same 5-tuple and hence belong to the same flow. Fields
other than those in the 5-tuple, e.g., IP TOS (Type
of Service) and TTL (Time to Live) values, are occa-
sionally used in some firewalls, which will increase the
dimensionality of the tuples in our flow definition, but
does not affect the discussion in this paper.

A firewall rule r specifies an action, typically accept
or deny, on a filtering set, which is a set of flows. If a
packet p belongs to a flow in r’s filtering set, we say that
p matches r. A filtering set is usually specified using
the same 5-tuple format as a flow, except that each field
can assume either a specific value or a range of values;
e.g., if the src ip field is a network 192.168.1.0/24,
any host address on this network matches this field. A
firewall policy is an ordered list of rules with a first-
match semantics: when a new packet p comes in, the
firewall checks p against its rules one by one, starting
from the first rule and stopping when it reaches the
first rule r that matches p. We say that p hits r in this
case, and p is either permitted or denied as specified

1Packets using a protocol other than TCP/UDP may have the
src port and dst port fields undefined or redefined, though these
fields will still be encoded as integer values; e.g., the source and
destination ports can be used to accommodate ICMP message
types when the protocol is ICMP. This recoding will not affect
our discussion.



a. permit TCP 192.168.1.1 12.3.4.0/24 80

b. deny IP 10.1.1.0/24 any

c. permit UDP 172.20.0.0/16 any 123

d. deny IP 10.1.2.0/24 76.54.32.1

e. permit IP 10.0.0.0/8 any

Policy α

a. permit TCP 192.168.1.1 12.3.4.0/24 80

f . deny IP 10.1.1.1 any

c. permit UDP 172.20.0.0/16 any 123

g. permit IP 10.0.0.0/16 any

h. permit IP 10.1.0.0/16 any

Policy β

Figure 1. Two Firewall Policies

by the action of r.2

If no matching rules are found, then a hidden, de-
fault match-all rule is applied with a default action. In
this paper, we use closed firewall policies, meaning that
the default match-all rule at the end of every policy is
a deny-all rule that denies every packet. Our results in
this paper apply to policies with a default permit-all
rule as well.

As with most firewalls, we do not allow the same
rule to appear more than once within a policy, since
only the first occurrence is meaningful and the rest
are always shadowed and never used by the firewall to
accept or deny packets.

Figure 1 gives two sample firewall policies based on
the PIX firewall language [3]. In this language, any
means all hosts and the absence of a port value means
all ports; e.g., rule a permits all TCP flows going from
any port of host 192.168.1.1 to the port 80 of all
hosts on the 12.3.4.0/24 network. The symbols such
as a are for illustration purposes only. Although we
use the PIX syntax in this example and the real-world
policy deployment example in section 3, our discussion
in this paper is independent of any specific policy syn-
tax, as long as a policy consists of an ordered list of
rules with first-match semantics and each rule specifies
which packets to accept and denies the rest.

3 Policy Deployment

Similar to the user interface evolution of operating
systems, early firewalls supported only a shell-like com-
mand line interface (CLI). As shown in Figure 1, a
firewall rule can be typed in as a command line, and
firewall policies can be viewed as text composed of com-
mand lines. Given the CLI tradition of firewalls and
list-based policy structure, even today many firewalls
still provide only CLI oriented interfaces for manage-
ment tools, although encoded in a more modern format

2Other semantics are possible, such as the last-match seman-
tics used by BSD Packet Filter. First-match semantics, however,
is by far the most popular in firewall policies. Deployment prob-
lems in last-match semantics can be addressed in the same style
as we propose in this paper, although the details will necessarily
differ.

such as XML. From a firewall’s perspective, a manage-
ment tool is not fundamentally different from a human
user.

3.1 Policy Editing Languages

A management tool deploys a user’s target policy by
sending editing commands to transform the firewall’s
current policy. Modern firewalls typically use a sub-
set of the following editing commands, append (app r),
delete (del r), numbered delete (del i), insert (ins i
r), and move (mov i j), where r stands for a rule, and
i and j are position numbers. Not all firewalls sup-
port all these commands. The set of supported editing
commands defines a firewall’s policy editing language.
While there are other variations on the market, we de-
fine type I and type II policy editing languages, which
we consider the most representative. If a deployment
uses only type I (resp. type II) commands, we call it a
type I (resp. II) deployment.

Type I Editing Type I editing supports two editing
commands, app and del. Command “app r” appends
a rule r to the end of the running policy R, unless r is
already in R, in which case the command fails. “del
r” deletes r from R, if it is present. Type I editing is
inefficient as it does not allow random editing of pol-
icy lines. The combination of app and del, however, is
complete in that it can transform any initial policy into
any target policy. A brute force approach is to delete
all rules in the initial policy, then append one by one
all the rules in the target policy. Type I editing started
in the past when firewall policies were small and easy
to edit, yet manages to survive as the editing language
in the industry’s relatively recent offerings like FWSM
2.x [2] and JUNOSe 7.x [7], which still have many in-
stallations.

Type II Editing To overcome the inefficiency of
type I editing, newer firewalls have introduced type
II editing by adding the ins, del and mov commands,
which support rule position numbers. “ins i r” in-
serts r into the running policy R so that it becomes
the ith rule, provided that r is not already in R prior



to the insertion. “del i” deletes the ith rule. “mov i
j” moves the ith rule to a new position so that it be-
comes the jth rule. Type II editing is both complete
and efficient. Examples of Type II editing firewalls
include SunScreen 3.1 Lite [18] and Enterasys Matrix
X [5].

The effect of “mov i j” can be achieved by “del i”
followed by “ins j r”. This, however, does not mean
mov is just syntactic sugar, as there is still a difference
between the two approaches. The first deployment goes
through only two states, with r at either position i or
j. The second deployment has a third state between
del and ins, where r is absent. There are firewalls
that support ins and del, but not mov, which we will
discuss in section 8.

3.2 Deployment Efficiency

As network communication cost and CLI processing
time are directly proportional to the number of edit-
ing commands sent by a management tool, an effective
way to speed up the deployment is to minimize the
number of editing commands. We say a deployment
is most-efficient for policy I and T iff it consists of
the smallest possible number of editing commands in
a given editing language to transform I into T . We
consider only the total number of commands because
the variation in deployment time for different types of
commands is typically negligible, as most deployment
time is spent in network transit and other fixed per
command maintenance costs. Later we will show that
a most-efficient type I (resp. type II) deployment has
the smallest number of apps (resp. ins) and the small-
est number of dels among all type I (resp. type II)
deployments, if we count one mov as one del plus one
ins in type II editing. Consequently, a most-efficient
deployment can be expected to take close to the mini-
mum possible deployment time.

