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ABSTRACT Consider now a node of a communication network, which
is idealized as a (greedy) shaper. A (greedy) shaper is a de-

Network Calculus is a collection of results based on Min- Vice that forces an input flow(¢) to have an outpuy(t)

Plus algebra, which applies to deterministic queuing syste  that conforms to a given set of rates according to a traffic

found in communication networks. It can be used for exam- enveloppeo (the shaping curve), at the expense of possi-

ple to understand the computations for delays used in the bly delaying bits in the buffer. Here the input and output

IETF guaranteed service, why re-shaping delays can be ig- ‘signals’ are cumulative flow, defined as the number of bits

nored in shapers or spacer-controllers, a common model for s€en on the data flow in time interyal ¢]. These functions

schedulers, etc. This short tutorial presents the basittses ~ are non-decreasing with time We will denote byg the

of network calculus and their application to some fundamen- Set of non-negative wide-sense increasing functions and by

tal performance bounds in communication networks. F denote the set of wide-sense increasing functions (or se-
guences) such thai(t) = 0 for t < 0. Parametet can be
continuous or discrete. We will see in this paper thand

1. INTRODUCTION y are linked by the relation

) ) y(t)=(oc@z)(t)= inf {o(t—s)+z(s)}.
Network Calculus is a set of recent developments which pro- s:0<8<t (1)
vide a deep insight into flow problems encountered in net-
working. The foundation of network calculus lies in the This relation defines the min-plus convolution between
mathematical theory of dioids, and in particular, the Min- andz.
Plus dioid (also called Min-Plus algebra). With network-cal
culus, we are able to understand some fundamental proper-

ties of integrated services networks, of window flow control + VVYV | *
of scheduling and of buffer or delay dimensioning. These x(t) R ¢ y(t)
two companion papers [1] are a very short introduction to - o——l_—o_
this theory.

Network calculus can be viewed as the system theory that

applies to computer networks. The main difference with tra- ]

ditional system theory, as the one which was so successfully x(t) —» @_> y(t)

applied to design electronic circuits, is that here we aersi

another algebra, where the operations are changed as fol-

lows: addition becomes computation of the minimum, mul- " Figure 1: Traditional system theory for an elementary dircu

tiplication becomes addition. (top) and min-plus system theory for a shaper (bottom).

Let us illustrate this difference with an example. Consaler

very simple circuit, such as the RC cell represented in Fig- This paper reviews the basic concepts of network calculus,

ure 1. If the input signal is the voltage(t) € R, thenthe  npamely the way we characterize the ‘signals’ (i.e. the flows)

outputy(t) € R of this simple circuit is the convolution  via arrival curves (Section 2) and the ‘system’ (e.g., thie ne

of z by the impulse response of this circuit, which is here work node) via a service curve (Section 3). These tools will

h(t) = exp(—t/RC)/RC fort > 0: enable us to derive some deterministic performance bounds
on quantities such delays and backlogs (Section 4), which

t . . .
are defined as follows, for a lossless system with input flow
y(t) = (hez)(t) = /O h(t — s)a(s)ds. z(t) and output flowy():




Definition 1 (Backlog and Delay) Thebacklogat timet is
z(t) — y(t), thevirtual delayat timet is

dit) =inf{r >0:z(t) <ylt+71)}.

The backlog is the amount of bits that are held inside the
system; if the system is a single buffer, it is the queue kengt
In contrast, if the system is more complex, then the backlog
is the number of bits “in transit”, assuming that we can ob-
serve input and output simultaneously. The virtual delay at
timet is the delay that would be experienced by a bit arriv-
ing at timet if all bits received before it are served before it.
If we plot z(¢) andy(t) versust, the backlog is the vertical
deviation between these two curves. The virtual delay is the
horizontal deviation.

We will conclude the paper with ‘the linear time-invariant
system’ of communication network: the shaper. The inter-
ested reader is also referred to the pioneering work of Cruz
[5], Chang [3], Agrawal and Rajan[4].

2. ARRIVAL CURVES

To provide guarantees to data flows requires some specific
support in the network; as a counterpart, the traffic sent by
sources needs to be limited. With integrated services net-
works (ATM or the integrated services internet), this iselon
by using the concept of arrival curve, defined below.

Definition 2 (Arrival Curve) Given a wide-sense increas-
ing functiona defined fort > 0 (namelya € F), we say
that a flowz is constrained by if and only if for all s < ¢:

z(t) —z(s) < a(t — s).

Note that this is equivalent to imposing that for#alk 0

t) < inf
w()_ogg

Jalt=s)+z(s)} = (a®2)t) (2

The simplest arrival curve i8(t) = Rt. Then the constraint
means that, on any time window of widih the number of
bits for the flow is limited byR7. We say in that case that
the flow is peak rate limited. This occurs if we know that the
flow is arriving on a link whose physical bit rate is limited
by R bits/sec. A flow where the only constraint is a limit
on the peak rate is often (improperly) called a “constant bit
rate” (CBR) flow.

