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ABSTRACT

We model some queuing systems arising in guaranteed ser-
vice networks (such as RSVP/IP or ATM) as non-linear min-
plus systems that can be bounded by linear systems. We ap-
ply this method to the window flow control problem previ-
ously studied by Chang, Agrawal and Rajan, to the optimal
smoothing of video through a network offering guaranteed
service. We revisit the greedy shaper, and we also show how
the same method enables us to compute the losses in a shaper
by modelling it as a linear min-plus system. Finally, we de-
scribe the time-varying shaper.

1. INTRODUCTION

This second of two companion papers reviews some results
of network calculus at the level of system description [7, 8].
The notations we used are defined in [1]. The cornerstone
of this paper is a central result of min-plus algebra which de-
scribes the solution of a system of inequations using the con-
cept of closure of an operator [4] (Theorem 1 in Section 3).
It is equivalent to the description of a system (or circuit) by
a set of ordinary differential equations in traditional system
theory.

We use this result to propose a systematic method for mod-
eling a number of situations arising in communication net-
works. In Section 2 we present our framework for system
modelling; it relies on standard concepts and results from
min-plus algebra. Then we introduce a family of min-plus
linear, time-varying and idempotent operators which are use-
ful for modelling a number of systems. They can be used in
particular to represent systems with losses.

We will apply this modelling and the results from Section 3
to the following examples.

Example 1: Greedy lossless traffic shaper

Let us return to the example of a greedy shaper. We have
seen in [1] that a greedy shaper is a device that forces an in-
put flow a(t) to have an outputx(t) which has� as arrival
curve, at the expense of possibly delaying bits in the buffer.
We assume that that� is sub-additive and such that�(0) = 0

(If it is not the case,� should be replaced by its sub-additive
closure [1]� = inff�0; �; � 
 �; : : : ; �(n); : : : g where�(n) = �
: : :
� (n times) and�0 is the ‘impulse’ function
defined by�0(t) =1 for t > 0 and�0(0) = 0).

The output of the shaper is therefore such thatx(t) � a(t)x(t)� x(s) � �(t� s)
for all 0 � s � t. The shaper is greedy ifx is the maximal
solution of this set of inequalities. We have seen in [1] thatx = � 
 a. We will show how this results from Theorem 1.

Example 2: Window flow controller

This example is found independently in [2] and [3]. A data
flow a(t) is fed via a window flow controller to a network
offering a service curve of�. The window flow controller
limits the amount of data admitted into the network in such
a way that the total backlog is less than or equal toK, whereK (the window size) is a fixed number (Figure 1).
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Figure 1: Example 2, from [2] or [3]

Call x(t) the flow admitted to the network, andy(t) the out-
put. The definition of the controller means thatx(t) is the
maximum solution to� x(t) � a(t)x(t) � y(t) +K (1)

which implies thatx(t) = a(t) ^ (y(t) +K). Note that we
do not know the mappingx(t)! y(t), but we do know thaty(t) � (� 
 x)(t): (2)

In [2], (1) and (2) are used to derive thatx � (� +K)
 a (3)



Equation (3) means that the complete system offers a service
curve equal to the sub-additive closure(� +K). We show
in this paper that this result is indeed obtained by min-plus
methods.

Example3: Optimal smoother

We consider the transmission ofvariable bit rate (VBR)
video over a network offering a guaranteed service such as
ATM VBR or the guaranteed service of the IETF (see Fig-
ure 2). The guaranteed service requires that the flow pro-
duced by the output device conform with an arrival curve�;
in return, it receives a service guarantee expressed by a net-
work service curve�. Functions� and� are derived from
the parameters used for setting up the reservation, for ex-
ample, from the T-SPEC and R-SPEC fields used with the
Resource Reservation Protocol (RSVP). In order to satisfy
the smoothness (arrival curve) constraint constraint, theout-
put of the encodera is fed to a smoother, possibly with some
look-ahead. The resulting streamx(t) is transported by the
network; at the destination, the decoder waits for an initial
playback delayD and reads the streama(t � D) from the
receive buffer.

Figure 2: Example 3, optimal smoothing.

The smoother could be a greedy shaper: but this can be
shown to be optimal only at the sender side. Here we con-
sider another problem, namely, we would like to minimize
the playback delayD and the buffer sizeB at the receiver.
Another difference with shaping is that we allow our smooth-
ing strategy to look-ahead, which a shaper does not.

