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Introduction

Introduction

What is network calculus?
A theoretical framework to analyze performance guarantees (e.g.,
maximum delays, maximum buffer space requirements) in
computer network.
As traffic flows through a network, it is subject to constraints such
as:

link capacity;
traffic shapers (e.g., leaky buckets);
congestion control;
background traffic.

Express arrival, service and these constraints in a systematic
manner (network calculus);
key idea is to use the min-plus algebra.
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Introduction

Outline

Various Sections
The basic (σ, ρ) constraints, performance bounds of single queue.
General constraint of deterministic constraint.
Application to service curves.
Given the input traffic and service curves, how to derive maximum
delay for any server that conforms to the service curve.
Applications: (a) bounding the maximum delay of a priority queue;
(b) scheduling service at a constant rate link with multiple input
streams in order to achieve a specified service curve.
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The (σ, ρ) constraints

Upper Constrained Arrival Process

For simplicity, assume equal length packets transmitted in discrete
time.
A cumulative arrival process A is a nondecreasing, integer-valued
function on the nonnegative integer Z+ such that A(0) = 0.
A(t) denotes the number of arrivals in slots 1, 2, . . . , t .
a(t) is the number of arrivals at time t and a(t) = A(t)− A(t − 1).
We said A is (σ, ρ)-upper constrained (or A ∼ (σ, ρ)) if

A(t)− A(s) ≤ σ + ρ(t − s), 0 ≤ s ≤ t .

In this lecture, σ, ρ are taken to be integer valued.
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The (σ, ρ) constraints

Example of A and (σ, ρ)
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The (σ, ρ) constraints

Token Bucket Filter

Token bucket filter, a popular way to regular data streams and to
generate (σ, ρ)−upper constrained traffic.

Definition
A token bucket filter (with no dropping) with (σ, ρ) operates like:

The filter has infinite queue length and a token bucket.
Events occur at integer time. New packets are added to the
queue, and ρ new tokens are added to the token bucket.
As many packets immediately depart if each packet has a token.
If there are more than σ tokens in the bucket, drop some tokens
until we have only σ tokens.
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The (σ, ρ) constraints

Observation
A token bucket filter with parameter (σ, ρ) is a (σ, ρ) regulator. Or for
any input process A, the output process B is (σ, ρ)-upper constrained.

Since at most σ tokens are in the bucket just before s + 1.
And ρ(t − s) tokens arrive in slots s + 1, . . . , t .
At most σ + ρ(t − s) packets can depart from the filter in those
slots.
B is indeed upper constrained by (σ, ρ).

Multiplexing Rule
If constrained flows are merged, the output process is also
constrained, or

Ai ∼ (σi , ρi) −→
∑

Ai ∼
(∑

σi ,
∑

ρi

)
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The (σ, ρ) constraints

Performance bounds of constant server under
A ∼ (σ, ρ)

What are the performance bounds, i.e., duration of busy period, packet
delay, for a constant server under A ∼ (σ, ρ)?

A single server with a constant service rate of C (positive integer).
Let A be the cumulative arrival process.
Let q(t) be the queue length at time slot t . We have:

q(t + 1) = (q(t) + a(t + 1)− C)+

with q(0) = 0.
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The (σ, ρ) constraints

Performance bounds: continue

Using induction on t , we have

q(t) = max
0≤s≤t

{A(t)− A(s)− C(t − s)} (1)

Show by induction: first, q(0) = 0.

q(1) = max(0, q(0) + a(1)− C) = max
0≤s≤1

(A(1)− A(s)− C(1− s)).

Suppose it holds for t , it follows

q(t + 1) = max{0, max
0≤s≤t

{A(t)− A(s)− C(t − s)}+ a(t + 1)− C}

= max{0, max
0≤s≤t

{A(t + 1)− A(s)− C(t + 1− s)}}

= max
0≤s≤t+1

{A(t + 1)− A(s)− C(t + 1− s)}.
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The (σ, ρ) constraints

Performance bounds: continue:

The output cumulative process B satisfies:

B(t) = A(t)− q(t) = min
0≤s≤t

{A(s) + C(t − s)} ∀t ≥ 0.

