
In-Depth Packet Detection and Prevention
by

Snort: The Open Source Solution of
IDS and IPS

Cheung Ho Wan Richard

S06208150

Saturday, March 29, 2008

CSC7221 Advanced Topics in Internet Technology

TOC

� A Word about Information Security
� Network Security Components
� What is IDS, IPS
� Why IDS & It's History
� How IDS Works: Networking View & Data Flow View
� The Relationship of IPS & Firewall & Honeypot/Honeynet & Antivirus Programs
� Taxonomy of IDS
� IDS and DOROTHY E. DENNING
� IDS and CIDF and IETF
� CIDF & IDWG Description of IDS
� Accuracy of IDS: FPR, FNR, CER
� Example of IDS Analysis (1,2)
� New Development of IDS: AI/ANN
� Main Neural IDS (SOM, Radial, ANN)
� ANN & Fuzzy Logic IDS
� Defects with IDS: Evasion (1-23)

TOC

� ID Industry: The Top 5
� What is Snort
� Snort's Modes
� Differences between It's 4 Modes
� Snort's Components
� Snort's Components' Relationship
� Snort's Packet Sniffer & Decoder
� Snort's Packet Decoder Calling Diagram
� Snort's Data Structure
� Snort's Preprocessors
� Main Preprocessor (Frag3,Stream5,sfPortscan,SSH,DNS)
� Snort's Detection Engine: IcmpTypeCheck
� Snort's Output modules (DB,unified2)
� A Simple Test: Settings, Attack, Payload, Result, Defense (1-4)
� A Simple Test: Hero, Hero's Father, Hero's Mother, Conclusion
� References (1,2)
� Thanks & END

A Word about Information Security

�"Security is a process,
not a product."

�"Products provide some protection,
but the only way to effectively do
business in an insecure world is to
put processes in place that recognize
the inherent insecurity in the products.
The trick is to reduce your risk of
exposure regardless of the products
or patches."

� Bruce Schneier , May 15, 2000

� Founder and CTO, Counterpane Internet
Security, Inc.

Network Security Components

� Firewall

� IDS/IPS/Honeypot/Honeynet

� Antivirus

� Security assessment tools

� Encryption and other security mechanisms

� Open source community does well on security issues while
some major commercial products do poor, e.g. Windows OS

What is IDS

�Intrusion Detection System (IDS):
� An intrusion detection system generally detects unwanted manipulations of computer

systems, mainly through the Internet.

� Intrusion detection is the process of monitoring the events occurring in a computer system or
network and analyzing them for signs of intrusions, defined as attempts to compromise the
confidentiality, integrity, availability, or to bypass the security mechanisms of a computer or
network.

What is IPS

� Intrusion Prevention System (IPS):
� Software/hardware that detects and

logs inappropriate, incorrect, or
anomalous activity. IDS are
typically characterized based on
the source of the data they monitor:
host or network. A host-based IDS
uses system log files and other
electronic audit data to identify
suspicious activity. A network-
based IDS uses a sensor to
monitor packets on the network to
which it is attached.

� An intrusion prevention system is a
computer security device that
monitors network and/or system
activities for malicious or unwanted
behavior and can react, in real-time,
to block or prevent those activities.

Why IDS

� it helps one to know what is
going on one's security

� recognize damage &
affected systems

� evaluating incidents

� trace back intrusions

� forensic analysis

� prosecute sb. for a crime

� it helps one to defend one's
security

IDS’s History

How IDS Works: Networking View

How IDS Works: Data Flow View

The Relationship of IPS & Firewall

�IPS is considered as the extension of
traditional firewall, and now IDS≈Modern
Firewall

The Relationship of IDS & Honeypot/Honeynet

� Honeypot is derived from Snort and is considered as the
young brother of Snort and now the Honeynet

The Relationship of IDS & Antivirus Programs

�IDS primarily work on TCP/IP stacks and
antivirus programs primarily work inside of
kernel & user spaces on a box’s OS

Taxonomy of IDS

�Anomaly Based
IDS

�Policy Based IDS

�Host Based IDS

�Network Based IDS

�Distributed NIDS

�Hybrid IDS

�Reactive IDS

�Passive IDS

A BRIEF INTRODUCTION TO HONEYNET

IDS and DOROTHY E. DENNING

� 6 Main Components

� Subjects
� Initiators of activity on a target system- normally users.