Taking the convention that the time instant at which trans-
mission begins ist = 0 (so thatx(t) = 0 for t � 0), the
constraints on the smoothed flowx fed in the network are
therefore that x(t) � �0(t) (4)x(t) � (x
 �)(t) (5)

whereas the ones on the flowy outputed from the network
are that y(t) � a(t�D) (6)y(t) � a(t�D) +B: (7)

Again, we do not know the exact mappingx ! y, but we
know that the network offers a service curve�, so that(x
�)(t) � y(t) � x(t). Using the deconvolution operator

� and its properties, the set of constraints (6) and (7) can
therefore be replaced byx(t) � (a� �)(t�D) (8)x(t) � a(t�D) +B: (9)

We will compute the smallest values ofD andB that guaran-
tee a lossless smoothing, and propose one smoothing strat-
egy (which is not unique: another one is proposed in [5],
achiveing the same optimal values ofD andB).

Example 4: Losses in a shaper with finite buffer

We reconsider Example 1, but now we suppose that the buffer
is not large enough to avoid losses for all possible input
traffic, and we would like to compute the amount of data
lost at timet, with the convention that the system is empty
at time t = 0. We model losses as shown in Figure 3,
wherex(t) is the data that has actually entered the system
in the time interval[0; t]. The amount of data lost during the
same period is thereforeL(t) = a(t) � x(t). The amount
of data(x(t) � x(s)) that actually entered the system in
any time interval(s; t] is always bounded above by the total
amount of data(a(t)� a(s)) that has arrived in the system
during the same period. Therefore, for any0 � s � t,x(t) � x(s) + a(t)� a(s) or equivalentlyx(t) � infu such that0�u�t fx(u) + a(t)� a(u)g :

(10)

On the other hand,x is the part ofa that does actually enter
the shaper, so the output of the shaper isy = � 
 x. There
is no loss forx(t) if x(t)� y(t) � X for anyt. Thusx(t) � y(t) +X = (� 
 x)(t) +X (11)

The datax that actually enters the system is therefore the
maximum solution to (10) and (11). In this paper we will
provide an exact representation of L(t).
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Figure 3: Example 4, shaper with losses

Example 5: Time-varying shapers

Given a function of two time variablesW (s; t), a time vary-
ing shaper forces the outputx(t) to satisfy the conditionx(t) � x(s) +W (s; t)
for all s � t, possibly at the expense of buffering some data.
The shaper is optimal or greedy if it maximises its output
among all possible shapers [7]. The time invariant greedy



shaper of Example 1 is a special case that corresponds toW (s; t) = �(t� s).
We focus on the class of time varying shapers called time
varying leaky bucket shapers, which are used for renegoci-
ating VBR connections between a user and a network op-
erator. A time varying leaky bucket shaper is defined by a
given numberJ of leaky bucket specifications with bucket
raterj and bucket depthbj , wherej = 1; : : : ; J . At spec-
ified time instantsti, i = 0; 1; 2; ::, the parameters of the
leaky buckets are modified. A time varying leaky-bucket
shaper is completely defined by the numberJ of leaky buck-
ets; the time instantsti at which the parameters changes;
the buckets parameters(rji ; bji ), for eachj and each intervalIi = (ti; ti+1]. Our class of time varying shapers fits in that
general framework. It corresponds toW (s; t) = min1�j�J�Z ts rj(u)du + bj(t)�

(12)

with rj(t) andbj(t) defined as the instantaneous bucket rate
and depth at timet, namelyrj(t) = rij and bj(t) = bij
for the indexi such thatti < t � ti+1. We will provide
the input-output characterisation of the time varying leaky
bucket shapers.

2. SYSTEM MODELLING

The examples above involve particular types of operators� :F ! G, which are� Min-plus convolution:C�(x)(t) = (� 
 x)(t)= inf0�s�t f�(t� s) + x(s)g ;� Min-plus deconvolution:D�(x)(t) = (x� �)(t)= supu�0 fx(t+ u)� �(u)g ;� Idempotent operator:h�(x)(t) = inf0�s�t f�(t)� �(s) + x(s)g :� General time-varying linear operator:HW (x)(t) = (x �W )(t)= inf0�s�t fW (s; t) + x(s)g ;
Note thatC� andh� are tow particular cases ofHW , withW (s; t) = �(t�s) andW (s; t) = �(t)��(s) respectively.

We also define a set of properties, which are direct applica-
tions of [4]:

� � is isotoneif x(t) � y(t) for all t always implies�(x)(t) � �(y)(t) for all t. One can check that all
four operatorsC�;D�; h�;HW are isotone.� � is causalif for all t, �(x)(t) depends only onx(s)
for 0 � s � t. C�, h�,HW are causal, but notD�.� � is upper-semi-continuousif for any decreasing se-
quence of trajectories(xi(t)) we haveinf i�(xi) =�(infi xi). C�, h�,HW are upper semi-continuous.� � is time-invariant if y(t) = �(x)(t) for all t andx0(t) = x(t+s) for somes always implies that for allt�(x0)(t) = y(t+s). C� andD� are time-invariant,
but noth� norHW .� � is min-plus linear if it is upper-semi-continuous
and�(x+K) = �(x) +K for all constantK. C�,h� andHW are min-plus linear, but notD�.