Queue Length Bound: Suppose A is (σ, ρ)-upper constrained, if
C ≥ ρ, Eq (1) implies q(t) ≤ σ for all t . (implication: We obtain the
bound, independent of the service order)
Conversely, if C = ρ and q(t) ≤ σ for all t , then A ∼ (σ, ρ).
(implication: if we can control q(t), we specify the envelop of A)
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The (σ, ρ) constraints

Performance bounds: continue

We want to derive upper bound of
busy period;
packet delay

when A ∼ (σ, ρ).

Definition (Busy Period)
Given time s and t with s ≤ t , a busy period is said to begin at s and
end at t if q(s − 1) = 0, a(s) > 0, q(r) > 0 for s ≤ r < t and q(t) = 0.
The duration B of the busy period to be B = t − s time units.
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The (σ, ρ) constraints

Performance bound: continue

Observation
Given such busy period, we must have

C departures at each of the B times {s, . . . , t − 1}.
At least one packet in the queue at time t − 1.
At least CB + 1 packets must arrive at times {s, . . . , t − 1} to
sustain the busy period.

Since A ∼ (σ, ρ), we have at most σ + ρB packets arrive in B. We have
CB + 1 ≤ σ + ρB, we have B ≤ σ−1

C−ρ . If B is an integer, it must be

B ≤ b σ − 1
C − ρ

c.
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The (σ, ρ) constraints

Performance bound: continue

Delay Bound
The delay of a packet is the time the packet departs minus the
time it arrives.
The delay of any packet is less than or equal to the length of the
busy period.

Thus, the upper of the packet delay d , independent of service
discipline, is:

d ≤ b σ − 1
C − ρ

c.

If one unit of service time is added, we have

d + 1 ≤ b σ − 1
C − ρ

c ≤ d σ

C − ρ
e
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The (σ, ρ) constraints

Performance bound: continue

What if the service discipline is FIFO?
If the packet has a nonzero waiting time, then it is carried over
from the time it first arrived to the next time slot.
The total number of packets carried over, including this packet, is
less than or equal to σ (shown after Eq. (1)).
The delay of FIFO is:

dFIFO = d σ

C
e.

If service time is included, we have to add 1 to the above
expression.
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The (σ, ρ) constraints

Output Analysis 1

If A ∼ (σ, ρ) and delay bound d , what about the output B?
Let say we know the maximum delay of the queue is d .
For s < t , any packets that departs from the queue at a time in
{s + 1, . . . , t} must arrive at one of the t − s + d times in
{s + 1− d , . . . , t}.
Therefore, output process based on delay bound d is

B(t)− B(s) ≤ A(t)− A(s − d) ≤ σ + ρd + ρ(t − s).

Therefore, B ∼ (σ + ρd , ρ)-upper constrained.
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The (σ, ρ) constraints

Output Analysis 2

If A ∼ (σ, ρ) and queue length bound q, what about the output B?
Let say we know the maximum queue length is q.
Let q(t) be the queue length at time t , we have

B(t)− B(s) = A(t)− A(s)− (q(t)− q(s))

≤ A(t)− A(s) + q(s) ≤ σ + ρ(t − s) + q
≤ σ + q + ρ(t − s)

Therefore, output process based on queue length bound q is
B ∼ (σ + q, ρ)-upper constrained.
Now we characterized B, B is fed into another queue and we can
continue to do the delay analysis.
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The (σ, ρ) constraints

Output analysis 3

If A ∼ (σ, ρ) and the server is work conserving, what about the
output B?

Assume it is a work conserving link with capacity C, we have

B(s) = min
0≤τ≤s

[A(τ) + C(s − τ)] ; B(t) = min
0≤τ≤t

[A(τ) + C(t − τ)]

Let τ∗ be the argument which achieves the minimum in B(s). We
have B(s) = A(τ∗) + C(s − τ∗) and
B(t) ≤ A(t − s + τ∗) + C(s − τ∗) (by choosing τ = t − s + τ∗). We
have

B(t)− B(s) ≤ A(t − s + τ∗) + C(s − τ∗)− A(τ∗)− C(s − τ∗)

= A(t − s + τ∗)− A(τ∗) ≤ σ + ρ(t − s)