More generally, because of their relationship with leakgiu
ets, we will often useaffinearrival curvesy, ;, defined by:
v-5(t) = rt + b fort > 0 and0 otherwise. Havingy;, s

as an arrival curve allows a source to sénbits at once,
but not more than bits/s over the long run. Parametérs
andr are called the burst tolerance (in units of data) and the
rate (in units of data per time unit). The Integrated sesvice

framework of the Internet (Intserv) uses arrival curveghsu
as

a(t) =min{M + pt,rt + b} = vp,m(t) A vrp(t)

whereM is interpreted as the maximum packet sjzas the

peak ratep as the burst tolerance, amdas the sustainable
rate Figure 2. Notatiom stands for minimum or infimum.
In Intserv jargon, the 4-uplép, M, r,b) is also called a T-
SPEC (traffic specification). ATM uses similar curves.

A

—~ Y

Figure 2: Arrival curvea for ATM VBR and for Intserv
flows, rate-latency service curyeand vertical and horizon-
tal devaitions between both curves.

One can always replace an arrival cutvby its sub-additive
closure, which is defined as

’a(n)’”

@ = inf{do,,a® q,... 3

wherea™ = a®...® a (ntimes) andy is the “impulse”
function defined by, (t) = oo for t > 0 anddo(0) = 0).
One can show indeed that < z ® « if and only if z <

z ®a@. If a(0) = 0 anda is sub-additive (meaning that for
alls,t > 0,a(s+1t) < a(s) + a(t)), thena = a. As an
example, one can check thgt, = v, .

Finally, it is possible to compute from measurements of a
given flowz(t) its minimal arrival curve, which i§z @ x)(t)
where © denotes the min-plus deconvolution operator de-
fined by

(z@0)(t) =sup{z(t +u) —o(u)},

u>0

®)

for a given functions € F. Note that ifz,c € F, then

(r ® o) € F butin general(z @ o) ¢ F (it belongs to
G). One can check however that © =) € F. Let us also
mention that the name deconvolution is justified by the fact
that for anyz, y,z € F,z < y®zifandonlyifz @z < y.



3. SERVICE CURVES As an example, consider two nodes offering each a rate-
latency service curvgg; r;, i = 1,2, as is commonly as-

We have seen that one first principle in integrated services SUmed with Intserv. A simple computation gives

networks is to put arrival curve constraints on flows. In or-
der to provide reservations, network nodes in return need

to offer some guarantees to flows. This is done by packet Thys concatenating RSVP routers amounts to adding the la-
schedulers. The details of packet scheduling are abstracte tency components and taking the minimum of the rates.

using the concept of service curve, which we introduce in . . .
this section. We are now also able to give another interpretation of the

rate-latency service curve model. We can compute®hat =

ot ® vr,0; thus we can view a node offering a rate-latency
Definition 3 (Service Curve) Consider a systen$ and a service curve as the concatenation of a guaranteed delay nod
flow throughS with input and ouptut functiom andy. We with delayT and a CBR or GPS node with raie
say thatS offers to the flow aervice curves if and only if

for all ¢ > 0, there exists somg > 0, withty < ¢, such
that 4. THREE FUNDAMENTAL BOUNDS

y(t) — x(to) = B(t — to).

/831,T1 @ 18R21T2 = BR1A32,T1+T2- (%)

In this section we see the main simple network calculus re-
sults. They are all bounds for lossless systems with service
guarantees [4]. The proofs are straightforward applicatio
of the definitions of service and arrival curves.

Again, we can recast this definition as

v(t) 2 ngﬁt{ﬁ(t 9o} = el @) The first theorem says that the backlog is bounded by the
vertical deviation between the arrival and service curves:
Let us consider a few examples. A simple one is a GPS

(Generalized Processor Sharing) node which, by offering a Theorem 2 (Backlog Bound) Assume a flow, constrained

service curved(t) = Rt, guarantees that each flow is served by arrival curvea, traverses a system that offers a service

at least at raté? bits/s during a busy period. curve. The backloge (t) — y(¢) for all ¢ satisfies:
A second example is a guaranteed delay node. Here the only _ < _
information we have about the network node is that the max- () —y(t) < i‘;ﬁ{a(s) Alo)}

imum delay for the bits of a given flowis bounded by some
fixed valueT', and that the bits of the flow are served in first
in, first out order. This is used with a family of schedulers
called “earliest deadline first” (EDF), and can be translate
asy(t) > x(t — T) for all t > T. Using the “impulse”

function oz d_eflned bydr(t) = 0if 0 < ¢t < T and nition 1, A(s) is the virtual delay for a hypothetical system
or(t) = +ooif t > T, we have thaz®dr)(t) = z(t—-T). which would havex as input and3 as output, assuming that
We have therefore shown that a guaranteed delay node offerssuch a system exists (namely, assuming thak( 3). Let

a service Curvey = or. h(a, B) be the supremum of all values Af(s). The second
As alast example, the IETF assumes that RSVP routers offertheorem gives a bound on delay for the general case.