In this paper, we require the running policy after de-
ployment to be identical to the target policy. If the tar-
get policy is redundant and can be reduced to a smaller
size while still semantically equivalent, a management
tool can always apply optimization techniques prior to
deployment, so that the target policy submitted to the
deployment task is already “optimal”. Policy optimiza-
tion usually aims for redundancy removal. In contrast,
theoretically it is possible to “optimize” the target pol-
icy just to accelerate the deployment, e.g., rewrite the
target policy to make it syntactically closer to the ini-
tial policy. While we are not aware of any management
tool that practices this kind of optimization, it can be
applied prior to policy deployment and is orthogonal
to our discussion of most-efficient deployment.

3.3 Unsafe Deployments

Two types of traffic safety anomalies can occur dur-
ing an unsafe deployment: traffic interruption caused
by dropping legal traffic and security holes caused by
temporarily permitting illegal traffic. Suppose we need
to deploy policy β in Figure 1 to a firewall running
policy R = α. Consider IP packet p1 with source IP
address 10.1.1.1 and p2 with 10.1.2.3. We consider
p1 illegal because both b in α and f in β deny it, and
p2 legal because both e in α and h in β accept it. We
do not need to edit the shared rules a and c in R, but
we need to delete b, d, and e, and insert f , g, and
h at the right positions. If we delete b first, R be-
comes [a, b, c, d], which permits the illegal packet p1 as
it matches d. If we delete d first, R becomes [a, b, c],
which denies the legal packet p2 as it matches none of
the rules and gets denied by default.

In the above example, the deployment can finish
quickly and the two safety anomalies will disappear.
But depending on the size of the deployment load,
the network bandwidth, and the firewall’s processing
power, real-world deployments can take anywhere from
a couple of seconds to tens of minutes, which may pro-
vide sufficient opportunity for safety anomalies to be
exploited to pose serious threats. In 2003, the fast-
spreading Sapphire/Slammer worm [28] had a peak
scanning rate of over 55 million hosts per second, and
managed to infect 90% of all vulnerable hosts across
the Internet within 10 minutes. Similarly, malicious
parties can have precompiled attacks that constantly
probe for vulnerabilities caused by unsafe deployments.
They can also use traffic analysis and other techniques
to detect and predict deployment schedules, to make
such attacks more effective.

4 Safe Deployment Formalization

Definition 1 (Denial-safe). Policy A is denial-safe
w.r.t. policies B and C iff every packet that A denies
is also denied by B or C. A deployment is denial-safe
iff at every moment during the deployment, the run-
ning policy is denial-safe w.r.t. the initial policy and
the target policy.

We say that the running policy falsely denies a
packet during a deployment if this packet is accepted by
both the initial and target policies. Denial-safe deploy-
ments do not have false denials. On the other hand,
a deployment that is not denial-safe can falsely deny
legal packets and cause traffic interruption.

Traffic interruption is intolerable in mission-critical
networks and should be avoided whenever possible. For
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example, the network may be carrying real-time con-
trol and data for physical systems such as medical mon-
itoring devices or power generators, where an interrup-
tion of service can have life-threatening implications.
In a less critical scenario, if an ISP’s firewall policy
deployment temporarily disconnects all through traffic
for tens of seconds, it inconveniences its customers and
may cause them financial loss. As a special case, if the
firewall management tool that initiates the deployment
happens to reside outside the firewall, the false denials
can prevent the deployment from finishing, which ef-
fectively turns the deployment into a denial-of-service
attack.

Definition 2 (Permission-safe). Policy A is
permission-safe w.r.t. policies B and C iff every
packet that A permits is also permitted by B or
C. A deployment is permission-safe iff at every
moment during the deployment, the running policy is
permission-safe w.r.t. the initial policy and the target
policy.

We say that the running policy falsely permits a
packet during a deployment if this packet is per-
mitted by neither the initial nor the target policies.
Permission-safe deployments do not have false permis-
sions. A deployment that is not permission-safe can
falsely permit illegal packets and introduce security
holes.

Definition 3 (Safe Deployment). Policy A is safe
w.r.t policies B and C iff it is both denial-safe and
permission-safe w.r.t. B and C. A deployment is safe
iff it is both denial-safe and permission-safe.

A safe deployment neither falsely denies nor falsely
permits a packet during the deployment. A firewall
policy x can be categorized by P(x), the set of packets
that it permits, or by D(x), the set of packets that it
denies. Let predicate Safe(x, I, T ) denote that x is
safe w.r.t. the initial policy I and target policy T of a
deployment. We have the following tautologies, which
directly lead to Proposition 1.

Safe(x, I, T ) ⇐⇒ (P(I) ∩ P(T )) ⊆ P(x) ⊆ (P(I) ∪ P(T ))

Safe(x, I, T ) ⇐⇒ (D(I) ∩ D(T )) ⊆ D(x) ⊆ (D(I) ∪ D(T ))

Proposition 1. During a safe deployment, any packet
that is permitted by both the initial and target policies
is always permitted; any packet that is denied by both
the initial and target policies is always denied.

Definition 4 (Policy Shuffle). Let A and B be two
non-empty firewall policies. A shuffle of A and B is
a policy S generated by the following procedure: (1)
Initially S is empty; let A′ and B′ be a copy of A and
B respectively. (2) Let r be the first rule of A′ or B′;
remove r from its policy. Unless r is already in S,
append r to the end of S. (3) Repeat step 2 until both
A′ and B′ are empty.

If a rule r of shuffle S comes from A (respectively
B), then every rule before r in A (resp. B) also shows
up before r in S. If A and B do not have any rules in
common, the shuffling procedure is the same as shuf-
fling two decks of cards, with each card representing
a unique rule. Figure 2 shows two possible shuffles of
two policies.

Let a prefix of policy P be a policy obtained by re-
moving zero or more rules from P ’s end.

Theorem 1 (Safe Shuffling Theorem). Let A and
B be two firewall policies. Every shuffle of A and any
prefix of B is safe w.r.t. A and B.

Proof. We first prove that every such shuffle S is
permission-safe. Let p be a packet that hits a per-
mission rule r in S. Examining the shuffling procedure
that generates S, we know r comes from either A or B.
If r comes from A, then we know that every rule before
r in A also shows up before r in S. Since p does not
match any rule before r in S, p does not match any rule
before r in A either. This means p is guaranteed to hit
r in A and will be permitted, i.e., S is permission-safe
w.r.t. A and B.

To prove S is denial-safe, we follow the same reason-
ing as before, except when p matches none of the rules
of S and will be denied by the default deny-all rule. In
that case, p matches none of the rules of A either and
will be denied by A. Thus S is also denial-safe w.r.t.
A and B.