� Objects
� Resources managed by the system-files, commands, devices, etc.

� Audit records
� Generated by the target system in response to actions performed or attempted by

subjects on objects-user login, command execution, file access, etc.

� Profiles
� Structures that characterize the behavior of subjects with respect to objects in terms of

statistical metrics and models of observed activity. Profiles are automatically generated
and initialized from templates.

� Anomaly records
� Generated when abnormal behavior is detected.

� Activity rules
� Actions taken when some condition is satisfied, which update profiles, detect abnormal

behavior, relate anomalies to suspected intrusions, and produce reports.

IDS and CIDF and IETF

�CIDF

�Common Intrusion Detection Framework

�It’s an effort to develop protocols and application
programming interfaces so that intrusion detection
research projects can share information and
resources and so that intrusion detection
components can be reused in other systems.

�Very first, Teresa Lunt, a former ITO of DARPA

�Now, many companies and organizations with no
relationship to DARPA

CIDF Description of IDS

�Some of the ideas
involved in CIDF have
encouraged the
creation of an Internet
Engineering Task
Force (IETF) working
group, named the
Intrusion Detection
Working Group
(IDWG).

IDWG Description of IDS

� Event boxes (E-boxes)
� generate audit events that

are processed by IDS

� Analysis boxes (A-boxes,
≈detector component)
� process events from the

E-boxes to create alarms

� Database boxes (D-boxes)
� store events for later

retrieval

� Response Boxes (R-boxes,
≈countermeasure boxes)
� apply countermeasures to

the system according to
the alarms generated

Accuracy of IDS: FPR, FNR

�FPR

�False Positive Rate

�the frequency with which the IDS reports malicious
activity in error

�FNR

�False Negative Rate

�the frequency with which the IDS fails to raise an
alert when malicious activity actually occurs

Accuracy of IDS: CER

�CER

�Crossover Error Rate

�often used to provide a baseline
measure for comparison of
intrusion-detection systems

Example of IDS Analysis (1)

�Signature matching technique
� snort

�Expert system technique
�NIDES CMDS

�State Transition/CP-Nets technique
�STAT USTAT NSTAT NetSTAT

�Quantitative technique
� threshold detection, heuristic threshold detection,

target-based integrity checks, quantitative technique
and data reduction

Example of IDS Analysis (2)

�Statistical technique

�Rule-based technique

�Neural network technique

�Immunes system technique

�Genetics technique

�Agent technique

New Development of IDS: AI/ANN

�Let machines do human's works
�lower cost

�higher accuracy

�faster speed

�self-learning

�Adaptive ability

�automated recognition

�Neural Networks

�Fuzzy Logic

Main Neural IDS

�Self-Organizing
Maps (SOM)

�Radial basis neural
networks

�Artificial Neural
Networks (ANN)

Neural IDS Example: ANN

Fuzzy Logic IDS

Classical rules

IF user=root and port=22

THEN pass

IF ip!=10.0.0.1-10.0.0.200
and port < 1024

THEN alert

……

Fuzzy rules

IF user is privileged and port is
secure

THEN pass

IF ip isn’t trusted and port is low

THEN alert

……

Defects with IDS: Evasion (1)

�Polymorphic buffer overflow attacks

�attack does not have a single detectable
signature

Start:
GOTO Decryption_Code
Encrypted:

...
lots of encrypted code
...

Decryption_Code:
A = Encrypted

Loop:
B = *A
B = B XOR CryptoKey
*A = B
A = A + 1
GOTO Loop IF NOT A = Decryption_Code
GOTO Encrypted

CryptoKey:
some_random_number

Start:
GOTO Decryption_Code
Encrypted:

...
lots of encrypted code
...