Output process based on work conservation, B is (σ, ρ)−upper
constrained
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The (σ, ρ) constraints

Routing

P(n)

A(t) B(t)
Router

Definition
An ideal router is a network element with
one input A, one control input P, one output
B such that B = P(A(t)) where A(t) is the
cumulative number of arrival by time t , P(n)
is the number of arrivals that are selected
among the first n arrivals, and B(t) as the
cumulative departures by time t . In other
words, the cumulative number of output by
time t is the cumulative number of arrivals
selected by time t .
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The (σ, ρ) constraints

Characterization of router’s output

Lemma
For an ideal router, if A ∼ (σ, ρ)−upper constrained and
P ∼ (δ, γ)−upper constrained, then B ∼ (γσ + δ, γρ)− upper
constrained.

Proof
Observe that

B(t)− B(s) = P(A(t))− P(A(s))

≤ δ + γ(A(t)− A(s))

≤ δ + γ(σ + ρ(t − s))

= δ + γσ + γρ(t − s)
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The (σ, ρ) constraints

Application: feed-forward network

A1 ∼(σ 1,ρ1)

A2 ∼(σ 2,ρ2) A3 ∼(σ 3,ρ3)

C1 C2 C3

Parameters
C1 = C2 = C3 = 4
Arrival processes are (σk , ρk )−upper constrained with
(σ1, ρ1) = (1, 2), (σ2, ρ2) = (2, 1), (σ3, ρ3) = (3, 2).
Routing, as indicated in the figure.
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The (σ, ρ) constraints

Analysis on the 1st communication link
Based on the multiplexing rule, the overall arrival to link 1 is
(σ1 + σ2, ρ1 + ρ2)−upper constrained, or (3, 3).
Since ρ1 + ρ2 = 3 < C1 = 4, using the delay bound result after Eq.
(1), the maximum queue length q1 in the first link is upper
bounded by q1 = σ1 + σ2 = 3, and using the delay bound result,
we have d1 = d(σ1 + σ2)/(C1 − ρ1 − ρ2)e = 3.
Let B1 be the output process. Since A2 will not affect the second
link, we only need to consider A1. Using the bounding output
process based on queue length, we have
B1 ∼ (σ1 + q1, ρ1) = (4, 2)−upper constrained.
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The (σ, ρ) constraints

Analysis on the 2nd communication link
Based on the multiplexing rule, since B1 ∼ (4, 2) and A3 ∼ (3, 2),
we have A ∼ (7, 4)−upper constrained.
Because 4 is equal to C2, the maximum queue length q2 = 7.
Since C2 = 4, we cannot use the delay bound result (since
C − ρ = 0 in the denominator). If this link uses FCFS discipline,
we have d2 = d7/4e = 2.
The output process B2, based on bounding output process based
on work conserving link is B2 ∼ (7, 4)−upper constrained.
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The (σ, ρ) constraints

Analysis on the 3rd communication link
Arrival process to this link is same as B2, therefore (7, 4)−upper
constrained.
Based on the established theory, bound on q3 = σ = 7.
Note that this bound is too loose. Why?
Since C2 = C3 = 4, it means at most 4 packets come out from the
2nd link and these packets will be immediately served at the 3rd
link.

Interesting questions
Can we refine the theory to obtain tighter bound?
What about communication systems with feedback?
What about multi-class communication networks?
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The (σ, ρ) constraints

Single class non-feed-forward routing

Definition
For any increasing sequence A, we define its
"stopped sequence" at time τ , denoted as
Aτ , by

Aτ (t) =

{
A(t) if t ≤ τ ,
A(τ) otherwise

(2)

A(t)

Aτ(t)

τ

comment
If A is an arrival process, then there are no further arrivals after time τ
for the stopped sequence Aτ .
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The (σ, ρ) constraints

Traffic characterization of Aτ

Lemma
For every ρ, a stopped sequence Aτ is (σ(τ), ρ)−upper constrained
where

σ(τ) = max
0≤t≤τ

max
0≤s≤t

[A(t)− A(s)− ρ(t − s)] . (3)

Proof
As the sequence Aτ is stopped at time τ , σ(τ) is the maximum queue
length of a work conserving link with capacity ρ and input Aτ .
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The (σ, ρ) constraints

Traffic characterization of Aτ : continue

Corollary
If Aτ is (σ, ρ)−upper constrained, then σ(τ) ≤ σ, where σ(τ) is defined
in Eq. (3).