Let I and T be a deployment’s initial and target
policies, respectively. A deployment algorithm A takes



I and T as input, and generates a sequence of edit-
ing commands to be sent to the firewall to transform
I into T . From the shuffling theorem, we have that
every shuffle of I and any prefix of T is safe w.r.t. I
and T , and so is every shuffle of T and any prefix of
I. This constitutes a theoretical basis for constructing
algorithms for safe deployment.

A firewall has a new running policy every time
an editing command is applied. Thus a deployment
can be viewed as a sequence of running policies I =
R0, R1, . . . , Rn−1, Rn = T , with Ri+1 derived by ap-
plying an editing command to Ri. For a packet p and
two consecutive policies Ri and Ri+1, if one policy per-
mits p and the other denies p, we say p is flipped during
the deployment. If p is accepted (or denied) by both
I and T , it can get flipped an even number of times
during deployment, but cannot be flipped at all if the
deployment is safe. If p is accepted (resp. denied) by I
but denied (resp. accepted) by T , it needs at least one
flip for the deployment to be correct, but can be flipped
any odd number of times, even in a safe deployment. In
that sense, a safe deployment is not necessarily mono-
tonic.

Definition 5 (Monotonic Deployment). A deployment
is monotonic iff every packet is flipped at most once
during the deployment.

Monotonic deployments are desirable in practice be-
cause they provide traffic stability: once an illegal
(resp. legal) traffic is denied (resp. permitted), it will
stay that way during the remainder of the deployment.
We view monotonicity as providing a higher degree of
safety: a monotonic deployment is always safe, but a
safe deployment is not necessarily monotonic. Even a
monotonic deployment is not necessarily most-efficient.
For example, suppose a, b, and c are permission rules.
A deployment that takes two movs to move a and b up in
policy [c, a, b] to form the target [a, b, c] is monotonic,
because no flips happen. A most-efficient deployment,
however, takes only one step by moving c down.

5 Type I Deployment

Type I editing only supports del and app, which
makes policy deployment inefficient even for what
seems to be a small policy change. For example, if we
want to insert a new rule at the beginning of the initial
policy, we need to delete all its rules so that the ap-
pended rule becomes the first, and put all deleted rules
back again. In some cases, however, a subsequence of
the initial policy can be preserved. We need to selec-
tively delete and append rules in order to make the
deployment most-efficient.

Algorithm 1 Scanning Deployment
1. ScanningDeployment (I, T ) {
2. /* An algorithm using only app and del */
3. /* to transform policy I into policy T */
4.
5. S ← empty stack
6. H ← empty hash table
7. /* Phase 1: add rules */
8. i ← 1
9. for t ← 1 to SizeOf(T ) do

10. while i ≤ SizeOf(I) and I[i] �= T [t] do

11. /* I[i] needs to be deleted */
12. S. PUSH (I[i])
13. H.ADD(I[i])
14. i ← i + 1
15. if i > SizeOf(I) then

16. if H.Contains(T [t]) then

17. H.Remove(T [t])
18. IssueCommand( del T [t])
19. IssueCommand( app T [t])
20.
21. /* Phase 2: clean up */
22. for j ← SizeOf(I) down to i do

23. IssueCommand( del I[j])
24. while not S.IsEmpty() do

25. r ← S.POP()
26. if H.Contains(r) then

27. IssueCommand( del r)
28. }.

A theoretically appealing alternative is to declare
type I editing obsolete and ignore it. We cannot do
this, as type I firewalls are still on the market. Fur-
ther, the large installed customer base for type I prod-
ucts will include many customers who resist upgrading
to a newer product due to the additional cost, time,
training, and hassle.

We start by giving a simple deployment algorithm
for an initial policy I and target policy T . I and T
are coded as arrays, so that I[i] refers to the ith rule
of I. Initially the running policy R equals I. In phase
1, the algorithm appends to the end of R every rule
r in T , starting from r = T [1]. If r is already in I,
then it removes r from R before appending it back. In
phase 2, it removes from R every rule r that is in I but
not T , starting from the last rule in I. Let |X | be the
number of rules in X , and c1 be the number of rules
that are in both T and I. The total number of com-
mands generated in this algorithm is |I| + |T |, which
is independent of the similarity between I and T , and
suggests that the algorithm is not most-efficient. In
phase 1, R is always a shuffle of I and a prefix of T ,
except for the intervals between deleting the c1 shared
rules and appending them back. In phase 2, R is al-
ways a shuffle of T and a prefix of I. By the shuffling
theorem, R is safe during the deployment, except for
c1 intervals, assuming all intervals between subsequent
editing commands are even.

We provide ScanningDeployment (Algorithm 1)
as a more sophisticated approach to calculate a most-
efficient deployment for I and T . In phase 1, the algo-



rithm selectively appends the rules in T to R. It first
sets t and i to 1, and then increases their values while
maintaining the invariant that T [1, . . . , t] is a subse-
quence of R[1, . . . , i′], where i′ is the index of I[i] in
R. In each step, it increases t by 1, and then keeps
increasing i until the invariant is maintained. When i
goes beyond the end of I, T [t] is appended to R, which
still makes T [1, . . . , t] a subsequence of R. (If T [t] al-
ready appears in R, it is deleted first.) In phase 2, all
rules in I but not T are removed from R one by one,
starting from the one that appears closest to the end
of I.

To prove that Algorithm 1 is most-efficient, we show
that every del and app it ever generates also needs to
take place sooner or later in every correct deployment.
Initially R equals I. At the beginning of phase 1, the
algorithm scans through I to look for rule T [t], where
t = 1. Any rule I[i] encountered on the way that is
not T [1] must be deleted in every correct deployment;
otherwise I[i] would occur before T [1] in the final R,
but the final R should have T [1] as the tth rule (t = 1).
If T [1] is not in I, T [1] must be appended in every
deployment; otherwise it would be absent from the final
R either because of its absence in I or a previously-
described necessary del. In the latter case, the del

needs to take place before this app can take place, as
duplication is not allowed in R. If it finds T [1] in I,
T [1] can be preserved in R. Then the algorithm is done
with T [1] and t becomes 2. The necessity of every del

and app for t = 2 follows the same logic; continue on
until the end of phase 1. In phase 2, every rule deleted
in the for loop is in I but not in T , hence needs to
be deleted in every deployment. Every del issued in
the second while loop is an execution of a previously-
described necessary deletion.

We have argued that every command generated by
ScanningDeployment must occur in every correct
deployment. We can also prove that the algorithm
deletes (and appends) each rule at most once. Thus Al-
gorithm 1 generates a most-efficient deployment. Let
c2 be the number of rules in T ’s longest prefix that is
a subsequence of I. The number of editing commands
this algorithm generates is |I| + |T | − 2c2. Assuming
that a hash table lookup takes constant time, the al-
gorithm requires O(n) time and space, where n is the
larger of |I| and |T |.