Decryption_Code:
C = C + 1
A = Encrypted

Loop:
B = *A
C = 3214 * A
B = B XOR CryptoKey
*A = B
C = 1
C = A + B
A = A + 1
GOTO Loop IF NOT A = Decryption_Code
C = C^2
GOTO Encrypted

CryptoKey:
some_random_number

Defects with IDS: Evasion (2)

�Unicode directory traversal

�.. /.. /.. / .->%co%af

�The repeated ../ caused traversal to the root
directory, finally caused response including
/etc/passwd

<?php
$template = 'blue.php';
if (isset($_COOKIE['TEMPLATE']))

$template = $_COOKIE['TEMPLATE'];
include ("/home/users/phpguru/templates/" .
$template);
?>

HTTP/1.0 200 OK
Content-Type: text/html
Server: Apache

root:fi3sED95ibqR6:0:1:System Operator:/:/bin/ksh
daemon:*:1:1::/tmp:
phpguru:f8fk3j1OIf31.:182:100:Developer:/home/users/phpguru/:/bi
n/csh

GET /vulnerable.php HTTP/1.0
Cookie: TEMPLATE=../../../../../../../../../etc/passwd

Defects with IDS: Evasion (3)

�Protocol anomalies
� behaviors deviated from normal behavior will be

classified as anomalous
�HTTP traffic on a non-standard port, say port 53 (protocol

anomaly)

�Backdoor service on well-known standard port, e.g., peer-to-
peer file sharing using Gnutella on port 80 (protocol anomaly
and statistical anomaly)

�A segment of binary code in a user password (application
anomaly)

�Too much UDP compared to TCP traffic (statistical anomaly)

�A greater number of bytes coming from an HTTP browser
than are going to it (application and statistical anomaly)

Defects with IDS: Evasion (4)

�Fragmentation

� split the attack payload into
multiple small packets

� session splicing

�Put session date into multiple
packets to evade IDS

� Fragmentation overlap

� Fragmentation overwrite

� Fragmentation time-outs

+-------------------------+

pkt no content

---------------+---------

1 G

---------------+---------

2 E

---------------+---------

3 T

---------------+---------

4 20

---------------+---------

5 /

---------------+---------

6 H

+---------------+---------+

Defects with IDS: Evasion (5-7)

�Denial of Service
� disable IDS by overwhelming of packets

�stick

�snot

�Path obfuscation
� e.g. /winnt/. /. /. / = /winnt

�Hex encoding
� not all IDS know %20 = hex 20

�GET %65%74%63/%70a%73%73%77d

�GET %65%74%63/%70%61%73%73%77%64

Defects with IDS: Others (8-11)

�IDS can't compensate for poor security
design

�IDS can't against new and sophisticated
attacks effectively

�No integrated tool to do IDS once for all

�IDS can't be operated in switched
environment effectively

Defects with IDS: Others (12-15)

� IDS’ accuracy is low, often produce false alarms

� IDS’ speed is low, may slow down the overall
network speed or host speed, otherwise miss
traffic

� IDS’ outputs waste a lot of operational cost, e.g.
human capital, time

�The ability of IDS’ proactive countermeasures is
limited, e.g. the automation with firewall

Defects with IDS: Others (16-19)

�Commercial IDS is expensive while open source
IDS is hard to use

�No factual unified industrial standard such as
APIs, languages, storage formats

�Few qualified technical staff can manage IDS
� e.g. installation, configuration, integration, and

analysis are complex

�The development speed of intrusion
tools/mechanisms is faster than IDS’
development speed

Defects with IDS: Others (20-23)

�Network complexity and size makes the difficulty
of implementing IDS to be exponential

�Non-IT staff don’t like to work under IDS’
monitoring so IDS’ implementation often refused
by top management

� IDS can’t find out the hackers’ identification and
what they want

� IDS may provide information about intrusion but
almost no help to recover damages

ID Industry: The Top 5

� survey launched by Gordon Lyon in 2002, 2003, 2006

� users are from the nmap-hackers mailing list

� 3,243 responded in the 2006 survey

① Snort : Everyone's favorite open source IDS

② OSSEC HIDS : An Open Source Host-based Intrusion
Detection System

③ Fragroute/Fragrouter : A network intrusion detection evasion
toolkit

④ BASE : The Basic Analysis and Security Engine

⑤ Sguil : The Analyst Console for Network Security Monitoring

What is Snort

�Snort is a free and open source IDP that perform
packet logging and real-time traffic analysis on
IP networks.

