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ABSTRACT

Network Calculus is a collection of results based on Min-
Plus algebra, which applies to deterministic queuing systems
found in communication networks. It can be used for exam-
ple to understand the computations for delays used in the
IETF guaranteed service, why re-shaping delays can be ig-
nored in shapers or spacer-controllers, a common model for
schedulers, etc. This short tutorial presents the basic results
of network calculus and their application to some fundamen-
tal performance bounds in communication networks.

1. INTRODUCTION

Network Calculus is a set of recent developments which pro-
vide a deep insight into flow problems encountered in net-
working. The foundation of network calculus lies in the
mathematical theory of dioids, and in particular, the Min-
Plus dioid (also called Min-Plus algebra). With network cal-
culus, we are able to understand some fundamental proper-
ties of integrated services networks, of window flow control,
of scheduling and of buffer or delay dimensioning. These
two companion papers [1] are a very short introduction to
this theory.

Network calculus can be viewed as the system theory that
applies to computer networks. The main difference with tra-
ditional system theory, as the one which was so successfully
applied to design electronic circuits, is that here we consider
another algebra, where the operations are changed as fol-
lows: addition becomes computation of the minimum, mul-
tiplication becomes addition.

Let us illustrate this difference with an example. Considera
very simple circuit, such as the RC cell represented in Fig-
ure 1. If the input signal is the voltagex(t) 2 R, then the
output y(t) 2 R of this simple circuit is the convolution
of x by the impulse response of this circuit, which is hereh(t) = exp(�t=RC)=RC for t � 0:y(t) = (h
 x)(t) = Z t0 h(t� s)x(s)ds:

Consider now a node of a communication network, which
is idealized as a (greedy) shaper. A (greedy) shaper is a de-
vice that forces an input flowx(t) to have an outputy(t)
that conforms to a given set of rates according to a traffic
enveloppe� (the shaping curve), at the expense of possi-
bly delaying bits in the buffer. Here the input and output
‘signals’ are cumulative flow, defined as the number of bits
seen on the data flow in time interval[0; t]. These functions
are non-decreasing with timet. We will denote byG the
set of non-negative wide-sense increasing functions and byF denote the set of wide-sense increasing functions (or se-
quences) such thatf(t) = 0 for t < 0. Parametert can be
continuous or discrete. We will see in this paper thatx andy are linked by the relationy(t) = (� 
 x)(t) = infs:0�s�t f�(t� s) + x(s)g :

(1)

This relation defines the min-plus convolution between�
andx.
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Figure 1: Traditional system theory for an elementary circuit
(top) and min-plus system theory for a shaper (bottom).

This paper reviews the basic concepts of network calculus,
namely the way we characterize the ‘signals’ (i.e. the flows)
via arrival curves (Section 2) and the ‘system’ (e.g., the net-
work node) via a service curve (Section 3). These tools will
enable us to derive some deterministic performance bounds
on quantities such delays and backlogs (Section 4), which
are defined as follows, for a lossless system with input flowx(t) and output flowy(t):



Definition 1 (Backlog and Delay) Thebacklogat timet isx(t)� y(t), thevirtual delayat timet isd(t) = inf f� � 0 : x(t) � y(t+ �)g :
The backlog is the amount of bits that are held inside the
system; if the system is a single buffer, it is the queue length.
In contrast, if the system is more complex, then the backlog
is the number of bits “in transit”, assuming that we can ob-
serve input and output simultaneously. The virtual delay at
time t is the delay that would be experienced by a bit arriv-
ing at timet if all bits received before it are served before it.
If we plot x(t) andy(t) versust, the backlog is the vertical
deviation between these two curves. The virtual delay is the
horizontal deviation.

We will conclude the paper with ‘the linear time-invariant
system’ of communication network: the shaper. The inter-
ested reader is also referred to the pioneering work of Cruz
[5], Chang [3], Agrawal and Rajan[4].

2. ARRIVAL CURVES

To provide guarantees to data flows requires some specific
support in the network; as a counterpart, the traffic sent by
sources needs to be limited. With integrated services net-
works (ATM or the integrated services internet), this is done
by using the concept of arrival curve, defined below.

Definition 2 (Arrival Curve) Given a wide-sense increas-
ing function� defined fort � 0 (namely� 2 F), we say
that a flowx is constrained by� if and only if for alls � t:x(t)� x(s) � �(t� s):
Note that this is equivalent to imposing that for allt � 0x(t) � inf0�s�t f�(t� s) + x(s)g = (�
 x)(t) (2)

The simplest arrival curve is�(t) = Rt. Then the constraint
means that, on any time window of width� , the number of
bits for the flow is limited byR� . We say in that case that
the flow is peak rate limited. This occurs if we know that the
flow is arriving on a link whose physical bit rate is limited
by R bits/sec. A flow where the only constraint is a limit
on the peak rate is often (improperly) called a “constant bit
rate” (CBR) flow.