Proof
If Aτ is (σ, ρ)−upper constrained, then for all 0 ≤ s ≤ t ≤ τ ,

A(t)− A(s) = Aτ (t)− Aτ (s) ≤ σ + ρ(t − s).

That σ(τ) ≤ σ follows immediately from Eq.(3).
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The (σ, ρ) constraints

Example of feedback queues
Consider the following network:

A1 ∼(σ 1,ρ1)

A2 ∼(σ 2,ρ2)

C1

C2

B1(t)

B2(t)

P12(B1(t))

P21(B2(t))

A1 ∼ (σ1, ρ1), A2 ∼ (σ2, ρ2), P12 ∼ (δ12, γ12), P21 ∼ (δ21, γ21).
What is the performance of the system? Say the queue length
bound?
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The (σ, ρ) constraints

Analysis
Let Ã1 (Ã2) be the overall arrival process of the first (second) link and B1
(B2) be the respective output process. We have

Ã1(t) = A1(t) + P21(B2(t)), (4)
Ã2(t) = A2(t) + P12(B1(t)). (5)

The main idea to for the analysis is to derive the performance bounds for
a finite time τ and show the bounds are independent of τ .
Let Bτ

1 (Bτ
2 ) be the stopped sequence of B1 (B2) at time τ .

It follows that for "any" α1, Bτ
1 ∼ (σ1(τ), α1).

σ1(τ) = max
0≤t≤τ

max
0≤s≤t

[B1(t)− B1(s)− α1(t − s)].

Similarly, for "any" α2, Bτ
2 ∼ (σ2(τ), α2).

σ2(τ) = max
0≤t≤τ

max
0≤s≤t

[B2(t)− B2(s)− α2(t − s)].
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The (σ, ρ) constraints

Analysis: continue
Solve α1 and α2: α1 = ρ1 + γ21α2; α2 = ρ2 + γ12α1.

Assume γ12γ21 < 1, we have:

α1 = (1− γ12γ21)
−1(ρ1 + γ21ρ2); α2 = (1− γ12γ21)

−1(ρ2 + γ12ρ1).

Using the routing and multiplexing rules we discussed:

Ã1 ∼ (σ1 + γ21σ2(τ) + δ21, ρ1 + γ21α2),

Bτ
1 ∼ (σ1 + γ21σ2(τ) + δ21, ρ1 + γ21α2)

Since we solved α1, α2, we can say that Bτ
1 is

(σ1 + γ21σ2(τ) + δ21, α1)−upper constrained. It follows that

σ1(τ) ≤ σ1 + γ21σ2(τ) + δ21.

Using similar argument, we can characterize Bτ
2 :

σ2(τ) ≤ σ2 + γ12σ1(τ) + δ12.
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The (σ, ρ) constraints

Analysis: continue

Solving the above equations results in σ1(τ) ≤ σ̃1 and σ2(τ) ≤ σ̃2 where

σ̃1 = (1− γ12γ21)
−1(σ1 + γ21σ2 + γ21δ12 + δ21),

σ̃2 = (1− γ12γ21)
−1(σ2 + γ12σ1 + γ12δ21 + δ12).

These bounds are independent of τ !! So B1 is (σ̃1, α1)−upper
constrained and B2 is (σ̃2, α2)−upper constrained.

This in turn implies that Ã1 is (σ1 + γ21σ̃2 + δ21, α1)− upper constrained
and Ã2 is (σ2 + γ12σ̃1 + δ12, α2)− upper constrained.