�Martin Roesch

�Sourcefire

� snort-2.8.0.2.tar.gz

� Tue Feb 19 2008

� Linux BSD Windows

�GNU GPL

�www.snort.org

Snort’s 4 Modes

� Sniffer mode
� simply reads the packets off of the network and displays them for

you in a continuous stream on the console (screen).

� Packet Logger mode
� logs the packets to disk

� NIDS mode
� the most complex and configurable configuration, which allows

Snort to analyze network traffic for matches against a user-
defined rule set and performs several actions based upon what it
sees

� Inline mode
� obtains packets from iptables instead of from libpcap and then

causes iptables to drop or pass packets based on Snort rules
that use inline-specific rule types

Snort’s Components

�Packet sniffer

�Packet decoder (1/3 primary subsystems)

�Preprocessors

�Detection engine (2/3 primary subsystems)

�Output modules (Logging and alerting
system, 3/3 primary subsystems)

Snort’s Components’ Relationship

Snort’s Packet Sniffer & Decoder

�Sniffer
�takes packets from NICs

�Ethernet, SLIP, PPP etc.

�raw packet capture
� libpcap

�winpcap

�Decoder
�Prepares packets to preprocessor

�to form internal Snort data structure

�as a uniform basis for later analysis

Snort’s Packet Decoder Calling Diagram

Example of Snort Data Dtructure

DynamicPluginMeta structure

#define TYPE_ENGINE 0x01
#define TYPE_DETECTION 0x02
#define TYPE_PREPROCESSOR 0x04
typedef struct _DynamicPluginMeta
{

int type;
int major;
int minor;
int build;
char uniqueName[MAX_NAME_LEN];
char *libraryPath;

} DynamicPluginMeta;

Snort’s Preprocessors

�Frag3

�Streams

�Flow

�Stream5

�sfPortscan

�RPC Decode

�Performance
Monitor

�SMTP
Preprocessor

�FTP/Telnet
Preprocessor

�SSH
�DEC/RPC
�DNS

Example of Main Preprocessor (Frag3)

� The frag3 preprocessor is a target-based IP defragmentation
module for Snort.

� Target-based analysis is a relatively new concept in network-based
intrusion detection.

� In an environment where the attacker can determine what style of IP
defragmentation is being used on a particular target, the attacker
can try to fragment packets such that the target will put them back
together in a specific manner while any passive systems trying to
model the host traffic have to guess which way the target OS is
going to handle the overlaps and retransmits.

� preprocessor frag3_global: prealloc_nodes 8192
� preprocessor frag3_engine: policy linux, bind_to 192.168.1.0/24
� preprocessor frag3_engine: policy first, bind_to

[10.1.47.0/24,172.16.8.0/24]
� preprocessor frag3_engine: policy last, detect_anomalies

Example of Main Preprocessor (Stream5)

�The Stream5 preprocessor is a target-based
TCP reassembly module for Snort.

� This configuration maps two network segments to
different OS policies, one for Windows and one for
Linux, with all other traffic going to the default policy
of Solaris.

�preprocessor stream5_global: track_tcp yes
�preprocessor stream5_tcp: bind_to 192.168.1.0/24, policy

windows
�preprocessor stream5_tcp: bind_to 10.1.1.0/24, policy linux
�preprocessor stream5_tcp: policy solaris

Example of Main Preprocessor (sfPortscan) (1)

� The sfPortscan module, developed by Sourcefire, is designed to
detect the first phase in a network attack: Reconnaissance.

� In the Reconnaissance phase, an attacker determines what types of
network protocols or services a host supports. This is the traditional
place where a portscan takes place. This phase assumes the
attacking host has no prior knowledge of what protocols or services
are supported by the target; otherwise, this phase would not be
necessary.

� As the attacker has no beforehand knowledge of its intended target,
most queries sent by the attacker will be negative (meaning that the
service ports are closed). In the nature of legitimate network
communications, negative responses from hosts are rare, and rarer
still are multiple negative responses within a given amount of time.
The primary objective in detecting port scans is to detect and track
these negative responses.