More generally, because of their relationship with leaky buck-
ets, we will often useaffinearrival curvesr;b, defined by:r;b(t) = rt + b for t > 0 and0 otherwise. Havingr;b
as an arrival curve allows a source to sendb bits at once,
but not more thanr bits/s over the long run. Parametersb
andr are called the burst tolerance (in units of data) and the
rate (in units of data per time unit). The Integrated services

framework of the Internet (Intserv) uses arrival curves, such
as �(t) = minfM + pt; rt+ bg = p;M(t) ^ r;b(t)
whereM is interpreted as the maximum packet size,p as the
peak rate,b as the burst tolerance, andr as the sustainable
rate Figure 2. Notation̂ stands for minimum or infimum.
In Intserv jargon, the 4-uple(p;M; r; b) is also called a T-
SPEC (traffic specification). ATM uses similar curves.
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Figure 2: Arrival curve� for ATM VBR and for Intserv
flows, rate-latency service curve� and vertical and horizon-
tal devaitions between both curves.

One can always replace an arrival curve� by its sub-additive
closure, which is defined as� = inff�0; �; �
 �; : : : ; �(n); : : : g
where�(n) = �
 : : :
� (n times) and�0 is the “impulse”
function defined by�0(t) = 1 for t > 0 and�0(0) = 0).
One can show indeed thatx � x 
 � if and only if x �x
 �. If �(0) = 0 and� is sub-additive (meaning that for
all s; t � 0, �(s+ t) � �(s) + �(t)), then� = �. As an
example, one can check thatr;b = r;b.
Finally, it is possible to compute from measurements of a
given flowx(t) its minimal arrival curve, which is(x�x)(t)
where� denotes the min-plus deconvolution operator de-
fined by (x� �)(t) = supu�0 fx(t+ u)� �(u)g ; (3)

for a given function� 2 F . Note that ifx; � 2 F , then(x 
 �) 2 F but in general(x � �) =2 F (it belongs toG). One can check however that(x� x) 2 F . Let us also
mention that the name deconvolution is justified by the fact
that for anyx; y; z 2 F , x � y
 z if and only ifx� z � y.



3. SERVICE CURVES

We have seen that one first principle in integrated services
networks is to put arrival curve constraints on flows. In or-
der to provide reservations, network nodes in return need
to offer some guarantees to flows. This is done by packet
schedulers. The details of packet scheduling are abstracted
using the concept of service curve, which we introduce in
this section.

Definition 3 (Service Curve) Consider a systemS and a
flow throughS with input and ouptut functionx andy. We
say thatS offers to the flow aservice curve� if and only if
for all t � 0, there exists somet0 � 0, with t0 � t, such
that y(t)� x(t0) � �(t� t0):
Again, we can recast this definition asy(t) � inf0�s�t f�(t� s) + x(s)g = (� 
 x)(t) (4)

Let us consider a few examples. A simple one is a GPS
(Generalized Processor Sharing) node which, by offering a
service curve�(t) = Rt, guarantees that each flow is served
at least at rateR bits/s during a busy period.

A second example is a guaranteed delay node. Here the only
information we have about the network node is that the max-
imum delay for the bits of a given flowx is bounded by some
fixed valueT , and that the bits of the flow are served in first
in, first out order. This is used with a family of schedulers
called “earliest deadline first” (EDF), and can be translated
asy(t) � x(t � T ) for all t � T . Using the “impulse”
function �T defined by�T (t) = 0 if 0 � t � T and�T (t) = +1 if t > T , we have that(x
�T )(t) = x(t�T ).
We have therefore shown that a guaranteed delay node offers
a service curve� = �T .

As a last example, the IETF assumes that RSVP routers offer
a service curve of the form�R;T (t) = R[t� T ]+ = � R(t� T ) if t > T0 otherwise

as shown on Figure 2. We call this curve the rate-latency
service curve.

Finally, let us mention the following result, which is well-
known in traditional system theory, and which is easy to es-
tablish in network calculus:

Theorem 1 (Concatenation of Nodes)Assume a flow tra-
verses systemsS1 andS2 in sequence. Assume thatSi offers
a service curve of�i, i = 1; 2 to the flow. Then the concate-
nation of the two systems offers a service curve of�1 
 �2
to the flow.

As an example, consider two nodes offering each a rate-
latency service curve�Ri;Ti , i = 1; 2, as is commonly as-
sumed with Intserv. A simple computation gives�R1;T1 
 �R2;T2 = �R1^R2;T1+T2 : (5)

Thus concatenating RSVP routers amounts to adding the la-
tency components and taking the minimum of the rates.

We are now also able to give another interpretation of the
rate-latency service curve model. We can compute that�R;T =�T 
 R;0; thus we can view a node offering a rate-latency
service curve as the concatenation of a guaranteed delay node,
with delayT and a CBR or GPS node with rateR.

4. THREE FUNDAMENTAL BOUNDS

In this section we see the main simple network calculus re-
sults. They are all bounds for lossless systems with service
guarantees [4]. The proofs are straightforward applications
of the definitions of service and arrival curves.