We recast now the five examples using these operators.

Example 1: Optimal lossless traffic shaper.The solution
of the optimal shaper is the solution tox � a ^ C�(x): (13)

Example 2: Window flow controller. Define� as the op-
erator that mapsx(t) to y(t). From Equation (1), we derive
thatx(t) is the maximum solution tox � a ^ (�(x) +K) (14)

The operator� can be assumed to be isotone, causal and
upper-semi-continuous, but not necessarily linear. However,
we know that� � C�. We will exploit this formulation in
Section 3.

Example 3: Optimal smoother. Constraints (4) to (9) can
be recast asx(t) � �0(t) ^ C�(x)(t) ^ fa(t�D) +Bg (15)x(t) � D�(a)(t�D) (16)

Example 4: Losses in a shaper with finite buffer.All op-
erators are linear. We know thatx � a. Combining this
relation with (10) and (11), we derive thatx is the maximum
solution to x � a ^ ha(x) ^ (� 
 x+X): (17)

Example 5: Time-varying shapers.One directly hasx � a ^HW (x): (18)

3. SPACE METHOD

In this paper we apply results from [4] to the problems for-
mulated in the previous section.



Theorem 1 ([4], Theorem 4.70, item 6)Let� be an oper-
ator F ! G, and assume it is isotone and upper-semi-
continuous. For any fixed functiona 2 F , the problemx � �(x) ^ a (19)

has one maximum solution, given byx = �(a) = inf �a;�(a);�[�(a)]; : : : ;�(n)(a); : : :	 :
The theorem is proven in [4], though with some amount
of notation, using the fixed point method. It can also eas-
ily be proven directly as follows. Consider the sequence
of decreasing sequences defined byx0 = a andxn+1 =�(xn) ^ xn; n 2 N. Thenx� = infn2Nxn is a solution
of (19) because� is upper-semi-continuous. Conversely, ifx is a solution, thenx � xn for all n because� is isotone
and thusx � x�. We call the application of this theorem the
space method, because it is based on an iteration on complete
trajectoriesx(t).
Let us first apply the theorem toExample 1. The maximal
solution of (13) isx = C�(a) = (� 
 a) = � 
 a = � 
 a;
the latter equality resulting from the sub-additivity of�.

Let us next apply the theorem toExample 2. We know now
that (14) has one maximum solution and that it is given byx = (�+K)(a):
Now from (2) we have�(x)+K � �
x+K. One easily
shows thatx � (� +K)
 a which is Equation (3).

The maximal solution ofExample 3, which isx(t) = C�(�0(t) ^ fa(t�D) +Bg)= �(t) ^ f(� 
 a)(t�D) +Bg (20)

is guaranteed to exist if and only if it always verifies (16),
which yields thatsupt f(a� �)(t�D)� �(t)g � 0supt f(a� �)(t�D)� (� 
 a)(t�D)g � B:
Working out these two inequalities, we get that the smallest
playback delay and buffer sizes areD = inf fs � 0 : (a� (� 
 �))(�s) � 0gB = ((a� a)� (� 
 �))(0);
which are achived by an optimal smoothing strategy imple-
mented at thes ender side, being given by (20).

From Theorem 1, the solution ofExample 4 isx = ha ^ C�X (a) = : : : = ha[C�X ](a) (21)

The amount of lost data in the interval[0; t] isL(t) = a(t)� x(t) = supk�0� sup0�s2k�:::�s2�s1�t= ( kXi=1 [a(s2i�1)� a(s2i)� �(s2i�1 � s2i)])� kX) :
Finally, the maximal solution of (18) inExample 5. isx = HW (a) = a �W = inffa; a �W;a �W �W; : : : g
For the time varying leaky bucket shaper (12), one can com-
pute this function fort 2 Ii = (ti; ti+1] from the initial con-
ditions qj(ti) andw(ti), which are respectively the bucket
level and the backlog that are found by the traffic arriving in
the intervalIi [6]. Denoting�0i (u) = min1�j�J �rjiu+ bji � qj(ti)�
we have that fort 2 Ii = (ti; ti+1]x(t) = ��0i (t� ti) + x(ti)	^� infti<s�tf�i(t� s) +R(s)� :
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