Example of Main Preprocessor (sfPortscan) (2)

preprocessor sfportscan: proto <protocols> \
scan_type

<portscan|portsweep|decoy_portscan|distributed_portsc
an|all>\

sense_level <low|medium|high> watch_ip <IP or IP/CIDR>
ignore_scanners <IP list>\

ignore_scanned <IP list> logfile <path and filename>

preprocessor flow: stats_interval 0 hash 2
preprocessor sfportscan: proto { all } \
scan_type { all } \
sense_level { low }

Example of Main Preprocessor (SSH)

�The SSH preprocessor detects the following
exploits: Gobbles, CRC 32, Secure CRT, and
the Protocol Mismatch exploit.

� Looks for attacks on SSH server port 22. Alerts at
19600 bytes within 20 encrypted packets for the
Gobbles/CRC32 exploits.

�preprocessor ssh: server_ports { 22 } max_client_bytes
19600 max_encrypted_packets 20

Example of Main Preprocessor (DNS)

�The DNS preprocessor decodes DNS responses
and can detect the following exploits: DNS Client
RData Overflow, Obsolete Record Types, and
Experimental Record Types.

� Looks for traffic on DNS server port 53. Check for the
DNS Client RData overflow vulnerability. Do not alert
on obsolete or experimental RData record types.

�preprocessor dns: server_ports { 53 } enable_rdata_overflow

Snort’s Detection Engine

�Rules
�Rules Headers
�Rule Options

�alert tcp any any -> 192.168.1.0/24 111\ (content:"|00 01 86
a5|"; msg:"mountd access";)

�Detection plug-ins
�Rule Chain

�Activation
�Dynamic
�Alert
�Pass
� log

RTN: TCP, UDP, ICMP, IP
OTN: Content, Offset, Distance, Within etc.
These components just like the rule chains
in firewalls, e.g. netfilter

Detection Engine Example: IcmpTypeCheck

IcmpTypeCheck PLUG-IN

/**
*
* Function: IcmpTypeCheck(char *, OptTreeNode *)
*
* Purpose: Test the packet's ICMP type field value against the option's
* ICMP type
*
* Arguments: data => argument data
* otn => pointer to the current rule's OTN
*
* Returns: void function
*
**/
int IcmpTypeCheck(Packet *p, struct _OptTreeNode *otn, OptFpList

*fp_list)
{

IcmpTypeCheckData *ds_ptr;
int success = 0;

ds_ptr = otn->ds_list[PLUGIN_ICMP_TYPE];

/* return 0 if we don't have an icmp header */
if(!p->icmph)

return 0;

switch(ds_ptr->operator)
{

case ICMP_TYPE_TEST_EQ:
if (p->icmph->type == ds_ptr->icmp_type)

success = 1;
break;

case ICMP_TYPE_TEST_GT:

if (p->icmph->type > ds_ptr->icmp_type)

success = 1;

break;

case ICMP_TYPE_TEST_LT:

if (p->icmph->type < ds_ptr->icmp_type)

success = 1;

break;

case ICMP_TYPE_TEST_RG:

if (p->icmph->type > ds_ptr->icmp_type &&

p->icmph->type < ds_ptr->icmp_type2)

success = 1;

break;

}

if (success)

{

DEBUG_WRAP(DebugMessage(DEBUG_PLUGIN, "Got icmp type
match!\n"););

return fp_list->next->OptTestFunc(p, otn, fp_list->next);

}

/* return 0 on failed test */

DEBUG_WRAP(DebugMessage(DEBUG_PLUGIN, "Failed icmp code
match!\n"););

return 0;

}

Snort’s Output Modules

�Alert_syslog

�Alert_fast

�Alert_full

�Alert_unixsock

� Log_tcpdump

�Database

�Csv

�Unified

�Unified2

� Log null

�Alert_aruba_action

Example of Database Output Module (DB)

�This module from Jed Pickel sends Snort
data to a variety of SQL databases. These
are mssql, mysql, postgresql, oracle, and
odbc.