The first theorem says that the backlog is bounded by the
vertical deviation between the arrival and service curves:

Theorem 2 (Backlog Bound) Assume a flow, constrained
by arrival curve�, traverses a system that offers a service
curve�. The backlogx(t)� y(t) for all t satisfies:x(t)� y(t) � sups�0f�(s)� �(s)g
We now use the concept of horizontal deviation, which is a
little complex, but is supported by the following intuition.
Call �(s) = inf f� � 0 : �(s) � �(s+ �)g. From Defi-
nition 1,�(s) is the virtual delay for a hypothetical system
which would have� as input and� as output, assuming that
such a system exists (namely, assuming that (� � �). Leth(�; �) be the supremum of all values of�(s). The second
theorem gives a bound on delay for the general case.

Theorem 3 (Delay Bound) Assume a flow, constrained by
arrival curve�, traverses a system that offers a service curve
of�. The virtual delayd(t) for all t satisfies:d(t) � h(�; �).
Theorem 4 (Output Flow) Assume a flow, constrained by
arrival curve�, traverses a system that offers a service curve
of �. The output flow is constrained by the arrival curve�� = �� �.

As a first application of the previous results, consider a VBR
flow, defined by TSPEC(M; p; r; b) (hence�(t) = fM +ptg ^ frt+ bg) and served in one node which guarantees a
service curve equal to the rate-latency function�(t) = R[t�T ]+. This example is the standard model used in Intserv



(Figure 2). Let us apply Theorems 2 and 3. Assume thatR � r namely the reserved rate is as large as the sustainable
rate of the flow. The buffer required for the flow is bounded
by wmax = b+ rmax� b�Mp� r ; T�
The maximum delay for the flow is bounded bydmax = M + b�Mp�r (p�R)+R + T:
We can also apply Theorem 4 and find an arrival curve��
for the output flow.

As a second application, let us show how these bounds, com-
bined with Theorem 1, allow us to understand a phenomenon
known in the Insterv community as “Pay Bursts Only Once”.
Consider the concatenation of two nodes offering each a
rate-latency service curve�Ri;Ti , i = 1; 2, as is commonly
assumed with Intserv. Assume the fresh input is constrained
by r;b. Assume thatr < R1 andr < R2. We are inter-
ested in the delay bound, which we know is a worst case. Let
us compare the results obtained by applying Theorem 3 (i)
to the network service curve (5), resulting in a delay boundD0; (ii) iteratively to every node, resulting in two individual
boundsD1 andD2.

(i) The delay boundD0 can be computed by application of
Theorem 3: D0 = bR1 ^ R2 + T1 + T2:
(ii) Now apply the second method. A bound on the delay at
node 1 is (Theorem 3):D1 = b=R1 + T1. The output of
the first node is constrained by by��(t) = b + rt + rT1,
because of Theorem 4. A bound on the delay at the second
buffer is thereforeD2 = (b+rT1)=R2+T2. Consequently,D1 +D2 = bR1 + b+ rT1R2 + T1 + T2
It is easy to see thatD0 < D1 + D2. In other words, the
bounds obtained by considering the global service curve are
better than the bounds obtained by considering every buffer
in isolation.

5. GREEDY SHAPERS

We callpolicer with curve� a device that counts the bits ar-
riving on an input flow and decides which bits conform with
an arrival curve of�. We callshaper, with shaping curve�,
a bit processing device that forces its output to have� as ar-
rival curve. We callgreedy shapera shaper which delays the
input bits in a buffer, whenever sending a bit would violate
the constraint�, but outputs them as soon as possible.

With ATM and sometimes with Intserv, traffic sent over one
connection, or flow, is policed at the network boundary. Polic-
ing is performed in order to guarantee that users do not send

more than specified by the contract of the connection. Traffic
in excess is either discarded, or marked with a low priority
for loss in the case of ATM, or passed as best effort traffic in
the case of Intserv. In the latter case, with IPv4, there is no
marking mechanism, so it is necessary for each router along
the path of the flow to perform the policing function again.

Policing devices inside the network are normally buffered,
they are thus shapers. Shaping is also often needed because
the output of a buffer normally does not conform any more
with the traffic contract specified at the input.

The main result on greedy shapers is the following.

Theorem 5 (Input/output characterization of greedy shapers)
Consider a greedy shaper with shaping curve�. Assume that
the shaper buffer is empty at time0, and that it is is large
enough so that there is no data loss. For an input flowx, the
outputy is given by y = �� 
 x (6)

where�� is the sub-additive closure of�.

A simple proof of this theorem will be given in [1]. Remem-
ber that if� is sub-additive and�(0) = 0, �� = �. An im-
mediate consequence of this theorem is that a greedy shaper
offers to the incoming flow a service curve equal to�. The
input-output characterization of greedy shapersy = � 
 x
is however much stronger than the service curve property.
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