Algorithm 1 buffers dels in a stack and issues them
later in reverse order, as an optimization for safety.
Consequently, the deployment is safe when I and T do
not share any rule: at any moment in phase 1, the run-
ning policy R consists of I at the beginning followed
by a prefix of T , which is safe by the shuffling theorem.
In phase 2, rules in I are deleted in reverse order, so

that R consists of T at the end preceded by a prefix of
I, which is also safe. This heuristic, however, does not
guarantee safety when I and T have rules in common.
Similar to the analysis in the previous algorithm, we
find that there are c1 − c2 intervals during which the
deployment is not guaranteed to be safe. Without con-
sidering deployment efficiency, is there an algorithm
that always calculates a safe type I deployment?

Theorem 2. Not all firewall policies can be deployed
safely by appending and deleting only the rules that are
in the initial or target policies.

Proof. Let I and T be [a, b] and [b, a] respectively,
where a=“permit A”, b=“deny B”, and A and B are
packet filters. Packet p is in A but not B. During any
deployment, a is the first rule in the running policy R
until del a takes place, and del a has to take place
as a is not the first rule in the final R. Then between
the time a is deleted and appended, p is denied by the
default “deny-all” rule. But p is permitted in both I
and T .

6 Type II Deployment

6.1 Most-efficient Deployment

To find a most-efficient type II deployment to trans-
form policy I to T , we can leverage the extensively
studied diff problem of determining the differences
between two sequences of symbols. The diff prob-
lem calculates the minimal number of deletions and
insertions, also called edit distance, to convert one se-
quence to another. This is also equivalent to the prob-
lem of finding a longest common subsequence of two
sequences [29]. Treating every rule as a symbol, we can
use diff to calculate an editing command sequence D
that contains the minimal number of del and ins com-
mands to transform I into T . Since firewall policies do
not allow duplicate rules, a policy can be viewed as
a permutation of a sequence of rules. Let c3 be the
number of rules in a longest common subsequence of I
and T . Since we need to touch all the commands but
those in one of the longest common subsequences [29],
the number of commands in D is [D] = |I|+ |T | − 2c3.
From the definitions of c2 and c3, we know that c3 is at
least as big as c2; so D is more efficient than the most-
efficient type I deployment, which takes |I|+ |T | − 2c2

steps.
Given that D has the minimal number of del and

ins commands, we have the following immediate ob-
servations. If a rule r is in I but not T , there exists
one and only one command in D that deletes r; if r
is in T but not I, there exists one and only command



in D that inserts r. If r is in both I and T , r may
be absent in D, which means r stays untouched; if r
shows up in D, then D has to delete r first, then insert
it back sometime later, as otherwise r will be missing
in T . Thus deletions and insertions of the same rule in
I and T always show up in pairs in D. Such a pair can
occur at most once, as otherwise we can keep the last
pair of del and ins and derive a deployment sequence
with fewer steps. It follows that a del and ins com-
mand pair on r can be replaced by a mov command,
and D can be translated into a type II deployment
command sequence D′ that has the minimal number
of del, ins, and mov commands. Thus an extension
of a diff algorithm can be used to calculate (possibly
unsafe) most-efficient type II deployments. Since there
are c1 − c3 pairs of del and ins in D that can be re-
placed by mov, the number of commands changes from
|I| + |T | − 2c3 for D to |I| + |T | − c1 − c3 for D′.

There are many diff algorithms available. For
permutation sequences, the fastest algorithms are
O(n log n) and O(dn), where d equals |D| and n is
the larger of |I| and |T |. As policy deployment usually
involves small changes, O(dn) algorithms are generally
faster. In the worse case, however, d can be almost as
big as 2n, in which case O(n log n) is faster.

6.2 Safe Deployment

6.2.1 Greedy Two-phase Deployment

We provide a greedy two-phase algorithm, named
TwoPhaseDeployment, to calculate a safe type II
deployment for policies I and T . In phase 1, the al-
gorithm inserts the rules of T at the beginning of the
running policy R. When a rule to be inserted is already
in R, it gets moved up to the right position instead. In
phase 2, all rules that are in I but not T are deleted,
starting at the end of I. This is described in Algo-
rithm 2.

At any moment in phase 1, the running policy R is a
shuffle of I and a prefix of T ; so R is safe based on the
shuffling theorem. When phase 1 is done, the running
policy has T at the beginning, followed by I minus the
rules in both I and T . At any moment in phase 2, the
running policy R is a shuffle of T and a prefix of I, so R
is safe. This means the deployment generated by Algo-
rithm 2 is safe. When phase 2 finishes, the running pol-
icy becomes T , i.e., the deployment is also correct. The
number of editing commands this algorithm generates
is |I|+ |T | − c1. Let n be the larger of |I| and |T |. We
assume that the operator /∈ used in lines 8 and 16 will
take constant time, if the rules are put into a hash table
first. The function IndexOf(x, X) returns the position
of x in array X , and we assume it requires constant

Algorithm 2 Greedy 2-Phase Deployment
1. TwoPhaseDeployment (I, T ) {
2. /* algorithm to calculate a safe type II deployment */
3. /* to transform firewall policy I into T */
4.
5. /* Phase 1: insert and move */
6. inserts ← 0
7. for t ← 1 to SizeOf(T ) do

8. if T [t] /∈ I then

9. IssueCommand(ins t T [t])
10. inserts ← inserts + 1
11. else

12. IssueCommand( mov IndexOf(T [t] , I) + inserts t)
13.
14. /* Phase 2: backward delete */
15. for i ← SizeOf(I) down to 1 do

16. if I[i] /∈ T then

17. IssueCommand( del i + inserts)
18. }.

time if we store all the rule-to-position mappings in a
hash map, which takes O(n) time to construct. Thus
the worst case running time of Algorithm 2 is O(n).

6.2.2 The Sanitization Algorithm

Very often, deployment safety and efficiency do not co-
incide. Algorithm 2 calculates a safe deployment for
I and T , but rarely produces a most-efficient deploy-
ment. A diff algorithm calculates a most-efficient de-
ployment, but it is not necessarily safe. For example,
running the Linux implementation of diff on α and
β from Figure 1 gives an unsafe deployment sequence
del b, ins f , del d, del e, ins g, and ins h (posi-
tion numbers omitted). This is not surprising, as diff
knows nothing about firewall policies.