�output database: log, mysql, dbname=snort
user=snort host=localhost password=xyz

Example of Database Output Module (unified2)

�The unified2 output plugin is designed to be the
fastest possible method of logging Snort events.
The unified output plugin logs events in binary
format, allowing another programs to handle
complex logging mechanisms that would
otherwise diminish the performance of Snort.

� output alert_unified2: snort.alert, limit 128, nostamp

� output log_unified2: snort.log, limit 128, nostamp

� output unified2: merged.log, limit 128, nostamp

A Simple Test: the Settings

�Debian

�4.0r3 Arch:i386 released on 17-Feb-2008

�Snort

�snort-rules-default 2.3.3-11

�debconf 0.2.80 Syslogd

�libc6 2.3.6-6 libpcap0.8 0.9.3-1

�libpcre3 4.5 snort-common 2.3.3-11

�Logrotate coreutils

A Simple Test: the Attack

�The Metasploit Project
�Metasploit provides useful information to people who

perform penetration testing, IDS signature
development, and exploit research.

�A short use example (≈4mins)
� type: Flash Video

� by: Chris Gates of LearnSecurityOnline.com

� uses the VNC Injection payload to break a locked
Windows desktop and monitor the user.

� http://www.learnsecurityonline.com/vid/MSF3-
VNC/MSF3-VNC.html

A Simple Test: the Payload

� Snort Back Orifice Pre-Preprocessor Remote Exploit

� Listen for a connection and spawn a command shell

� Details of configuration of the attack
� [linux/ids/snortbopre]

� EnableContextEncoding=false

� PAYLOAD=generic/shell_bind_tcp

� ContextInformationFile=

� LPORT=4444

� EncoderDontFallThrough=false

� RHOST=10.10.10.10

� RPORT=9080

� TARGET=0

A Simple Test: the Result

23:02:50

Initialized the Metasploit Framework GUI.

23:02:52

Saved configuration to:
C:\Users\cuistar\AppData\Local/.msf3/config

23:03:18

snortbopre [*] Launching exploit linux/ids/snortbopre...

23:03:18

snortbopre [*] Started bind handler

A Simple Test: the Defense (1)

Before launch msf attack:

s06208150:/var/log/snort# ls -lah
total 12K
drwxr-s--- 2 snort adm 4.0K 2008-03-26 23:25 .
drwxr-xr-x 11 root root 4.0K 2008-03-26 22:10 ..
-rw-r----- 1 snort adm 0 2008-03-05 23:09 alert
-rw-r----- 1 snort adm 344 2008-02-22 14:40 alert.1.gz

And then I issue:

s06208150:/var/log/snort# snort -A fast -c /etc/snort/snort.conf

A simple Test: the Defense (2)

Snort outputs:

Running in IDS mode

Initializing Network Interface eth4

--== Initializing Snort ==--
Initializing Output Plugins!
Decoding Ethernet on interface eth4
Initializing Preprocessors!
Initializing Plug-ins!
Parsing Rules file /etc/snort/snort.conf

+++
Initializing rule chains...
,-----------[Flow Config]----------------------
| Stats Interval: 0
| Hash Method: 2
| Memcap: 10485760
| Rows : 4099
| Overhead Bytes: 16400(%0.16)
`--
……
……

A Simple Test: the Defense (3)

==
Final Flow Statistics
,----[FLOWCACHE STATS]----------
Memcap: 10485760 Overhead Bytes 16400 used(%0.166645)/blocks (17474/7) Overhead blocks: 1

Could Hold: (58579)
IPV4 count: 6 frees: 0 low_time: 1206545212, high_time: 1206545391, diff: 0h:02:59s

finds: 33 reversed: 4(%12.121212)
find_sucess: 27 find_fail: 6 percent_success: (%81.818182) new_flows: 6

Protocol: 1 (%6.060606) finds: 2 reversed: 0(%0.000000)
find_sucess: 1 find_fail: 1 percent_success: (%50.000000) new_flows: 1
Protocol: 6 (%84.848485) finds: 28 reversed: 4(%14.285714)
find_sucess: 26 find_fail: 2 percent_success: (%92.857143) new_flows: 2
Protocol: 17 (%9.090909) finds: 3 reversed: 0(%0.000000)
find_sucess: 0 find_fail: 3 percent_success: (%0.000000) new_flows: 3