Queue length in server 1 is bounded by σ1 + γ21σ̃2 + δ21 if
σ1 = (1− γ12γ21)

−1(ρ1 + γ21ρ2) ≤ C1,

Queue length in server 2 is bounded by σ2 + γ12σ̃1 + δ12 if
σ2 = (1− γ12γ21)

−1(ρ2 + γ12ρ1) ≤ C2.
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f−upper constrained processes

Generalization of (σ, ρ)

f−upper constraint processes
Let f be a nondecreasing function from Z+ to Z+.
An arrival process A is f−upper constrained if

A(t)− A(s) ≤ f (t − s) for all s, t with 0 ≤ s ≤ t

Rearranging, A is f−upper constrained iff A(t) ≤ A(s) + f (t − s) for
0 ≤ s ≤ t , or A ≤ A ? f , where f ? g is the function on Z+ defined as

(f ? g) = min
0≤s≤t

g(s) + f (t − s). (6)

Similar to "convolution", the min-plus algebra uses min instead of
integration, + instead of multiplication. ILLUSTRATE!
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f−upper constrained processes

Comments on f ∗

Some Comments
Some functions can be reduced without changing the condition
that an arrival process is f−upper constrained, e.g., f (0) = 0
because A(t)− A(t) = 0 anyway.
Suppose A is f−upper constrained and s, u ≥ 0, then
A(s + u)− A(s) ≤ f (u) but a tighter bound may be implied. Let
n ≥ 1 and u is represented as u = u1 + · · ·+ un where ui ≥ 1 and
integer, then

A(s + u)− A(s) = (A(s + u1)− A(s)) + (A(s + u1 + u2)− A(s + u1))

+ · · ·+ (A(s + u1 + · · ·+ un)− A(s + u1 + · · ·+ un−1))

≤ f (u1) + f (u2) + · · ·+ f (un).
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f−upper constrained processes

Sub-additive Closure

So A(t)− A(s) ≤ f ∗(t − s), where f ∗ is the sub-additive closure of f , is
defined by

f ∗(u) =

{
0 if u = 0
min{f (u1) + · · ·+ f (un) : n ≥ 1, ui ≥ 1,

∑
i ui = u} if u ≥ 1.
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f−upper constrained processes

+roperties on f ∗

Properties
1 f ∗ ≤ f
2 A is f−upper constrained iff A is f ∗−upper constrained
3 f ∗ is sub-additive, f ∗(s + t) ≤ f ∗(s) + f ∗(t) for all s, t ≥ 0
4 If g is any other function with g(0) = 0 satisfying (1) and (3), then

g ≤ f ∗

Illustrate
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f−upper constrained processes

Maximal regulator for f

Definition (Regulator for f )
A regulator for f is a service center such that for any input A, the
corresponding output B is f−upper constrained.

Definition (Maximal Regulator for f )
A regulator is said to be a maximal regulator for f if the following is
true. For any input A, if B is the output of the regulator for input A and if
B̃ is a cumulative arrival process such that B̃ ≤ A and B̃ is f−upper
constrained, then B̃ ≤ B.
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f−upper constrained processes

Finding the maximal regulator for f

Theorem
A maximal regulator for f is determined by B = A ? f ∗.

Proof
Let A, B, and B̃ be as in the definition of the maximal regulator, then

B̃ = B̃ ? f ∗ ≤ A ? f ∗ = B (7)

First equality holds because B̃ is f−upper constrained.
Inequality holds because ?f ∗ is a monotone operation.
The final equality holds by the definition of B.
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f−upper constrained processes

Continue

Corollary
Suppose f1 and f2 are nondecreasing functions on Z+ with f1(0) = f2(0) = 0.
Two maximal regulators in series, consisting of a maximal regulator of f1
followed by a maximal regulator for f2, is a maximal regulator for f1 ? f2. In
particular, the output is the same if the order of the two regulators is reversed.

Proof
Let A be in the input to the first regulator and B is the output of the second
regulator, then

B = (A ? f ∗1 ) ? f ∗2 = A ? (f ∗1 ? f ∗2 ) = A ? (f1 ? f2)∗. (8)

The last equality depends on the assumption f1(0) = f2(0) = 0.
The second part of the theorem is by the uniqueness of maximal regulators
and the fact f1 ? f2 = f2 ? f1.
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f−upper constrained processes

Maximal regulator for token bucket filter

Theorem
The token bucket filter with parameter (σ, ρ) is the maximal (σ, ρ)
regulator.
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Service Curve

Introduction

What we have learnt
So far, we have considered passing a constrained process into a
maximal regulator.
Examples of maximal regulators are token bucket, queue with
fixed service rate.
Output of these servers is completely determined by the input.
In practice, there can be many other types of servers, and server
may have priority in selecting with traffic to serve first.
What we need is a flexible way to specify a guarantee that a
particular server offers.