Nonetheless, can a type II deployment be both safe
and most-efficient? Most-efficient deployments are not
unique; e.g., when only the relative order of two rules
is different in I and T , we have the option to move one
rule up or the other down. Even for a given sequence
of editing commands, the order can be rearranged: we
can reposition a del at a different step without affect-
ing the eventual editing outcome. So it is with ins as
well, and even mov, provided that we adjust the posi-
tion parameters accordingly. This suggests the possi-
bility of refining a deployment by rearranging (possibly
dropping) its steps and adjusting the position parame-
ters, so that the resulted deployment becomes safe, yet
without increasing the number of steps. We call this
sanitization. Encouragingly, we show that every type
II deployment of a firewall policy can be sanitized, and
the sanitization can be done efficiently.

In Algorithm 3, we present a fast sanitization algo-
rithm called SanitizeIt to sanitize any given deploy-
ment D for I and T , where D consists of a sequence of
type II commands that transforms the running policy
R from I to T . SanitizeIt outputs a safe type II de-



Algorithm 3 Sanitization Algorithm
1. SanitizeIt (I, T , D) {
2. /* D: a deployment sequence of type II commands */
3.
4. /* initialize */
5. ∆ ← set of all rules in D
6. U ← empty set
7. DM, iDM ← empty array
8. idxR ← array of size SizeOf(∆)
9. for i ← 1 to SizeOf(I) do

10. if I[i] ∈ ∆ then

11. Append I[i] to DM
12. if I[i] ∈ T then

13. Append IndexOf(I[i] , T ) to iDM
14. else

15. Append i + SizeOf(T ) to iDM
16. /* count each rule’s leftside preceding rules in DM */
17. lPreds ← BinaryCount(iDM)
18. /* count each rule’s rightside preceding rules in DM */
19. rPreds ← Reverse(BinaryCount(Reverse(iDM)))
20.
21. /* Phase 1: insert or move up */
22. inserts ← 0
23. i ← 1
24. for t ← 1 to SizeOf(T ) do

25. r = T [t]
26. if r /∈ I then

27. /* Case 1: need to insert r */
28. U .Add(r)
29. IssueCommand(ins SizeOf(U) r)
30. insert ← insert+1
31. ∆.Remove(r)
32. else if r /∈ ∆ then

33. /* Case 2a: r stays untouched. Search for r in I */
34. while i ≤ SizeOf(I) and I[i] �= r do

35. if I[i] /∈ U then

36. U .Add(I[i])
37. /* save I[i]’s position in the running policy */
38. idxR[IndexOf(I[i] , DM)] ← SizeOf(U)
39. i ← i + 1
40. i ← i + 1
41. U .Add(r)
42. else if r /∈ U then

43. /* Case 2b: need to move r up */
44. cur ← IndexOf(r, I)+
45. rPreds[IndexOf(r, DM)] + inserts
46. U .Add(r)
47. IssueCommand( mov cur SizeOf(U))
48. ∆.Remove(r)
49. /* process the remaining commands in I */
50. while i ≤ SizeOf(I) do

51. if I[i] /∈ U then

52. U .Add(I[i])
53. /* save I[i]’s position in the running policy */
54. idxR[IndexOf(I[i] , DM)] ← SizeOf(U)
55. i ← i + 1
56.
57. /* Phase 2: backward delete or move down */
58. for j ← SizeOf(DM) down to 1 do

59. if DM [j] ∈ ∆ then

60. if DM [j] /∈ T then

61. IssueCommand( del idxR[j])
62. else

63. pos ← IndexOf(DM [j] , T ) + (j − lPreds[j])
64. IssueCommand( mov idxR[j] pos)
65. ∆.Remove(DM [j])
66. }.

67. /* auxiliary counting algorithm */
68.
69. BinaryCount(A) {
70. /* For every element A[i], count the number of elements

in A that are to the left of and smaller than A[i]; e.g., if
A=[2,4,1,3], there are zero elements to the left side of 2,
one element A[1] = 2 to the left of and smaller than 4, zero
elements to the left side of and smaller than 1, . . ., so it
returns [0,1,0,2]. */

71.
72. preds ← array of size SizeOf(A)
73. if A is empty then

74. return preds
75. preds[1] ← 0
76. root ← CreateBinaryNode(A[1], null, null, 1);
77. for i ← 2 to SizeOf(A) do

78. preds[i] ← InsertAndCount(A[i] , root)
79. /* can optionally do AVL insertion rebalance here */
80. return preds
81. }.
82.
83. InsertAndCount(e, root) {
84. /* insert e into the tree, and return the number of elements

smaller than e */
85.
86. WL ← 0 /*stores the left subtree’s weight */
87. if root.left �= null then

88. WL ← root.left.weight
89. if e = root.value then

90. return WL

91. root.weight ← root.weight + 1
92. if e < root.value then

93. if root.left �= null then

94. return InsertAndCount(v, root.left)
95. root.left ← CreateBinaryNode(e, null, null, 1)
96. return 0
97. if root.right �= null then

98. return WL + 1+InsertAndCount(e, root.right)
99. root.right ← CreateBinaryNode(e, null, null, 1)
100. return WL + 1
101. }.



ployment sequence for I and T , with a length at most
the number of editing commands in D. Thus if the
input D is already a most-efficient deployment, Sani-

tizeIt calculates a deployment that is both safe and
most-efficient.

Following the shuffling theorem, SanitizeIt also
works in two phases. In phase 1, it inserts rules in
T but not I into the running policy R, and selectively
moves rules up (i.e., toward a position closer to the
beginning) in R, which keeps R as a shuffle of I and
a prefix of T . In phase 2, it deletes rules that are in
I but not T , and selectively moves rules down in R,
which keeps R as a shuffle of T and a prefix of I, and
eventually turns R into T .

In phase 1, SanitizeIt maintains three important
variables, ∆, i, and t. ∆ stores the set of rules that
we still need to issue a command for. It is initialized
with ∆0, the set of all rules edited in D, and is strictly
decreasing. The two indexes i and t, for I and T respec-
tively, are both initially set to zero and only increase.
There are other variables, such as iDM and lP reds,
that are used to help calculate the position parameters
of the editing commands.

SanitizeIt maintains a shuffling invariant in phase
1: R is always a shuffle of I and T [1, . . . , (t − 1)]. The
algorithm iterates through rules in T by increasing t.
While processing rule T [t], it may also increase the in-
dex i. Intuitively, the set of rules in I[1, . . . , (i − 1)] and
T [1, . . . , (t − 1)], tracked by U , contains all the rules
that have completed phase 1 processing so far. In the
running policy R, each rule in U either is already in the
correct position, or needs to be deleted or moved down
in phase 2. The deletions have to take place in phase
2; otherwise, the shuffling invariant would be violated.
The downward moves are postponed until phase 2 to
simplify the calculation of their position parameters.