Snort exiting
s06208150:/var/log/snort# ls -lah
total 20K
drwxr-s--- 2 snort adm 4.0K 2008-03-26 23:26 .
drwxr-xr-x 11 root root 4.0K 2008-03-26 22:10 ..
-rw-r----- 1 snort adm 125 2008-03-26 23:27 alert
-rw-r----- 1 snort adm 344 2008-02-22 14:40 alert.1.gz
-rw------- 1 root adm 1.2K 2008-03-26 23:27 tcpdump.log.1206545197

A Simple Test: the Defense (4)

s06208150:/var/log/snort# cat alert

03/26-23:27:06.292693 [**] [105:1:1]
(spo_bo) Back Orifice Traffic detected [**]
{UDP} 10.10.10.1:60649 ->
10.10.10.10:9080

�The content tell us that the attack was
captured and stored in the alert file for
later analysis.

A Simple Test: the Hero

bo: Back Orifice detector

Detects Back Orifice traffic on the network. This

preprocessor
uses the Back Orifice "encryption" algorithm to search

for
traffic conforming to the Back Orifice protocol (not

BO2K).
This preprocessor can take two arguments. The first

is "-nobrute"
which turns off the plugin´s brute forcing routine

(brute forces
the key space of the protocol to find BO traffic). The

second
argument that can be passed to the routine is a

number to use
as the default key when trying to decrypt the

traffic. The
default value is 31337 (just like BO). Be aware that

turning on
the brute forcing option runs the risk of impacting the

overall
performance of Snort, you´ve been warned...
The Back Orifice detector uses Generator ID 105 and

uses the
following SIDS for that GID:
SID Event description
----- -------------------
1 Back Orifice traffic detected

preprocessor bo

preprocessor frag3_global: max_frags 65536
preprocessor frag3_engine: policy first

detect_anomalies
preprocessor stream5_global: max_tcp 8192, track_tcp

yes, \
#preprocessor stream5_tcp: policy first,

use_static_footprint_sizes
preprocessor http_inspect: global \
preprocessor http_inspect_server: server default \
preprocessor ftp_telnet: global \
preprocessor ftp_telnet_protocol: telnet \
preprocessor ftp_telnet_protocol: ftp server default \
preprocessor ftp_telnet_protocol: ftp client default \
preprocessor smtp: \
preprocessor sfportscan: proto { all } \
preprocessor dcerpc: \
preprocessor dns: \

A Simple Test: the Hero’s Mother

�It's You!

�You are the person who know the
importance of security, you are the person
who know the value of security

�Security will grow flourish with your
understanding, and your support

�Security is necessary and is good for
every one

A Simple Test: Conclusion

�Technical/policy view

�If the target has not patched up to date and
be protected well by different security
mechanisms, it will be cracked finally, if the
there is enough time.

�Business/management view

�Information security just like insurance, extra
security need extra cost, continuous security
need continuous pay.

References (1)

� http://www.cert.org/archive/pdf/IEEE_IDS.pdf
� http://dcs.ics.forth.gr/Activities/papers/digenis_new.pdf
� http://woozle.org/~mfisk/papers/setmatch-raid.pdf
� http://www.win.tue.nl/~watson/2R080/opdracht/p333-aho-corasick.pdf
� http://www.informit.com/content/images/0131407333/downloads/0131407333.pdf
� http://www.nersc.gov/nusers/security/TheSpinningCube.php
� http://www.raid-symposium.org/raid98/Prog_RAID98/Full_Papers/Sommer_text.pdf
� http://www.snort.org/
� http://hms.harvard.edu/hmsit/pg.asp?pn=security_glossary
� http://articles.techrepublic.com.com/5100-10925_11-6045911.html
� http://linuxmafia.com/presentations/linuxids-xga-sf/img0.html
� http://www.cisco.com/en/US/i/000001-100000/90001-95000/92001-93000/92614.jpg
� http://www.cs.chalmers.se/~sax/pub/survey.ps
� http://www.cisco.com/en/US/i/000001-100000/95001-100000/97001-98000/97332.jpg
� http://netlab.hut.fi/opetus/s38310/02-03/jussila_060503.pdf
� http://westlabp4-7.poly.edu/CS682-Network_Security_Projects/2006-ise-spring-