John C.S. Lui (CUHK) Advanced Topics in Network Analysis 44 / 59



Service Curve

Service curve

Most service centers are not fixed rate server or token bucket filter, we
need a flexible way to specify a service behavior.

Definition (Service Curve)
A service curve is a nondecreasing function from Z+ to Z+. Given a
service curve f , a server is an f−server if for any input A, the output B
satisfies B ≥ A ? f . That is:

B(t) ≥ min
0≤s≤t

{A(s) + f (t − s)}
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Service Curve

comment on service curves under study

Comments
For “regulator”, we can completely specify the output process B.
For “service curve”, we get the “inequality” only.
We only consider servers such that B(t) ≤ A(t) (or causality), and
it is assumed that A(0) = 0. Take s = t in the above equation
implies B(t) ≥ A(t) + f (0) and this can only happen when
f (0) = 0.
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Service Curve

Examples

Different servers
Given an integer d ≥ 0, define

Od(t) =

{
0 for t ≤ d ,
+∞ for t > d .

Then a FIFO device is an Od−server iff the delay for every
packets is less than or equal to d , independent of A.
A server with constant service rate C is an f server for f (t) = Ct .
A leaky bucket regulator is an f server for f (t) = (σ + ρt)I{t≥1}.
The maximal regulator for a function f is an f ∗−server.

John C.S. Lui (CUHK) Advanced Topics in Network Analysis 47 / 59



Service Curve

Some definitions

Suppose an f1−upper constrained process A passes through an
f2−server. We define:

Definition (dV )

dV = max
t≥0

(f ∗1 (t)− f2(t)) ,

or dV is the maximum vertical distance that the graph f ∗1 is above f2.

Definition (dH)

dH = max {d ≥ 0 : f1(t) ≤ f2(t + d)for all t ≥ 0} ,

or dH is the maximum horizontal distance that the graph d2 is to the
right of f ∗1 .
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Service Curve

Characterization

Theorem
Let A be f1−upper constrained passing through an f2−server with
output process B. The queue size A(t)− B(t) is less than or equal to
dV for any t ≥ 0, and if the order of service is FIFO, the delay of any
packet is less than or equal to dH .
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Service Curve

Proof
Let t ≥ 0. Since it is an f2−server, there exists an s∗ with
0 ≤ s∗ ≤ t such that B(t) ≥ A(t − s∗) + fs(s∗). Because A is
f1−upper constrained, A(t) ≤ A(t − s∗) + f ∗1 (s∗). Thus,
A(t)− B(t) ≤ f ∗1 (s∗)− f2(s∗) ≤ dv .
Suppose a packet arrives at time t and departs at time t̄ > t . Then
A(t) > B(̄t − 1). Since the server is f2−server, there exists an s∗

with 0 ≤ s∗ ≤ t̄ − 1 such that B(̄t − 1) ≥ A(s∗) + f2(̄t − 1− s∗).
Because A(t) > B(̄t − 1), it must be that 0 ≤ s∗ ≤ t . Since A is
f1−upper constrained, we have:

A(s∗) + f1(t − s∗) ≥ A(t) ≥ B(̄t − 1) ≥ A(s∗) + f2(̄t − 1− s∗).

so that f1(t − s∗) > f2(̄t − 1− s∗). Hence t̄ − 1− t < dH , so
t̄ − t < dH .
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Example

Consider a server of constant rate C which servers input streams 1
and 2, giving priority to packets from input 1, and serves the packets
within a single input stream in FIFO order. Let Ai be the cumulative
arrival stream of input i .