a service curve of the form

We now use the concept of horizontal deviation, which is a
little complex, but is supported by the following intuition
Call A(s) = inf {7 > 0: a(s) < B(s+ 7)}. From Defi-

) Theorem 3 (Delay Bound) Assume a flow, constrained by
Bror(t) = R[t — T)* = Rt-T) ift>T arrival curvea, traverses a system that offers a service curve
' 0 otherwise of 8. The virtual delayi(t) for all ¢ satisfiesd(t) < h(a, 8).

as shown on Figure 2. We call this curve the rate-latency

service curve. Theorem 4 (Output Flow) Assume a flow, constrained by

Finally, let us mention the following result, which is well-  arrival curveq, traverses a system that offers a service curve
known in traditional system theory, and which is easy to es- of 8. The output flow is constrained by the arrival curve
tablish in network calculus: o =a@f.

Theorem 1 (Concatenation of Nodes)Assume a flow tra-  As a first application of the previous results, consider a VBR
verses systends andS: in sequence. Assume titoffers flow, defined by TSPECM, p, r,b) (hencea(t) = {M +
a service curve of;, ¢ = 1,2 to the flow. Then the concate- pt} A {rt + b}) and served in one node which guarantees a
nation of the two systems offers a service curvgiof 3- service curve equal to the rate-latency functit§h) = R[t—
to the flow. T)*. This example is the standard model used in Intserv



(Figure 2). Let us apply Theorems 2 and 3. Assume that more than specified by the contract of the connection. Traffic
R > r namely the reserved rate is as large as the sustainablein excess is either discarded, or marked with a low priority
rate of the flow. The buffer required for the flow is bounded for loss in the case of ATM, or passed as best effort traffic in

<b—A[
Wmax = b+ r max ’

by
)

The maximum delay for the flow is bounded by
(»—-R)*
R

We can also apply Theorem 4 and find an arrival curle
for the output flow.

-r

M +

b—M
p—r

+T.

Amax =

As a second application, let us show how these bounds, com-
bined with Theorem 1, allow us to understand a phenomenon
known in the Insterv community as “Pay Bursts Only Once”.
Consider the concatenation of two nodes offering each a
rate-latency service curvér;,r;, ¢ = 1, 2, as is commonly
assumed with Intserv. Assume the fresh input is constrained
by v,5. Assume that < R; andr < R». We are inter-
ested in the delay bound, which we know is a worst case. Let
us compare the results obtained by applying Theorem 3 (i)
to the network service curve (5), resulting in a delay bound
Dy; (i) iteratively to every node, resulting in two individua
boundsD; andD:.

(i) The delay boundD, can be computed by application of
Theorem 3:

b

Dp= —
T RiAR:

+ T + T>.

(ii) Now apply the second method. A bound on the delay at
node 1 is (Theorem 3)D; = b/R: + T:. The output of

the first node is constrained by by (¢) = b + rt + rT1,
because of Theorem 4. A bound on the delay at the second
buffer is therefordD, = (b+rT1)/R> + T>. Consequently,

b+rT
E;+ R

It is easy to see thab, < D; + D». In other words, the
bounds obtained by considering the global service curve are
better than the bounds obtained by considering every buffer
in isolation.

b

Dy + D»

+ T + T

5. GREEDY SHAPERS

We callpolicer with curvecs a device that counts the bits ar-
riving on an input flow and decides which bits conform with
an arrival curve ofr. We callshaper with shaping curver,

a bit processing device that forces its output to hawas ar-
rival curve. We calbreedy shapea shaper which delays the
input bits in a buffer, whenever sending a bit would violate
the constraint, but outputs them as soon as possible.

With ATM and sometimes with Intsery, traffic sent over one
connection, or flow, is policed at the network boundary. &oli
ing is performed in order to guarantee that users do not send

the case of Intserv. In the latter case, with IPv4, there is no
marking mechanism, so it is necessary for each router along
the path of the flow to perform the policing function again.

Policing devices inside the network are normally buffered,
they are thus shapers. Shaping is also often needed because
the output of a buffer normally does not conform any more
with the traffic contract specified at the input.

The main result on greedy shapers is the following.

Theorem 5 (Input/output characterization of greedy shapes)
Consider a greedy shaper with shaping cusvéAssume that
the shaper buffer is empty at tinfle and that it is is large
enough so that there is no data loss. For an input figuhe
outputy is given by

y=0Qx (6)

wherea is the sub-additive closure ef

A simple proof of this theorem will be given in [1]. Remem-
ber that ifo is sub-additive and(0) = 0, 5 = 0. Anim-
mediate consequence of this theorem is that a greedy shaper
offers to the incoming flow a service curve equabtoThe
input-output characterization of greedy shapgrs o ® =

is however much stronger than the service curve property.
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