For each r = T [t] in phase 1, there are two cases. In
case 1, r is not in I, and r needs to be added. Since r
appears in T only once, r has not been added to R yet.
Clearly r must be in ∆, otherwise the deployment D
would be incorrect. The algorithm outputs a command
to insert r after all commands in U , and removes r
from ∆. In case 2, r is in I. There are three subcases,
corresponding to the three situations that r does not
need to be moved, needs to be moved up, and needs to
be moved down. Case 2a: r is not in ∆. This means
that r is not touched by any command in D; thus r
exists in I and can be left untouched. The position of
r in I cannot be smaller than i, otherwise, r needs to
be moved up. The algorithm keeps increasing i until
I [i] = r, puts every other rule x encountered before
r into U , and does bookkeeping for x’s position in R
to prepare for the deletion or downward move of x in

phase 2. Case 2b: r is in ∆, and r is not in U . Then
the algorithm moves r up to the position just after all
rules in U , and removes r from ∆. Case 2c: r is in ∆ as
well as U . This means that r needs a downward move,
which waits until phase 2. At the end of phase 1, the
algorithm goes through the remaining rules in I and
saves their positions in R for future deletions in phase
2; these rules are not in T , as otherwise they would
have already been added to U .

In phase 2, SanitizeIt maintains the invariant that
R is a shuffle of T and a prefix of I. Every r in ∆ is
either deleted (if r does not occur in T ) or moved down
to its target position. These deletions and moves start
from the end of DM , a subsequence of I with rules to
be deleted or moved, and continue backward. In the
end, R remains a shuffle of R and an empty prefix of
I, which means that R has become T .

One challenge of sanitization is to efficiently cal-
culate the correct position parameters for every ins,
mov, and del operation. SanitizeIt does amortized
bookkeeping to save the calculation time, and also in-
troduces an AVL-tree [12] based counting algorithm,
named BinaryCount, to speed up the calculation. In
the appendix, we provide a more detailed explanation
of position calculation, and also prove the correctness
and safety of SanitizeIt.

Asymptotic analysis shows that SanitizeIt is fast.
Phase 1 scans through I and T exactly once. Phase
2 is linear in the size of I. The IndexOf and ∈
operators used in the algorithm will take constant
time, provided that we spend O(n) time to construct
the according hash map and hash set first. Bina-

ryCount is O(d log d) worst case. Overall, Sani-

tizeIt is O(n + d log d) worst case, which is asymp-
totically much better than the upper bound for diff,
or as good as diff when d gets close to n. This is im-
portant because we do not want the whole deployment
to be slowed down by sanitization. Since many real-
world policies are as large as 10K rules and 50K rules
are not unheard of, an O(n2) time sanitization algo-
rithm can take hours to finish, even for a small policy
change (small d).

6.3 Monotonicity

We prove that any most-efficient deployment cal-
culated by SanitizeIt is also monotonic. Before
we start, we give the following observation, which is
straightforward based on the definition of a shuffle: let
M be a shuffle of I and a prefix of T , or a shuffle of T
and a prefix of I. If p hits rule rI in I, rT in T , and
rM in M , then rM must be either rI or rT .

Suppose a sanitized most-efficient deployment is not



monotonic. Then there must exist a packet p that can
get flipped at least three times in the deployment. We
first consider the case where neither rI nor rT is the
hidden default deny-all rule. The running policy is al-
ways a shuffle of I and T ’s prefix (or T and I’s prefix)
during the deployment, so p can only hit either rI or
rT . Initially p hits rI in I. To have three flips, p must
hit rT in some subsequent running policy (flip 1), then
rI in another running policy (flip 2), and rT in another
running policy (flip 3). Before each flip can take place,
at least one action (ins, mov, or del) has to take place
on either rI or rT ; otherwise, p will consistently hit rI

or rT and does not flip. Thus three flips entail at least
three actions on rI or rT . Since the deployment is still
most-efficient and takes at most one action on each in-
dividual rule, rI and rB can receive at most two actions
in total, which is a contradiction. The above argument
still holds if rI and/or rT are the default deny-all rule.
So the sanitized deployment is most-efficient, safe, and
monotonic. This gives us the following theorem.

Theorem 3. For every firewall policy, there is a safe,
most-efficient, and monotonic deployment that uses
only the ins, del, and mov commands.

7 Experimental Results

The previous sections have shown that the computa-
tional complexity of our approach to safe and efficient
deployment is quite reasonable. However, even a O(n)
algorithm can be slow in practice if the constant factor
is large. This consideration is important for our work
because if sanitization and minimization adds signif-
icant time to deployment, our approach will not be
practical in spite of its modest complexity class.

To address this question, we use four firewall poli-
cies, Small, Medium, Large, and Extra Large, with
2,000, 5,000, 10,000, and 25,000 lines of rules, respec-
tively. For each policy size, we have 5 test cases. Test
1 has an edit distance of size 10, meaning that at least
10 command changes are needed to turn the initial pol-
icy into the target policy. Real world firewall policy
changes are usually incremental and tend to be small,
with edit distances measured in dozens of lines of code.
(However, a small edit distance does not necessarily re-
sult in a small deployment in the real world, either due
to lack of type II editing support or due to the fact that
the deployment tool does not implement an efficient de-
ployment algorithm.) Edit distances measured in hun-
dreds are considered large changes. Tests 2 and 3 have
edit distances of 500 and 1000, respectively. Tests 4
and 5 are even larger, with edit distances equal to 60%
and 90% of the initial policy size, respectively. Edit

distances as large as in tests 4 and 5 are rare in the
real world; we include them to test the performance of
our algorithms under extreme conditions.

We use the diff algorithm in [29] to calculate
the most-efficient deployment, then run SanitizeIt to
make it safe. All algorithms are implemented in Java,
and the experiments are run on an HP XW4200 desk-
top with 2.8 GHZ CPU and 2 GB memory. For each
test case, we record the time (in seconds) spent in diff,
SanitizeIt and downloading. The download time is
the span between starting to send the first command
to the firewall and finishing sending the last command.
We use a firewall simulator that is configured to match
the performance of a PIX 525 firewall and connect to
it over a 10Mb ethernet link. We run each test case 50
times and then record the average for diff and Sani-

tizeIt.
Table 1 gives the results for tests 1-5 on the four

policies. The results show that the time spent in diff

is small for common policy changes (test cases 1-3),
ranging from 5 to 203 microseconds. The diff time
becomes more noticeable in the extreme cases (tests 4-
5), going as high as 26 seconds for a 90% edit distance
on the extra large policy; the corresponding download
time is 306 seconds and overshadows the diff time.
The sanitization time is negligible in almost all the
test cases. Even in test 5 on the extra large policy,
sanitization takes about 1 second. In summary, the
sanitization time is negligible compared to the diff

time, while the diff time is negligible compared to the
download time. This suggests that for practical policy
sizes and changes, our proposed sanitization algorithm
can makes a deployment safe while adding almost no
delay; and that the diff algorithm has a negligible cost
compared to the download time and should always be
used to reduce the deployment size.