Claim

If A1 is f1−upper constrained, the link is an f̃2−server for type 2
stream, where

f̃2(t) = (Ct − f1(t))
+ .
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Example

Suppose Ai is (σi , ρi) constrained for each i . Then
f̃ (t) = ((C − ρ1)t − σ1)

+. Applying previous result to yield the
delay for any packet in input 2 is less than or equal to
(σ1 + σ2)/(C − ρ1). Since packets in input 1 are not affected by
the packets from input 2, the delay for any packet in input 1 is less
than or equal to dσ1/Ce.
If queue were served in FIFO order, then the maximum delay for
packets from either input is dσ1+σ2

C e. If σ1 is much smaller than σ2,
the delay for input 1 packets is much smaller for the priority server
than for the FIFO server.
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Service Curve Earliest Deadline (SCED)

Suppose there are multiple input streams on the constant rate link to
meet specified service curves for each input. Let the i th input has a
cumulative arrival process Ai which is known to be gi−upper
constrained and supposed that the i th input wants to receive service
conforming to a specified service curve fi . The question is, what is the
algorithm to achieve the above goal?
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Service Curve Earliest Deadline (SCED)

SCED
Under SCED, for each input stream i let Ni(t) = Ai(t) ? fi . Then
Ni(t) is the minimum number of type i packets that must depart by
time t in order that the input i see service curve fi . Based on this,
the deadline can be computed for each packet of input i .
Specifically, the deadline for the k th packet from input i is the
minimum t such that Ni(t) ≥ k . In other words, if all packets are
scheduled by their deadlines, then all service curve constraints
are met.
Given any arrival sequence with deadlines, if it is possible for an
algorithm to meet all the deadlines, then the earliest deadline
first (EDF) scheduling can do it. The SCED is to put deadlines on
the packets and use EDF.
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SCED Scheduling

Theorem
Given gi , fi for each i and capacity C satisfying

n∑
i=1

(gi ? fi)(t) ≤ Ct ∀t ,

the service to each input stream i provided by the SCED scheduling
algorithm conforms to service curve fi .
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Proof
Fix a time t0 ≥ 1. Let say all packets with deadline t0 or earlier are
colored red, while all other packets are colored white. For any time
t ≥ 0, let q0(t) denote the number of red packets that are not
scheduled by t0. Since EDF is used, red packets have pure priority
over the white packets, so q0 is the queue length process in case
all white packets are all ignored. We need to show q0(t0) = 0.
For 0 ≤ s ≤ t0 − 1, the number of red packets that arrive from
stream i in the set of times {s + 1, · · · , t0} is (Ni(t0)− Ai(s))+.
Also, Ni(t0) ≤ Ai(t0). Therefore

q0(t0) = max
0≤s≤t0

{∑
i

(Ni(t0)− Ai(s))+

}
− C(t0 − s).
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Continue:

Proof: continue
For any s with 1 ≤ s ≤ t0,

Ni(t0) = (Ai ? fi)(t0) ≤ (Ai ? gi ? fi)(t0)
= min

0≤u≤t0
Ai(u) + (gi ? fi)(t0 − u) ≤ Ai(s) + (gi ? fi)(t0 − s)

It follows that∑
i

(Ni(t0)− Ai(s))+ ≤
∑

i

(gi ? fi)(t0 − s) ≤ C(t0 − s).

So q0(t0) = 0 and the proposition is proved.

John C.S. Lui (CUHK) Advanced Topics in Network Analysis 57 / 59



Service Curve

Example
Consider the following network:

A1 ∼(σ 1,ρ1)

A2 ∼(σ 2,ρ2) A3 ∼(σ 3,ρ3)

C1 C2B1

priority to A3

We have ρ1 + ρ2 ≤ C1 and ρ1 + ρ3 ≤ C2. The first server is FIFO
server. The second server gives priority to A3 but is FIFO in within
each class. (σi , ρi) = (4, 2) for 1 ≤ i ≤ 3 and C1 = C2 = 5.
(a) What is the maximum delay d1 ? (b) Characterize B1. (c) What
is the maximum delay of stream 1 in the second queue?
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Solution:
The total arrival stream to the first queue is
(σ1 + σ2, ρ1 + ρ2)−upper constrained. Since the server is FIFO,
d1 = d(σ1 + σ2)/C1e = 2.
B ∼ (σ1 + ρ1d1, ρ1)−upper constrained.
Let d2

1 , be the delay of the lower priority stream for a FIFO server
is:

d2
1 ≤ (σ1 + ρ1d1) + σ3

C3 − ρ3
=

12
3

= 4.
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