studentsPresentations/08-IDS/IDS-Presentation.ppt
� http://blogs.techrepublic.com.com/security/images/windows%20kernel%20mode.jpg
� http://www.securityfocus.com/infocus/1514
� http://en.wikipedia.org/wiki/Image:IP_stack_connections.svg
� http://www.yesky.com/14/1815014.shtml
� http://www.learnsecurityonline.com/vid/MSF3-VNC/MSF3-VNC.html

References (2)

� http://219.238.6.200/article?code=jos181639&jccode=52
� http://www.cc.gt.atl.ga.us/~wenke/papers/sasn.pdf
� http://www.yesky.com/14/1815014.shtml
� http://en.wikipedia.org/wiki/False_positive
� http://www.snenug.org/ppt/2005/Susan%20Young%20Snort_presentation_v1.14.ppt
� http://www.blackhat.com/presentations/bh-usa-01/MartyRoesch/bh-usa-01-Marty-

Roesch.ppt
� http://www.securityfocus.com/infocus/1577
� http://www.sans.org/resources/idfaq/polymorphic_shell.php
� http://en.wikipedia.org/wiki/Polymorphic_code
� http://csrc.ncsl.nist.gov/publications/nistpubs/800-94/SP800-94.pdf
� http://en.wikipedia.org/wiki/Directory_traversal
� http://www.mcafee.com/us/local_content/white_papers/wp_ddt_anomaly.pdf
� http://packetstormsecurity.nl/distributed/stick.htm
� http://www.iv2-technologies.com/~rbidou/HowToTestAnIPS.pdf
� http://www.ussrback.com/docs/papers/IDS/whiskerids.html
� http://www.securityfocus.com/infocus/1577
� http://en.wikipedia.org/wiki/Intrusion_detection_system_evasion_techniques
� http://www.linuxjournal.com/files/linuxjournal.com/linuxjournal/articles/046/4668/4668f2.png
� http://www.ll.mit.edu/IST/ideval/data/1999/1999_data_index.html
� http://www.fistconference.org/data/presentaciones/idswithartificialintelligence.pdf
� http://home.eng.iastate.edu/~julied/publications/NAFIPSpaper2000.pdf

END

�Q&A

�≈15 mins

�Thanks

�My professor: John C.S. Lui

�My classmates: every mate

�Thank you for allotting time to me

�Thanks again!

�Bye!!

About the Project

�Founded in 1999

�International

�non-profit (501c3) *

�research organization

�dedicated to improving Internet security

�Very active

*501(c) is a provision of the United States Internal Revenue Code (26 U.S.C. §
501(c)), listing twenty-seven types of non-profit organizations exempt from some
Federal income taxes

About the Project: Goal

�Goal

�Simply put

�to make a difference

�Fully put

� to improve the security of the Internet by sharing
lessons learned about the most common threats

�Open Sourced

�at no cost to the public

About the Project: Approaches

� Awareness
� raise awareness of the threats and vulnerabilities

� series of papers: Know Your Enemy

� Information
� provide details to better secure and defend resources

� series of papers: Know Your Enemy

� address of problems: Scan of the Month

� Tools
� provide tools and techniques

� honeypots & honeynets etc.

About the Project: Activities

�From it’s establishment in 1999

�On average

�News releases, 1/wk

�25 Online Articles or Whitepapers, 3.14/yr

�41 Academic or Scientific Papers, 5.85/yr

�18 Conference Presentations, 2.57/yr

�15 tools, 2.14/yr

�1 book, Know Your Enemy, 2nd Edition

About the Project: Challenges

�Scan of the Month Challenges
� decode attacks in the wild
� 90MB, monthly

�The Reverse Challenge
� decode binaries captured in the wild
� 27MB, 06 May to 31 May, 2002

�The Forensic Challenge
� conduct full forensic analysises in the wild
� 12MB, 15 January to 19 February of 2001

BACK