8 Discussion

Besides the type I and II editing languages that we
define, there are other flavors on the market. For exam-
ple, the editing languages used in Nokia IPSO 3.8 [9]
and EdgeForce 4.5 [10] stand between type I and II,
by supporting ins and del but not mov. Similar to
the proof for Theorem 2, we argue that not all fire-
wall policies can be deployed safely by inserting and
deleting only the rules that are in the initial or target
policies. However, we can apply diff and SanitizeIt

to calculate a most-efficient and safe type II deploy-
ment first, as if mov is supported. Then we replace
every mov with the according del and ins, so that the
time that the deployment is unsafe remains only within
the small number of intervals between a del and the



Test Small (2,000) Medium (5,000) Large (10,000) Extra Large (25,000)
diff sani depl diff sani depl diff sani depl diff sani depl

Test 1 .005 .007 2.160 .005 .018 2.10 .013 .031 2.260 .073 .169 2.250
Test 2 .010 .002 10.500 .010 .018 10.660 .013 .036 10.680 .161 .122 11.280
Test 3 .023 .015 20.680 .026 .023 21.300 .031 .039 21.400 .203 .122 21.520
Test 4 .025 .015 24.540 .179 .026 61.300 1.255 .127 122.420 11.955 .627 306.560
Test 5 .062 .008 35.600 .356 .031 89.000 4.158 .234 181.680 25.952 1.031 454.260

Table 1. Results of Experiments (in seconds)

subsequent ins on the same commands, which makes
the deployment almost safe.

Some editing languages are more powerful than type
II. For example, iptables [6] supports inserting and
deleting more than one rule at a time, and replacing a
rule with one or more rules. These editing languages
can still be used to safely deploy any policy, and our
sanitization algorithm still works. The deployment se-
quence calculated by the diff algorithm, however, is
no longer most-efficient, since the editing commands
can now operate on more than one rule. Considering
that the editing distances in real-world deployments
are small, the output from diff and SanitizeIt is
already safe and reasonably efficient. We can further
optimize it by running a greedy algorithm to combine
the consecutive commands of the same type into one
command.

The safety problems that we address can also be
solved by letting firewalls support transactional se-
mantics for policy updates. For example, if a firewall
buffers incoming policy changes and switches to the
target policy in a single atomic action, then no traf-
fic anomalies could occur. The manual commit mode
in FWSM [2] allows policies to be updated in an al-
most transactional fashion. Firewalls that support pol-
icy names can emulate a transaction by switching to a
policy with a different name, at the cost of building the
target policy from scratch and losing the original pol-
icy name. Full native transaction support, however,
is still rare in today’s firewalls. Firewalls started as
command-line-interface low-end appliances and were
not designed to be management-friendly in the first
place. Further, the need for transactions is not ap-
parent to most people, because the management tools
already provide network administrators with the feel of
transactions. These tools allow administrators to make
multiple changes through the GUI, followed by a single
mouse click to “commit” (deploy) the changes. How-
ever, as we have shown, the resulting deployment is
not necessarily atomic or safe. This problem is partic-
ularly acute with type I policy editing languages, which
we have proved unable to guarantee safe deployments
without complex workarounds, such as introducing se-
mantically equivalent rules that occur in neither the
initial or target policies. These workarounds, however,

do not change the fact that type I editing commands
are too limited for effective support of firewall policies
with order-sensitive semantics.

One can think of our techniques for generating a safe
deployment as providing a poor-man’s transaction fa-
cility, as the two approaches offer similar safety guar-
antees. However, we believe that the runtime costs
using our techniques are lower than the overhead for
a runtime transaction facility would be. In particu-
lar, critical policy patches and large deployments can
take effect incrementally, rather than waiting for the
commit point of a transaction. Since smart attackers
may be lying in wait to exploit a vulnerability during
deployment, every microsecond counts. Compared to
transactions, our approach to safe deployment also has
the additional advantage of minimizing the code base
at the firewall, which reduces the potential for bugs
and security holes and also helps throughput. On the
other hand, transactional approaches can also make use
of our approach to most-efficient deployments, to im-
prove performance.

Although our discussion uses static packet inspec-
tion, we believe our conclusions also apply to stateful
packet inspection (SPI) [32] firewalls. An SPI firewall
inspects traffic at the network and transportation lay-
ers by monitoring the state of each TCP connection or
pseudo UDP connection. It uses the initial packets of a
connection to establish a session, and decides whether
to accept a future packet based on which session it be-
longs to. To extend our results to SPI, we would start
by changing the discussion of accept and deny from the
granularity of packets to sessions, and adjusting the
safety definitions in section 4 accordingly. For exam-
ple, we would define policy A to be permission-safe
w.r.t. policies B and C iff every session that A permits
is also permitted by B or C. We leave a more rigorous
analysis of how to apply our results to SPI for future
work.

9 Related Work

While we find no research on firewall policy de-
ployment safety, there is quite a lot of research liter-
ature on firewall/VPN policy conflict detection (e.g,,



[13, 20, 15, 14, 38]). This work has formalized types of
conflicts in firewall policies and provided a variety of
fast and efficient algorithms to detect them. Going one
step further, researchers have proposed optimization
algorithms to generate more concise and efficient fire-
wall policies, using techniques like address/port combi-
nation and performance tuning based on traffic analysis
[31, 22, 11]. All this research is orthogonal to our work,
and can be applied to improve the quality of firewall
policies before they are deployed.

Firewall policy engineering and specification models
are also getting a lot of attention. For example, Fir-
mato allows policy specification based on global entity-
relationship information [16]; Bellovin et al. [17, 25]
propose a distributed firewall model that allows cen-
tralized policy specification, while reducing or elimi-
nating topology dependencies; the STRONGMAN ar-
chitecture supports scalable policy composition which
nonetheless allows autonomy within the constraints of
a global policy [26]. Gouda et al. propose firewall de-
sign diagrams to support consistent and compact policy
generation [21]. Their results complement our work by
helping create effective policy specification tools, which
leads to the need for proper policy deployment.

Researchers have extensively studied the problem of
determining the differences between two sequences of
symbols [35, 34, 23, 24, 27, 30, 29, 33]. Many algo-
rithms have been proposed, though with no all-time
winners. The best known results for permutation se-
quences are O(dn) [29], when the difference d between
the two sequences is small, and O(n log n) [24], when
d is close to n. Our work builds on these results, and
concentrates on achieving safety without sacrificing ef-
ficiency.

10 Conclusions

In this paper, we have shown how unsophisticated
approaches to firewall policy deployment can temporar-
ily open a network to unwanted traffic and prohibit
desired traffic. Up to this day, unsafe deployment ap-
proaches are still being practiced by commercial fire-
wall management tools. We have provided the formal
definition and theoretical analysis of the safe deploy-
ment problem, proposed ways to remedy it based on
the shuffling theorem, and measured their effectiveness
in an implemented system. The bottom line is that
vendors’ state-of-the-art policy deployment products
can and should be modified to close this security loop-
hole, and our techniques can be used to accomplish this
goal without compromising efficiency.

We have shown that type I policy editing languages
are very inefficient in deploying order-sensitive policies.

To make things worse, they cannot safely deploy an
arbitrary firewall policy without complex or expensive
workarounds. We have shown that the situation is
more hopeful with type II policy edit languages, for
which one can always efficiently find a minimal set of
editing commands that will safely update the policy.
Our experimental results showed that our approach to
finding a safe and minimal deployment adds only a
user-imperceptible overhead to the policy update time
for typical small policy changes, when a type II edit-
ing language is used. Even large changes added only
0.2% or less to the total policy deployment time in
our experiments. Thus safety can be achived without
compromising deployment efficiency, which is impor-
tant for critical policy patches. Our approach can also
be viewed as a light-weight, low-cost implementation
of a policy commit facility that provides transactional
safety guarantees.
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Appendix

A. Calculation of Position Parameters in

SanitizeIt

U ’s size |U| gives the target position in R for any
command to be inserted or moved at line 29 and 47.
For the upward mov in line 47, r’s current position in
R is the sum of its position in I, the number of com-
mands in DM that come after r in I but before r in T
(stored in rPreds), and the number of inserted com-
mands. Similarly, the target position of DM [j] in line
64 is its position in T plus the number of commands
in DM that come before DM [j] in I but need to be ei-
ther removed from R or moved below DM [j]. lP reds[i]
stores the number of rules that show up earlier than
DM [i] in both DM and T . lP reds[i] stores the number
of rules that occur later than DM [i] in DM but earlier
than DM [i] in T . When DM [i] is not in T , the value
of lP reds[i] and rPreds[i] does not matter. Every rule
DM [i] is translated into an integer value and stored in
iDM [i]. If DM [i] is in T , iDM [i] stores DM [i]’s index
in T ; otherwise, iDM [i] stores i plus the size of T .



The helper function BinaryCount calculates
lP reds and rPreds based on iDM . It takes an array
A, and counts for every A [i] the number of elements
A [i] to the left of and smaller than A [i], i.e., j < i and
A [j] < A [i] . The counting utilizes a binary search
tree with each node m also storing the weight (number
of nodes) of the subtree whose root is m. Considering
that the worst-case search time in a unbalanced binary
tree is linear, we can keep the binary tree balanced
as an AVL tree by doing AVL rebalancing after each
insertion to guarantee logarithmic search time.

B. Correctness and Safety of SanitizeIt

Proof. we first argue that the following invariants hold
at the beginning of every iteration of the for loop in
phase 1: (a) U equals the set of the first |U| rules of the
running policy R, and also equals the set of all rules in
T [1, . . . , (t − 1)] and I [1, . . . , (i − 1)]; (b) the running
policy R is a shuffle of I and T [1, . . . , (t − 1)]; (c) the
rules in the set G = U −∆ have a correct relative order
in R, meaning the relative order is the same as in T .
We prove this by mathematical induction on t.

The invariants are trivially true when t = 1. Sup-
pose they hold at the beginning of some iteration where
t = k, U ’s value is Uk, and U ’s size is uk. Continuing on
with this iteration, suppose that rule r = T [t] is in Uk

already, or is inserted or moved up to position uk + 1
in R, or gets added to U along with all rules between
I[i] and r in I. R becomes a shuffle of I and the first
t rules. So all the invariants hold at this point.

Invariants (a) and (b) are still true at the begin-
ning of the next iteration. If r ∈ Uk, then G stays
unchanged, and so does the relative order of G’s rules
in R. If r /∈ Uk, the only possibility for (c) not to hold
would be if there exists rv ∈ Uk that is not in Uk −∆k,
stays before r in R at the end of this iteration, but
comes after R in T . Then rv does not belong to ∆0.
The only way such an rv can get into U is at line 36,
which is followed by rule rw (added in line 41) that is
not in ∆0 either. Since rv comes after r in T and rw

comes before r in T , the relative order of rv and rw

is different in I and T ; but neither rv nor rw belongs
to ∆0, which contradicts the precondition that D is a
correct deployment. Thus all the invariants hold at the
beginning of every iteration of phase 1’s for loop.

Invariant (c) also holds in the beginning of every
iteration of the while loops at lines 50 and 34. We
can use an argument similar to the above to prove that
every rule added to U in the loop either belongs to ∆
or its relative order with respect to all rules in U − ∆
is correct already. At the end of phase 1, U is the set
of all rules in R, R becomes a shuffle of I and T , and

the relative order of all rules in R − ∆ is correct.
Second, we argue that two invariants hold at the

beginning of every iteration of the for loop (line 58)
of phase 2: (d) the relative order of the rules in R−∆
is correct; and (e) R is a shuffle of T and I [1, . . . , ij],
where ij is the index of DM [j] in I. We prove this by
an induction on the number of iterations. In the first
iteration, j = SizeOf(DM). From the proof for phase 1
above, we know (d) is true and R is a shuffle of I and
T . Since every r in I after I [ij ] is not in ∆, all such
r’s are contained in R − ∆, whose rules’ relative order
is already correct. Thus (e) also holds.

Suppose (d) and (e) hold for some iteration where
j = k. Continuing on with this iteration, if DM [j] /∈ ∆,
then R and ∆ stay unchanged, so (d) holds. Invariant
(e) also holds based on the induction hypothesis and a
similar argument to that for the first iteration with I
changed to the first ij rules of I. If DM [j] is deleted
(line 61), it gets removed from both R and ∆, so (d)
and (e) still hold. If DM [j] is moved to a new position
(line 64), DM [j]’s relative order with respect to all rules
in R − ∆ is correct, based on the position calculation
explained earlier. Thus (d) and (e) still hold at the
beginning of the next iteration.

When phase 2 ends, ∆ becomes empty, R contains
all rules in T , all rules in I but not T have been deleted
from R, and R−∆ is in correct order. So R equals T ,
which means SanitizeIt is correct. Since R is a shuffle
of I and a prefix of T in phase 1, and a shuffle of T and
a prefix of I in phase 2, we conclude that SanitizeIt

calculates a safe deployment, by the shuffling theorem.


